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ON THE THREE DIMENSIONAL MINIMAL MODEL PROGRAM

IN POSITIVE CHARACTERISTIC

CHRISTOPHER D. HACON AND CHENYANG XU

1. Introduction

The minimal model program (MMP) is one of the main tools in the classification
of higher dimensional algebraic varieties. It aims to generalize to dimension ≥ 3
the results obtained by the Italian school of algebraic geometry at the beginning of
the 20-th century.

In characteristic 0, much progress has been made towards establishing the mini-
mal model program. In particular the minimal model program is true in dimension
≤3, and in higher dimensions, it is known that the canonical ring is finitely gen-
erated, flips and divisorial contractions exist, minimal models exist for varieties
of general type, and we have termination of flips for the minimal model program
with scaling on varieties of general type (see [BCHM10] and the references con-
tained therein). The fundamental tool used in establishing these results is Nadel-
Kawamata-Viehweg vanishing (a powerful generalization of Kodaira vanishing).

Unluckily, vanishing theorems are known to fail for varieties in characteristic
p > 0 and so very little is known about the minimal model program in charac-
teristic p > 0. Another serious difficulty is that a resolution of singularities is
not yet known in characteristic p > 0 and dimension >3. The situation is as fol-
lows: in dimension 2, the full minimal model program holds (see [KK,Tanaka12a]
and references therein). In dimension 3, the resolution of singularities is known
(see [Abhyankar98, Cutkosky04, CP08, CP09]). Partial results towards the exis-
tence of divisorial and flipping contractions are proven in [Keel99]. Termination of
flips for terminal pairs, holds by the usual counting argument and Kawamata has
shown the existence of relative minimal models for semi-stable families when p > 3
[Kawamata94]. Thus the main remaining questions are the base point free theorem,
the existence of flips and abundance. In this paper we prove the following.

Theorem 1.1. Let f : (X,B) → Z be an extremal flipping contraction of a Q-
factorial dlt threefold defined over an algebraically closed field of characteristic p > 5
such that the coefficients of {B} belong to the standard set {1 − 1

n |n ∈ N}. Then
the flip exists.

We have the following result on the existence of minimal models. We thank one
of the referees pointing out the cases of non-general type in (2).
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712 C. D. HACON AND C. XU

Theorem 1.2. Let (X,Δ) be a Q-factorial projective three dimensional canonical
pair over an algebraically closed field k of characteristic p > 5. Assume all coeffi-
cients of Δ are in the standard set {1 − 1

n |n ∈ N} and Nσ(KX + Δ) ∧Δ = 0. If
KX +Δ is pseudo-effective, then

(1) there exists a minimal model (Xm,Δm) of (X,Δ), and
(2) if, moreover, k = Fp, then (Xm,Δm) can be obtained by running the usual

(KX +Δ)-MMP. Furthermore, the log canonical ring

R(KX +Δ) =
⊕

m≥0

H0(X,OX(m(KX +Δ)))

is finitely generated.

We remark that in general the minimal model in (1) is not obtained by running
the MMP in the usual sense unless k = Fp. See Section 5 for more details.

1.1. Sketch of the proof. After Shokurov’s work, it has been known in charac-
teristic 0 that the existence of flips can be reduced to a special case, called pl-flips
(see [Shokurov92,Fujino07]). We apply the same idea in characteristic p. The key
result of this paper is the proof of the existence of pl-flips cf. (4.12). Since the
base point free theorem has not yet been established in full generality for threefolds
in characteristic p > 0, instead of running the MMP in the usual sense, we run a
variant of the MMP (which we call a generalized MMP), which yields a minimal
model (of terminal threefolds, see Section 5).

Our strategy to show the existence of pl-flips will follow closely ideas of Shokurov
as explained in [Corti07, Chapter 2]. It is well known that if f : (X,S+B) → Z is a
pl-flipping contraction (so thatX is Q-factorial, (X,S+B) is plt and −(KX+S+B)
and −S are ample over Z), then the existence of the pl-flip is equivalent to the finite
generation of the restricted algebra RS/Z(KX +S+B). When Z is affine, then the
m-th graded piece of this algebra is given by the image of the restriction map

H0(X,OX(m(KX + S +B))) → H0(S,OS(m(KS +BS)))

(where S is normal and BS is defined by adjunction (KX + S +B)|S = KS +BS).
For any proper birational morphism g : Y → X we can consider the corresponding
plt pair KY + S′ + BY where S′ is the strict transform of S. The moving part of
the image of the restriction of H0(Y,OY (m(KY + S′ + BY ))) to S′ gives a mobile
b-divisor Mm,S′ corresponding to the m-th graded piece of RS/Z(KX + S + B).

Dividing by m, we obtain a sequence of non-decreasing Q-b-divisor 1
mMm,S′ . The

required finite generation is equivalent to showing that this non-decreasing sequence
eventually stabilizes (so that 1

mMm,S′ is fixed for all m > 0 sufficiently divisible
and in particular these divisors descend to a fixed birational model of S).

In characteristic 0, the proof has three steps: first, we show that this sequence of
b-divisors descends to a fixed model (in fact they descend to S̄ the terminalization
of (S,BS)); next we show that the limiting divisor is a Q-divisor (instead of an
arbitrary R-divisor); finally we show that for sufficiently large degree, the sequence
stabilizes. All of these steps rely heavily on the use of vanishing theorems.

In characteristic p > 0, the main difficulty is (of course) that the Kawamata-
Viehweg vanishing theorem fails. However, after [HH90], techniques involving the
Frobenius map have been developed to recover many of the results which are tradi-
tionally deduced from vanishing theorems (see Section 2.3). In this paper, we will
use these results for lifting sections from the divisor S to the ambient variety X.
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ON THE THREE DIMENSIONAL MMP IN char(p) > 0 713

However, one of the difficulties we encounter is that we can only lift the sections in
S0(•) ⊂ H0(•), which is roughly speaking the subspace given by the images of the
maps induced by iterations of the Frobenius. Thus it is necessary to understand
under what conditions the inclusion S0(•) ⊂ H0(•) is actually an equality. It is
easy to see that if (C,Δ) is a one dimensional klt pair and L is a sufficiently ample
line bundle, then H0(C,L) = S0(C, σ(C,Δ)⊗ L) (cf. (2.4)). Unluckily, in higher
dimensions, this frequently fails.

It turns out that the first two steps in the proof of characteristic 0 can be achieved
by lifting sections from curves (corresponding to general divisors in
|Mm,S′ |). So after a suitable modification, the argument works in general (an
added difficulty is that since Bertini’s theorem fails in a positive characteristic,
these curves may be singular). Unluckily, the third step uses a lifting result in the
surface case. This lifting result is subtler, however when the coefficients of B are
in the standard set {1 − 1

n |n ∈ N} and the characteristic is p > 5, we are able to

prove that S0(•) = H0(•) even in the surface case (see (4.13)). This is achieved by
a careful study of the geometry of a relative weak log Fano surface over a birational
base, using Shokurov’s idea of finding a complement (see Section 3).

2. Preliminaries

2.1. Notation and conventions. We work over an algebraically closed field k of
characteristic p > 0. We will use the standard notation in [KM98]. In particular, see
[KM98, 0.4, 2.34, 2.37] for the definitions of terminal, klt, plt and dlt singularities.

We use the notation b-divisor as defined in [Corti07, Subsection 2.3.2]. In par-
ticular, see [Corti07, 2.3.12] for examples of b-divisors.

Let (X,S+B) be a plt pair such that ⌊S+B⌋ = S is irreducible and f : X → Z a
birational contraction. Then f is a pl-flipping contraction if f is small, ρ(X/Z) = 1,
−(KX+S+B) is f -ample and −S is f -ample. The pl-flip of f , if it exists, is a small
birational morphism f+ : X+ → Z such that ρ(X+/Z) = 1 and KX+ + S+ + B+

is f+-ample, where S+ + B+ denotes the strict transform of S + B. It is well
known that X+ = ProjR(X/Z,KX + S + B) and thus the pl-flip f+ exists if and
only if R(X/Z,KX + S +B) =

⊕

i≥0 f∗OX(i(KX + S +B)) is a finitely generated
OZ-algebra.

We refer the reader to [BCHM10] for the definitions of minimal model (which
in [BCHM10] is called a log terminal model), (KX + Δ)-non-positive and (KX +
Δ)-negative maps. Also see [BCHM10] for Nakayama’s definition of Nσ(D) for a
pseudo-effective divisor D.

Let f : X → Z be a proper morphism, and F be a coherent sheaf, then F
is relatively globally generated if f∗f∗F → F is surjective. If F ∼= OX(M) for
some divisor M on Y , then M is a relatively free divisor if F is relatively globally
generated. Let C be a Q-divisor, such that ⌈C⌉ ≥ 0. Then a divisor D is relatively
C-saturated if the natural injection

f∗OX(D) → f∗OX(⌈D + C⌉)

is an isomorphism. Let L be a divisor onX, the relative mobile b-divisorMobZ(L) =
N, is the unique b-divisor N such that for any birational morphism g : Y → X, we
have NY ≤ g∗L, NY is mobile over Z and the natural morphism (f ◦ g)∗NY → f∗L
is an isomorphism.
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714 C. D. HACON AND C. XU

For a variety X defined over a field k of characteristic p > 0, we always denote
by F : X → X the absolute Frobenius.

2.2. Resolution of singularities.

Theorem 2.1. Let X be a quasi-projective variety of dimension 3 over an alge-
braically closed field k of characteristic p > 0. Then there exists a non-singular
quasi-projective variety Y and a proper birational morphism f : Y → X which is
an isomorphism above the non-singular locus X\Σ. We may assume that f−1(Σ)
is a divisor with simple normal crossings. Moreover, if I ⊂ OX is an ideal and we
replace Σ by its union with the support of OX/I, then we may assume that I ·OY is
locally principal and that f is given by a sequence of blow ups along smooth centers
lying over Σ.

Proof. See [Cutkosky04], [CP08] and [CP09]. �

2.3. F -singularities. Test ideals and the theory of tight closure were introduced
by Hochster-Huneke [HH90]. Since then it has become increasingly clear that there
is a deep connection between the classes of singularities defined in terms of Frobe-
nius splitting properties and the ones appearing in the minimal model program.
This has led to exciting progress in both commutative algebra and birational ge-
ometry (see for example the survey paper [ST11] and the references therein). The
definitions and results in this subsection are well-known to the experts; we include
them for the reader’s convenience.

Let (X,Δ) be a pair whose index is not divisible by p. Choose e > 0 so that
(pe − 1)(KX +Δ) is Cartier and let Le,∆ = OX((1− pe)(KX +Δ)). Then there is
a canonically determined (up to multiplication by a unit) map

φ∆ : F e
∗Le,∆ → OX .

The non-F -pure ideal σ(X,Δ) is the unique biggest ideal (respectively the test ideal
τ (X,Δ) is the unique smallest non-zero ideal) J ⊂ OX such that

(φ∆ ◦ F e
∗ )(J · Le,∆) = J

for any e > 0. If σ(X,Δ) = OX , we say that (X,Δ) is sharply F -pure. If τ (X,Δ) =
OX , we say that (X,Δ) is strongly F -regular. The relationship between strongly F -
regular and sharply F -pure is similar to the difference between klt and log canonical
singularities. For a pair (X,Δ), we can define F -pure centers as in [Schwede10].
See [Schwede09, 9.5] for more background. In this note, we will only need to discuss
non-trivial F -pure centers in the case of a simple normal crossing pair. We have
the following.

Lemma 2.2. Assume that (X,Δ =
∑

δiΔi) is a simple normal crossing pair whose
index is not divisible by p and that 0 ≤ δi ≤ 1. Then σ(X,Δ) = OX and each strata
of ⌊Δ⌋ is an F -pure center.

Proof. The first statement is [FST11, 15.1] (also see [ST10, 6.18]). For the rest, see
the main result of [HSZ10] and [Schwede10, 3.8, 3.9] (see also [ST11, 3.5]). �

Assume (X,Δ) is a proper pair. For any line bundle M we define

S0(X, σ(X,Δ)⊗M)

=
⋂

n>0

Im
(

H0(X,Fne
∗ (σ(X,Δ)⊗ Lne,∆ ⊗Mpne

)) → H0(X, σ(X,Δ)⊗M)
)

.
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ON THE THREE DIMENSIONAL MMP IN char(p) > 0 715

Since H0(X,M) is a finitely dimensional vector space, we have

S0(X, σ(X,Δ)⊗M) = Im
(

H0(X,Fne
∗ (Lne,∆ ⊗Mpne

)) → H0(X,M)
)

for all n ≫ 0. Recall the following result (cf. [Schwede11, 5.1, 5.3]).

Proposition 2.3. Fix X a normal projective variety and suppose that (X,Δ) is a
pair such that KX+Δ is Q-Cartier with index not divisible by p > 0. Suppose that
S ⊂ X is any union of F -pure centers of (X,Δ) and that M is a Cartier divisor
such that M −KX −Δ is ample. Then there is a natural surjective map:

S0(X, σ(X,Δ)⊗OX(M)) → S0(S, σ(S, φ∆
S )⊗OS(M)),

where φ∆
S is defined as in [Schwede11, 5.1].

