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ON THE TIME-DOMAIN FULL WAVEFORM INVERSION FOR TIME-DISSIPATIVE

AND DISPERSIVE POROELASTIC MEDIA

MIAO-JUNG YVONNE OU, PETR PLECHÁČ, AND JIANGMING XIE
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Abstract. This paper concerns the Time-Domain Full Waveform Inversion (FWI) for dispersive and
dissipative poroelastic materials. The forward problem is an initial boundary value problem (IBVP) of
the poroelastic equations with a memory term; the FWI is formulated as a minimization problem of a
least-square misfit function with the (IBVP) as the constraint. In this paper, we derive the adjoint problem
of this minimization problem, whose solution can be applied to computed the direction of steepest descent
in the iterative process for minimization. The adjoint problem has a similar numerical structure as the
forward problem and hence can be solved by the same numerical solver. Because the tracking of the
energy evolution plays an important role in the FWI for dissipative and dispersive equations, the energy
analysis of the forward system is also carried out in this paper.

Keywords: Time-domain full waveform inversion, time dispersive and dissipative (TDD) system, poroe-
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1. Introduction

For the application of poroelastic wave equations in biomedical and geological research, a time-domain
simulation is more feasible because the input wave signal is usually a pulse of finite band-width, instead of
a monochromatiic signal. The dispersive nature of a poroelastic material is encoded in the memory term of
the poroelastic equations. The presence of the memory term poses a significant challenge in developing a
time domain numerical solver for the poroelastic equations. This challenge can be handled by the method
of auxiliary variables as long as a high precision approximation of the memory kernel function can be
obtained. Initiated in [14] and further developed In [15], the link between the Laplace transform of the
memory kernel and the Herglotz-Nevanlinna functions was utilized to obtain a highly accurate pole-residue
approximation, which makes it possible for replacing the memory terms with sums of auxiliary variables
that satisfy ordinary differential equations. The new system is termed augmented Biot equations because it
contains the new auxiliary variables and the corresponding governing equations. By design, the augmented
system has no explicit memory terms and can be solved much more efficiently than the original system.

Incorporating the dissipative and the dispersive mechanism of the fluid saturated poroelastic media
in the forward wave solver is important in recovering poroelastic material properties from the probing
waves (the inverse problem). The full waveform inversion (FWI) has become a powerful tool in the
geological exploration since the 1980s [2, 18, 19, 22, 24, 10, 9]. FWI has been successfully applied in
seismic exploration with (visco)-elastic models [22] in recovering certain material properties. However,
certain important poroelastic properties such as porosity and relative velocity between fluid and solid
cannot be recovered from these models. For example, it is reported in [7] that the measured parameters
of water-saturated sand in the laboratory is better predictions by a poroelastic Biot model than a a
viscoelastic model. In [13], it is shown that a poroelastic signature in time-lapse migration data from CO2
sequestration crosswell monitoring could not be explained with acoustic or elastic models. For biomechanics
of cancellous bones [8], [20], [3], it is conjectured that the fluid-solid interaction in the pore space (the
viscodynamics) might be the signaling mechanism for bone reconstruction. At the macroscopic level, the
viscodynamics of a poroelastic material is described by the dissipative and dispersive coefficients in the
poroelastic wave equation with memory terms[16].

FWI has been applied to the one-dimensional Biot-JKD equations to recover several prorelastic param-
eters from numerical simulated data in a water tank setting [6]. Due to the complexity of the poroelastic
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equations with memory terms, FWI has not been applied to the poroelastic wave equations in dimensions
higher than one until recently. Published in 2021, the first paper [24] for the 2D poroelastic FWI considers
the frequency domain instead of the time domain.

The time-domain augmented Biot solver developed in [21] provides an efficient way to handle the
poroelastic wave equations with memory terms. As is shown in Section 3, the same solver can be used to
solve the adjoint problem, whose output can be used to compute the gradient of the objective function
with respect to the material properties.

The paper is organized as follows. The poroelastic equations are stated in Section 2, where both the
JKD model and the general model, together with their energy analyses are presented. The energy analysis
will play an important role in the stability of solving the adjoint problem. In Section 3, the FWI problem
for the augmented Biot equation is presented and the corresponding adjoint problem is derived. The
algorithm for computing the poles and residues of the memory functions are given in Section 4. Section 5
includes a conclusion of this paper and a list of possible future work.

2. The mathematical model for wave propagation in poroelastic materials

Introduce the solid velocity v and the relative fluid velocity q, which are defined by

(2.1) v :=
∂u

∂t
, q :=

∂w

∂t
,

where u is the skeleton solid displacement vector and w = φ(U − u) is the relative motion of the fluid
scaled by the porosity φ with U being the fluid displacement vector. In terms of these notations, the
variation in fluid content is given by ζ = −∇ ·w.

