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The so-called time operator in quantum mechanics which may be regarded as a coordinate 
conjugate to Hamiltonian operator is studied. Three typical examples of the time operators in 
one-dimensional problem are explicitly obtained; that is, a free particle, a harmonic oscillator 
and a particle in a square well potential. Our procedure to construct the time operator seems 
to be useful in a more general case. Qualitative nature of the time operator may be understood 
from the three examples. 

§ 1. Introduction 

The problem of finding the so-called time operator has been investigated by 
many authors in relation to the time-energy uncertainty relation. *) Although, as 
has been well known, the time operator f satisfying the commutation relation 

[if, f]= - i H: Hamiltonian (1.1) 

cannot exist in Hilbert space if eigenvalues of Hamiltonian operator if have a 
lower bound,2) there is a well-known time operator of a free particle; namely, the 
operator 

and Hamiltonian 

ifo=_l_ p 
2m 

satisfy formally the following commutation relation: 

[ifo, fo]=-i. 

(1·2) 

(1'3) 

(1·4) 

Physical meaning of the operator fo may be understood easily (To ~ x/v). 
Mathematical justification of the operator is attempted by Rosenbaum who 
proposed an idea of the super Hilbert space. 3

) According to this theory, physical 
states are represented by continuous linear functionals on a space of good 
functions which are everywhere differentiable any number of times and decrease 

*) A review of the phase-number and angle-angular momentum problems, as well as references to 
the time-energy controversy is given by Carruthers et al. l

) 
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1526 T. ColO, K. Yamaguchi and N. SudrJ 

at infinity faster than the inverse of any polynomial. Although he succeeded in 
admiting inverse operators of P and .i and also discussed the time operator of a 
harmonic oscillator, his procedure seems to be very complicated and difficult to 
be used in a more general case. There is also known an exceptional example in 
the case of a particle under a constant field of force; that is, Hamiltonian 

and the operator 

Ii =_l_p + C.i 
2m 

(C: constant) (1'5) 

(1·6) 

satisfy the commutation relation (1.1).4) Since the eigenvalue of Ii in (1. 5) 
varies continuously from ~OO to +00, the well-known Pauli objection2

) does not 
hold. In the case of a harmonic oscillator, the classical time variable 

is well known where Hamiltonian is given by 

H= 2~ p2+ ~ mu/x 2 . 

(1.7) 

(1'8) 

However, it is well known!) that the quantum mechanical analogue to (1'7) 

cannot be defined in Hilbert space and Rosenbaum has given the corresponding 
operator in his super Hilbert space. 3

) 

On the other hand, we have proposed recently an alternative formulation of 
quantum mechanics5) in which the time dependent Schrodinger equation 

(Pt+Ii)IIJf>=o, (1'9) 

where 

[Pt, t]= ~ i (1'10 ) 

is regarded as a constraint imposed on physical states. Since our formalism is 
based on homogeneous canonical theory, the time coordinate t as well as the 
space coordinate .i is considered as a dynamical variable. In our opinion, the 
standard formulation where the time coordinate appears as a parameter is based 
on our choice of the special gauge fixing condition (i.e., t ~ s = 0, s: parameter). 
If we take another gauge fixing condition, we may have an alternative form of 
quantum mechanics. In our previous paper,5) we have put the gauge fixing 
condition as follows: 

.i~S=O, s: parameter (1'11) 

and the corresponding formulation has been developed. In this case the space 
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On the Time OPerator in Quantum Mechanics 1527 

coordinate appears as a parameter and the time coordinate remains to be a 
dynamical variable. The inner products and normalizations of wave functions 
obeying (1·9) are given by the integral of the time variable instead of the space 
coordinate. More precisely, the inner product of two wave functions 1h and (/J2 
satisfying Eq. (1. 9) is defined by the following: 

100 dt-1-. [1h *(X, t) a<f!z(X, t) a<f!l*~:' t) <f!z(X, n]. 
-00 2mz ax 

(1·12 ) 

It should be noticed that we have no restriction whether <f!(x, t)'s have to be 
square integrable or not as functions of x. 

Though the time coordinate t is now regarded as a dynamical variable, it is 
not an observable. Since an observable 0 should be commutable with i = P t 
+ ii, i.e., 

[i, 0]=0, (1·13) 

the observable time operator tOb is defined by 

(1'14) 

where 

[ii,f]=-i. (1'15 ) 

Therefore, in our point of view, the existence of the operator f is very important 
to define the observable time operator tOb. Hereafter, we call the operator f 
satisfying Eq. (1·15) the time operator. 