We note that in this paper, we will apply (2.3) mostly when S is normal. In this
case φ∆

S = ΔS where ΔS is an effective Q-divisor such that (KX+Δ)|S ∼Q KS+ΔS

(cf. [Schwede11, 5.1]).
We need the following result.

Lemma 2.4. Let (X,Δ) be a sharply F -pure pair and L an ample Cartier divisor.
Assume the index of KX +Δ is not divisible by p. Then there is an integer m0 > 0
such that for any nef Cartier divisor P and any integer m ≥ m0, we have

S0(X, σ(X,Δ)⊗OX(mL+ P )) = H0(X,OX(mL+ P )).

Proof. See [Patakfalvi12, 2.23]. �

Corollary 2.5. Let (X,Δ) be an snc pair and L an ample Cartier divisor. Assume
the index of KX + Δ is not divisible by p. Then there is an integer m0 > 0 such
that for any nef Cartier divisor P and any integer m ≥ m0, we have

S0(X, σ(X,Δ)⊗OX(mL+ P )) = H0(X,OX(mL+ P − ⌊(1− ǫ)Δ⌋))

for 0 < ǫ ≪ 1.

Proof. Let M = ⌊(1 − ǫ)Δ⌋. Note that for 0 < ǫ ≪ 1, M is independent of ǫ and
the coefficients of Δ − M are contained in [0, 1]. Thus σ(X,Δ − M) = OX , i.e.,
(X,Δ−M) is a sharply F -pure pair.

It is easy to see, using the projection formula, that

S0(X, σ(X,Δ)⊗OX(mL+ P )) ⊃ S0(X, σ(X,Δ−M)⊗OX(mL+ P −M)).

It then follows from (2.4) above that

S0(X, σ(X,Δ−M)⊗OX(mL+ P −M)) = H0(X,OX(mL+ P −M)).

On the other hand, we have (pe − 1)Δ ≥ peM for e ≫ 0, thus by the projection
formula again, we easily see that for any Cartier divisor N we have

S0(X, σ(X,Δ)⊗OX(N)) ⊂ S0(X, σ(X, 0)⊗OX(N −M)),

and the reverse inclusion immediately follows. �

Next we introduce a global version of strongly F -regular singularities.

Definition 2.6 (cf. [SS10, 3.1, 3.8]). Let (X,Δ) be a pair with a proper morphism
f : X → T between normal varieties over an algebraically closed field of character-
istic p > 0. Assume X is normal and Δ is an effective Q-divisor on X. The pair
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716 C. D. HACON AND C. XU

(X,Δ) is globally F -regular over T if for every effective divisor D, there exists some
e > 0 such that the natural map

OX → F e
∗OX(⌈(pe − 1)Δ⌉+D)

splits locally over T (i.e. there exists an open cover T = ∪Ti such that if Xi =
f−1(Ti), then for any i, the homomorphism

OXi
→ F e

∗OXi
(⌈(pe − 1)Δ|Xi

⌉+D|Xi
)

splits for some e > 0).
When T = X, this definition coincides with the original definition of (X,Δ)

being strongly F -regular and when T is affine, it coincides with the definition of a
globally F -regular pair (cf. [SS10]).

The next result shows that the global F -regularity is a very restrictive condition.

Theorem 2.7 (Schwede-Smith). If f : X → T is a projective morphism of normal
quasi-projective varieties over an algebraically closed field of characteristic p > 0
and (X,Δ) is globally F -regular over T , then there is a Q-divisor Δ′ ≥ Δ such that
the pair (X,Δ′) is globally F -regular over T , −(KX +Δ′) is ample over T and the
index of KX +Δ′ is not divisible by p.

Proof. See [SS10, 4.3] and its proof. �

We will need the following.

Lemma 2.8. Let (X,Δ) be a globally F -regular (over T ) pair and D an effective
divisor. Then there exists a rational number ǫ > 0 such that (X,Δ+ ǫD) is globally
F -regular.

Proof. Since (X,Δ) is globally F -regular, then the map

OX → F e
∗OX(⌈(pe − 1)Δ⌉+D)

splits for some e > 0 and so (X,Δ+2ǫD) is globally sharply F -split where 2ǫ = 1
pe−1

(cf. [SS10, 3.1]). The claim is now immediate from [SS10, 3.9] (applied with
C = ǫD). �

As in the definition of sharp F -purity, in this note, we will mostly work with the
dual version of the above definition.

Lemma 2.9. Let X be a normal variety. Let E be an integral divisor. For any
e ∈ Z≥0, then there is an isomorphism

F e
∗H

0(X,OX((1− pe)KX − E)) ∼= HomOX
(F e

∗OX(E),OX).

Proof. Let L = OX(E). We have the following equalities of sheaves

HomOX
(F e

∗L,OX) = F e
∗HomOX

(L, (1− pe)KX) = F e
∗OX((1− pe)KX − E).

In fact, as X is normal and the above sheaves satisfy Serre’s condition S2, it suffices
to check this along the smooth locus Xsm, where it follows easily from Grothendieck
duality and the projection formula that

HomOXsm
(F e

∗L,OXsm
) = HomOXsm

(F e
∗ (L⊗ ωpe

Xsm
), ωXsm

)

= F e
∗HomOXsm

(L⊗ ωpe

Xsm
, ωXsm

)

= F e
∗HomOXsm

(L, ω
⊗(1−pe)
Xsm

).

Taking global sections, we obtain the claim. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE THREE DIMENSIONAL MMP IN char(p) > 0 717

Applying the above lemma to E = ⌈(pe− 1)Δ⌉+D, it immediately follows that:

Proposition 2.10. Let T = Spec(A) for some finitely generated k-algebra A and
(X,Δ) be a pair such that X is projective over T . Then (X,Δ) is globally F -regular
over T if and only if for any effective divisor D, there is an integer e ∈ N and a
surjection

H0(X,OX(⌊(1− pe)(KX +Δ)⌋ −D)) → H0(X,OX).

Proposition 2.11. Let (X,Δ) be a globally F -regular pair (over T ) and f : X ′ →
X a proper birational morphism between normal varieties such that f∗(KX +Δ) =
KX′ +Δ′ where Δ′ ≥ 0. Then (X ′,Δ′) is globally F -regular over T .

Proof. Assume that the index of KX + Δ is not divisible by p > 0. Let D′ be an
effective divisor on X ′ and pick D a Cartier divisor on X such that f∗D ≥ D′.
Since (X,Δ) is globally F -regular, we have a surjection

H0(X,OX((1− pe)(KX +Δ)−D)) → H0(X,OX)

for e > 0 sufficiently divisible. By the projection formula, this is equivalent to the
surjection

H0(X ′,OX′((1− pe)(KX′ +Δ′)− f∗D)) → H0(X ′,OX′)

which factors through H0(X ′,OX′((1 − pe)(KX′ + Δ′) − D′)). Thus (X ′,Δ′) is
globally F -regular.

To see the general case, note that we may work locally over T and hence we
may assume that there is a Q-divisor Δ1 ≥ Δ such that (X,Δ1) is a globally
F -regular pair (over T ) with an index not divisible by p. It then follows that
f∗(KX +Δ1) = KX′ +Δ′

1 where Δ′
1 ≥ 0 and (X ′,Δ′

1) is globally F -regular. But
then (X ′,Δ′) is globally F -regular since Δ′ ≤ Δ′

1. �

We will need the following easy consequence (cf. [MR85]).

Lemma 2.12. Let f : X → T be a proper birational morphism between normal
varieties such that (X,Δ) is globally F -regular over T . Then (T,ΔT = f∗Δ) is
strongly F -regular.

Proof. We may assume that T is affine. Let D be an effective divisor on T . Pick
D′ ≥ D such that D′ is Cartier. Since (X,Δ) is globally F -regular over T , we have
a surjection

H0(X,F e
∗OX(⌊(1− pe)(KX +Δ)⌋ − f∗D′)) → H0(X,OX).

Since H0(X,F e
∗OX(⌊(1−pe)(KX +Δ)⌋−f∗D′)) = H0(T, f∗F

e
∗OX(⌊(1−pe)(KX +

Δ)⌋ − f∗D′)) is contained in H0(T, F e
∗OT (⌊(1 − pe)(KT + ΔT )⌋ − D′)), we have

surjections
F e
∗OT (⌊(1− pe)(KT +ΔT )⌋ −D′) → OT .

Since the above map factors through F e
∗OT (⌊(1− pe)(KT +ΔT )⌋ −D), (T,ΔT =

f∗Δ) is strongly F -regular. �

Wewill also need the following well known perturbation lemma (cf. [Patakfalvi12,
3.15] and [SS10, 3.12]).

Lemma 2.13. Let (X,Δ) be a log pair, E ≥ 0 a divisor such that E − KX is
Cartier and H = Supp(E + Δ). Then for any ǫ > 0, we can find an effective
Q-Cartier divisor D ≤ ǫH such that the Q-Cartier index of KX + Δ + D is not
divisible by p.
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718 C. D. HACON AND C. XU

Proof. Assume that mpe0(KX +Δ) is Cartier, where p ∤ m ∈ N. Pick e > e0 such
that 1

pe−1 (Δ + E) ≤ ǫH and let D = 1
pe−1 (Δ + E). Then

m(pe − 1)(KX +Δ+D) = m(pe − 1)

(

KX +
pe

pe − 1
Δ +

1

pe − 1
E

)

= mpeΔ+m(pe − 1)KX +mE

∼ mpeΔ+m(peKX + E −KX)

is Cartier. �

2.4. Stabilization of S0 in the relative case. The results of this section were
communicated to us by Karl Schwede (cf. [Schwede13]). We thank him for allowing
us to include them in this note.

Suppose that (X,Δ ≥ 0) is a pair such that Lg,∆ = (1− pg)(KX +Δ) is Cartier
for some g > 0, f : X → Y is a projective morphism with Y normal and M is a
Cartier divisor on X.

Definition 2.14. With the above notation, S0f∗(σ(X,Δ)⊗OX(M)) is defined to
be the intersection:

⋂

e≥0

Image (Treg : F eg
∗ f∗OX((1− peg)(KX +Δ) + pegM) → f∗OX(M))

which is more compactly written as
⋂

e≥0

Image (Treg : F eg
∗ f∗OX(Leg,∆ + pegM) → f∗OX(M)) .

Here Treg is defined by the pushing forward via f∗ of the sequence

F eg
∗ OX((1− peg)(KX +Δ) + pegM) → F eg

∗ OX((1− peg)KX + pegM) → OX(M),

which is obtained tensoring the sequence in [Schwede11, Section 2] by OX(M).
This intersection is a descending intersection, so a priori it need not stabilize.

Therefore, it is unclear if it is a coherent sheaf. At least when M − KX − Δ is
ample, we show now that this is the case.

Proposition 2.15. If M −KX −Δ is f -ample, then

S0f∗(σ(X,Δ)⊗OX(M)) = Image (Treg : F eg
∗ f∗OX(Leg,∆ + pegM) → f∗OX(M))

for e ≫ 0. In particular, it is a coherent sheaf.

Proof. It is easy to see that S0f∗(σ(X,Δ)⊗OX(M)) is equal to
⋂

e≥0

Image (Treg : F eg
∗ f∗(σ(X,Δ)⊗OX(Leg,∆+ pegM)) → f∗(σ(X,Δ)⊗OX(M))) .

Let K denote the kernel of the surjective map

F g
∗ (σ(X,Δ)⊗OX(Lg,∆)) → σ(X,Δ).

By Serre vanishing there is an integer e0 > 0 such that

R1f∗(K ⊗OX(pegM + Leg,∆)) = 0

for all e ≥ e0. It follows that the map

F
(1+e)g
∗ f∗(σ(X,Δ)⊗OX(p(1+e)gM + L(1+e)g,∆))

→F eg
∗ f∗(σ(X,Δ)⊗OX(pegM + Leg,∆))
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is surjective for all e ≥ e0 and hence so are the maps

F
(d+e)g
∗ f∗(σ(X,Δ)⊗OX(p(d+e)gM + L(d+e)g,∆))

→F eg
∗ f∗(σ(X,Δ)⊗OX(pegM + Leg,∆))

for all e ≥ e0 and d ≥ 1. Therefore, these maps have the same images under the
trace. In other words,

Image (Treg : F eg
∗ f∗OX(Leg,∆ + pegM) → f∗OX(M))

= Image (Tre0g : F e0g
∗ f∗OX(Le0g,∆ + pe0gM) → f∗OX(M))

for all e ≥ e0 and the proposition is proven. �

Remark 2.16. If Y is affine, then we can identify

F eg
∗ f∗OX((1− peg)(KX +Δ) + pegM)

with

F eg
∗ H0(X,OX((1− peg)(KX +Δ) + pegM))

and hence S0f∗(σ(X,Δ)⊗OX(M)) with S0(X, σ(X,Δ)⊗OX(M)). By (2.10), it
follows that if (X,Δ) is globally F -regular over Y , then S0f∗(σ(X,Δ)) = f∗OX (the
stabilization in this case is automatic and does not require that (pg − 1)(KX +Δ)
is Cartier for some g > 0.

Remark 2.17. It is easy to see that if M − KX − Δ is f -ample, then the re-
sults of Section 2.3 easily translate to corresponding results about the sheaves
S0f∗(σ(X,Δ) ⊗ OX(M)). We will explicitly state only the results that will be
frequently used in what follows.