2.1. The constitutive relation for the plane strain of a transversely isotropic material. Let the
z axis be the symmetry axis, then the stress-strain relations for a transversely isotropic elastic material
reads

(2.2) τ = Cǫ,

where the elastic stiffness tensor C, the stress tensor τ , and the strain tensor ǫ are defined as

C =




c11 c13 0
c13 c33 0
0 0 c55



 , τ = (τ11 τ33 τ13)
T , ǫ = (ǫ11 ǫ33 2ǫ13 )T ,(2.3)

with ǫij =
1
2 (∂iuj + ∂jui), j=1,3. The constitutive relation for the poroelastic material is

τ = Cǫ− βp = Cuǫ−Mβζ,(2.4)

p = M
(
ζ − βT ǫ

)
,(2.5)

where the Cu is the undrained elastic matrix. More precisely,

Cu = C+MββT , β := (β1, β3, 0)
T ,

β1 : = 1− c11 + c12 + c13
3Ks

, β3 := 1− 2c13 + c33
3Ks

,

M : =
K2
s

Ks [1 + φ(Ks/Kf − 1)]− (2c11 + c33 + 2c12 + 4c13) /9
,

with Ks and Kf being the bulk modulus of the skeleton and pore fluid, respectively.

2.2. Equation of motions. The equations of motion for the solid part are given by the conservation of
momentum as

(2.6) ρ
∂v

∂t
+ ρf

∂q

∂t
= ∇ · τ ,

where ρs is the density of constituent solid, ρ = (1 − φ)ρs + φρf is the bulk density of the medium and

τ =

[
τ11 τ13
τ13 τ33

]
with the action ∇ · τ := (∂xτ11 + ∂zτ13, ∂xτ13 + ∂zτ33)

T
is the plane stress tensor.
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The equations of motion for the fluid part is described by the generalized Darcy’s law

(2.7) ρf
∂v

∂t
+ diag

(
ρf
φ

)
α̌ ⋆

∂q

∂t
= −∇p,

where ⋆ denotes the time-convolution operator and α̌ = (α̌1, α̌3)
T is the inverse Fourier-Laplace transform

of the dynamic tortuosity α(s) with s = −iω. The Fourier-Laplace transform of a function f(t) is defined
as

(2.8) f̂(ω) := L[f ](s = −iω) := 1√
2π

∫
∞

0

f(t)e−stdt.

For the well-known low-frequency Biot model [4], the generalized Darcy’s law is

−∂xi
p = ρf∂tvi +

(
ρf
φ

)
α∞i∂tqi +

(
η

K0i

)
qi

, which has no memory term and corresponds to

α̌j(t) = α∞jδ(t) +
ηφ

K0jρf
H(t) ⇐⇒ αj(ω) = α∞j +

ηφ/(K0jρf )

−iω .

Historically, to address the discrepancy between the lab measurement and the prediction by the low-
frequency Biot model, many forms of α(ω) have been proposed [5] [12] [1] [17]. Among them, the JKD
model by Johnson, Koplik and Dashen [12] has been widely used in applications. The most general one is
presented in [1], which does not rely on any specific form of the permeability/tortuosity function. In [14],
an integral representation formula for α(ω) was derived based on the result in [1] and the Stieltjes function
theory.

2.3. The Biot-JKD equations. The JKD model [12] is

(2.9) αj(s) = Tj(s) := α∞j +
ηφ

sκjρf

(
1 + s

4α2
∞jκ

2
jρf

ηΛ2
jφ

2

) 1

2

, s := −iω

where

Λj =

√
4α∞jκj
φPj

, j = 1, 3,

is the viscous characteristic length and Pj = 0.5 the Pride numberin the j-th direction. For the JKD
model, equation (2.9) reads

(2.10) ρf
∂v

∂t
+ diag

(
α∞jρf
φ

)
∂q

∂t
+∇p = −diag

(
η

κj
√
λj

)
(∂t + λj)

1/2
q, j = 1, 3,

where λj =
ηφ2Λ2

j

4α2

∞j
κ2

j
ρf
.

Taking derivative on both sides (2.4) and (2.5) with resect to time t, and taking into account the
equation of motions, the Biot-JKD equations are as follows

(2.11)

(2.12)

(2.13)

(2.14)





∂τ

∂t
=

∂

∂t
(Cuǫ−Mβζ) ,

∂p

∂t
=

∂

∂t

(
M
(
ζ − βT ǫ

))
,

ρ
∂v

∂t
+ ρf

∂q

∂t
= ∇ · τ ,

ρf
∂v

∂t
+ diag (mj)

∂q

∂t
+∇p = −diag

(
η

κj
√
λj

(∂t + λj)
1/2

)
q,

where (∂t + λj)
1/2

is a shift fractional derivative operator and mj = α∞jρf/φ > 0.
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2.4. Energy analysis of the Biot-JKD equations. Using the Caputo fractional derivative

(2.15)
dαf(t)

dtα
=

1

Γ(1− α)
t−α ⋆

∂f

∂t
,

we can explicitly derive the shifted fractional derivative as

(2.16) (∂t + λj)
1/2qi =

2

π

∫
∞

0

ψj(y, t)dy, j = 1, 3,

where the auxiliary variables are defined as

(2.17) ψj(y, t) =

∫ t

0

e−(y2+λj)(t−τ) [λjqj(τ) + ∂τqj(τ)] dτ.

