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Summary 
 

 

The starting point for this thesis is a review of Bundesen’s theory of visual attention. 

This theory has been widely accepted as an appropriate model for describing data from 

an important class of psychological experiments known as whole and partial report. 

Analysing data from this class of experiments with the help of the theory of visual 

attention – have proven to be an effective approach to examine cognitive parameters 

that are essential for a broad range of different patient groups. 

 

The theory of visual attention relies on a psychometric function that describes the ability 

to identify a stimulus as a function of exposure duration. An important contribution of 

the thesis is that it investigates whether other psychometric functions than the one 

originally used with the theory of visual attention could be more appropriate at 

describing data. The thesis points to two psychometric functions that seem more 

appropriate. Further the thesis shows that it is possible to incorporate any desired 

psychometric into the theory of visual attention. Common to the two psychometric 

functions suggested is that they both have a hazard function that is non-monotonic; a 

neural argument for this is also presented in the thesis. 

 

For the psychometric function it is further investigated how this depends on stimulus 

contrast. In this respect, we find that the type of psychometric function is independent 

of contrast, but that the parameters for the psychometric function vary systematically as 

a function of contrast. 

 

An analysis of the psychometric function for the individual letters of the alphabet shows 

that there are significant differences in the parameters of the psychometric function 

depending on letter identity. Here we should note that in many cases (also for 

Bundesen’s theory of visual attention) it has been customary to average performance 

over the entire set of stimuli, consisting for instance of the 26 alphabetic letters. 

 

The fact that each letter is perceived in a different way possibly reflects that each letter 

is represented differently in our brain. This might have to do with a difference in the set 

of features representing the individual letters. It is possible that some features are 

processed faster than others and that overlapping features representing more than one 

letter in the alphabet play a certain role for the tendency to confuse letters. Hopefully it 

should be possible, with the dataset that we collected, to directly analyse how 

confusability develops as a certain letter is exposed for increasingly longer time. 

 

An important scientific question is what shapes the psychometric function. It is 

conceivable that the function reflects both limitations and structure of the physical 

mechanism underlying perception. For this reason we argue that the alternative 

psychometric functions that we have suggested are also relevant for models trying to 

simulate the mechanism leading to perception. The thesis reviews a selection of 

stochastic models that are well-known candidates when it comes to modelling 
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mechanisms of perception. These candidates include the Ornstein-Uhlenbeck model and 

the leaky competing accumulator model.  

 

A further contribution of the thesis is a demonstration that the leaky competing 

accumulator model (see Usher & Cohen, 1999) is able to explain a perceptual limit that 

characterises how many objects can in parallel be perceived. 

 

Finally, the thesis suggests five concrete topics for future work. These include as 

diverse themes as: determination of the visual features representing the individual letters 

in our brain, neurodynamical modelling of visual perception, investigation of the 

duration of visual short-term memory as well as psychometric functions and 

assumptions along with application areas in cognitive diagnostics. 

 

Keywords:  visual identification, exposure duration, non-monotonic hazard function, 

visual short-term memory, theory of visual attention, cognitive modelling, whole and 

partial report, psychometric function 

 



 

Resumé 
 

 

Denne afhandling tager udgangspunkt i en kort introduktion til Bundesens teori om 

visuel opmærksomhed. Denne teori har vundet indpas som en model til beskrivelse af 

data fra en vigtig klasse af perceptionsforsøg kaldet ’hel og delvis-rapportering’. Disse 

forsøg har sammen med teorien om visuel opmærksomhed vist sig effektive til at 

undersøge kognitive parametre, der er væsentlige hos et bredt udsnit af forskellige typer 

af patientgrupper.  

 

Teorien om visuel opmærksomhed bygger på en såkaldt psykometrisk funktion, der 

beskriver evnen til at genkende et stimulus som funktion af visningstiden. Et vigtigt 

bidrag fra denne afhandling er, at den undersøger hvorvidt andre psykometriske 

funktioner, end den teorien om visuel opmærksom er født med, måtte være mere 

velegnede til at beskrive data. Tesen peger på to psykometriske funktioner, der synes 

mere velegnede, og den viser herudover, hvorledes en vilkårlig psykometrisk funktion i 

realiteten lader sig indkorporere i teorien om visuel opmærksomhed. Fælles for de 

foreslåede psykometriske funktioner er, at de har en hazardfunktion, der er ikke-

monoton, og der angives i tesen en neural begrundelse for dette. 

 

For den psykometriske funktion er det yderligere undersøgt, hvorledes denne afhænger 

af stimulus kontrast. I denne sammenhæng har vi fundet, at typen af den optimale 

psykometriske funktion er uafhængig af kontrast, men at parametrene for funktionen 

derimod varierer systematisk som funktion af kontrast. 

 

Analyseres den psykometriske funktion for de enkelte bogstaver i alfabetet ses det, at 

der er signifikante forskelle på den psykometriske funktions parametre i forhold til 

hvilket bogstav, der er tale om. Dette er værd at bemærke, da det ellers i mange 

videnskabelige sammenhænge (blandt andet også i forbindelse med Bundesens teori om 

visuel opmærksomhed) har været sædvane at midle over stimulussættet bestående fx af 

forskellige bogstaver.  

 

At bogstaverne perciperes forskelligt afspejler muligvis en forskel på de byggesten, der 

repræsenter de enkelte bogstaver i vores hjerne. Eksempelvis kunne det tænkes, at nogle 

byggesten lægges hurtigere end andre, og at overlappende byggesten, der indgår i mere 

end et bogstav i alfabetet, spiller en rolle for tilbøjeligheden til at forvirre de enkelte 

bogstaver med hinanden. Med det opsamlede datasæt er det for første gang blevet 

muligt direkte at analysere, hvorledes forvirringen mellem bogstaver udvikler sig 

efterhånden som et bogstav vises i længere og længere tid. 

 

Et vigtigt videnskabeligt spørgsmål er, hvad der former den psykometriske funktion. 