The purpose of the present paper is explicitly to show three typical examples 
of the time operator and establish how to construct it. In this paper, we confine 
ourselves to the one-dimensional motion of a particle for the sake of simplicity. 
In § 2, we shall discuss the simplest case of a free particle in order to explain our 
basic postulates for constructing the time operator. The spectrum of Hamil­
tonian in this case is continuous and has a lower bound. As an example of a 
discrete spectrum of Hamiltonian operator, we shall study a harmonic oscillator 
in § 3. The square well potential is discussed as an example of the case accom­
panied with both scattering and bound states in § 4. If the potential is repulsive, 
we have only scattering states and the mathematical behaviour of the time 
operator in this case is qualitatively similar to that of a free particle. Section 5 
is devoted to the discussions of several problems related to the time operator. 

§ 2. Free particle 

As the simplest example, let us study the case of a free particle where 
Hamiltonian is given by 
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1528 T Coto, K. Yamaguchi and N. Sudo 

(2-1) 

As is well known, the time operator T in this case is usually written as follows: 

which satisfies formally the commutation relation 

[ii, T]=-i (2-3) 

provided that 

[p,x]=-i. (2-4) 

However, as has been frequently emphasized, the time operator satisfying (2-3) 
cannot exist in Hilbert space. Therefore, if we wish to define the time operator 
f in (2-2) unambiguously, we should specify the domain in which the time 
operator is defined. At present, however, we are not aware of the right way to 
develop the mathematical formalism. Therefore, though we do not wish to 
discuss the mathematical structure of the time operator, we shall make our basic 
assumption clear in a rather heuristic way. Since we suppose that wave packets 
corresponding to physically realizable states are represented by functions being 
differentiable any number of times and having finite support, operators are 
assumed to be given by a collection of matrix elements between such wave 
packets. As an ideal limit of such a wave packet, we assume the existence of a 
wave packet represented by an eigenstate Ix> of the space coordinate x and the 
completeness of the states; that is, we assume 

xlx>=xlx> , -=<x<= 

l:dx lx ><xl=l, } 

<xly>= o(x - y). 

(2-5) 

(2·6) 

We also assume that physically relevant operators such as Hamiltonian ii, 
momentum p and so on are determined by matrix elements in these states; 
namely, we have the following correspondence: 

~ ~ 1 02 

H<-><xIHly>=H(x, y)= - 2m ax 20 (x- y ), 

p<-><xlply>= p(x, y) = - i a: o(x - y), 

x<-><xlxly>=x(x, y) =xo(x - y), 

I<-><xlily>=o(x-y). (unit operator) 

*) The time operator in this form has been used by many authors.') 

(2·7a) 

(2·7b) 

(2·7c) 

(2·7d) 
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On the Time Operator in Quantum Mechanics 1529 

Now, if we have the time operator f conjugate to Hamiltonian, its matrix 
elements denoted by T( x, y) may determine the time operator T. The com­
mutation relation (2·3) should be understood as follows: 

1: dz[H(x, z) T(z, y)- T(x, z )H(z, y)]= - io(x - y). (2·8) 

Throughout this paper, we shall assume that all operators relevant to our 
discussions are represented in such a way as shown in Eq. (2·7). Schrodinger 
equation is now regarded primarily as 

1: dyH(x, y )cjJ(y) = EcjJ(x), 

cjJ(x)=<xlcjJ>, (2·9) 

which becomes 

-2~ ~2t;;) = EcjJ(x ). (2·10) 

It is well known that the set of normalized solutions of Eq. (2 ·10) forms a 
complete orthonormal set; namely, we have 

(2·11) 

where 

,/,(±)(x k) =_l_e±ikx 
'f' , ./2ii ' 

k=J2mE, E>O. (2·12) 

Now, we shall consider cjJ(±)(x, k)'s as functions of energy E instead of momentum 
k. Then, cjJ(±)'(x, E)'s have a branch point at E=O and are regular except on the 
real positive axis (i.e., E > 0). Therefore, it is easy to see that the completeness 
relation (2·11) can be written by a contour integral in the complex E-plane as 
follows: 

- ~ I~ lfi[cjJ(+)(x, E)cjJH(y, E)+cjJ(-)(x, E)cjJ(+)(y, E)] 