It is easy to check that the auxiliary variables satisfy the following equations

{
∂ψj

∂t = −
(
y2 + λj

)
ψj + [λjqj + ∂tqj ] ,

ψj(y, 0) = 0, j = 1, 3.
(2.18)

Theorem 2.1. Consider the Biot-JKD equation (2.11)-(2.14), define

E1 =
1

2

∫

R2

ρvTv + 2ρfv
Tq+ qTdiag(mj)q dxdz,(2.19)

E2 =
1

2

∫

R2

(
(τ + pβ)TC−1(τ + pβ) +

1

M
p2
)
dxdz,(2.20)

E3 =
η

π

∫

R2

∫
∞

0

(q −ψ)Tdiag
(

1

κj
√
λj(y2 + 2λj)

)
(q−ψ)dydxdz,(2.21)

then E = E1 + E2 + E3 is the energy function, which satisfies

(2.22)

d

dt
E = −2η

π

∫

R2

∫
∞

0

ψT diag

(
y2 + λj

κj
√
λj(y2 + 2λj)

)
ψdydxdz

− 2η

π

∫

R2

∫
∞

0

qT diag

(
λj

κj
√
λj(y2 + 2λj)

)
qdydxdz ≤ 0,

where ψ = (ψ1, ψ3)
T .

Proof. First, we prove that the energy function E is positive definite. Obviously, both E2 and E3 are
positive definite. Note that E1 can be expressed as

E1 =
1

2

∫

R2

ṼT
j MjṼjdxdz, Mj =

[
ρ ρf
ρf mj

]
, j = 1, 3,

with Ṽj = (vj , qj)
T
. Since det(Mj) > 0, E1 is positive definite. Next, we prove that (2.22) holds.

Multiplying (2.6) with vT and integrating on R2, we obtain

(2.23) 0 =

∫

R2

(
ρvT

∂v

∂t
+ ρfv

T ∂q

∂t
− vT∇ · τ

)
dxdz :=

3∑

k=1

Ik(v).

Clearly, it holds that

I1(v) =

∫

R2

ρvT
∂v

∂t
dxdz =

1

2

d

dt

∫

R2

ρvTvdxdz.
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Integrating by part and noticing that v = ∂tu, we have

I3(v) = −
∫

R2

vT (∇ · τ )dxdz =

∫

R2

τT
∂ǫ

∂t
dxdz

=

∫

R2

τTC−1

(
∂τ

∂t
+ β

∂p

∂t

)
dxdz

=
1

2

d

dt

∫

R2

τTC−1τdxdz +

∫

R2

τTC−1β
∂p

∂t
dxdz

=
1

2

d

dt

∫

R2

(
τTC−1τ + 2τTC−1βp

)
dxdz −

∫

R2

(
∂τ

∂t

)T
C−1βpdxdz,

where (2.4) is used in the third equation.
Multiplying the generalized Darcy’s law (2.14) with qT and integrating on R2 lead to

(2.24)

0 =

∫

R2

[
ρfq

T ∂v

∂t
+ qT diag(mj)

∂q

∂t

+qT∇p+ qTdiag
(
γj (∂t + λj)

1/2
)
q
]
dxdz :=

4∑

k=1

Lk(q),

where γj =
η

κj

√
λj

. We rewrite L2 and L3 as follows.

L2(q) =

∫

R2

qT diag (mi)
∂q

∂t
dxdz =

1

2

d

dt

∫

R2

qT diag (mi)qdxdz.

Integrating by part and using ∇ · q = −∂tζ as well as (2.5), we derive

L3(q) =

∫

R2

qT∇pdxdz = −
∫

R2

p∇ · qdxdz =

∫

R2

p

(
1

M

∂p

∂t
+ βT

∂ǫ

∂t

)
dxdz

=
1

2

d

dt

∫
1

M
p2dxdz +

∫

R2

pβTC−1 ∂τ

∂t
dxdz +

∫

R2

βTC−1βp
∂p

∂t
dxdz

=
1

2

d

dt

∫
1

M
p2dxdz +

∫

R2

βTC−1 ∂τ

∂t
pdxdz +

1

2

d

dt

∫

R2

βTC−1βp2dxdz.

Adding (2.23) and (2.24) and noting that the negative term in I3 is cancelled by the second term in L3

because of the symmetry of C, we obtain

0 =
1

2

d

dt

∫

R2

[
ρvTv + qT diag(mj)q+ 2ρfv

Tq
]
dxdz

+
1

2

d

dt

∫

R2

[
1

M
p2 + βTC−1βp2 +

(
τTC−1τ + 2τTC−1βp

)]
dxdz

+

∫

R2

qT diag
(
γj (∂t + λj)

1/2
)
qdxdz.

In terms of E1 and E2 and (2.16), the equation above can be expressed as

(2.25)

d

dt
(E1 + E2) = −

∫

R2

qT diag
(
γj (∂t + λj)

1/2
)
qdxdz

= −2η

π

∫

R2

∫
∞

0

qT diag

(
1

κj
√
λj

)
ψ(y, t)dy dxdz.

To estimate the right hand side of (2.25), we multiply (2.18) with qT and ψT respectively, to obtain




qT
∂ψ

∂t
− qT

∂q

∂t
+ qT diag(y2 + λj)ψ − qT diag(λj)q = 0,(2.26)

ψT
∂ψ

∂t
−ψT ∂q

∂t
+ψTdiag(y2 + λj)ψ −ψTdiag(λj)q = 0, j = 1, 3.(2.27)

Subtracting (2.27) from (2.26) reveals that
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(q −ψ)T ∂
∂t

(ψ − q) + (q−ψ)T diag(y2 + λj)ψ − (q−ψ)T diag(λj)q = 0,

which indicates

qTdiag(y2 + 2λj)ψ =
1

2

d

dt
(q−ψ)T (q−ψ) +ψT diag(y2 + λj)ψ + qT diag(λj)q.