Det er oplagt, at funktionen afspejler både begrænsninger og strukturen af den fysiske 

mekanisme, der muliggør visuel perception. Derfor har vores forslag til alternative 

psykometriske funktioner også relevans for modeller, der forsøger at simulere den 

mekanisme, der leder til perception. I tesen gennemgåes en række stokastiske modeller 

der er velkendte kandidater, når det drejer sig om at modellere perceptionsmekanismer. 
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Til de udvalgte kandidater hører Ornstein-Uhlenbeck modellen og den lækkende 

konkurrerende akkumulator model.  

 

Et yderligere bidrag i tesen er en demonstration af, at en lækkende konkurrerende 

akkumulator model (se Usher & Cohen, 1999) kan forklare den perceptuelle 

begrænsning der ligger i, hvor mange objekter der parallelt lader sig opfatte. 

 

Endeligt foreslår tesen fem konkrete fremtidig arbejdeområder. Disse omfatter så 

forskelligartede emner som bestemmelse af de byggesten der repræsenterer de enkelte 

bogstaver i vores hjerne, neurodynamisk modellering af visuel perception, undersøgelse 

af varigheden af visuel korttidshukommelse såvel som psykometriske funktioner og 

antagelser samt anvendelsesområder i kognitiv diagnostik. 
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Abbreviation Explanation 

  

AD Alzheimer’s Disease 

AIC Akaike Information Criterion 

BIC 

CfCCM 

Bayes Information Criterion 

Center for Computational Cognitive Modeling 

CVC Center for Visual Cognition 

CU 

DTU 

University of Copenhagen 

Technical University of Denmark 

FIRM Fixed-capacity Independent Race Model 

HD Huntington’s Disease 

IMM Informatics and Mathematical Modelling 

LCA Leaky Competing Accumulator 

MCI Mild Cognitive Impairment 

NTVA Neural Theory of Visual Attention 

TVA Theory of Visual Attention 

VSTM Visual Short-Term Memory 

OU Ornstein-Uhlenbeck 
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Symbols 

 

 

Symbol Explanation 

  

A Activation 

b Barrier 

C Total processing capacity 

D Number of distractors  

dw 

f 

White noise contribution 

Probability density for target encoding 

F 

 

g 

G 

I) Psychometric function after correction for guessing and lapsing 

II) Distribution function target encoding II) Activation function 

Probability density for distractor encoding 

I) Distribution function target encoding II) Poisson spike train 

j 

k 

The score, i.e. the number of reported targets 

A psychometric parameter 

K Storage capacity of the VSTM 

S Visual field 

t Time 

T 

v 

V 

Number of targets 

Element processing rate  

A psychometric parameter 

X Stochastic variable 

Y 

α 

Stochastic variable 

I) Ratio of processing resources II) Self-excitation  

β 
γ 
θ 
λ 

Lateral inhibition 

I) Guessing rate II) Amplitude scaling of Poisson spike train 

Set of psychometric parameters 

Lapsing rate 

λL Leakage term 

μ 
σ 
τ 
Ψ 

 

 

I) Drift term / II) a psychometric parameter 

I) Noise amplitude / II) a psychometric parameter 

A psychometric parameter 

Psychometric function before correction for guessing an lapsing 

 

 

 

Note: Roman numbers indicate symbols that can represent multiple entities.
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1 Introduction 
 

 

1.1 Understanding the human visual system 

 

Most people would probably agree that vision is one of the most important senses that 

humans have; the fact that it is the sense that occupies the largest part of the brain seems 

to support this point of view. There are many reasons why one would want to model and 

understand the functioning of the human visual system. Important reasons include 

scientific curiosity, understanding disorders and pathologies linked to the visual system 

and inspiration for synthesis of artificial vision systems. In this thesis we focus on the 

development of models that could potentially lead to better diagnostic instruments for 

patient monitoring. The models that we develop are frequently aimed at assessing 

cognitive disorders, and so we would be very satisfied if the results of this thesis can 

improve on these very useful models. If our models also serve to provoke scientific 

curiosity, for instance serving as inspiration for future research, we would of course be 

happy for this also.  

 

1.2 Visual Short-Term Memory 

 

In many visual tasks performance rely on limitations of a subjects visual short-term 

memory. The visual short-term memory is part of the human working memory system, 

and it plays a key role for visual identification.  

 

It is not enough for identification of an object that it causes sensory input, leading to 

what is known as an iconic image; if representation of the visual objects is not upheld 

by either continued visual presentation or executive control from higher cortical areas, 

memories in iconic memory will simply decay away inside a temporal span of less than 

a second (Sperling, 1960). Iconic memories are fragile and decay rapidly, whereas 

visual short-term memories can be robust to subsequent stimuli and last for a period of 

many seconds (Phillips & A. D. Baddeley, 1971). 

 

As the concept of Visual Short-Term Memory (VSTM) is crucial in our understanding 

of how we identify objects, it might seem important how we define it. We consider 

VSTM as a mechanism temporarily capable of holding on to a limited number of 

selected visual objects. The object that we consider is either a digit or a letter entity, 

more generally objects could also be defined as ‘chunks’ of visual information (Miller, 

1956), hence in principle a word or a number consisting of more than one digit could 

also count as a visual object. When an object enters VSTM, this could be interpreted as 

a population of neurons (representing the object) having its activation sustained by 

being incorporated into a type of feedback loop (Bundesen, Habekost, & Kyllingsbæk, 

2005, p. 302). 
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According to the Theory of Visual Attention (TVA; Bundesen, 1990) the visual short-

term memory is limited by both processing capacity as well as storage capacity. Already 

in the late 19
th

 century a surprising limit in how many objects that can be perceived at 

the same time was demonstrated. It seems that only about 4 objects can be held in the 

VSTM at the same time (Cattell, 1886; Cowan, 2000). This finding is independent of 

the number of objects visually presented (Sperling, 1960). 

 

Evidence further exist that the “magical number” of 3-to-4 objects is largely 

independent of how many features that are encoded for each object. This means that the 

complexity of the visual object does not hold an influence on the memorial capacity of 

the VSTM see (Luck & Vogel, 1997), but see also (Alvarez & Cavanagh, 2004). This 

later empirical finding is consistent with Bundesen’s Theory of Visual Attention 

(Bundesen, 1990) which assumes that VSTM is limited by the number of visual objects 

rather than by the number of features that constitute the object. 