= 1= dk[cjJ(+)(x, k)cjJ(+)*(y, k)+cjJ(-)(x, k)cjJH*(y, k)]=o(x-y), (2·13) 

where the integral path C is shown in Fig. 1. It should be noticed that cjJ(±)(x, E)'s 

in Eq. (2·13) satisfy Schrodinger equation even if E is complex. Now, the time 
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1530 T. Colo, K. Yamaguchi and N. Sudo 

operator T is given by 

T(x, y)= ~ fi!j-fJi ~ 

c 
E- plane 

Fig. 1 

X [¢(+>Cx, E) a~ ¢H(y, E) + ¢H(X, E) a~ ¢(+)(y, E)l (2'14)*) 

where 

In virtue of Schrodinger equation 

1:dzH(x, z)¢(±)(z, E)=E¢(±)(x, E), 

1:dz¢(±)(z, E)H(z, x)=E¢(±)(x, E), 

the following can be easily shown: 

1: dz[H(x, z) T(z, y)- T(x, z )H(z, y )]= - io(x - y) 

or, in short 

[H, f]= - i . 

(2'15) 

(2'16a) 

(2'16b) 

Since ¢(±)'s are so simple as given by (2 '12), we can explicitly obtain the time 
operator T as follows: 

when~ 

T(x, y)= i 7(x+y)dx-y), 

dx )= {
I, 

-1, 

x >0, 

x<O. 

(2'17) 

It is also easy to see that if the singularity at p = 0 in Eq. (2' 2) is regularized by 
taking a principal value, T operator in Eq. (2' 2) gives the same result as that of 
Eq. (2'17). It should be mentioned that even if we add an arbitrary function rex 

*) This expression seems to be similar to that given by Recami. 7l 
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- y) to T( x, y) of Eq. (2 ·17), the commutation relation (2 ·16) does hold. 

§ 3. Harmonic oscillator 

Hamiltonian of harmonic oscillator 

H~- 1 p~2+ 1 2~2 -- -mw x 
2m 2 (3·1a) 

is now understood as follows: 

(3·1b) 

For the sake of simplicity, changing variables x and E as 

x ->./2mwx , E-> E/w, 

we obtain Hamiltonian (3·1b) and Schr6dinger equation as follows: 

(3·2) 

(3·3) 

Eigenfunctions hn(x) and eigenvalues En of Eq. (3·3) under ordinary boundary 
condition (1\1'1[->0 as Ix[->=) are well-known Hermite functions and half odd 
integers respectively. That is, 

(n = 0, 1, 2··· ) 

Hn(x): Hermite polynomials 

1 
En=n+Z · (n=O, 1, 2···) 

Completeness of hn's is expressed by the following: 

1 = 1 
I2i n~onThn(x )hn(Y) = o(x - y). 

(3·4) 

(3·5) 

In a similar way to Eq. (2·13), this is written by a contour integral in the complex 
E-plane; namely, we have 
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1532 T. Coto, K. Yamaguchi and N. SudrJ 

7\.-plane 

Fig. 2 

where D.(x) is Weber-Hermite function obeying Schrodinger equation 

n=0,1,2······ 

and the integral path C is shown in Fig. 2. Correspondingly, the time operator 
T is now given by 

-1 1 ( Jr 1 i 
T(x, y) = I2J[ 2Jri }/M sin JrA . r(A + 1) 4 

X [ D.(x) ~ D.( - y) + D.( - x) ~ D.(y)]. (3'8) 

By making use of Eqs. (3.2), (3·6) and (3.7), it can be easily shown that 

1: dz [H (x, z) T( z, y) - T( x, z) H ( z, y)] = - iO' (x - y ) (3·9) 

or 

[H, T]= - i. 