The theorem is proved by injecting the equation into (2.25). �

2.5. The augmented Biot equations. According to [14], the tortuosity function of all porous material
can be expressed as

αj(ω) =
ηφ

ρfκj

(
1

s

)
+

∫ θj

0

dσj(t)

1 + st
=: Tj(s), s = −iω, j = 1, 3,

where dσj , j = 1, 3, is a probability measure, and the upper limit θj > 0 is related to the inverse of the
smallest eigenvalue of the Stokes equations posed in the pore space of the porous material [1]. This is
derived from the result in [1] and the Stieltjes function theory.

Define the following function

(2.28) Dj(s) := Tj(s)−
aj
s

=

∫ θ1

0

dσj(t)

1 + st
, aj :=

ηφ

ρfκj
,

then Dj(s) is a Stieltjes function and hence can be approximated as [11]

Dj(s) =

∫ θj

0

dσj(t)

1 + st
≈ α∞j

+

Nj∑

k=1

rjk
s− ϑjk

, s ∈ C\
(
−∞,−θ−1

j

]
, j = 1, 3,

where rjk > 0 are the residues and ϑjk < 0 are the poles. For simplicity, we assume q(x, 0) = 0. By the
Fourier-Laplace transform and (2.28), with q(0) = 0, we have

L
[
αj ⋆

∂qj
∂t

]
(s) = α∞j

sq̂j +


aj +

Nj∑

k=1

rjk


 q̂j +

Nj∑

k=1

rjkϑ
j
k

q̂j

s− ϑjk
, j = 1, 3.

Applying the inverse Fourier-Laplace transform gives

(
αj ⋆

∂qj
∂t

)
(x, t) ≈ α∞j

∂qj
∂t

+



aj +
Nj∑

k=1

rjk



 qj −
Nj∑

k=1

rjk

(
−ϑjk

)
eϑ

j

k
t ⋆ qj .

Introduce the auxiliary variables Θjk, with k = 1, ...Nj

(2.29) Θjk(x, t) := (−ϑjk) exp(ϑjk t) ⋆ qj , j = 1, 3,

then the following holds
{
∂tΘ

j
k(x, t) = ϑjkΘ

j
k(x, t)− ϑjkqj(x, t),(2.30)

Θjk(x, 0) = 0, j = 1, 3.(2.31)

The constants rjk and ϑjk, k = 1, · · · , Nj are related to the pole-residue approximation for αj(s) for the
frequency range relevant to the point source spectral content; they can be computed with very high accuracy
with the algorithms presented in [15], which is summarized in Section 4. The integral representation formula

of αj(s) guarantees that r
j
k > 0 and ϑjk < 0, j = 1, 3. With these notations, the Darcy’s law (2.7) can be

written as

(2.32) −∇p = ρf∂tv + diag(mj)∂tq+ diag



 η

κj
+
ρf
φ

Nj∑

k=1

rjk



q− ρf
φ

(∑N1

k=1 r
1
kΘ

1
k∑N3

k=1 r
3
kΘ

3
k

)
.

For convenience, we introduce the following notation
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D =




∂x 0 ∂z 0
0 ∂z ∂x 0
0 0 0 ∂x
0 0 0 ∂z


 =




1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 ∂x +




0 0 1 0
0 1 0 0
0 0 0 0
0 0 0 1


 ∂z .

Define σ =
(
τT , −p

)T
, e =

(
ǫT , −ζ

)T
, and V = (v1, v3, q1, q3)

T
, then (2.11) and (2.12) can be

rewritten as

(2.33)
∂σ

∂t
= EDTV, E =

[
Cu Mβ
MβT M

]
.

Replacing (2.14) with (2.32) and combining (2.13), we have

(2.34) Mv
∂V

∂t
= Dσ −MrV +RxΘ

x +RzΘ
z,

where Θ1 = (Θ1
1, ...,Θ

1
N1

)T and Θ3 = (Θ3
1, ...,Θ

3
N3

)T ,

Mv =




ρ 0 ρf 0
0 ρ 0 ρf
ρf 0 m1 0
0 ρf 0 m3


 , Mr =




0 0 0 0
0 0 0 0
0 0 n1 0
0 0 0 n3


 ,

Rx =
ρf
φ




0 0 0 ... 0
0 0 0 ... 0
rx1 rx2 rx3 ... rxNx

0 0 0 ... 0


 , Rz =

ρf
φ




0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
rz1 rz2 rz3 ... rzNz


 ,

with nj =
η
κj

+
ρf
φ

∑Nj

k=1 r
j
k > 0.