 

1.3 Vision experiments 

 

Many different types of psychological experiments have been developed through the 

last few centuries, and again many of these paradigms are aimed at assessing various 

aspects of human vision. As a visual scene typically contains several objects, one or 

more which are of special importance for us to identify and some that are not, it seems 

vital for the visual system how well it behaves in such tasks. For this reason we choose 

to narrow down our focus to a class of experiments known as whole and partial report. 

Whole and partial report aim directly at quantifying the accuracy of visual object 

identification in single- and multi-object displays, here accuracy is assumed to be 

heavily dependent on the subject’s visual short-term memory limitations. 

 

1.4 Visual displays for diagnosis 

 

There is a long history for applying visual displays (e.g. consisting of letters) to 

diagnose disorders affecting the visual system. These visual disorders may originate 

anywhere from the peripheral system, through the neuro-sensory pathway even to the 

cortical regions engaged in vision. We shall now give examples that visual displays can 

be used to assess disorders originating virtually at any level in the visual system: 

 

Our first example is the Snellen letter chart (Snellen, 1862) which is in fact very well 

known. Even today a Snellen letter chart is situated on a wall in most medical clinics; 

the Snellen chart is known as a convenient tool for diagnosing short and long 

sightedness, which most often originates in a peripheral, eye disorder.  

  

Our second example shows that visual letter displays are also useful for diagnosing 

disorders originating in the visual pathway. This was demonstrated when Jannik 

Petersen Bjerrum used multiple Snellen type letters printed in various contrast levels to 

diagnose patients suffering from visual deficits in various regions of the visual field 

(Bjerrum, 1882, 1889; Dreyer, Edmund, & Møller, 1992). Bjerrum discovered the 

arcuate scotoma in glaucoma, and he later earned the reputation as the founder of 
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campimetry, due to his efforts to develop methods for measuring a subject’s field of 

vision.  

  

Our third and last example shows that visual letter displays are furthermore useful for 

diagnosing cognitive disorders that could originate in visual cortical regions. In 

paradigms such as whole and partial report the subject has to report multiple 

simultaneously presented letters that are displayed as a function of exposure duration. In 

fact, it has been shown that both whole and partial report provide correlates of the 

patient’s state under a number of cognitive disorders (Habekost & Starrfelt, 2008), these 

disorders include Alzheimer’s disease (Bublak, Redel, & Finke, 2006). 

 

1.5 The utility of single, whole and partial report related to 
diagnosis of AD 

 

This section gives an example of how single, whole and partial report can possible be 

useful for diagnostic purposes, exemplified by diagnosis of Alzheimer’s disease (AD). 

Today 5.3 million people are living with AD in USA; every 70 seconds a person 

develops AD; and further AD and dementia triple the cost for healthcare for persons of 

age 65 years and older (Alzheimer´s Association, 2009). For the sake of early diagnosis 

as well for allowing for patient monitoring when the patient is undergoing medical 

treatment, it is important to have the best possible set of indicators that can reliably 

predict and assess the state of AD. Recently various types of bio-markers have been 

shown to predict some cases of AD (Mattsson et al., 2009; R. C. Petersen & 

Trojanowski, 2009), but there is still plenty of room for other types of test procedures, 

especially some that are both non-invasive and can detect the disease at a very early 

point. Cognitive test batteries used for this purpose include the Mini-Mental State 

Examination and the Alzheimer’s Disease Assessment Scale (Mattes, 1997; M. F. 

Folstein, S. E. Folstein, & McHugh, 1975; Wouters, van Gool, Schmand, & Lindeboom, 

2008); these are both popular and fairly quick tools for judging cognitive function. In 

order to be able to improve on such test batteries, and because AD affects more an more 

people, we agree with Bublak et al. (2006, 2009) and Habekost & Starrfelt (2008) that it 

is interesting that human performance in whole report displays (displays with a number 

of simultaneous targets) have been shown to predict AD and even a similar but milder 

state known as mild cognitive impairment (MCI).  

 

In whole-report displays, predictors of AD and MCI were the minimum exposure time 

(the offset) needed for identification of an object and further for AD a leftward bias of 

spatial attention (Bublak et al., 2006; Bublak et al., 2009). Both of these predictors also 

served to predict Huntington’s disease (HD). Related to partial report (which also 

includes distractors in the visual display) there is evidence that the ability to filter out 

irrelevant elements in the visual field is also an indicator of AD (A. D. Baddeley, H. A. 

Baddeley, Bucks, & Wilcock, 2001). Further, for single-object identification, a large 

scale study involving hundreds of subjects showed that AD and MCI was quite strongly 

predicted by the median time for identifying objects. In a comparison of a battery of 16 

different cognitive tasks (Mendola, Cronin-Golomb, Corkin, & Growdon, 1995) visual 

identification of letters (followed by a so-called backward pattern mask, as is standard 

in the whole and partial report paradigm) was one of the many experimental procedures 
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that were tested. For this task, the exposure duration at the 50 % correct threshold was 

shown to yield the best predictive power of AD compared to the measures calculated 

from any other of the cognitive tasks that were tested. A late 50 % threshold was 

prevalent in 58 % of AD subjects. Whole and partial report procedures can be applied to 

capture all of the mentioned indicators of AD and MCI provided a model such as the 

theory of visual attention is used to analyse the data.  

 

The fact that single-letter report showed out to be a good predictor of AD (Mendola et 

al., 1995; Cronin-Golomb, Corkin, & Growdon, 1995; Cronin-Golomb & Hof, 2004; 

Cronin-Golomb, Gilmore, Neargarder, Morrison, & Laudate, 2007) makes this 

experiment particularly interesting to study in further detail. We speculate that imposing 

an appropriate model (a psychometric function), when fitting single-letter data, might 

provide a more efficient and even more accurate predictor in terms of AD. Also we 

think that it might be useful to combine the parameters from the psychometric function, 

such as the threshold, the slope and perhaps an offset to build the most effective 

estimator of the cognitive deficit, as this is evidenced in for instance AD. 