Proposition 2.18. With the above notation, assume that p does not divide the
index of KX +Δ, M is a Cartier divisor, M − (KX +Δ) is f -ample and S ⊂ X is
any union of F -pure centers of (X,Δ). Then there is a natural surjective map

S0f∗(σ(X,Δ)⊗OX(M)) → S0(f |S)∗(σ(S, φ
∆
S )⊗OS(M)).

Proof. The proof is immediate from the arguments in the proof of [Schwede11, 5.3].
�

Lemma 2.19. Let L be an f -ample Cartier divisor and (X,Δ) a sharply F -pure
pair such that p does not divide the index of KX +Δ. Then there exists an integer
m0 > 0 such that for any f -nef Cartier divisor P and any integer m ≥ m0, we have

S0f∗(σ(X,Δ)⊗OX(mL+ P )) = f∗OX(mL+ P ).

Proof. The proof is immediate from the arguments in the proof of [Patakfalvi12,
2.23]. �

Lemma 2.20. Let f : X → Y be a projective morphism of normal quasi-projective
varieties such that (X,Δ) is globally F -regular over Y . If A is a sufficiently ample
divisor on Y , then

S0(X, σ(X,Δ)⊗OX(f∗A)) = H0(X,OX(f∗A)).

Proof. Since (X,Δ) is globally F -regular over Y , by (2.7), we may pick Δ′ ≥ Δ
such that (X,Δ′) is also globally F -regular over Y , the index of KX + Δ′ is not
divisible by p and −(KX +Δ′) is ample over Y . Since (X,Δ′) is globally F -regular
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over Y , (X,Δ′) is strongly F -regular so that σ(X,Δ′) = OX . Fix g > 0 such that
(pg − 1)(KX +Δ′) is Cartier, and

F eg
∗ Leg,∆′ → OX , and f∗F

eg
∗ Leg,∆′ → f∗OX

are surjective for any e > 0. Let K be the kernel of the map

F g
∗Lg,∆′ → OX .

Since (F g
∗Lg,∆′) ⊗ L(e−1)g,∆′ = F g

∗Leg,∆′ , twisting by L(e−1)g,∆′ and pushing for-

ward by F
(e−1)g
∗ we obtain the short exact sequence

0 → F
(e−1)g
∗ (K ⊗ L(e−1)g,∆′) → F eg

∗ Leg,∆′ → F
(e−1)g
∗ L(e−1)g,∆′ → 0.

Since −(KX+Δ′) is f -ample, there exists e0 > 0 such that R1f∗(K⊗L(e−1)g,∆′) = 0
for all e ≥ e0. Since (X,Δ′) is F -regular over Y , pushing forward via f we obtain
the short exact sequences

0 → F
(e−1)g
∗ f∗(K ⊗ L(e−1)g,∆′) → F eg

∗ f∗Leg,∆′ → F
(e−1)g
∗ f∗L(e−1)g,∆′ → 0.

If e ≫ 0 and A is sufficiently ample, then L(e−1)g,∆′ + f∗p(e−1)gA is sufficiently
ample so that by Fujita vanishing (see [Keeler03]), we have that

H1(Y, F
(e−1)g
∗ f∗(K ⊗ L(e−1)g,∆′)⊗OY (A))

=H1(Y, f∗(K ⊗ L(e−1)g,∆′ ⊗OX(p(e−1)gf∗A)))

=H1(X,K ⊗ L(e−1)g,∆′ ⊗ f∗OY (p
(e−1)gA)) = 0.

We may also assume that

H0(Y, f∗F
e0g
∗ Le0g,∆′ ⊗OY (A)) → H0(Y, f∗OX ⊗OY (A))

is surjective. But then since

H0(Y, f∗F
eg
∗ (Leg,∆′ ⊗OX(pegf∗A)))

→H0(Y, f∗F
(e−1)g
∗ (L(e−1)g,∆′ ⊗OX(p(e−1)gf∗A)))

is surjective for all e > e0, it follows that

H0(Y, f∗F
eg
∗ (Leg,∆′ ⊗OX(pegf∗A))) → H0(Y, f∗OX ⊗OY (A))

is surjective for any e ≥ e0 and hence

S0(X, σ(X,Δ′)⊗OX(f∗A)) = H0(Y,OY (A)).

Since S0(X, σ(X,Δ′) ⊗ OX(f∗A)) ⊂ S0(X, σ(X,Δ) ⊗ OX(f∗A)) the lemma is
proven. �

2.5. Surfaces. In this subsection, we collect the results in MMP theory for surfaces
(in characteristic p > 0) that we will need later.

Proposition 2.21. Let f : S → R be a projective morphism from a normal surface,
and BS be a Q-divisor on S such that (S,BS) is a relative weak log Fano surface,
i.e., (S,BS) is klt and −(KS +BS) is f -nef and f -big. Then we have the following

(1) any relatively nef divisor is semi-ample over R,
(2) the nef cone of S (over R) is finitely generated.

Proof. See [Tanaka12a, 15.2] and [Tanaka12b, 3.2]. �
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Lemma 2.22. Let (S,BS) be a klt pair. There exists a unique birational morphism
ν : S̄ → S such that

(1) KS̄ +BS̄ = ν∗(KS +BS), where BS̄ ≥ 0, and
(2) (S̄, BS̄) is terminal.

(S̄, BS̄) is the terminalization of (S,BS). In particular S̄ is smooth andmultp(BS̄) < 1
for all p ∈ S̄.

Proof. We reproduce the following well known proof. For any log resolution of
gS′ : S′ → S, we write

g∗S′(KS +BS) + E = KS′ +BS′ ,

where E, BS′ are effective and have no common components. Passing to a higher
resolution, we can assume (S′, BS′) is terminal.

We then run the minimal model program for (S′, BS′) over S and we obtain
a relative minimal model μ : S′ → S̄ with a morphism ν : S̄ → S (see [KK],
[Tanaka12a]). Note that μ∗E ∼S,Q KS̄ + BS̄ is nef where BS̄ = μ∗BS′ . Since
μ∗E is an exceptional curve, its self-intersection is non-positive and if μ∗E �= 0 the
self-intersection is negative. Thus μ∗E = 0 and hence KS̄ + BS̄ ∼Q ν∗(KS + BS).
As (S′, BS′) is terminal, so is (S̄, BS̄). Uniqueness is also well known, and we omit
the proof. �

Even though the Kawamata-Viehweg vanishing theorem does not hold for sur-
faces, it is still true for a birational morphism between surfaces.

Lemma 2.23 ([KK, 2.2.5]). Let h : S′ → S be a proper birational morphism
between normal surfaces, such that (S′, BS′) is a klt pair. Let L be a Cartier
divisor on S′, and N an h-nef Q-divisor such that L ≡ KS′ + BS′ + N . Then
R1h∗OS′(L) = 0.

Proof. [KK, 2.25] proves the case when S′ is smooth. In general, we can take the
terminalization of (S,BS) and use a simple spectral sequence argument. �

3. On the F -regularity of weak log del Pezzo surfaces

Hara proved that a klt surface S is strongly F -regular if the characteristic is
larger than 5 (see [Hara98]). The aim of this section is to generalize Hara’s result to
establish the global F -regularity for relative weak log del Pezzo surfaces of birational
type with standard coefficients f : (S,B) → T when the characteristic is larger than
5. We will use Shokurov’s theory of complements (see [Shokurov00,Prokhorov99]),
which fits in this context very well.

More precisely, our main theorem of this section is (3.1). To prove it, we proceed
as follows. By a result of Shokurov (cf. (3.2)) we can find a Q-divisor Bc ≥ B such
that N(KS+Bc) ∼ 0 and N ∈ {1, 2, 3, 4, 6} where (S,Bc) is lc but not klt. We then

consider a smooth dlt model (S̃, Bc
S̃
) → (S,Bc) with C = ⌊Bc

S̃
⌋ �= 0. By a careful

study of the pair (S̃, Bc
S̃
), we define a Q-divisor B∗

S̃
such that Bc

S̃
≥ B∗

S̃
≥ BS̃ +C,

−(KS̃+B∗
S̃
) is relatively nef and (S̃, B∗

S̃
) is plt. By the numerical properties that the

coefficients of B∗
S̃
satisfy, we can apply Fedder’s criteria to check that if p > 5, then

(C,DiffC(B
∗
S̃
)) is globally F -regular. By the relative Kawamata-Viehweg theorem

for surfaces, it follows that (S,B) is globally F -regular over T (in a neighborhood
of f(C)).
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Theorem 3.1. Assume the ground field k is algebraically closed of characteristic
p > 5. Let (S,B) be a pair with a birational proper morphism f : S → T on to a
normal surface germ (T, 0) such that

(1) (S,B) is klt,
(2) −(KS +B) is f -nef, and
(3) the coefficients of B are in the standard set {n−1

n |n ∈ N}.

Then (S,B) is globally F -regular over T .

We will need the following result on complements due to Shokurov.

Theorem 3.2. Notation as in (3.1). There exists a divisor Bc ≥ B and an integer
N ∈ RN2 = {1, 2, 3, 4, 6}, such that N(KS +Bc) ∼T 0 and (S,Bc) is log canonical

but not klt. Let ν : S̃ → S be a dlt modification, KS̃ + Bc
S̃
= ν∗(KS + Bc) and

C = ⌊Bc
S̃
⌋. Then

(1) If (S̃, Bc
S̃
) is plt, then we may assume that (C,DiffC(B

c
S̃
− C)) belongs to

one of the case listed in [Prokhorov99, 4.1.12].

(2) If (S̃, Bc
S̃
) is not plt, then we may assume thatN ∈ {1, 2} and (C,DiffC(B

c
S̃
−

C)) is of the type (2, 2,∞) or (∞,∞).

Proof.

Claim 3.3. There exists an effective Q-divisor Δ on S such that (S,B +Δ) is log
canonical but not klt, KS +B +Δ ∼T,Q 0 and there is a unique valuation C such
that a(C;S,BS +Δ) = −1.

Proof. −(KS + B) is semi-ample over T . Let φ : S → S̄ be the corresponding
morphism so that −(KS + B) = φ∗HS̄ for some Q-Cartier Q-divisor HS̄ on S̄
which is ample over T . We may pick a log resolution μ : S′ → S of (S,B) such
that there is an effective Q-Cartier Q-divisor F where −F is ample over S̄. Let
KS′ + BS′ = μ∗(KS + B), then (S′, BS′) is sub klt and BS′ has simple normal
crossings support. For 0 < ǫ ≪ 1 we have that μ∗φ∗HS̄ − ǫF is ample over T
and (S′, BS′ + ǫF ) is sub klt. Let HS′ be a general Q-divisor such that HS′ ∼Q,T

μ∗φ∗HS̄ − ǫF . Then (S′, BS′ + ǫF + HS′) is sub klt. Let HS = μ∗HS′ , then
HS + ǫμ∗F ∼Q,T −(KS + B) and (S,B + HS + ǫμ∗F ) is klt. Let G be a general
Q-Cartier Q-divisor on T whose support contains 0 and let τ be the log canonical
threshold of (S,B + HS + ǫμ∗F ) with respect to f∗G (over a neighborhood of
0 ∈ T ). By the usual tie breaking argument, we may assume that there is a
unique valuation C such that a(C;S,B + HS + ǫμ∗F + τf∗G) = −1. We let
Δ = B +HS + ǫμ∗F + τf∗G. �

Let g : S′ → S be a dlt modification of (S,BS + Δ) i.e. proper birational
morphism that only extracts C (if C is a divisor on S, then we let g be the identity
on S). It follows that (S′, g−1

∗ BS + C) is plt. Let c = −a(C;S,BS) < 1. We write

g∗(KS +B) = KS′ +B1 + cC and g∗(KS +B +Δ) = KS′ +B2 + C

where B1 ∧ C = 0 and B2 ∧ C = 0. Then, since KS′ +B2 + C ∼T,Q 0, we have

KS′ +B1 + C ∼T,Q −(B2 −B1) ≤ 0.

Let G = B2 −B1. Since (S′, B2 + C + ǫG) is plt for 0 < ǫ ≪ 1 and

KS′ +B2 + C + ǫG ∼T,Q ǫG,
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we can run the G-MMP over T to get a G-minimal model h : S′ → S′′. Since C is
not contained in the support of G, this MMP does not contract C. We denote by
B3 = h∗B1 and C ′′ = h∗(C).

Since KS′′ + h∗(B2 +C + ǫG) is plt, h∗C = C ′′ �= 0 and B3 +C ′′ ≤ h∗(B2 +C),
it follows that KS′′ + B3 + C ′′ is plt. Since the coefficients of B1 are contained in
{n−1

n |n ∈ N}, the same holds for the coefficients of B3. Thus

(KS′′ +B3 + C ′′)|C′′ = KP1 +
∑

i

aiPi

where each ai is of the form ni−1
ni

for some positive integer ni. Note that as KS′′ +

B3 + C ′′ ∼Q,T −h∗G, it follows that −(KS′′ + B3 + C ′′) is nef over T . Therefore,
the divisor B3 belongs to one of the cases listed in [Prokhorov99, 4.1.11, 4.1.12].
These cases are

(1)
∑

ai < 2: (n1, n2), (2, 2,m), (2, 3, 3), (2, 3, 4) and (2, 3, 5). One easily sees
that they are 1, 2, 3, 4 and 6 complementary with complements (∞,∞),
(2, 2,∞), (3, 3, 3), (2, 4, 4) and (2, 3, 6) respectively (here (2, 2,∞) denotes
a divisor with coefficients 1− 1

2 , 1−
1
2 and 1).