Denote W =
(
v1, v3, q1, q3, τxx, τzz, τxz,−p,Θ1

1, · · · ,Θ1
N1
,Θ3

1, · · · ,Θ3
N3

)T
. Equations (2.33) and (2.34)

lead to the following augmented Biot equations



Mv 0 0 0

0 E−1 0 0

0 0 I 0

0 0 0 I







V

σ

Θ1

Θ3




t

=




0 D 0 0

DT 0 0 0

0 0 0 0

0 0 0 0







V

σ

Θ1

Θ3




+




−Mr 0 Rx Rz
0 0 0 0

−Q1 0 Px 0

−Q3 0 0 Pz







V

σ

Θ1

Θ3


 ,

or equivalently

(2.35) N1(M)∂tW −B1(▽)W −N2(M)W − S = 0,

where M is the set of the parameters, S =
(
fv,C

−1fτ , 0, · · · , 0
)T

is the external source and

Q1 =




0 0 ϑ11 0
0 0 ϑ12 0
... ... ... ...
0 0 ϑ1N1

0


 , Q3 =




0 0 0 ϑ31
0 0 0 ϑ32
... ... ... ...
0 0 0 ϑ3N3


 ,

Px =




ϑ11 0 0 0
0 ϑx2 0 0
... ... ... ...
0 0 0 ϑ1N1


 , Pz =




ϑ31 0 0 0
0 ϑ31 0 0
... ... ... ...
0 0 0 ϑzN3


 .

Note that (2.35) can be expressed in the following equivalent form

(2.36) ∂tW(M,x, t)−N−1
1 (M)B1(▽)W −N−1

1 (M)N2(M)W −N−1
1 (M)S = 0.
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2.6. Energy analysis of the augmented Biot equations. In this section, we conduct the energy
analysis of the augmented Biot equations (2.36) with S = 0 and q(x, 0) = 0.

Theorem 2.2. Consider the augmented Biot equation (2.36) and define E1 as (2.19) and E2 as (2.20).
Introduce

E ′

3 =
1

2

∑

j=1,3

Nj∑

k=1

∫

R2

(
ρfr

j
k

φ(−ϑjk)

)
(ϕjk − qj)

2 dxdz,

with ϕjk = exp(ϑjk t) ⋆
∂qj
∂t . Then the function

E ′ = E1 + E2 + E ′

3

is the energy function, which satisfies

d

dt
E ′ = −

∫

R2

qT diag

(
η

κj

)
q−

∑

j=1,3

Nj∑

k=1

(ϕjk)
2

(
ρf
φ
rjk

)
dxdz ≤ 0.

Proof. Note that

L
[
αj ⋆

∂qj
∂t

]
(s) = α∞j

sq̂j +


aj +

Nj∑

k=1

rjk


 q̂j +

Nj∑

k=1

rjkϑk
q̂j

s− ϑk

= α∞j
sq̂j + aj q̂j +

Nj∑

k=1

rjk
s− ϑk

(sq̂j) ,

from which we have

(2.37) −∇p = ρf∂tv + diag(mj)∂tq+ diag

(
η

κj

)
q+

(∑N1

k=1
ρf
φ r

1
kϕ

1
k∑N3

k=1
ρf
φ r

3
kϕ

3
k

)

where

ϕjk = exp(ϑjk t) ⋆
∂qj
∂t

.

By straightforward computing, we know





∂ϕjk
∂t

(x, t) = ϑjkϕ
j
k(x, t) +

∂qj
∂t

,(2.38)

ϕjk(x, 0) = 0, j = 1, 3.(2.39)

Multiplying (2.37) with qT yields

ρfq
T ∂v

∂t
+ qT diag(mj)

∂q

∂t
+ qT∇p

=− qT diag

(
η

κj

)
q− qT

(∑N1

k=1
ρf
φ r

1
kϕ

1
k∑N3

k=1
ρf
φ r

3
kϕ

3
k

)

Similar to the proof of theorem 2.1, we can derive

(2.40)
d

dt
(E1 + E2) =

∫

R2

−qT diag

(
η

κj

)
q− qT

(∑N1

k=1
ρf
φ r

1
kϕ

1
k∑N3

k=1
ρf
φ r

3
kϕ

3
k

)
dxdz.

To calculate the second integral in the equation above, we multiply (2.38) with qj and ϕ
j
k to obtain

{
qj∂tϕ

j
k(x, t)− qjϑ

j
kϕ

j
k(x, t) − qj∂tqj = 0,(2.41)

ϕjk∂tϕ
j
k(x, t)− ϕjkϑ

j
kϕ

j
k(x, t)− ϕjk∂tqj = 0.(2.42)

By subtracting (2.42) from (2.41) and rearranging terms, the following equation holds for every fixed
j = 1, 3 and k = 1, . . . , Nj ,

−qjϑjkϕ
j
k =

1

2
∂t(ϕ

j
k − qj)

2 − ϑjk(ϕ
j
k)

2 =⇒ −qj
(
ρf
φ

)
rjkϕ

j
k =

1

2

(
ρfr

j
k

φϑjk

)
∂t(ϕ

j
k − qj)

2 − (ϕjk)
2

(
ρf
φ
rjk

)
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Summing over k and noting that ϑjk < 0 and integrating in R2, we conclude that

∫

R2

−qT

(∑N1

k=1
ρf
φ r

1
kϕ

1
k∑N3

k=1
ρf
φ r

3
kϕ

3
k

)
dxdz =

∫

R2

∑

j=1,3

Nj∑

k=1

1

2

(
ρfr

j
k

φϑjk

)
∂t(ϕ

j
k − qj)

2 − (ϕjk)
2

(
ρf
φ
rjk

)
dxdz

= − d

dt
E ′

3 −
∫

R2

∑

j=1,3

Nj∑

k=1

(ϕjk)
2

(
ρf
φ
rjk

)
dxdz.