 

1.6 Thesis overview 

 

The thesis is organized in three parts, which we shall now present to the reader. 

 

PART I: 

 THEORY 

 

In Chapter 2 we introduce central aspects of Bundesen’s theory of visual attention. 

Particularly, in Section 2.1 we see how the theory deals with limits in processing 

capacity and in Section 2.2 we see how it deals with limits in storage capacity. 

  

In Chapter 3 we first present (in Section 3.1) a few notions on visual identification with 

the aim of linking the first-passage-time distribution to the psychometric function in 

single-object report. In Section 3.2 we provide a collection of psychometric functions 

that we aim to evaluate with respect to their ability to model character identification as a 

function of exposure duration.  

 

In Chapter 4 we present the leaky competing accumulator model, which is a type of 

diffusion model that can be used to model a cognitive process such as the identification 

task. We shall later use the model to provide a neural network demonstration how visual 

short-term memory storage capacity can vary from trial to trial. 

 

PART II: 

 METHODS AND RESULTS 

 

In Chapter 5 we formulate our research question which is motivated by the introduction 

of visual identification that we gave in Chapter 1 and the theories and models related to 

visual identification that we presented in Chapters 2 to 4. After having stated our 

research question we present seven related research themes to which we believe this 

thesis will contribute. 
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In Chapter 6 we present the various investigations that we conducted to answer our 

research question. Our research is treated theme by theme; and each of the seven themes 

is dedicated its own section, which briefly explains what was the method used to treat 

the research question and what was the result from this investigation. Further details of 

methods and results can be found in the two research papers (A. Petersen et al., 2009) 

and (A. Petersen & Andersen, 2009) that were prepared during the course of the Ph.D. 

 

PART III: 

 CONCLUSION 

 

In Chapter 7 we discuss implications for each of the results obtained in 5. We conclude 

on our results, relate them if possible, and discuss how we tried to anticipate possible 

confounds. Finally we point out general tendencies seen across various datasets and 

discuss implications of such convergence. Also as part of the conclusion we point out 

the most important contributions of our research, and conclude on whether our work has 

addressed the research question. Finally, we suggest some topics for future work hoping 

that as many as possible of these topics will be treated in future studies. 

 

Finally, we also include Appendix A which contains our conference paper: (A. Petersen 

et al., 2009) as well as Appendix B that contains our submitted manuscript: (A. Petersen 

& Andersen, 2009). 

 

References can be found in the last pages of the thesis. 

 

 





 

 

 

 

 

 

 

 

PART I: 
 THEORY





 

2 The Theory of Visual Attention  
 

 

This chapter, which is to a large extent an excerpt from Appendix B in (A. Petersen & 

Andersen, 2009) presents how the Theory of Visual Attention (TVA; Bundesen, 1990) 

can be used to provide an account of performance in single, whole and partial report. 

The tradition in TVA is to assume that guessing and lapsing can be ignored (Bundesen, 

1990; Bundesen & Harms, 1999; Shibuya & Bundesen, 1988) this simplifies matters 

considerably especially in whole and partial report (Shibuya & Bundesen, 1988). 

 

In TVA any target or distractor is denoted as an element, and further it is assumed that a 

subject only correctly identifies the elements that are stored in visual short-term 

memory. Further, subjects only obtain a chance to store an element if the element is 

encoded. 

 

2.1 Encoding: sharing of processing resources between 
elements 

 

The hazard rate that a particular element, i, is encoded into VSTM is proportional to 

how large a portion of processing resources the element receives. Any element in the 

visual field S receives a certain portion vi of the total processing capacity C, which is 

assumed to be invariant with respect to the number of elements in the display: 

 

C  v i

iS

  

 

It serves as a simplification to assume homogeneity of the visual display (Shibuya & 

Bundesen, 1988). This appears a reasonable assumption as long as all elements have the 

same size, the same contrast, the same eccentricity etc. The homogeneity assumption 

means that all targets receive the same amount of processing resources denoted vt. In the 

same way all distractors receive the same amount vd of processing resources which is 

proportionally smaller than the amount that targets receive. The ratio of processing 

resources α is defined as: 

 

 
vd

v t

 

 

Let us assume a homogenous display that contains T targets and D distractors. The 

processing resources vt of any target is then given by: 

 

 
DT

C
vvDTDvTvDvTvCvC ttttdt

Si

i 






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2.2 Storage: the fixed-capacity independent race model 

 

TVA describes the factors that determine the probability that any given target in a multi-

element visual display is encoded into visual short-term memory, however as VSTM 

typically has only about 3-4 storage places, TVA assumes that not all elements that 

become encoded are actually stored. Bundesen (1990) assumes that the occupation of 

places occurs through a so-called race, that is, any newly encoded element will lead to 

immediate occupation of one storage place if and only if there is still any storage place 

left in the VSTM. 

 

Let us define that f and F and are the probability density and the distribution function 

for target encoding respectively. Similarly we also define that g and G are the 

probability density and the distribution function for distractor encoding.  

 

According to the fixed-capacity independent race model (Shibuya & Bundesen, 1988) 

the probability of a score of j (targets reported) from a display containing T targets and 

D distractors exposed for te seconds can be written as: 

 
P( j;T,D, te )  P1  P2  P3  

 

where P1 is the probability that the score equals j and the total number of elements 

(targets and distractors) entering VSTM is less than K. The number of distractors 

entering VSTM is denoted by m and m  min(D,K-j-1). If j=K, P1=0; otherwise: 

 

P1 
T

j








F(t)  j

1 F(t) T j 
D

m









G(t) m

1G(t) Dm

m 0

min(D,K j1)

  

 

and P2 is the probability that the score equals j and the total number of elements equals 

K and the K
th

 element entering the VSTM is a target. The number of distractors entering 

VSTM denoted by m is always K-j. If j=0, or j<K-D, P2=0; otherwise: 

 

        




























 


0

1

2 )(
1

)(1)()(1)(
1

1
dttf

T
tGtG

m

D
tFtF

j

T
P

mDmjTj
 

 

and P3 is the probability that the score equals j and the total number of elements equals 