(2)
∑

ai = 2: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6) which are 2, 3, 4 and 6
complementary (and in fact equal their complement).

Since −(KS′′ + B3 + C ′′) is nef over T , by [Prokhorov99, 4.4.1] there is a N -
complement (B′′)c for C ′′+B3 (whereN ∈ {1, 2, 3, 4, 6}). Thus N(KS′′+(B′′)c) ∼T

0, KS′′ + (B′′)c is lc and N(B′′)c ≥ nC ′′ + ⌊(N + 1)B3⌋ (cf. [Prokhorov99, 4.1.3]).
Since the coefficients of B3 belong to the set {1− 1

n |n ∈ N} it follows easily that

(B′′)c ≥ C ′′ +B3.

Since h is (KS′ +B1 + C)-positive, it follows that

(KS′ +B1 + C)− h∗(KS′′ +B3 + C ′′) ≤ 0.

Let KS′ + (B′)c = h∗(KS′′ + (B′′)c), then (B′)c ≥ C + B1, N(KS′ + (B′)c) ∼T 0
and (S′, (B′)c) is lc. Finally, let Bc = g∗(B

′)c, then Bc ≥ g∗(C + B1) = B,
N(KS +Bc) ∼T 0 and (S,Bc) is lc. �

Proof of (3.1). We will assume that N is minimal as above. Let ν : S̃ → S be a

smooth dlt modification of (S,Bc) (so that (S̃, Bc
S̃
) has dlt singularities) and write

KS̃ +Bc
S̃
= ν∗(KS +Bc) and KS̃ +BS̃ = ν∗(KS +B).

In particular Bc
S̃
≥ 0. Note however that BS̃ is possibly not effective.

We assume first that we are in the exceptional case that is (S̃, Bc
S̃
) is plt. We

let C = ⌊Bc
S̃
⌋. Note that by Kollár-Shokurov Connectedness, C is connected and

hence irreducible.
Consider the extended dual graph G (see [Kollár13, 2.26] for the definition)

corresponding to the exceptional curves for μ = f ◦ ν and the strict transform of
Bc

T = f∗B
c. Let GC be the subgraph constructed by first removing all vertices

such that the corresponding curve appears in Bc
S̃
−BS̃ with coefficient 0 and then

discarding all connected components not containing the vertex corresponding to
C. Note that by the proof of (3.2), the curve C is exceptional over T and as S̃
dominates the minimal resolution and all exceptional curves are smooth rational
curves meeting transversely.
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When I = 3, the graph looks like

Γ1

C
◦ Γ3

Γ2

where each Γi is a connected tree. (If |I| = 4, we define Γi analogously.)
Let Ψi (resp. Ψc

i ) be the subdivisor of BS̃ (resp. Bc
S̃
) consisting of components

in BS̃ contained in the support of Γi. Then

BS̃ = cC +

|I|
∑

i=1

Ψi + ΛS̃ , and Bc
S̃
= C +

|I|
∑

i=1

Ψc
i + Λc

S̃

where c < 1, ΛS̃ and Λc
S̃
are the remaining components (whose support is contained

in the components corresponding to G − GC). Note that Ψc
i ≥ 0 but the Ψi are

not necessarily effective. We say that a chain is non-exceptional if it has at least
one component which is not μ-exceptional.

Lemma 3.4. There exists an i = i0 ∈ I, and a non-exceptional chain Γ0
i ⊂ Γi

intersecting C such that Supp(Ψc
i −Ψi) ⊃ Γ0

i .

Proof. Let D be the connected component of (1− c)C+
∑

(Ψc
i −Ψi) containing C.

Note that the support of D contains C and so D is non-zero. If D is exceptional,
then it is easy to see that

(Bc
S̃
−BS̃) ·D = D2 < 0.

This is impossible as

Bc
S̃
−BS̃ = KS̃ +Bc

S̃
− (KS̃ +BS̃) = ν∗(KS +Bc

S −KS −BS) ∼Q,T −ν∗(KS +BS)

is nef over T . �

We assume that i0 = 1 and let Γ0
1 be the subchain of Γ1 defined in (3.4). We

assume that the first vertex corresponds to a curve intersecting C and the last
vertex corresponds to a non-exceptional curve in the support of Bc

S̃
− BS̃ . We

define the divisor

B∗
S̃
= C +Ψ∗

1 +
m
∑

i=2

Ψc
i + Λc

S̃
,

where Ψ∗
1 is defined by replacing each coefficient p

q of a component of Ψc
1 ∧Γ0

1 with

q = N ∈ {1, 2, 3, 4, 6} by the coefficient p−1
q−1 and we leave the remaining coefficients

unchanged.

Lemma 3.5. −(KS̃ +B∗
S̃
) is nef over T .

Proof. Since B∗
S̃
≤ Bc

S̃
, it is clear that (KS̃ + B∗

S̃
) · C ≤ 0. If D is an exceptional

curve not in Γ0
1, then by the same argument, it is clear that (KS̃ +B∗

S̃
) ·D ≤ 0.

For any exceptional curve D contained in Γ0
1 which does not meet any non-

exceptional component of Γ0
1, we know that its intersection number with the ad-

jacent components in Γ0
1 are all 1. Thus the equation (KS̃ + Bc

S̃
) ·D = 0 implies
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that
pj−1

q
+

pj+1

q
+

pj
q
D2 +

r

q
− 2−D2 = 0 or

pj−1 + pj+1 + r − 2q + (pj − q)D2 = 0.

(We have used the fact that by adjunction one has KS̃ · D = −2 − D2.) Here
we denote by pj/q the multiplicity of D in Bc

S̃
and by pj−1/q (resp. pj+1/q) the

multiplicity of Bc
S̃
along the previous (resp. the following) curve in Γi

0. If D is the

curve in Γ0
1 that intersects C, then we let j − 1 = 0 and p0 = q as the multiplicity

of Bc
S̃
along C is 1. r/q denotes the intersection of all other components of Bc

S̃
with

D. To obtain B∗
S̃
, we replace (pj−1, pj , pj+1, q) by (pj−1− 1, pj − 1, pj+1− 1, q− 1);

note that p0 = q and hence (p0 − 1)/(q− 1) = 1 so that the multiplicity along C is
unchanged. The above equality implies

pj−1 − 1

q − 1
+

pj+1 − 1

q − 1
+

pj − 1

q − 1
D2 +

r

q
− 2−D2 ≤ 0

which says that (KS̃ + B∗
S̃
) ·D ≤ 0.

For an exceptional curve D ∈ Γ0
1 which meets a non-exceptional component G of

Γ0
i , the same calculation implies that (KS̃ +B∗

S̃
) ·D = 0 if the intersection number

is D ·G = 1, and otherwise (KS̃ +B∗
S̃
) ·D < 0. �

Lemma 3.6. We have B∗
S̃
≥ BS̃.

Proof. Since BS̃−B∗
S̃
= KS̃+BS̃−(KS̃+B∗

S̃
) is nef over S, by the negativity lemma

it suffices to show that ν∗B
∗
S̃
≥ B. This follows by (3.7) below, since Bc − B ≥ 0,

the support of Bc−B contains Γ0
i and the coefficients of B are of the form n−1

n . �

Lemma 3.7. Let p, q, j be natural numbers such that j−1
j < p

q and q ≥ 2, then
j−1
j ≤ p−1

q−1 .

Proof. Obvious. �

Lemma 3.8. We have that (C,DiffC(B
∗
S̃
)) is globally F -regular.

Proof. We know that N ∈ {1, 2, 3, 4, 6}. If follows from (3.1) that the coefficients
of DiffC(B

c
S̃
) are of the form n−1

n . If N = 6, then we have (C,DiffC(B
c
S̃
)) =

(P1, 1
2P1 +

2
3P2 +

5
6P3). But then (C,DiffC(B

∗
S̃
)) = (P1, aP1 + bP2 + cP3) where

(a, b, c) ∈ {(2/5, 2/3, 5/6), (1/2, 3/5, 5/6), (1/2, 2/3, 4/5)}.

If N = 4, then (C,DiffC(B
c
S̃
)) = (P1, 1

2P1+
3
4P2+

3
4P3). But then (C,DiffC(B

∗
S̃
)) =

(P1, aP1 + bP2 + cP3) where

(a, b, c) ∈ {(1/3, 3/4, 3/4), (1/2, 2/3, 3/4)}.

If N = 3, then (C,DiffC(B
c
S̃
)) = (P1, 2

3P1+
2
3P2+

2
3P3). But then (C,DiffC(B

∗
S̃
)) =

(P1, 1
2P1 +

2
3P2 +

2
3P3).

If N = 2, then (C,DiffC(B
c
S̃
)) = (P1, 1

2P1 + 1
2P2 + 1

2P3 + 1
2P4). But then

(C,DiffC(B
∗
S̃
)) = (P1, 1

2P1 +
1
2P2 +

1
2P3).

All of these cases are globally F -regular by (3.10). �
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Proposition 3.9. Notation and assumptions as above. We assume that there is
an effective Q-divisor B∗

S̃
on S̃ such that

(1) −(KS̃ +B∗
S̃
) is nef over T , Bc

S̃
≥ B∗

S̃
≥ BS̃ ,

(2) (S̃, B∗
S̃
) is plt,

(3) (C,DiffC(B
∗
S̃
)) is globally F -regular.

Then (S,B) is globally F -regular over T .

Proof. The argument is a generalization of [Hara98, 4.3].
It follows from our assumption that −(KS̃ + B∗

S̃
) is semi-ample over T . We

denote by

Ŝ := ProjR(S̃/T,−(KS̃ +B∗
S̃
)).

Let F be an exceptional relatively anti-ample divisor for S̃ over Ŝ. We note that
by (3), −(KS̃ +B∗

S̃
) · C > 0 and hence S̃ → Ŝ does not contract C.

We choose 0 < ǫ ≪ 1 a rational number such that (S̃, B∗
S̃
+ ǫF ) is plt and

(C,DiffC(B
∗
S̃
+ ǫF )) is globally F -regular. For e sufficiently divisible, we may

assume that p does not divide the index of KS̃ + B∗
S̃
+ ǫF . Let E be any effective

integral divisor over T . We write E = n0C + E′ where the support of E′ does not
contain C. We have the following commutative diagram.

H0(S̃,OS̃((1− pe)(KS̃ +B∗
S̃
+ ǫF )− E′))

α
✲ H0(S̃,OS̃)

H0(C,OC((1− pe)(KC +DiffC(B
∗
S̃
+ ǫF ))− E′|C))

γ

❄
ξ
✲ H0(C,OC)

β

❄

Note that commutativity follows since S is Cartier and hence the different
DiffC(B

∗
S̃
+ǫF ) agrees with theF -different (this follows for example from [Schwede09,

Section 7]). By assumption (C,DiffC(B
∗
S̃
+ ǫF )) is globally F -regular, hence ξ is a

surjection for e ≫ 0 sufficiently divisible. Since, for 0 < ǫ ≪ 1, −(KS̃ +B∗
S̃
+ ǫF ) is

ample over T , it follows that for any sufficiently divisible positive e, the homomor-
phism γ is also a surjection by the Kawamata-Viehweg vanishing theorem (2.23).
Thus β ◦α is a surjection and hence so is α by Nakayama’s lemma (since β is given

by A → A/m where A ∼= H0(S̃,OS̃) and m is the maximal ideal of the image of
C in T ).

Finally, since 1 = multC(B
∗
S̃
) > multC(BS̃), then for any e ≫ 0, the image of α

is contained in the image of

H0(S̃,OS̃((1− pe)(KS̃ +BS̃)− E)) → H0(S̃,OS̃).

�

We now consider the case that (S,Bc) is not plt and hence N ∈ {1, 2}. The
proof is similar but easier than the plt case and so we only indicate the neces-
sary changes to the above arguments. Notice that since (T,BT := f∗B) is klt,

then Bc
T := f∗B

c �= BT . Let ν : S̃ → S be a smooth dlt modification, then by
the Kollár-Shokurov connectedness theorem, which follows from the Kawamata-
Viehweg vanishing theorem in this case (as in the well known characteristic 0 case),
we know that the components in Bc

S̃
with coefficient 1 form a connected graph. Let

Γ• be the graph corresponding to all exceptional divisors (over T ) with coefficient
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1. This graph is a chain Γ•, with the property that only the two end points of Γ•

can be connected to components in Supp(Bc
S̃
)\Γ•.

Let C be any component in Γ•. By the same argument as (3.4), there is a
non-exceptional chain Γ′′ ⊂ (Γ\C) intersecting C such that Supp(Bc

S̃
− BS̃) ⊃ Γ′′.

Thus, Γ• ∪ Γ′′ is a chain, with a non-exceptional component at one end. The
other end is exceptional, and hence it is in Γ•. We rechoose C to coincide with
this end. We define Γ′ = (Γ′′ ∪ Γ•)\{C}, which is a chain with the property that
Γ′ ⊂ Supp(Bc

S̃
−BS̃).