The theorem is proved by substituting the above result into (2.40). �

3. Full waveform inversion of the augmented Biot equations

The inverse problem is defined as a constrained minimization of the misfit function χ(M,W) with an
evolution PDE defining relation between the sought property field M and the observed wave field W,
see (3.3) below. A gradient type minimization algorithm for this constrained problem takes advantage of
the adjoint problem which can be solved with the same solver as the forward problem. Therefore, in this
section, we derive the adjoint problem for the FWI of the augmented Biot equation (2.36) with fixed N1

and N3.
We introduce the notation used in this section. Note that in this section, L denotes a fuctional, instead

of the Fourier-Laplace transform. The Frechét derivative with respect to u of a functional L(u) acting on
a suitable test function δu is denoted by duL(u)[δu]. The gradient with respect to u ∈ Rp of a function
f : Rp → R is denoted by ∇uf and represented by a row vector. The gradient of a vector-valued function
F : Rp → Rq with respect to u ∈ Rp is represented by a q × p matrix defined as

[∇uF]ij =
∂Fi
∂uj

, i = 1, . . . , q, j = 1, . . . , p .

In terms of this notation, the usual product rule for vector-valued functions F,G : u ∈ Rp 7→ Rq represented
by column vectors is expressed

[∇u(F
TG)]j1 =

q∑

k=1

∂Fk
∂uj

Gk + Fk
∂Gk
∂uj

, or in matrix notation ∇u(F
TG) = (∇uF)

TG+ FT∇uG ,

and the chain rule for u : m ∈ Rn 7→ Rn reads

[∇mF(u(m))]ij =
n∑

k=1

∂Fi
∂uk

∂uk
∂mj

, or in matrix notation ∇mF(u(m)) = ∇uF∇mu .

The usual subscript notation for the partial derivative fx := ∂f
∂x is also used. The transpose of a matrixA is

denoted asAT andF·G ≡ FTG represents the scalar product of two vectors in the corresponding Euclidean
space. We introduce the time-spatial inner product of two vector-valued functions h,g : Ω× [0, T ] → Rq

(3.1) 〈h,g〉Ω×T :=

∫ T

0

∫

Ω

hT (x, t)g(x, t)dxdt .

3.1. The misfit function for the FWI. Given the observed data d = d(yr, t) at receivers placed in the
positions yr, r = 1, · · · , N , the misfit functional is defined by

χ(W,M) :=

∫ T

0

∫

Ω

1

2
‖RW(M;x, t)− d(x, t)‖2µ(dx)dt =: 〈Φ,1〉Ω×T(3.2)

where µ(dx) is a measure representing the receivers, typically the sum of Dirac masses µ(dx) =
∑N

r=1 δyr
concentrated at points yr ∈ Ω. For the purpose of this derivation we can assume that these are appropri-
ately regularized so the integral in (3.2) is well defined. We denote R the restriction operator that sets the
’unmeasurable’ or unavailable components in W to be zero. The given vector d has the same dimension
and format as W by augmenting the data vector with zeros for the components which have no available
data. Therefore, the components in the discrepancy RW − d which correspond to the non-measurable
entries in W must equal to zero.
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We consider the following constrained optimization problem for the property field M in a suitable space
of admissible functions

min
M

χ(W,M) ,(3.3)

subject to: ∂tW +A(M,W,∇xW) = 0 , (PDE),(3.4)

g(M,x) := W(x, 0;M)− φ(x;M) = 0 , (IC)(3.5)

where the mapping A : (m,w, ζ) ∈ Rm × Rn × R3×n 7→ Rn is defined as in (2.36), specifically

(3.6) A(M,W,∇xW) = A(M(x))Wx +B(M,x)Wz +H1(M,x)W +H2(M,x)S(M,x, t) .

For the sake of clarity we also abbreviate the equation (3.4) as F(M, ∂tW,W,∇xW) = 0.

3.2. Adjoint problem and variation of the misfit function. A gradient type minimization iteratively
updates values of the field M(x) in the feasible set using descent directions derived from the variation δMχ
of the misfit function. The first task is thus derivation of admissible directions that belong to the tangent
space of the constraints (3.4)-(3.5). Given a perturbation δM, the solution of the forward problem results
in a perturbation (variation) δMW and thus a perturbation δMχ of the misfit function along the constraint
(3.4).