K and the K
th

 element entering the VSTM is a distractor. The number of distractors 

entering VSTM denoted by m is always K-j. If j=K, or j<K-D, P3=0; otherwise:

 

 



























 



0

1

3 )(
1

)](1[)]([
1

1
)](1[)]([ dttg

D
tGtG

m

D
tFtF

j

T
P mDmjTj  

 Shibuya and Bundesen (1988) derived explicit score probabilities under the assumption 

that encoding proceeds as a homogenous Poisson process. This corresponds to assuming 

(ignoring the temporal offset) that the hazard rates are constant over time. An original 

contribution from our work is a generalized model that allows the hazard rates to be 

time-varying, although the generalized model still assume that the hazard rates (for the 
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different elements presented) are mutually proportional functions of time (cf. Bundesen, 

1990, 1993, 1998). Explicit formulas for our so-called generalized Fixed-capacity 

Independent Race Model (FIRM) as well as an explanation of how we relaxed the 

assumption on the hazard rates are available in Appendix B in (A. Petersen & Andersen, 

2009).  

 

 

 

 

 





 

3 Single-object report 
 

 

In Section 3.1 we shall give an interpretation of visual identification and introduce a few 

practical assumptions about it, including what is required for identifying an object. In 

Section 3.2, which is to a large extent an excerpt from the introduction in (A. Petersen 

& Andersen, 2009) we present a selection of  psychometric functions that we use later 

on when we shall model several datasets containing data from single, whole and partial 

report experiments.  

 

3.1 A notion on identification and the first-passage-time 
distribution 

 

Identification as such can be regarded as a cognitive state (or simply a choice) that is the 

result of some neuro-sensory judgement process. For instance the subject could have to 

judge if a certain stimulus category is present or not. This judgement process is 

dependent on how much information about the stimulus that has been accrued. Different 

models of perception vary considerable in both how information builds up and what is 

the decision rule that is used for the judgement.  For simplicity we shall also assume 

that the sensory input, that is, the visual field do not change during the time course in 

which stimuli are presented. The only thing that does change is how long time the 

stimulus is presented. 

 

The assumption that an information threshold must be crossed for inference of the 

stimulus identity is an important aspect of many types of cognitive models, such as 

response time models (Smith, 2000). We also assume that if and only if an information 

threshold is crossed the stimulus identity is inferred. For simplicity we shall assume a 

high-threshold for identification. The high-threshold assumption implies that either the 

subject is able to infer the correct identity of the target or else the subject guesses 

randomly. If we denote the probability of inferring the correct identity of the stimulus as 

P(id) and the probability of guessing the correct identity of the stimulus as γ, then the 

probability that the subject will report the correct identity of the stimulus, P(hit), is: 

 

          idPidPidPhitP   11  

 

The high-threshold assumption implies that the subject never infers a false identity of 

the target, and therefore false categorizations can therefore solely be explained as the 

result of random guessing. Though we decided to follow the popular high-threshold 

assumption; it might be interesting to explore a low-threshold assumption as well, as it 

is sometimes produces slightly more realistic predictions, see (Palmer, Verghese, & 

Pavel, 2000). There are several low-threshold models to choose from (Palmer et al., 

2000) however an important subset of these is based on signal detection theory - for 

instance the ideal observer model (Green & Swets, 1966; Geisler, 2003). What is 

common to many low-threshold models is that they assume noisy representations of the 

stimuli as well as a decision making process that gradually integrates information about 
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the stimulus categories and incorporates various kinds of attentional biases. Let us 

emphasize that here we do not deal with low-threshold theories as we follow the simpler 

high-threshold assumption as we have already explained above. 

 

The first-passage-time distribution is important to keep in mind when modelling 

behavioural types of experiments such as the identification task. The first-passage-time 

is the time, tb at which a stochastic process, A(t) reaches or crosses a certain barrier 

(threshold) level, b for the first time.  

 

  btAttb  ;0inf  

 

In relation to a psychological experiment such as the identification task we are most 

often not able to observe exactly how information builds up, or even how this depends 

on various stimulus features or other experimental settings. Given our above mentioned 

assumption what we can deduce from our observations however is whether the 

information that has built-up has exceeded the information threshold for a particular 

trial. Mathematically the probability distribution of crossing a certain information 

threshold corresponds to the cumulative first-passage-time distribution.  

 

From a modelling point of view single-object report appears quite similar to the 

classical response time problem as far as single-object report is also temporally 

dependent paradigm. Therefore also for single-object report the distribution of 

processing times can be interpreted the first-passage-time distribution of an underlying 

stochastic process of visual identification (Smith, 2000). 

 

3.2 Alternative psychometric functions 

 

When considering the single-object report experiment the proportion correct is directly 

characterized by the so-called psychometric function. In a modeling perspective the 

shape of the psychometric function depends on the type of stochastic accumulation 

model that is assumed. For many types of stochastic accumulation models (and also for 

TVA) it is often assumed that one crossing of the activation threshold is sufficient for 

inferring the category (Smith, 2000; Whitmore, 1986; Aalen, Borgan, & Gjessing, 2008; 

Bundesen, 1990); for single-object report this means that the first-passage-time 

distribution equals the psychometric function (cf. Section 3.1). A reason why we think 

the psychometric function is important from a cognitive modeling perspective is that it 

allows us to narrow down the field of cognitive model candidates to be considered. 

 

A psychometric function ψ(t; θ, γ, λ) quantifies the probability of a correct report as a 

function of some stimulus attribute t, which is our case is exposure duration. It is 

characterized by a number of parameters that include the parameter set θ of the function 

F as well as two additional parameters, γ and λ, that denote the guessing and lapsing 

probabilities, respectively. We define the guessing probabilities as the fraction of times 

an un-informed observer presses (intentionally or accidently) each of the keys included 

in the response set. The lapsing probability we define as the relative fraction of 

accidental key presses, averaged over all keys in the response set. The psychometric 

function ψ, which includes correction for guessing and lapsing, can be written as 
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             ;1;11;,,; tFtFtFt   

 

What we shall generally speak of as the psychometric function is the function F, i.e. the 

psychometric function after correction for guessing and lapsing (Treutwein & 

Strasburger, 1999; Wichmann & Hill, 2001).  