Write Bc
S̃

= B′ + B′′, where B′ consists of the components contained in the

support of Γ′. For all exceptional curves Ci �= C in Γ′, consider the equations
(

KS̃ +B′′ +
∑

aiCi

)

· Ci = 0.

Since the intersection matrix Ci ·Cj is negative definite, we have a unique solu-
tion. We easily see that

Supp
(

B′ −
∑

aiCi

)

= Supp(Γ′).

Then we first define an effective Q-divisor B♯

S̃
as follows: for a component not in

Γ′, its coefficient in B♯

S̃
is the same as in Bc

S̃
; for a component in Γ′, its coefficient

is the same as in
∑

aiCi. It easily follows that

(KS̃ +B♯

S̃
) ·D ≤ 0,

for any exceptional curve D.

Now we define B∗
S̃
= (1− ǫ)Bc

S̃
+ ǫB♯

S̃
. Since B♯

S̃
≥ 0, if we choose ǫ sufficiently

small, we see that B∗
S̃
≥ BS̃ ∨ 0 and (S̃, B∗

S̃
) is plt.

By (3.1), we know that (KS̃ + Bc
S̃
)|C = KP1 +

∑j
i=1 biPi and j = 3 where

(b1, b2, b3) = (1, 12 ,
1
2 ) or j = 2 where (b1, b2) = (1, 1). Thus

(KS̃ +B∗
S̃
)|C = KP1 + a1P1 + a2P1 + a3P3 or (KS̃ +B∗

S̃
)|C = KP1 + a1P1 + a2P1,

where in the first case we have (a1, a2) ≤ ( 12 ,
1
2 ) and a3 < 1 and in the second case

a1, a2 < 1. By (3.9), (S,B) is globally F -regular over T . �

Proposition 3.10. Let k be an algebraically closed field of characteristic p > 5,
P1, P2, P3 ∈ P1 three distinct points and D = 2

5P1 +
2
3P2 +

5
6P3, D = 1

3P1 +
3
4P2 +

3
4P3, D = 1

2P1 +
3
5P2 +

5
6P3 or D =

∑r
i=1

di−1
di

Pi, where r ≤ 2 or r = 3 and

(d1, d2, d3) ∈ {(2, 2, d), (2, 3, 3), (2, 3, 4), (2, 3, 5)},

then (P1, D) is globally F -regular.

Proof. By [Watanabe91, 4.2], we may assume that D1 = 2
5P1 +

2
3P2 +

5
6P3, D2 =

1
3P1 +

3
4P2 +

3
4P3 or D = 1

2P1 +
3
5P2 +

5
6P3.

We may assume that P1 = 0, P2 = ∞ and P3 = 1. By Fedder’s criterion for
pairs, it is enough to check that if D = c1P1 + c2P2 + c3P3 for some e > 0 and
ai = ⌈(pe−1)ci⌉, then xa1ya2(x+y)a3 contains a monomial xiyj where i, j < pe−1.
(Note in fact that the pair (P1, D′) is strongly F -regular where D′ =

∑ ai

pe−1Pi and

D′ ≥ D.)
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Case 1: D1 = 2
5P1 +

2
3P2 +

5
6P3.

Let e = 1. Since

(p− 1)D′
1 = ⌈(p− 1)D1⌉ ≤

(

2

5
(p− 1) +

4

5

)

P1

+

(

2

3
(p− 1) +

2

3

)

P2 +

(

5

6
(p− 1) +

5

6

)

P3,

then a1 + a2 + a3 < 2p− 3 for any p > 34. One also sees that the same inequality
works for p = 31. In these cases the monomial xiyj has non-zero coefficient for
j = ⌊a1+a2+a3

2 ⌋ < p− 1 and i = a1 + a2 + a3 − j < p− 1. Therefore, we only need
to check the cases p ∈ {7, 11, 13, 17, 19, 23, 29}.

When p = 7 and e = 2, we have a1 = 20, a2 = 32, a3 = 40, and x20y32(x+ y)40

has the non-zero term x46y46.
When p = 11 and e = 2, we have a1 = 48, a2 = 80, and a3 = 100, thus

x48y80(x+ y)100 has the non-zero term x115y113.
When p = 13 and e = 2, we have a1 = 68, a2 = 112, a3 = 140, and x68y112(x+

y)140 has the non-zero term x166y154.
When p = 17 and e = 2, we have a1 = 116, a2 = 192 and a3 = 240, thus

x116y192(x+ y)240 has the non-zero term x287y261.
When p = 19 and e = 2, we have a1 = 144, a2 = 240 and a3 = 300, thus

x144y240(x+ y)300 has the non-zero term x357y327.
When p = 23 and e = 2, we have a1 = 212, a2 = 352 and a3 = 440, thus

x212y352(x+ y)440 has the non-zero term x491y513.
When p = 29 and e = 2, we have a1 = 336, a2 = 560 and a3 = 700, thus

x336y560(x+ y)700 has the non-zero term x775y821.
Case 2: D2 = 1

3P1 +
3
4P2 +

3
4P3.

Similarly, if e = 1,

(p− 1)D′
2 = ⌈(p− 1)D2⌉ ≤

(

1

3
(p− 1) +

2

3

)

P1

+

(

3

4
(p− 1) +

3

4

)

P2 +

(

3

4
(p− 1) +

3

4

)

P3,

then a1 + a2 + a3 < 2p− 3 for any p > 20. One also sees that the same inequality
works for p ∈ {13, 17, 19}. In these cases the monomial xiyj has non-zero coefficient
for j = ⌊a1+a2+a3

2 ⌋ and i = a1 + a2 + a3 − j. Therefore, we only need to check for
p ∈ {7, 11}.

When p = 7 and e = 2, we have a1 = 16, a2 = 36 and a3 = 36. Thus
x16y36(x+ y)36 has the non-zero term x44y44.

When p = 11 and e = 2, we have a1 = 40, a2 = 90 and a3 = 90. Thus
x40y90(x+ y)90 has non-zero term x108y112.
Case 3: D3 = 1

2P1 +
3
5P2 +

5
6P3.

(p− 1)D′
3 = ⌈(p− 1)D3⌉ ≤

(

1

2
(p− 1) +

1

2

)

P1

+

(

3

5
(p− 1) +

4

5

)

P2 +

(

5

6
(p− 1) +

5

6

)

P3,

then a1 + a2 + a3 < 2p− 3 for any p > 48. One also sees that the same inequality
works for p ∈ {31, 37, 41, 47}.
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When p = 7 and e = 2, we have a1 = 24, a2 = 29, a3 = 40, and x24y29(x+ y)40

has the non-zero term x46y47.
When p = 11 and e = 2, we have a1 = 60, a2 = 72, and a3 = 100, thus

x60y72(x+ y)100 has the non-zero term x116y116.
When p = 13 and e = 2, we have a1 = 84, a2 = 101, a3 = 140, and x84y101(x+

y)140 has the non-zero term x159y166.
When p = 17 and e = 2, we have a1 = 116, a2 = 192 and a3 = 240, thus

x144y173(x+ y)240 has the non-zero term x282y275.
When p = 19 and e = 2, we have a1 = 144, a2 = 240 and a3 = 300, thus

x180y216(x+ y)300 has the non-zero term x347y349.
When p = 23 and e = 2, we have a1 = 212, a2 = 352 and a3 = 440, thus

x246y317(x+ y)440 has the non-zero term x494y527.
When p = 29 and e = 2, we have a1 = 336, a2 = 560 and a3 = 700, thus

x420y504(x+ y)700 has the non-zero term x797y827. �

4. Existence of pl-flips

4.1. Normality of plt centers. In characteristic 0, by a result of Kawamata, we
know that plt centers (or more generally minimal log canonical centers) are normal.
The proof uses the Kawamata-Viehweg vanishing theorem. The analogous result
in characteristic p > 0 is not known. We prove a related result. The argument
illustrates some of the techniques that will be used in the rest of this section.

Proposition 4.1. Let (X,S + B) be a plt pair with S = ⌊S + B⌋, Sn → S the
normalization and write (KX+S+B)|Sn = KSn +BSn . If (Sn, BSn) is strongly F -
regular, and (X,S+B) has a log resolution g : Y → X which supports an effective
Q-divisor F which is g-exceptional and −F is g-ample, then S is normal.

Proof. We may assume that X is affine. We define

KY + S′ = g∗(KX + S +B) +AY and AS′ = AY |S′ ,

where S′ is the birational transform of S.
We choose an effective Q-Cartier Q-divisor A on X whose support contains

g(Ex(g)) and Supp(B) but not Supp(S), such that (Sn, B∗
Sn = BSn + A|Sn) is

strongly F -regular (cf. (2.8)). We then pick Ξ an effective Q-divisor with simple
normal crossings support such that

(1) S′ + {−AY } ≤ Ξ ≤ S′ + {−AY }+ g∗A,
(2) the index of KY + Ξ is not divisible by p, and
(3) ⌈AY ⌉ − (KY + Ξ) ∼Q −g∗(KX + S +B)− (Ξ− S′ − {−AY }) is g-ample.

To construct such a Q-divisor Ξ, we proceed as follows: Let Ξ′ = S′+ {−AY }+ ǫF
for some 0 < ǫ ≪ 1 so that (1) holds. Since ⌈AY ⌉ − (KY + Ξ′) ∼Q −g∗(KX + S +
B) − ǫF is g-ample for 0 < ǫ ≪ 1, we may assume that (3) also holds. We may
use (2.13) to slightly increase the coefficients of Ξ′ to obtain Ξ so that (1-3) are
satisfied.

By (2.18), there is a surjection

S0g∗(σ(Y,Ξ)⊗OY (⌈AY ⌉)) → S0h∗(σ(S
′,ΞS′)⊗OS′(⌈AS′⌉))

where ΞS′ = (Ξ− S′)|S′ and h : S′ → Sn is the induced morphism. We claim that

S0h∗(σ(S
′,ΞS′)⊗OS′(⌈AS′⌉)) = OSn .
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Grant this for the time being, then since

S0g∗(σ(Y,Ξ)⊗OY (⌈AY ⌉)) ⊂ g∗OY (⌈AY ⌉) = OX

(as ⌈AY ⌉ is effective and exceptional), it follows that the homomorphism OX →
OSn is surjective. This implies that S = Sn.

To see the claim, since {−AY } − ⌈AY ⌉ = {−AY }+ ⌊−AY ⌋ = −AY , note that
the second inequality in (1) implies (after adding −⌈AY ⌉ and restricting to S′) that

h∗(KSn +BSn +A|Sn) ≥ KS′ + ΞS′ − ⌈AS′⌉.

Since B∗
Sn = BSn +A|Sn , it then follows that

(1− pe)h∗(KSn +B∗
Sn) ≤ (1− pe)(KS′ + ΞS′) + pe⌈AS′⌉

and so

F e
∗OSn((1− pe)(KSn +B∗

Sn)) ⊂ h∗F
e
∗OS′((1− pe)(KS′ + ΞS′) + pe⌈AS′⌉).

Consider the following commutative diagram.

F e
∗OSn((1− pe)(KSn +B∗

Sn)) ✲ OSn

h∗F
e
∗OS′((1− pe)(KS′ + ΞS′) + pe⌈AS′⌉)

❄

✲ h∗OS′(⌈AS′⌉)

∼=

❄

Since (Sn, B∗
Sn = BSn + A|Sn) is strongly F -regular, we have that σ(Sn, B∗

Sn) =
OSn (cf. (2.19)) and hence the top horizontal arrow is surjective. It then follows
that the bottom horizontal arrow is surjective so that the claim follows. �

4.2. b-divisors. Assume that f : (X,S + B) → Z is a threefold pl-flipping con-
traction so that

(1) X is a normal threefold,
(2) f : X → Z is a small projective birational contraction with ρ(X/Z) = 1,
(3) (X,S +B) is plt, and
(4) −S and −(KX + S +B) are ample over Z.

We will assume that Z is affine. In particular any divisor which is ample over Z
is in fact ample and if F is a coherent sheaf on X, then we may identify f∗F and
H0(X,F).

Let A ≥ 0 be an auxiliary Q-Cartier Q-divisor on X whose support contains
Supp(B) and Ex(f) but not Supp(S), such that (X,S+B+A) is plt. Let Sn → S
be the normalization of S. Let BSn = DiffSn(X,B) and B∗

Sn = DiffSn(X,B + A),
so that

(KX + S +B)|Sn = KSn +BSn and (KX + S + B +A)|Sn = KSn + B∗
Sn .

Let g : Y → X be a log resolution of (X,S+A) (cf. (2.1)) and h = f ◦g : Y → Z
the composition. For any divisor D on X, let D′ = g−1

∗ D be the strict transform
on Y . We assume that the restriction gS′ : S′ → Sn factors through the terminal
model S̄ of (Sn, BSn) given by (2.22), i.e., gS′ = ν ◦ μ for morphisms μ : S′ → S̄
and ν : S̄ → Sn. We write

KY + S′ = g∗(KX + S +B) +AY , KS′ = g∗S′(KSn +BSn) +AS′

where AS′ = (AY )|S′ . Here, by abuse of notation, we use A to mean the discrep-
ancy b-divisors of (X,S + B) and of (Sn, BSn) (see [Corti07, 2.3.12(3)]). As the
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restriction of the discrepancy b-divisor of (X,S + B) to the models of Sn gives
the discrepancy b-divisor of (Sn, BSn), this should not cause any confusion. After
possibly blowing up further, we may assume that g is given by a sequence of blow
ups along smooth centers and thus there exists F ≥ 0 a g-exceptional Q-divisor
on Y such that −F is relatively g-ample. As in the proof of (4.1), we can pick Ξ
such that

(1) S′ + {−AY } ≤ Ξ ≤ S′ + {−AY }+ g∗A,
(2) the index of KY + Ξ is not divisible by p, and
(3) ⌈AY ⌉ − (KY + Ξ) is ample.