To obtain a more explicit expression of the time operator, we introduce the 
damping factor e~If' into Eqs. (3·6) and (3·8) and we calculate the following 
expression: 

1 1 ( Jr e~If' i 
TIf(X, y) = - I2J[ 2Jri }ctV\ sin JrA r(A + 1) 4 

X[D.(x)~ D.(-y)+D.(-x) ~ D.(y)]. (3·10) 

The damping factor assures the existence of the integral (3 ·10) in the ordinary 
sense. Employing the integral form of Weber-Hermite function 

(3·11) 

(the integral path near the point t = 0 is shown in Fig. 3), we obtain the following: 
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·f · 
t-plane 

Fig. 3 

1533 

(3'12) 

Even in the limit 0'->0, the integral (3 '12) is meaningful as a distribution. 
Employing Eq. (3 '12), we can examine explicitly that 

iif!21: dz[H(x, z) T8(Z, y)- T8(X, z )H(z, y)] = - iO'(x - y). (3'13) 

The expression (3 '12) strongly suggests that, although the time operator does not 
exist in Hilbert space, it may be defined as an operator acting on a more restricted 
function space. As has been stated in the preceding section, we may expect that 
the time operator is a collection of matrix elements T(x, y) which are mean­
ingful as Schwarz's distribution. The singular nature of T(x, y) may be easily 
understood from the factor sh -Hx 2- y 2) in (3·12) which increases very strongly 
as if Ix I or Iyl increases. 

§ 4. Square well potential 

Since most of interesting systems have both scattering and bound states, we 
wish here to study a particle motion in a square well attractive potential. 
Schrodinger equation is as follows: 

(Vo>O) forlxl<a, 

for Ixl > a. 
( 4·1) 

Two independent scattering solutions of Eq. (4'1) are denoted by <jJ(+)(x, k) and 
<jJ(-)(x, k) respectively where k=/2mE (E >0). <jJ(+) represents a scattering wave 
coming initially from left while <jJ(-) is a wave coming from right. Explicitly, 
they are given as follows: 
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1534 T. CotiJ, K. Yamaguchi and N. Sud(5 

l _l~ T(k)e;kX > v!zl[ , x a, (4-2) 

where 

x =/2m(E+ Vo) , 

R(k)= i~:o sin 2xaT(k), (4-3) 

T(k)=e-2;ka .k;+-X~2-.--
cos 2xa- z 2kx- sm 2xa 

(4-4) 

and 

(4-5) 

From the explicit forms (4-2)~(4-5) given above, we can see the analytic 
properties of <J;(±)(x, k) as functions of energy E. Namely, <J;(±)'s have a branch 
point at E = 0 and a finite number of poles on the negative real axis, the positions 
of which are determined by the equation 

. k 2 +X 2 
• 

cos2xa-z 2kx sm2xa=O. (4-6) 

As is well known, these poles correspond to bound state solutions of Eq. (4 -1). It 
is also explicitly shown the following completeness relation: 

n 

+ ~<J;B(X, E;)<J;B*(Y, E;)=o(x-y), 
i=l 

(4-7) 

where <J;B'S stand for normalized bound state solutions. In the same way as that 
of § 2, we can write the completeness (4 -7) by the contour integral in the complex 
E-plane. In fact, from Eqs. (4-2)~(4-7) we obtain 

jifj l1firfE) +[<J;(+l(x, E)<J;(-)(y, E) + <J;(-)(x, E)<J;(+)(y, E)] 

= 100 

dk[<J;(+)(x, k)<J;(+)*(y, k)+<J;(-)(x, k)<J;(-)*(y, k)] 

n 

+ ~ <J;B(X, E; )<J;B*(Y, E;) = o(x - y), 
i=l 

(4-8) 

where the contour C is shown in Fig. 4. Then, the time operator T is given by 
the following: 
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E-plane 

Fig. 4 

T(x, y)= +/f: 1:Yi 4 T~E) 

X [<p(+l(X, E) a~ <p(-l(y, E)+ <p(-l(X, E) a~ rJ/+l(y, E) J. (4'9) 

The following commutation relation is shown easily: 

1: dz[H(x, z) T(z, y )-. T(x, z )H(z, y )]= - io(x -- y). (4'10) 

Here, it should be noticed that ejP)(x, E)'s in Eqs. (4'8) and (4'9) satisfy 
Schrodinger equation (4·1) even if E is complex. 

To obtain a more explicit expression of the time operator in Eq. (4'9), we 
shall study the limiting case where a-+O, Vo-+ += and 2maVo= Vo (Vo: finite). 
In this case, only one bound state survives. The solution (4·2) becomes the 
following simple form: 

j 
~l~[eikx + R(k)e-ikX] 
I2ii ' 

ej/+)(x, k)= 
_l- T (k)e'kX 
I2ii ' 

where k=/2mE and 

R . Vo } 
= l k~iVo ' 

T= k 'TT' -luo 

The normalized bound state solution is 

x<O, 

x >0, 

{
JUo e+Uox , 

<PB(X, Vo)= Ir-J -uox 
v uo e , 

x<o, 
x >0. 