 

The exponential distribution with a temporal offset included was used as the 

psychometric function in TVA (Bundesen, 1990). Ignoring the temporal offset, this 

psychometric function is an implication of assuming that encoding into VSTM can be 

considered events from a homogenous Poisson process, for which the waiting time is 

well known to be exponentially distributed. The exponential distribution has the 

parameter set θ={v,μ}, where v > 0  is the rate and μ > 0 is the temporal offset of the 

Poisson process, and the distribution is defined by: 

 

          tfortFandtforetF tv 0;1;  

 

From a psychophysical perspective, it is strange that there should be a fixed temporal 

offset before encoding can take place, and that after this point the encoding rate is 

constant; instead, we find it more plausible that the encoding rate rises as a smooth 

function of exposure duration. The gamma, the Weibull and the ex-Gaussian 

distributions all represent generalisations of the exponential distribution, and all of these 

are smooth functions.  

 

The Weibull distribution has the parameter set θ={μ,σ,k}, where μ, σ, k > 0 It reduces to 

the exponential distribution when the shape parameter k = 1. The Weibull distribution 

has previously been used for modelling the psychometric function of visual contrast 

detection, visual discrimination as well as visual identification when these were 

investigated as a function of stimulus contrast (Pelli, 1985, 1987; Pelli, Burns, Farell, & 

Moore-Page, 2006). When the Weibull distribution has μ > 0 it includes an offset. The 

three-parameter Weibull distribution function is defined as: 

 

     









 


tfortFandtforetF

k
t

0;1;  

 

The gamma distribution has the parameter set θ={μ,σ,k}, where μ, σ, k > 0. The gamma 

distribution corresponds to the waiting-time distribution, when waiting for k 

independent, and identically distributed events, that each has an exponentially 

distributed waiting time-distribution and it thus reduces to the exponential distribution 

when k = 1. If correct identification depends on the firing of several independent neural 

units firing as Poisson processes, then the gamma distribution could describe the 

psychometric function of identification as a function of stimulus duration. Based on a 

similar argument the gamma distribution has been fitted to response time distributions 

(Van Breukelen, 1995; Luce, 1991). Noting that  is the complete gamma function, and 

γ is the lower incomplete gamma function, the three-parameter gamma distribution 

function is defined as: 
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      


 








 

 tfortFandtfor
k

t
k

tF 0;

,

;  

 

The Ex-Gaussian distribution has the parameter set θ={μ,σ,τ}, where μ, σ, τ > 0. The 

ex-Gaussian approaches the exponential distribution in the limit, to be exact when μ=0 

and σ→0. The Ex-Gaussian distribution characterises the sum of an exponential 

distributed variable and a Gaussian distributed variable. Thus, if Gaussian noise is 

added to the temporal offset, , in the exponential distribution the waiting times for 

perceptual processing would be distributed according to the ex-Gaussian distribution. 

The ex-Gaussian has been used for modelling reaction-time data (Luce, 1991). Noting 

that Φ is the Gaussian distribution function, the ex-Gaussian distribution function is 

defined as: 

 

  















 







 


2

22

2
exp

/
;











 ttt

tF  

 

Also, an important question is what causes the shape of a psychometric function? 

Clearly the shape must reflect the construct and limitations of the physical mechanism 

underlying perception, i.e. it must reflect the neural activity in the task relevant areas of 

the brain. It has previously been demonstrated that individual sensory neurons show 

response functions (firing rate vs. stimulus intensity) that closely resemble the 

psychometric function seen in detection tasks, such as the logistic distribution (P. 

Lansky, O. Pokora, & J. P. Rospars, 2007). In NTVA, which is a neural interpretation of 

TVA (Bundesen et al., 2005), it is assumed that the rate at which stimuli are 

perceptually processed is proportional to neural firing rates in the visual cortex. 

Mathematically, the processing rate is the hazard rate. Further descriptions of the 

concept of hazard rate can be found in (Luce, 1991; Van Zandt, 2002; Aalen & 

Gjessing, 2001). The processing rate is explicit in the exponential function where it 

equals the parameter, v. For other psychometric functions the hazard rate is generally 

not explicit but can easily be derived (see Appendix B).  

 

Exposing cats and monkeys to transient stationary gratings with a duration of 200 ms, 

(Albrecht, Geisler, Frazor, & Crane, 2002) mapped out the instantaneous firing rates of 

responsive neurons in the visual striate cortex. The typical temporal profile of the firing 

rates is similar to the profile that (Bundesen & Habekost, 2008, p. 116) expect follows 

the abrupt onset of a stimulus: ‘When a stimulus appears abruptly (a kind of successive 

contrast), firing rates of typical neurons responding to the stimulus first increase 

rapidly, then reach a maximum, and finally decline and approach a somewhat lower, 

steady state level’. Therefore, it is likely that the psychometric function for object 

identification as a function of exposure duration has a non-monotonic hazard rate. 

Accordingly, a preliminary report (Shibuya, 1994) described the hazard function in a 2-

AFC discrimination task, in which exposure duration was varied, as having a non-

monotonic hazard rate. However, all of the functions described above have monotonic 

hazard rates. Therefore, we find it worthwhile to consider also two psychometric 

functions that have similar temporal profiles, i.e. non-monotonic hazard functions. 
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The log-logistic is such a distribution, since with appropriately chosen parameters; it has 

a uni-modal, and hence non-monotonic hazard function. The Log-logistic (or Fisk) 

distribution is the probability distribution of a random variable whose logarithm has a 

logistic distribution. It has been used for modelling various kinds of diffusion processes 

(Brüederl & Diekmann, 1995; Diekmann, 1992). Also it has been used for modelling 

proportion correct in single-digit identification as a function of contrast (Strasburger, 

2001). The Log-logistic distribution has the parameter set θ={μ,σ}, where μ, σ >0. 