Lemma 4.2. Let M be a relatively free AY -saturated divisor on Y/Z (cf. Subsec-
tion (2.1)). Then there exists MY ∈ |M | such that MS′ := MY |S′ descends to S̄
i.e. MS′ = μ∗MS̄ where MS̄ = μ∗MS′ .

Proof. Since Z is affine, |M | is base point free. Since f ◦ g and (f ◦ g)|S′ are
birational, |M | induces a birational morphism ψ : Y → PN

Z , whose restriction to S′

is also birational. Note that there is a big open subset U ⊂ ψ(S′) (the complement of
finitely many points) such that ψ|S′ is finite over U . Let D be a general hyperplane
divisor on ψ(Y ) and MY ∈ |M | the corresponding divisor. We note that as we
are in characteristic p > 0, MY is integral but not necessarily smooth. Since
D ∩ ψ(S′) is contained in U , we have that MS′ = MY |S′ → ψ(MS′) is finite and
for any x ∈ MS′ , there exists M ′

S′ ∼ MS′ (obtained by considering another general
hyperplane ψ(x) ∈ D′ ⊂ ψ(Y )) such that x ∈ MS′ and MS′ ∧M ′

S′ = 0.
By (2.2), S′ is an F -pure center for (Y,Ξ). If we let L = MY + ⌈AY ⌉, then since

MY is nef, L− (KY + Ξ) is ample (cf. (3) above). Thus, by (2.3), we have that

S0(Y, σ(Y,Ξ)⊗OY (L)) → S0(S′, σ(S′,ΞS′)⊗OS′(L|S′))

is surjective, where ΞS′ = φΞ
S′ = (Ξ− S′)|S′ .

ΞS′ has simple normal crossings on S′. Since M is relatively AY -saturated, for
any s ∈ H0(Y,OY (L)), we have that s vanishes along ⌈AY ⌉. It follows that any
section t ∈ S0(S′, σ(S′,ΞS′)⊗OS′(L|S′)) vanishes along (⌈AY ⌉)|S′ = ⌈AS′⌉.

Claim 4.3. We may assume that MS′ is smooth on a neighborhood of the support
of ⌈AS′⌉ ∩MS′ .

Proof. Suppose that MS′ is singular at some point x of the support of ⌈AS′⌉.
Let m = multxMS′ ≥ 2. By choosing MS′ sufficiently generally, we may assume
that there exists M ′

S′ ∼ MS′ with m = multxM
′
S′ and MS′ ∧ M ′

S′ = 0. Let
π : S′′ → S′ be the blow up of S′ at x with an exceptional divisor E. It follows
easily that π∗MS′ −mE is nef and hence the Seshadri constant of MS′ at x satisfies
ǫ(x,MS′) ≥ 2. Since L|S′ − (KS′ + ΞS′) −MS′ is ample, by [MS12], we have that
the Frobenius-Seshadri constant satisfies

ǫF (x, L|S′ − (KS′ + ΞS′)) > ǫF (x,MS′) ≥
1

2
ǫ(x,MS′) ≥ 1.

Since (S′,ΞS′) is strongly F -regular, following the proof of [MS12, 3.1], we have
that the image of

H0(S′, F e
∗OS′(peL|S′ + (1− pe)(KS′ + ΞS′))) → H0(S′,OS′(L|S′))

contains a section σ not vanishing at x. But any such section is in S0(S′, σ(S′,ΞS′)⊗
OS′(L|S′)). As we have observed above, any such σ must vanish along ⌈AS′⌉. This
is impossible and so MS′ is smooth on a neighborhood of Supp(⌈AS′⌉). �
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After further blowing up along centers which do not intersect with the support of
⌈AS′⌉, we may assume that MS′ = M1+M2 has simple normal crossings where M1

denotes the union of the Z-horizontal components of MS′ and M2 the Z-vertical
components. Since D ∩ ψ(S′) is irreducible, M1 is irreducible and hence smooth.

By (2.2), M1 is an F -pure center for (Y,Ξ +MY ). We let Γ = (ΞS′ +M2)|M1
.

Arguing as above, we have a surjective map

S0(Y, σ(Y,Ξ +MY )⊗OY (L)) → S0(M1, σ(M1,Γ)⊗OM1
(L|M1

)).

Notice that on a neighborhood of ⌈AS′⌉, Γ is equal to (Ξ− S′)|M1
. We have that

S0(M1, σ(M1,Γ)⊗OM1
(L|M1

)) ⊃ S0(M1, σ(M1, {Γ})⊗OM1
(L|M1

− ⌊Γ⌋))

(see for example the proof of (2.5)). As M1 is affine, by (2.19), it then follows that
OM1

(L|M1
− ⌊Γ⌋) is globally generated by S0(M1, σ(M1, {Γ})⊗OM1

(L|M1
− ⌊Γ⌋))

on a neighborhood of ⌈AS′⌉. Since

S0(Y, σ(Y,Ξ +MY )⊗OY (L)) ⊂ S0(Y, σ(Y,Ξ)⊗OY (L)),

any section

s ∈ S0(M1, σ(M1,Γ)⊗OM1
(L|M1

))

lifts to a section in S0(Y, σ(Y,Ξ)⊗OY (L)) and hence s vanishes along (⌈AS′⌉)|M1
.

However, if P is a point contained in the support of (⌈AS′⌉)|M1
, then since we may

assume that the coefficients of Ξ− S′ − {−AY } are sufficiently small, we have

multP (⌊Γ⌋) = multP (⌊(Ξ− S′)|M1
⌋) < multP ((⌈AS′⌉)|M1

),

which is a contradiction. This implies that (⌈AS′⌉)|M
S′

= (⌈AS′⌉)|M1
= 0. Since

the support of ⌈AS′⌉ is the S′ → S̄ exceptional locus, it follows that MS′ descends
to S̄. �

We now define certain b-divisors following [Corti07, 2.4.1]. We fix an effective
Cartier divisor Q ∼ k(KX+S+B) on X where k is the Cartier index ofKX+S+B,
such that the support of Q does not contain S. Let

Ni = Mob(iQ), Mi = Ni|Sn , and Di =
1

i
Mi.

Note that by (2.1), for any i > 0 there exists g : Y → X (depending on i) such
that Ni,Y is free and hence Ni descends to Y . We may assume that Y → X is a
log resolution of Q and |iQ| so that Ni,Y has simple normal crossings.

Lemma 4.4. With the above notation Mi descends to S̄.

Proof. For any integer i > 0, we can choose a log resolution g : Y → X of the pair
(X,S + B) and of the linear system |iQ|. Thus, we can write g∗(iQ) = Ni + Fi,
where Ni ∼ Ni,Y is a free divisor. The divisor Ni is relatively ⌈AY ⌉-saturated,
since the inclusions

(f ◦ g)∗OY (Ni) → (f ◦ g)∗OY (Ni + ⌈AY ⌉) → (f ◦ g)∗OY (g
∗(iQ) + ⌈AY ⌉)

are isomorphisms. The result now follows from (4.2). �

In what follows, we will fix a model g0 : Y0 → X and the birational transform
S0 ⊂ Y0 such that S0 admits a morphism μ0 : S0 → S̄. We also assume that the
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models g : Y → X, factor through Y0 and that ρ : Y → Y0 is an isomorphism over
X\Supp(A) (cf. (2.1)).

S′ ✲ Y

S0

ρS′

❄

✲ Y0

ρ

❄

S̄
ν

✲

✛

μ 0

Sn
❄

✲ X
f

✲

g

✲
g
0

✲

Z

Lemma 4.5. For any effective Q-divisor G on S̄ we may fix an effective Q-Cartier
Q-divisor A∗ on X and rational numbers 0 < ǫ′ ≪ ǫ, and for any Y as above we
may choose F ≥ 0 on Y such that

(1) the support of A∗ contains the supports of B, Q, Ex(f) and the divisor E
defined in (2.13) but not S,

(2) −g∗(KX + S +B)− ǫF + ρ∗A′ is ample for any −ǫ′g∗0A
∗ ≤ A′ ≤ ǫ′g∗0A

∗,
(3) −(g∗(KX + S +B) + ǫF )|S′ + μ∗A′ is ample for any −ǫ′ν∗(A∗|Sn) ≤ A′ ≤

ǫ′ν∗(A∗|Sn), and
(4) if the support of G contains ν−1(Ex(f) ∪ g0(F0)), then ǫF |S′ ≤ μ∗G.

Proof. (1) is immediate. To see (2), notice that we may assume that there is an
effective g0-exceptional divisor F0 on Y0 such that −F0 is ample over X. It then
follows that −g∗0(KX + S + B) − ǫF0 is ample for 0 < ǫ ≪ 1 and it is easy to see
that −g∗0(KX + S +B)− ǫF0 +A′ is ample for any −2ǫ′g∗0A

∗ ≤ A′ ≤ 2ǫ′g∗0A
∗ and

0 < ǫ′ ≪ ǫ. Let F1 be a ρ-exceptional divisor on Y such that −F1 is ample over
Y0. (2) now follows (by an easy compactness argument), letting F = ρ∗F0 + λF1

where 0 < λ ≪ 1. The proof of (3) is similar. We also easily see that if ǫ and λ are
sufficiently small, then

ǫF |S′ = ǫρ∗S′(F0|S0
) + ǫλF1|S′ ≤

1

2
μ∗G+

1

2
μ∗G = μ∗G.

Note that the choice of λ depends on Y , but the choice of ǫ and ǫ′ does not. �

Note that the support of g∗A∗ contains the g-exceptional locus. For any i, j > 0,
we define

Lij =

⌈

j

i
Ni,Y +AY

⌉

.

Lemma 4.6. For any 0 < ǫ′ ≪ ǫ ≪ 1, we can pick a Q-divisor Ψ on Y (depending
on i, j and Y ), with the following properties:

(1) Ψ′
ǫ ≤ Ψ ≤ Ψ′

ǫ + ǫ′g∗A∗,where Ψ′
ǫ = {− j

iNi,Y −AY }+ S′ + ǫF ,
(2) the index of KY +Ψ is not divisible by p,
(3) Lij − (KY +Ψ) + ρ∗A′ is ample for any −ǫ′g∗0A

∗ ≤ A′ ≤ ǫ′g∗0A
∗, and

(4) (Lij − (KY +Ψ))|S′ − μ∗M is ample for any Q-divisor M on S̄ such that

−ǫ′ν∗(A∗|Sn) ≤ M − j
iMi,S̄ ≤ ǫ′ν∗(A∗|Sn).
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Proof. To construct such a Ψ, we proceed as follows: By (2.13), for any 0 < ǫ′ ≪ 1,
we may pick a Q-divisor Ψ′

ǫ ≤ Ψ ≤ Ψ′
ǫ + ǫ′g∗A∗ such that (1) and (2) hold. Since

Lij − (KY +Ψ) =

⌈

j

i
Ni,Y +AY

⌉

− (KY +Ψ)

=
j

i
Ni,Y +AY − (Ψ−Ψ′

ǫ)−KY − S′ − ǫF

=
j

i
Ni,Y − g∗(KX + S +B)− ǫF − (Ψ−Ψ′

ǫ),

Ni,Y is nef and 0 < ǫ′ ≪ 1, (3) follows from (2) of (4.5).
Since Mi,S′ = μ∗Mi,S̄ , (4) easily follows from (3) of (4.5) and the equality

(Lij−(KY +Ψ))|S′−μ∗M = −(g∗(KX+S+B)+ǫF+Ψ−Ψ′
ǫ)|S′+μ∗

(

j

i
Mi,S̄ −M

)

.

�

Lemma 4.7. The homomorphism

S0(Y, σ(Y,Ψ)⊗OY (Lij)) → S0(S′, σ(S′,ΨS′)⊗OS′(Lij |S′))

is surjective where ΨS′ = (Ψ− S′)|S′ .

Proof. Since Lij−(KY +Ψ) is ample (cf. (3) of (4.6)), the surjectivity follows from
(2.18) and (2.2). �

4.3. Rationality of D. Let D = limi Di. Our arguments follow the ideas ex-
plained in [Corti07]. However, there are added technical difficulties and the ar-
guments are a little more delicate. In particular, it becomes necessary to extend
sections from a curve to the ambient threefold (instead of just extending sections
from a surface).

Lemma 4.8. The R-divisor DS̄ is semi-ample over f(S).