(4'11) 

(4·12) 

(4·13) 

The completeness relations (4' 7) and (4' 8) are examined from (4'11) and (4 '13). 
From (4'9), (4'11) and (4'12), we can obtain the time operator T as follows: 

(a) x, y<O 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/66/5/1525/1833342 by guest on 16 August 2022



1536 

(b) x<O,y>O 
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i ~[x+ Z~o O-eUO(X-Y))], (x>y) 

-i ~[y+ Z~o O-e-UO(X-Y))], (x<y) 

(x+y<O) 

(x+y>O) 

(4·14a) 

(4·14b) 

The expression for the cases (x, y > 0) and (x < 0, y > 0) are obtained by putting 
x--> -y, y--> -x in the formula (4·14a) and (4·14b) respectively. In the limit Uo 
-->0, Eq. (4·14) reduces to Eq. (Z·l7) which gives the time operator of a free 
particle. 

If we take - Uo in place of Uo appearing in, Eqs. (4·11), (4· 1Z) and (4· 14), we 
obtain the time operator in the case of the repulsive potential where no bound­
state exists. If Ixl or Iyl increases, T(x, y) of the attractive potential increases 
exponentially while that of the repulsive potential increases linearly. 

§ 5. Discussion 

We have investigated three examples in which the completeness relation is 
written by the integral of energy E in the complex plane as follows: 

o(x - y) = -ldEI(E) ~ [¢(x, E)¢(y, E) + ¢(x, E)¢(y, En (5·1) 

where ¢ and ¢ are two suitably chosen independent solutions of Schrodinger 
equation. I(E) and the path C are also chosen suitably. Corresponding to Eq. 
(5·1), the time operator T is given by 

J i[ a a ] T(x, y)= cdEI(E)4 ¢(x, E) (JE ¢(y, E)+¢(x, E) (JE ¢(y, E) . (5·Z) 

If we notice that ¢ and ¢ satisfy Schrodinger equation even in the complex energy 
E, we can easily see that 

l:dz[H(x, z) T(z, y)- T(x, z )H(z, y )]= - io(x - y). (5·3) 

This fact suggests that our procedure to construct the time operator is useful in 
general. We shall study this problem separately. 

From our explicit representations, matrix element T(x, y) has to be re-
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garded as a distribution. Therefore, the product of T-operators such as T2, T 3
, 

etc. are not well defined in general. In fact, we cannot define T2 as follows: 

(5'4) 

which is not convergent in general. However, we can define T(nl( x, y)'s obeying 
the following relations: 

T(l)(x, y)= T(x, y), rO)(x, y)=o(x-y). (5'5) 

The operator r n
) is given by 

T(n)(x, y)= + idE/(E)! [( - i o~ r ¢(x, E)¢(y, E) 

( . a )n 
+¢(x,E) +ZoE ¢(y,E) 

( . 0 )n ( . a )n ] + -7 oE ¢(x,E)¢(y,E)+¢(x,E) +1 aE ¢(y,E). (5·6) 

Then, the operator E( iO'T) corresponding to exp( iO'T) is also defined by the 
following matrix element: 

= + idE/(E) ! [¢(x, E+ a )¢(y, E) + ¢(x, E)¢(y, E- a) 

+¢(x, E+O')¢(y, E)+¢(x, E)¢(y, E-O')], (5'7) 

which may be regarded as a generating function of T(n),s, i.e., 

( - i..rt.)n E[iO'T] I = T(n) . 
00' a~O 

(5'8) 

The operator E[£O'T] satisfies the equation 

[H, E[iO'T]]=O'E[iO'T]. (5'9) 

Although T2, T 3
, etc. are not well-defined, the product of T with an operator 

having a finite support can be defined. For example, we can define T· H or X· T 
as follows: 

jdzH(x, z) T( z, y) = (HT)(x, y) 
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1538 T. CoW, K. Yamaguchi and N. SudrJ 

jdzxo(x - z) T(z, y) =xT(x, y), (5'10) 

where Hamiltonian H (x, y) and position xo (x - y) have finite supports. 
Since, as has been seen from our examples, the time operator is meaningful 

only under very restricted conditions, it may be desirable to study the mathe· 
matical structure of the time operator in a more rigorous way. This is also 
necessary for developing our alternative formulation of quantum mechanics. 
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