Noting that the parameter σ determines the steepness, and μ is the median survival time, 

the log-logistic distribution function is defined as: 

 

F t;  1

1
t











  

 

The squared-logistic distribution is another distribution with a non-monotonic hazard 

function. We describe the squared-logistic because we found it to be a simple function 

which has a hazard function that closely resembles the instantaneous firing rate of single 

neurons in the visual cortex like those depicted in (Albrecht et al., 2002). Compared to 

the hazard function of the log-logistic distribution the hazard function of the squared-

logistic distribution seems to drop off faster after the peak, and furthermore the hazard 

approaches the quasi-stationary level V rather than continuing to drop off as t→∞. The 

squared-logistic has the parameter set θ={V,μ,σ}, where V, μ, σ > 0. We define the 

squared-logistic distribution function as: 

 

F t; 1 e

V  t

1e


t





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
















2

 

 

We named the distribution the squared-logistic because, the shape of the mean 

cumulative hazard function in the interval between 0 and t as a function of time has the 

shape of a logistic distribution function squared. This can be seen by dividing the 

negative exponent (the cumulative hazard function) of the distribution by the size t of 

the temporal interval. Note that V scales the hazard rate and that it is straightforward to 

derive the probability density function if needed. 

 

 

 





 

4 The leaky competing accumulator 
model 

 

 

In this chapter we show how the leaky competing accumulator model can be developed 

from more basic type of diffusion processes. As we shall later see in Section 6.3 a leaky 

competing accumulator model can be used to model a limited visual short-term memory 

storage capacity. Thereby the leaky competing accumulator model represents an 

alternative approach to model the storage capacity limitation in connection with TVA. 

 

A diffusion process can be described as the solution of a stochastic differential equation 

(Karlin & Taylor, 1975). One of the simplest and most well-known diffusion processes 

is the Wiener process. (In physics the Wiener process is sometimes known as standard 

Brownian motion). 

 

dwdA    

 

For the Wiener process we note that the solution as a function of time, A(t)  results as 

the integration of independent white noise contributions dw with amplitude σ. If a drift 

term, μ is included we obtain a drift-diffusion process (also known as a Wiener process 

with drift, a Brownian motion with drift or simply a Brownian motion).  

 

dwdtdA    

 

The first-passage-time distribution for crossing a positive threshold assuming a 

Brownian motion is the inverse-Gaussian distribution (Singpurwalla, 1995; Lee & 

Whitmore, 2006). 

 

A generalization of the drift-diffusion process, and also an example of a diffusion 

process is the Ornstein-Uhlenbeck (OU) process (Ricciardi & Sacerdote, 1979). The 

OU-process has been widely used to model various biological processes such as 

neuronal responses.(Ditlevsen, 2007; Petr Lansky & Ditlevsen, 2008; Petr Lansky, 

Ondrej Pokora, & Jean-Pierre Rospars, 2008; Aalen & Gjessing, 2004). 

 

  dwdtAdA L    

 

The OU includes three parameters governing the mean reverting rate, λL, the long-term 

mean, μ and the volatility, σ of the process, respectively. When modelling neuronal 

responses the spike-to-spike interval is modelled as the first-passage-time distribution. 

Though the OU-process has been intensively investigated and an analytic solution to the 

first-passage-time distribution was given in (Ricciardi & Sato, 1988) still no closed-

form expression exists for the first-passage-time distribution (Nobile, Ricciardo & 

Sacerdote, 1985). Other models, such as the Feller process (Ditlevsen, 2007) can also be 

used for modelling neural firing rates, however as for the OU process few of these have 

a closed-form solution for the first-passage-time distribution, for an exception however 
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see (Crescenzo & Martinucci, 2007). It is well-known however that the shape of the 

first-passage-time distribution depends heavily on the parameters of the OU-process; 

see e.g. (Aalen & Gjessing, 2001); for instance a parameter region exists in which the 

first-passage-time distribution follows a non-monotonic behaviour. 

 
The leaky competing accumulator (LCA) model (Usher & Cohen, 1999; Usher & 

McClelland, 2001) can be described as a multi-dimensional generalization of the OU-

process. The LCA model was developed to model interactions between a number of 

alternative categories (or choices). Though the model was not directly targeted at 

modelling identification accuracy as a function of exposure duration we find no reason 

why this should not be attempted. On the other hand the LCA model has nevertheless 

been aimed at modelling a phenomenon such as reaction time, which besides time for 

perception also includes time for motor action (Usher & McClelland, 2001). The LCA 

model assumes an activation node Ax for each visual category, x. 

 

xx

xz

zxxLxx dwdtFFAdA 







 



  

 

The node Ax is activated by the external input, μx, when activated the node re-excites 

itself with α·Fx, where Fx is an activation function (e.g. a sigmoid function) that depends 

on Ai. Between nodes there is lateral inhibition, for instance the lateral inhibition from 

node Az to any other node is ·Fz. This means that when a node is activated it will 

inhibit all other nodes. Together with an exponential leakage term, λL the lateral 

inhibition helps balance the activation levels. We note that α,  and λL are all global 

parameters, meaning that in the model they do not depend on the specific node. An 

early version of the LCA type of model was provided in (Usher & Cohen, 1999). Later 

the model was slightly altered and substantiated in (Usher & McClelland, 2001, Bogacz 

et al., 2006) 

 

A linear version of LCA also exist; this version which is more tractable mathematically, 

appears when the activation function Fx equals the activation Ax for all categories, x. 

When only one category is considered this linear version of LCA reduces to the 

Ornstein-Uhlenbeck process, as α and λL are both linear in the activation Ax 

 

When considering identification in whole and partial report, then TVA actually 

describes the performance in these multi-element displays as a function of performance 

in single-element displays. A difference between single- and multi-element displays is 

that in the later case performance is also limited by VSTM storage capacity. Though the 

storage capacity is usually estimated to lie between 3 to 4 elements this ‘magical 

number’ has been vividly debated (Alvarez & Cavanagh, 2004; Cowan, 2000; Luck & 

Vogel, 1997; Miller, 1956). In TVA storage capacity is assumed to be limited, but 

nonetheless varying from trial to trial. As an example (Bundesen, 1990) assumed a 

mixture model for VSTM so that in some trials the capacity would be 4 and in the 

remaining trials the capacity would be only 3. Though this type of model fitted most of 

the data, it was unable to explain situations when 5 targets were reported, and so the 

model was not perfect. The mechanism that determines the storage capacity is not well 

understood, however a limited storage capacity does nevertheless seem as a sign of 

some inhibitory interaction between objects. In relation to the stochastic accumulator 
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models the concept of competition has been suggested (Deco & Rolls, 2004; Deco & 

Zihl, 2004; Usher & Cohen, 1999; Usher & McClelland, 2001) to account for such type 

of inhibitory mechanism. For this reason, we shall later study (in Section 6.3) whether a 

stochastic accumulator model such as the LCA model that we presented above might 

offer a possible explanation of the limited but varying storage capacity. 