Proof. See (2.21) and the argument in [Corti07, 2.4.11]. �

Let h : S̄ → f(S) be the induced morphism. Let V ⊂ Div(S̄)⊗R be the smallest
linear subspace defined over Q containing DS̄ . Since the nef cone of S̄ over f(S) is
finitely generated, we may pick nef divisors Mi ∈ V such thatDS̄ is contained in the
convex cone generated by the Mi. Note that if Σ is any h-exceptional curve, then
Mi ·Σ = 0 iff DS̄ ·Σ = 0. By (2.21), after replacing each Mi by a positive multiple,
we may assume that each |Mi| defines a birational morphism to a normal surface
over f(S), say αi : S̄ → Si. Notice that the exceptional set of αi corresponds to the
set of h-exceptional curves intersecting Mi trivially, and so this set is independent
of i. Therefore the morphism αi is independent of i and we denote it by a : S̄ → S+.

By Diophantine approximation, we may pick j > 0 and M ∈ V such that (cf.

[Corti07, 2.4.12]) M =
∑

aiMi where ai ∈ N, and ‖M − jDS̄‖ ≤ ǫ′

2 (here ‖ · ‖
denotes the sup norm). It follows that M is relatively base point free and the map
defined by |M | is also given by a : S̄ → S+.

Note that if Σ is any proper curve contained in Ex(h), then Σ · DS̄ = 0 if and
only if Σ · M = 0. Thus D descends to S+. We can assume that C is a smooth
general curve such that C ∼ M . To see this, note that there is a big open subset
U of S+ (the complement of finitely many points) such that U is smooth and a is
an isomorphism over U . C is then isomorphic to a general hyperplane C+ of S+,
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which is contained in U . We may also assume that ΨS′ + C ′ has simple normal
crossings, where C ′ is the strict transform of C on S′.

Lemma 4.9. Let Θ = ΨS′ + C ′. If j is as above and i ≫ 0, then

S0(S′, σ(S′,Θ)⊗OS′(Lij)) → S0(C ′, σ(C ′,ΘC′)⊗OC′(Lij))

is surjective, where ΘC′ = (Θ− C ′)|C′ .

Proof. Recall that ΨS′ + C ′ has simple normal crossings and since −ǫ′ν∗A∗|Sn ≤
j
iMi,S̄ −M ≤ ǫ′ν∗A∗|Sn (for i ≫ 0) it follows that Lij |S′ − (KS′ +Θ) is ample (cf.
(4) of (4.6)). The lemma now follows from (2.18). �

Lemma 4.10. If j is as above and i ≫ 0 is divisible by j, then ⌈ j
iMi,S̄+AS̄⌉−Mj,S̄

is a-exceptional.

Proof. Combining (4.7) and (4.9) (and the fact that Θ ≥ ΨS′) it follows that the
image of

H0(Y,OY (Lij)) → H0(C ′,OC′(Lij))

contains the subspace S0(C ′, σ(C ′,ΘC′)⊗OC′(Lij)) which generates OC′(Lij) (cf.
(2.19)).

On the other hand, since ⌈ j
iNi,Y +AY ⌉ ≤ jg∗Q + ⌈AY ⌉ and ⌈AY ⌉ is effective

and g-exceptional, we have an isomorphism

(f ◦ g)∗OY (Nj,Y ) → (f ◦ g)∗OY

(⌈

j

i
Ni,Y +AY

⌉)

,

which is induced by adding the effective divisor ⌈ j
iNi,Y +AY ⌉ −Nj,Y . Therefore,

we conclude that the sections in the image of

H0(Y,OY (Lij)) → H0(C ′,OC′(Lij))

vanish along (⌈ j
iNi,Y + AY ⌉ − Nj,Y )|C′ . Since, as we have seen above, they also

generate OC′(Lij), we must have (⌈ j
iNi,Y + AY ⌉ − Nj,Y )|C′ = 0. Therefore

(⌈ j
iMi,S′ +AS′⌉ −Mj,S′)|C′ = 0 and the lemma follows. �

Corollary 4.11. DS̄ is rational and a∗DS̄ = a∗Dj,S̄ for some j > 0.

Proof. Suppose that a∗DS̄ is not rational, then arguing as in [Corti07, 2.4.12], we
may assume that the divisor a∗(jDS̄) − a∗M is not effective. Since ⌈AS̄⌉ = 0, we
may pick δ > 0 such that the coefficients of AS̄ are greater than δ − 1. We may
assume that δ > ǫ′/2 and hence for i ≫ 0, we have ‖M − j

iMi,S̄‖ < δ. Since M

is integral, by an easy computation, one sees that M ≤ ⌈ j
iMi,S̄ +AS̄⌉. It follows

that

a∗M ≤ a∗

(⌈

j

i
Mi,S̄ +AS̄

⌉)

= a∗Mj,S̄ ≤ a∗(jDS̄),

where the second equality follows from (4.10) and the last inequality follows easily
from the definition of DS̄ (cf. [Corti07, 2.3.47]). Thus a∗DS̄ is rational and hence
we have that a∗(jDS̄) = a∗Mj,S̄ . Since DS̄ descend to S+, we have that DS̄ is
rational. �
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4.4. Existence of pl-flips. Up to this point, our arguments apply to any three
dimensional pl-flip. However, in this subsection, we will require that the character-
istic of the ground field is larger than 5 and the coefficients are in the standard set
{n−1

n |n ∈ N}.

Theorem 4.12. Let f : (X,S+B) → Z be a pl-flipping contraction of a projective
threefold defined over an algebraically closed field of characteristic p > 5 such that
the coefficients of B belong to the standard set {1− 1

n |n ∈ N}. Then the flip exists.

Proof. Since, by adjunction,

KSn +BSn = (KX + S +B)|Sn ,

we have that the coefficients of (Sn, BSn) also lie in {1 − 1
n |n ∈ N} (cf. [Kollár13,

3.36]) and so, by (3.1), (Sn, BSn) is strongly F -regular. By (4.1), we have that S
is normal.

By [Corti07, 2.3.6], it suffices to show that the restricted algebra RS/Z(k(KX +
S +B)) is finitely generated for some k > 0. Recall that the restricted algebra is a
graded OZ-algebra whose degreem piece corresponds to the image of the restriction
homomorphism

f∗OX(mk(KX + S +B)) → f∗OS(mk(KS +BS)),

or equivalently to the image of the restriction homomorphism

(f ◦ g)∗OY (mk(KY + S′ +BY )) → (f ◦ g)∗OS′(mk(KS′ +BS′)),

where BY = (−AY )≥0 and BS′ = (−AS′)≥0. Recall that Q ∼ k(KX + S + B) is
Cartier. Replacing k by a multiple, we may assume that a∗DS̄ = a∗Dj,S̄ for all
j > 0 by (4.11).

We have the following commutative diagram.

S′ μ
✲ S̄

a
✲ S+

S

ν

❄

✲

✲

f(S)
❄

Pick a rational number δ > 0 such that

(1) (X,S +B + δA∗) is plt,
(2) ν : S̄ → S is also a terminalization of (S,BS + δA∗|S).

Lemma 4.13. Denote by ΨS′ = (Ψ − S′)|S′ . Replacing j by a multiple, for any
i ≫ 0 divisible by j, we have

S0(S′, σ(S′,ΨS′)⊗OS′(Lij |S′)) = H0(S+,OS+(jDS+)).

Proof. Possibly replacing j by a multiple, we can assume |jDS̄ | induces the mor-
phism to the normal surface S+.

Let Gǫ = (Ψ−Ψ′
ǫ + ǫF )|S′ (see (4.6) for the definitions of these divisors) and

ΨS̄ := μ∗ΨS′ = BS̄ + μ∗Gǫ + j(DS̄ −Di,S̄)

for sufficiently large i and ΨS+ = a∗ΨS̄ . (We have used the fact that BS̄ = {BS̄} =

{−AS̄}, that jDS′ = μ∗(jDS̄) is integral, and that {− j
iMi,S′} = jDS′ − j

iMi,S′

for i ≫ 0.)
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Since (S,BS) is globally F -regular over Z (cf. (3.1)), so is (S̄, BS̄) (cf. (2.11)).

We have that ‖Ψ− Ψ′
ǫ‖ ≪ 1 (as 0 < ǫ′ ≪ ǫ ≪ 1) and ‖{− j

iMi,S̄}‖ ≪ 1 (as i ≫ 0

and jDS̄ = lim j
iMi,S̄ is integral). By (2.8), it follows that (S̄,ΨS̄) is globally

F -regular, and so (S+,ΨS+) has strongly F -regular singularities (see (2.12)). Let
ES+ be an effective Q-divisor on S+ whose support contains the image of the locus
where S′ → S+ is not an isomorphism (this is possible as we have assumed that
Y → Y0 is an isomorphism over X\Supp(A)), and the birational transform of
Supp(BS +A∗|S). We may assume that

(1) (S̄, B♯
S̄
= BS̄ + 2a∗ES+) is globally F -regular over S+ and

(2) Gǫ + j(DS′ −Di,S′) ≤ μ∗a∗ES+ (for fixed j and i ≫ 0).

To see (2), note that the support of Gǫ + j(DS′ − Di,S′) is contained in the
support of μ∗a∗ES+ and we have that ‖j(DS′ −Di,S′)‖ ≪ 1 for i ≫ 0. From our
choice of ǫ and F , A∗ we can also assume that ǫF |S′ ≤ 1

3μ
∗a∗ES+ (see (4.5.4)) and

(Ψ−Ψ′
ǫ)|S′ ≤ g∗A∗|S′ ≤ 1

3μ
∗a∗ES+ .

Claim 4.14. We have the following inclusion

S0(S′, σ(S′,ΨS′)⊗OS′(Lij |S′)) ⊃ S0(S̄, σ(S̄, B♯
S̄
)⊗OS̄(jDS̄)).

Proof. Note that μ∗ΨS′ = ΨS̄ and

μ∗(Lij |S′) = μ∗

(⌈

j

i
Mi,S′ +AS′

⌉)

= jDS̄

for any i ≫ 0 sufficiently divisible (since AS′ is μ-exceptional, ⌈AS̄⌉ = 0 and

lim j
iMi,S̄ = jDS̄ which is integral). Thus there is a commutative diagram.

μ∗F
e
∗OS′((1− pe)(KS′ +ΨS′) + peLij |S′) ✲ μ∗OS′(Lij |S′)

F e
∗OS̄((1− pe)(KS̄ +ΨS̄) + pejDS̄)

∼=

❄

✲ OS̄(jDS̄)

∼=

❄

As in the argument of (2.15) for e ≫ 0, the image of the map on global sections
induced by the top arrow is S0(S′, σ(S′,ΨS′)⊗OS′(Lij |S′)), thus it suffices to show
that for i ≫ 0, the bottom left hand corner contains

F e
∗OS̄((1− pe)(KS̄ +B♯

S̄
) + pejDS̄).

Let

Ψ∗
S̄ := BS̄ + μ∗Gǫ + j(DS̄ −Di,S̄) + a∗ES+ ≤ B♯

S̄
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(cf. (2) above). It suffices to show that

(1− pe)(KS′ +ΨS′) + peLij |S′ − μ∗((1− pe)(KS̄ +B♯
S̄
) + pe(jDS̄))

≥ (1− pe)(KS′ +ΨS′) + peLij |S′ − μ∗((1− pe)(KS̄ +Ψ∗
S̄) + pe(jDS̄))

= (pe − 1)

(⌈

j

i
Mi,S′ +AS′

⌉

−KS′ −ΨS′ − μ∗(jDS̄ −KS̄ −Ψ∗
S̄)

)

+Lij |S′ − μ∗(jDS̄)

= (pe − 1)

(

j

i
Mi,S′ +AS′ −Gǫ −KS′ − μ∗(jDS̄ −KS̄ −Ψ∗

S̄)

)

+Lij |S′ − μ∗(jDS̄)

≥ (pe − 1)

(

μ∗a∗ES+ −Gǫ +
j

i
Mi,S′ − jμ∗DS̄

)

+ Lij |S′ − μ∗(jDS̄)

≥Lij |S′ − μ∗(jDS̄)

is effective. Here the first inequality follows as Ψ∗
S̄
≤ B♯

S̄
, the second equality by

definition of Lij , the third equality since ⌈ i
jNi,Y +AY ⌉− ( ijNi,Y +AY )−Ψ′

ǫ+S+

ǫF = 0 and so restricting to S′ we have that ⌈ i
jMi,S′ +AS′⌉ − ( ijMi,S′ +AS′) +

Gǫ − ΨS′ = 0, the fourth inequality follows since as Ψ∗
S̄
= BS̄ + μ∗Gǫ + j(DS̄ −

Di,S̄) + a∗ES+ , then

μ∗(KS̄ +Ψ∗
S̄ − a∗ES+)−KS′ +AS′ = μ∗μ∗Gǫ + j(DS′ −Di,S′) ≥ 0,

and the final inequality follows since by (2) we have that

μ∗a∗ES+ −Gǫ +
j

i
Mi,S′ − jDS′ ≥ 0.

Thus it suffices to show that Lij |S′ −μ∗(jDS̄) ≥ 0. Note that for any fixed δ > 0
and i ≫ 0 we have

j

i
Mi,S̄ ≥ jDS̄ − δν∗(A∗|S)

and so

j

i
Mi,S′ +AS′ =

j

i
μ∗Mi,S̄ +AS′ ≥ μ∗(jDS̄ − δν∗(A∗|S)) +AS′ .