Assuming sufficient regularity of the misfit functional χ and using the Taylor expansion for χ, the
infinitesimal variation in the direction of δM along the constraints is given by the Fréchet derivative
(taking into account that Φ does not depend explicitly on M)

(3.7) δMχ := dMχ[δM] = 〈∇wΦ, δMW〉Ω×T ,

where the function V := δMW solves the variation equation for the constraint (3.4) under the perturbation
δM, i.e.,

∂tV +∇wA(M,W,∇xW) ·V +∇ζA(M,W,∇xW) : ∇xV = −∇mA(M,W,∇xW) · δM ,

V(x, 0) = ∇mg(M,x) ,
(3.8)

along with the solution W(x, t;M) of (3.4)-(3.5). Thus solving (3.4)-(3.5), (3.8) for the functions (W,V)
and taking into account the specific form of Φ in (3.2) we have

δMχ =

N∑

r=1

∫

Ω

∫ T

0

(RW(M,x, t) − d(x, t))
T
V δyr(x)dx dt .(3.9)

An alternative way to compute the variation δMχ is to use the formulation of the constrained minimization
problem (3.3) with the Lagrangian functional

(3.10) L(M,W,λ,µ) = 〈Φ,1〉Ω×T + 〈λ,F〉Ω×T +

∫

Ω

µTgdx ,

where we introduced the Lagrange multipliers λ(x, t) ∈ Rn and µ(x) ∈ Rn. In this formulation we can
vary δM and δW independently thus obtaining the Fréchet derivative dL at a point (M,W,λ,µ) acting
on the increment (δM, δW), i.e.,

dL[(δM, δW)] =〈∇wΦ, δW〉Ω×T + 〈λ, dWF [δW]〉Ω×T + 〈λ, dMF [δM]〉Ω×T

+

∫

Ω

µTdWg[δW] dx+

∫

Ω

µTdMg[δM] dx .
(3.11)

From the definition of the mapping F = ∂tW +A and g we have

dWF [δW] = ∂tδW +∇wA · δW +∇ζA : ∇xδW

dMF [δM] = ∇mA · δM ,

dWg[δW] = δW , dMg[δM] = −∇mφ · δM .
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Combining the first and second term in (3.11) and integrating by parts in the expression for dWF [δW] we
obtain

〈∇wΦ, δW〉Ω×T + 〈λ, dWF [δW]〉Ω×T = 〈−∂tλ+ λT∇wA− div(λT∇ζA) +∇wΦ, δW〉Ω×T

+

∫

Ω

(λT (x, T )δW(x, T )− λT (x, 0)δW(x, 0) dx ,

where we set λ(x, t) = 0 for x ∈ ∂Ω to remove the boundary terms from the integration by parts. We
denote the solution λ∗(x, t) of the adjoint problem

∂tλ− λT∇wA+ div(λT∇ζA) = ∇wΦ , x ∈ Ω , t < T

λ(x, T ) = 0 , λ(x, t)|∂Ω = 0 ,
(3.12)

and set the multiplier µ∗(x) = λ∗(x, 0). Hence we have
∫

Ω

µTdWg[δW] dx +

∫

Ω

µTdMg[δM] dx =

∫

Ω

λ∗(x, 0) · δW(x, 0) dx−
∫

Ω

λ∗(x, 0) · (∇mφδM(x)) dx .

Substituting back to (3.11) we obtain the expression for the variation δMχ of the misfit functional χ
evaluated at the solution W∗ of the forward problem (3.4)-(3.5) as

(3.13) δMχ = dL(M,W∗,λ∗,µ∗)[δM] = 〈λ∗,∇mAδM〉Ω×T −
∫

Ω

λ∗(x, 0) · ∇mφδM(x) dx .

Returning back to the specific form of A, cf.(3.6), and Φ, cf. (3.2), we have λ∗ solving

(adjoint problem)






∂tλ + ∂x
(
ATλ

)
+ ∂z

(
BTλ

)
−HT

1 λ =

N∑

r=1

[RW(x, t)− d(x, t)] δ(yr),

λ(x, T ) = 0, λ(x, t)|∂Ω = 0 ,

and µ∗(x) = λ∗(x, 0). Solving the adjoint problem for λ∗ eliminates the need for computing the solution
V = δMW of the variation equation (3.8) and it gives an explicit expression for the descent direction in
the gradient-type minimization algorithm. From (3.13) we have

δMχ =

∫

Ω

q∑

k=1

δMk(x)

∫ T

0

λT
∗
{∂mk

AWx + ∂mk
BWz + ∂mk

H1W + ∂mk
H2S

+H2∂mk
S− ∂mk

φ(x)} dt dx ,
where δMk, k = 1, . . . , q denotes components of the increment δM. Thus we have an explicit formula for
the directional derivative δMχ = 〈G, δM〉Ω where the vector- valued function G(x) ∈ Rq represents the
Fréchet derivative and is given component-wise as

(3.14) [G]k =

∫ T

0

λT
∗
{∂mk

AWx + ∂mk
BWz + ∂mk

H1W + ∂mk
H2S+H2∂mk

S− ∂mk
φ(x)} dt .

Therefore, the direction of descent for minimizing the misfit function χ and updating the field M is given
by −G.

4. Numerical method for computing {ϑk} and {rk}
To make this paper selt-contained, we summarize in this section the numerical method for poles ϑk and

residues rk, k = 1, . . . ,M , by using the two-sided residue method; the calculation should be carried out in
an arbitrary precision arithmetic system such as Advanpix (a multiprecision Matlab toolbox) to ensure the
returned poles and residues are of correct signs [15]. The two-sided residue interpolation method involves
solving a linear system of size M from given values of α at M distinct frequencies and automatically
interpolates α at ω = 0 and ω = ∞. Depending on the spectral content of the source term S, the
interpolation grid is either equally spaced or log-spaced in the frequency range.