Thus, as jDS̄ is Cartier by (4.11), we have that
⌈

j

i
Mi,S′ +AS′

⌉

≥ μ∗(jDS̄) + ⌈−δg∗(A∗|S′) +AS′⌉ ≥ μ∗(jDS̄),

where for the last inequality we have used the fact that since (S,BS +δA∗|S) is klt,
we have that ⌈−δg∗(A∗|S)+AS′⌉ ≥ 0. Therefore, we have that Lij |S′−μ∗(jDS̄) ≥ 0
is an effective divisor. This concludes the proof. �

By (2.20), we have that for sufficiently divisible j,

S0(S̄, σ(S̄, B♯

S̄
)⊗OS̄(jDS̄)) = H0(S+,OS+(jDS+)).

Thus we have shown that

S0(S′, σ(S′,ΨS′)⊗OS′(Lij |S′)) ⊃ H0(S+,OS+(jDS+)).

The reverse inclusion is clear as a∗μ∗(Lij |S′) = jDS+ . Thus the lemma follows. �
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By construction, we have that

RS/Z(k(KX + S +B)) ⊂ R(S+/Z; jDS+).

Since

|Lij | ⊂ |jk(KY + S′ +BY ) + ⌈AY ⌉| = |jk(KY + S′ +BY )|+ ⌈AY ⌉

we have that

S0(Y, σ(Y,Ξ)⊗OY (Lij)) ⊂ H0(Y,OY (jk(KY + S′ +BY ))).

The above lemma together with (4.7) imply that

RS/Z(jk(KX + S +B)) ⊃ R(S+/Z, jDS+)

for j > 0 sufficiently divisible and thus equality holds. Since

R(S+/Z, jDS+) ∼= R(S̄/Z, jDS̄)

is a finitely generated OZ-algebra (cf. (2.21)), so is RS/Z(k(KX + S +B)) and the
theorem holds. �

5. On the minimal model program for threefolds

5.1. The results of Keel.

Theorem 5.1 ([Keel99, 0.2]). Let L be a nef line bundle on a scheme X, projective
over an algebraically closed field of characteristic p > 0. L is semi-ample if and
only if L|E(L) is semi-ample. In particular, if the basefield is the algebraic closure
of a finite field and L|E(L) is numerically trivial, then L is semi-ample.

Recall that for a nef line bundle L, E(L) is the closure of the union of all of those
irreducible subvarieties with LdimZ · Z = 0.

Theorem 5.2 ([Keel99, 0.5]). Let X be a normal Q-factorial threefold, projective
over an algebraically closed field of positive characteristic. Let L be a nef and big
line bundle on X. If L − (KX + Δ) is nef and big for some boundary Δ with
⌊Δ⌋ = 0, then L is EWM. If the basefield is the algebraic closure of a finite field,
then L is semi-ample.

Recall that a nef line bundle L on a scheme X proper over a field is Endowed
With a Map (EWM) if there is a proper map f : X → Y to a proper algebraic
space which contracts exactly E(L).

Theorem 5.3 ([Keel99, 0.6]). Let X be a normal Q-factorial threefold, projective
over an algebraically closed field. Let Δ be a boundary on X. If KX +Δ has non-
negative Kodaira dimension, then there is a countable collection of curves {Ci} such
that

(1) NE1(X) = NE1(X) ∩ (KX +Δ)≥0 + R≥0 · [Ci].
(2) All but a finite number of the Ci are rational and satisfy 0 < (KX+Δ)·Ci ≤

3.
(3) The collection of rays {R·[Ci]} does not accumulate in the half-space (KX+

Δ)<0.

We have the following easy consequence of (5.2).

Theorem 5.4. Let (X,Δ) be a normal Q-factorial threefold dlt pair projective over
a field of positive characteristic p > 0 such that KX +Δ is pseudo-effective. Let R
be a (KX +Δ)-negative extremal ray.
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(1) Then the corresponding contraction f : X → Z exists in the category of
algebraic spaces.

(2) If k = Fp is the algebraic closure of a finite field, then f : X → Z is a
morphism to a projective threefold.

(3) If (X,Δ = S + B) is plt, S is normal and S · R < 0, then f : X → Z is a
morphism to a projective threefold with ρ(X/Z) = 1.

Proof. Suppose that KX +Δ is not nef, then by (5.3), it follows easily that there
is an ample Q-divisor H such that H +KX +Δ is nef and

NE1(X) ∩ (H +KX +Δ)⊥ = R≥0[R].

Since KX + Δ is pseudo-effective, we have that L := H + KX + Δ is big. Then
(5.2) immediately implies (1) and (2).

(3) follows from (5.1). Note that E(L) ⊂ S and L|S = KS + DiffS(B + H) is
semi-ample by the contraction theorem in the surface case (see e.g. [KK, 2.3.5]).
Using (5.1), then a standard argument implies ρ(X/Z) = 1 (see [KM98, 3.17]). �

5.2. Existence of flips and minimal models.

Definition 5.5. Let (X,Δ) be a dlt pair such that X is Q-factorial. We say that
f : X → Z an extremal flipping contraction if it is a projective birational morphism
between normal quasi-projective varieties such that

(1) f is small (i.e. an isomorphism in codimension 1);
(2) −(KX +Δ) is ample over Z;
(3) ρ(X/Z) = 1.

Proof of (1.1). Replacing Δ by Δ − 1
n⌊Δ⌋ for some n ≫ 0, we may assume that

(X,Δ) is klt. We use Shokurov’s reduction to pl-flips and special termination as
explained in [Fujino07]. We simply indicate the changes necessary to the part of
the argument that is not characteristic independent.

Step 2 of [Fujino07, 4.3.7] requires resolution of singularities. We use (2.1).
Step 3 of [Fujino07, 4.3.7] requires that we run a relative minimal model program.

Since all divisors are relatively big in this context, by (5.3) the relevant negative
extremal ray R always exists. We may assume that all induced contractions are
KY + S + B-negative for an appropriate plt pair (Y, S + B) where S · R < 0
(if the pair (X,S + B) is dlt, then we may replace B by B − 1

n⌊B⌋ for n ≫
0). Thus the corresponding contraction morphism exists and is projective and all
required divisorial contractions exist. Since all flipping contractions are pl-flipping
contractions the corresponding flips exist by (4.12).

By Step 5 of [Fujino07, 4.3.7], we obtain f+ : (X+,Δ+) → Z a small birational
morphism such that X+ is Q-factorial, (X+,Δ+) is dlt and KX+ +Δ+ is nef over
Z. However, it is clear that Δ+ is the strict transform of Δ and hence ⌊Δ+⌋ = 0 so
that (X+,Δ+) is klt. Denote by p the number of exceptional divisors of a common
resolution Y → X. Since X and X+ are Q-factorial, we have

ρ(X) = ρ(Y )− p = ρ(X+),

which implies ρ(X+/Z) = ρ(X/Z) = 1 and hence that KX+ +Δ+ is ample over Z.
Thus X ��� X+ is the required flip. �

Theorem 5.6. Let k be an algebraically closed field of characteristic p > 5, (X,Δ)
a projective Q-factorial threefold klt pair over k such that KX+Δ is pseudo-effective
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and all coefficients of Δ are in the standard set {1− 1
n |n ∈ N}. Let R be a (KX+Δ)-

negative extremal ray and f : X → Z the corresponding proper birational contrac-
tion to a proper algebraic space (given by (5.4)) such that a curve C is contracted
if and only if [C] ∈ R.

(1) There is a small birational morphism f+ : X+ → Z such that X+ is Q-
factorial and projective, and KX+ + Δ+ is nef over Z where Δ+ denotes
the strict transform of Δ.

(2) If moreover, f is divisorial, then X+ = Z and in particular Z is projective.

Proof. (1) The extremal ray R is cut out by a big and nef Q-divisor of the form
L = KX +Δ+H for some ample Q-divisor H. By (5.3) L is EWM. Let f : X → Z
be the corresponding birational contraction to a proper algebraic space. Since
KX + Δ + (1 − ǫ)H is big for any rational number 0 < ǫ ≪ 1, there is a positive
(sufficiently divisible) integer m ∈ N and a divisor S ∼ m(KX + Δ + (1 − ǫ)H).
Thus S ·R < 0. Replacing S by a prime component, we find a prime divisor T with
T ·R < 0. In the divisorial contraction case, T is the contracted divisor.

Consider a log resolution ν : Y → X of the pair (X,Δ + T ), and let E be the
reduced ν-exceptional divisor. Write

Δ =
∑

∆i �=T

aiΔi + bT = Γ+ bT.

We run the (KY +Γ′+E+T ′)-MMP over Z, where Γ′ = ν−1
∗ Γ and T ′ = ν−1

∗ T are
the birational transforms of Γ and T . Note that running the MMP over Z means
that at each step we only consider extremal curves Cj such that Cj ·Lj = 0, where
Lj is the strict transform of ν∗L. We obtain models

Y = Y 1
��� Y 2

��� · · ·

We note that since f only contracts curves whose classes are in R and KX+Δ+H =
L ≡Z 0, it easily follows that KX +Δ ≡Z aT for some a > 0 and so

KY + Γ′ + T ′ + E ≡Q f∗(KX +Δ) +
∑

ciEi + (1− b)T ′ ≡Z

∑

diEi + cT ′,

where di ≥ ci > 0 and c > 1− b > 0.
For each step of this MMP, we let Cj be a curve spanning the corresponding

extremal ray and •j is the push forward of the divisor • from Y to Y j . We have

Cj ·
(

∑

diE
j
i + cT j

)

< 0,

and so at each step of the MMP, the curve Cj intersects a component of T j + Ej

negatively. By special termination, this MMP terminates after finitely many steps
and we obtain a minimal model over Z, say W = Y m.

Next, we run the (KW +ΓW +EW +bTW )-MMP with scaling of TW which yields
birational maps

W = W 1
��� W 2

��� · · ·

It is easy to see that each step is (
∑

diE
k
i )-negative, and hence also of special

type. By special termination, this MMP terminates after finitely many steps and
we obtain a minimal model over Z, say X+ = W l.

Let p : U → X and q : U → X+ be a common resolution and consider the divisor
p∗(KX +Δ) − q∗(KX+ + ΓX+ + bTX+ + EX+) which is easily seen to be anti-nef
and exceptional over X. By the negativity lemma, this divisor is effective and so

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



742 C. D. HACON AND C. XU

X ��� X+ is a birational contraction and EX+ = 0. It follows that X ��� X+ is a
minimal model for KX +Δ over Z.
(2) It remains to show that if f : X → Z is divisorial contraction, then Z ∼= X+.
Assume that f+ : X+ → Z is not an isomorphism. Let C be a f+-contracted
curve, and H+ an ample divisor on X+, so C ·H+ > 0. Denote by H the birational
transform of H+ on X. Let R be the exceptional ray and E be an f -exceptional
divisor. Since, E ·R < 0, there exists a number a ∈ Q such that (H + aE) ·R = 0.

Let p : U → X and q : U → X+ be a common resolution, then p∗(H + aE) −
q∗(H+) ≡X+ 0 is q-exceptional and so p∗(H + aE) = q∗H+ (by the negativity
lemma). But then q∗H+ ≡ p∗(H + aE) ≡Z 0 contradicting the fact that C ·H+ >
0. �

In (5.6), if f is small then we will say that X+ → Z is the corresponding
generalized flip. We say that X = X1 ��� X2 ��� · · · is a generalized (KX + Δ)-
MMP, if each map Xi ��� Xi+1 is a (KX+Δ)-divisorial contraction or a (KX+Δ)-
generalized flip.

Proof of (1.2). When k = Fp, we can run the usual (KX +Δ)-MMP by (5.4) and
(1.1); and in general we can run the generalized (KX +Δ)-MMP defined as above
by (5.6). The condition Nσ(KX +Δ) ∧Δ = 0 guarantees that no component of Δ
is contracted and hence that (X,Δ) remains canonical at each step.

So it suffices to show that a sequence of the generalized (KX+Δ)-minimal model
program terminates. In fact this directly follows from the argument of [KM98, 6.17].
We define the non-negative integer valued function d(X,Δ) as in [KM98, 6.20]. We
easily see d(X,Δ) < d(X+,Δ+) as long as Supp(Δ+) contains an exceptional curve
of X+ → Z. Thus for a sequence of flips, the birational transform of Δ eventually
will not contain flipping curves. Then the rest of the argument is precisely the same
as the one in [KM98, 6.17] (cf. [Kollár13, Section 3.3]).

To see the finite generation of R(KX+Δ), note that by the construction of Iitaka
fibration (see [Mori85, 1.11-12]), there is a positive integer d, a smooth projective
variety Y of dimension κ(KX +Δ) and a big divisor D on Y , such that

R(X, d(KX +Δ)) ∼= R(Y,D).

When κ(KX +Δ) = 3, the finite generation follows from the existence of minimal
model and Keel’s theorem (see (5.2)). When κ(KX + Δ) = 2, by Zariski decom-
position for surfaces, we can write D = P +N where P is a nef and big Q-divisor
with the property R(Y,D) = R(Y, P ). Then it is well known that P is semi-ample
since k is the algebraic closure of a finite field (see e.g. [Keel99, 2.13] and (5.1)).
When κ(KX +Δ) is 0 or 1, the finite generation follows trivially. �
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