Given the M interpolation data (zk, uk, vk) ∈ C+ × Cp×q × Cp×q, where C+ denotes the upper-half
complex plane, we seek a p× p matrix valued function G(z) of the form

(4.1) G(z) =

∫
∞

0

dµ(t)

t− z
,
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where µ is a positive p× p matrix valued measure, such that

(4.2) G(zi)ui = vi, i = 1, · · · ,M.

Define the Hermitian matrices S1 and S2 via

(4.3) (S1)ij :=
u∗i vj − v∗i uj
zj − zi

, (S2)ij :=
zju

∗

i vj − ziv
∗

i uj
zj − zi

, i, j = 1, . . . ,M,

then S1 and S2 are positive semidefinite. Here the sup-script ∗ denotes the conjugate transpose operator.
Conversely, if S1 is positive and S2 is positive semidefinite, then

(4.4)

G(z) :=− C+

(
zS1 − S1A− C∗

+C−

)
−1
C∗

+ = C+ (S2 − zS1)
−1
C∗

+

=

qM∑

k=1

(
1

dk − z

)
C+S

−
1

2

1 xkx
∗

kS
−

1

2

1 C∗

+,

is a solution to the interpolation problem, where xj is the eigenvector of S
−1

2

1 S2S
−1

2

1 corresponding to the
eigenvalue dk and C− := (u1, · · ·, uM ), C+ := (v1, · · ·, vM ), A := diag (zi). Specializing the results to the
function D(s), with change of variables −iω =: s = − 1

z , we have p = q = 1 and

(4.5) D(s) =

∫ θ

0

dσ(t)

1 + st
= (−z)

∫ θ

0

dσ

t− z
, s = −1

z
,

then

(4.6)

D(s)− α∞ = (−z)
(∫ θ

0

dσ(t)

t− z
− α∞

−z

)

= (−z)
(∫ θ

0

dσ(t)

t− z
−
∫ θ

0

α∞σ(t)

t− z

)
:= (−z)Gnew(z),

which is Stieltjes function owing to σ has a Dirac measure of strength α∞. Using (4.4), we can compute
the poles and residues for Gnew as follows, which amounts to solving a generalized eigen value problem.

−iωk =: sk = − 1

zk
, uk =

1

sk
, k = 1 . . .M,(4.7)

vk = D (sk)− α∞, k = 1 . . .M,(4.8)

(S1)pq =
−sqD (sq) + s∗pD

∗ (sp)

s∗p − sq
− α∞, p, q = 1 . . .M,(4.9)

(S2)pq =
−D (sq) +D∗ (sp)

sq − s∗p
, p, q = 1 . . .M,(4.10)

(−z)Gnew(z) = C+ (S1 + sS2)
−1
C∗

+.(4.11)

In terms of the generalized eigenvalues/eigenvectors [V,Φ] := eig(S1, S2), where V is the matrix of
generalized vectors and Φ the diagonal matrix of generalized eigenvalues such that

(4.12) S1V = S2VΦ,

and taking into account of the simultaneous diagonalization property

V∗S1V = Φ, V∗S2V = I,(4.13)

we obtain

(4.14) D(s) = α∞ +

N∑

k=1

C+V1(:, k)V1(:, k)
∗C∗

+

s+ Φ(k, k)
.

The poles ϑk and residues rk, k = 1, . . . ,M , are given by

ϑk = −Φ(k, k),(4.15)

rk = C+V(:, k)V(:, k)∗C∗

+.(4.16)
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5. Conclusion and future work

In this paper, we consider the time-domain FWI for the poroelastic wave equations, whose dispersive
and dissipative behaviors are encoded in the auxiliary variables Θk, k = 1, . . . , N . Since all possible
memory kernel functions that satisfy the causality conditions can be represented as an integral presented
here, the FWI framework proposed here is general enough to handle all porous material with pore geometry
regular enough for the spectral theory of Stokes equation to hold true. The energy analyses for the popular
Biot-JKD equations and for the most general augmented Biot equations have been also presented in this
paper; they play an important role in understand the stability of the adjoint problem, which is derived
in this paper. The adjoint problem involves solving a PDE backward in time for the Lagrange multiplier
function λ(x, t). In this framework, the minimization of the misfit function can be solved by using the
gradient calculated from using the solutions of the forward and the adjoint problem.

This paper lays the foundation for a thorough mathematical and numerical analysis for the time-domain
FWI of dispersive and dissipative poroelastic wave equations. On the mathematical side, the future work
includes the analysis of the minimization problem such as the uniqueness and existence of the minimizer
convergence rate, the choice of regularization terms and the error estimates. The question of uniqueness
of the minimizer is highly non-trivial because a given memory kernel can be approximated equally well by
different choices of pole-residue sets; this line of research will involve the definition of equivalent classes
of pole-residue and factor it into the iteration steps. We would also like to expand our energy analysis
to the case where the initial conditions of the fluid relative velocity q is not zero. On the numerical side,
the immediate future work includes the development of an efficient solver for the adjoint problem and the
strategy for handling the time integral for computing the gradient G; for handing the memory demand, a
strategy such as the CARFS [23] will be considered.
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