 

 

 

 

 

 

 

 

 

PART II: 
 METHODS AND RESULTS





 

5 Research question 
 

 

 

Applying TVA to analyse accuracy in whole and partial report can be very informative 

for diagnostic purposes, for instance the procedure can be used to assess attentional 

deficits (such as visual neglect or simultanagnosia) following brain lesions (Duncan et 

al., 2003, 1999; Habekost & Bundesen, 2003). Further as we have already mentioned 

whole and partial report experiments can provide correlates of the patient state under a 

number of cognitive disorders (Habekost & Starrfelt, 2008) including Alzheimer’ 

disease and Huntington’s disease (Bublak et al., 2006; Bublak et al., 2009). 

 

From whole and partial report experiments it is possible to infer knowledge about 

subject specific parameters such as the minimum exposure duration (the offset), μ that 

can lead to identification, the processing speed, C and the storage capacity, K. These 

cognitive parameters are often affected if a disease or abnormal condition is affecting 

the visual system, and therefore for diagnostic purposes it is important that we are able 

to estimate them precisely. Clearly whole and partial report experiments themselves are 

not enough to allow us to estimate cognitive parameters; we also need a model such as 

the theory of visual attention. TVA describes accuracy in whole and partial report 

experiments as a function of accuracy in single-object report, however few studies exist 

that have actually investigated accuracy in single-object report; for an exception see 

(Bundesen & Harms, 1999).  Therefore the principal aim of our research is to provide a 

more detailed account of accuracy in single-object report. Single-object report is 

modelled by the so-called psychometric function, which relates accuracy to exposure 

duration. Traditionally TVA has assumed an exponential psychometric function; 

however we found no reason why other psychometric functions would be excluded as 

candidates. A more suited candidate for the psychometric function would improve 

model accuracy in single-object report. Further, as it is mathematically possible to 

integrate any psychometric function into the theory of visual attention (as we have 

already explained in Section 2.2), such psychometric function could potentially also 

improve the ability of TVA to account for accuracy in whole and partial report 

experiments. Also, providing a massive datasets with many trials our data might also 

allow us to analyse other aspects of data, such as how confusion develops as a function 

of exposure duration. 

 

The thesis treats seven related research themes (In Sections 6.1-6.7): 

 

1) Single-letter report: is it reasonable from a psychometric point of view to expect 

a minimum effective exposure duration (an offset), μ that is constant? Is it 

reasonable from a neural point of view to expect a processing capacity, C that is 

constant over time? In summary could a more optimal psychometric function 

than the exponential be identified? (In Section 6.1) 

2) Whole and partial report: is it possible to use assume other psychometric 

functions than the exponential, when modelling accuracy in whole and partial 

report experiments? (In Section 6.2) 

 



 

 

26 

3) Storage capacity: related to the fact that (Shibuya & Bundesen, 1988) 

implements a storage capacity, K that varies between trials (by using FIRM as a 

mixture model), how could a trial-based variation in storage capacity be neuro-

computationally plausible? (In Section 6.3) 

4) Stimulus contrast: related to the fact that TVA does not advice that a particular 

stimulus contrast level should be used with whole and partial report, what would 

happen if stimulus contrast is altered, does the form of the psychometric 

function then change? (In Section 6.4) 

5) Stimulus identity: should we expect that the form of the psychometric function is 

affected when performance is averaged across the individual stimulus identities? 

(In Section 6.5) 

6) Confusion: does the pattern of confusion between stimulus identities change 

systematically as a function of exposure duration? (In Section 6.6) 

7) Guessing rates: are guessing rates affected by previously reported or previously 

presented stimuli and do guessing rates vary over time? (In Section 6.7) 

 
 



 

6 The research themes 
 

 

In Sections 6.1-6.7 we treat each of the seven research themes presented in Chapter 5.  
Further Section 6.8 contains a summery of our results related to our principal research 

question namely whether it is possible to indicate a closer to optimal psychometric function 

(than the exponential) to use in connection with the modelling of identification accuracy in 

single-object report and possibly also in connection with modelling (using TVA) of 

identification accuracy in whole and partial report. 

 

6.1 Single-letter report: the psychometric function 

 

The exponential psychometric function used in TVA (Bundesen, 1990) assumed an 

offset, μ before visual identification could take place, and also the function assumed that 

processing capacity, C (which in single-object report equals the hazard of identifying 

the target) was constant over time. Other psychometric functions might not adhere to 

these rather strict assumptions, and so here we investigate if other psychometric 

functions are better suited for modelling data from single-letter report experiments. 

 

We conducted a psychophysical experiment in which we investigated visual letter 

identification as a function of exposure duration (A. Petersen & Andersen, 2009). In our 

experiment (Experiment 1) three subjects each completed 54,080 trials in a 26-

Alternative Forced Choice procedure. On each trial, a single randomly chosen letter (A-

Z) was presented at the centre of the screen. Exposure duration was varied from 5 to 

210 milliseconds.  

 

The letter presented was followed by a so-called pattern mask. These pattern masks 

were randomly generated from trial to trial. The idea behind the mask that we used was 

to obtain a mask that would ideally affect the 26 stimuli from A to Z with an equally 

strong masking effect. Masks were rectangular and had fixed dimensions so that they 

would just cover any of the stimuli images. It has been shown that character 

identification is dependent on frequency channels (Oruç, Landy, & Pelli, 2006), and so 

we aimed at having masks with a frequency spectrum that was close to the average 

frequency spectrum of the stimuli images. If the subject is able to learn the appearance 

of the mask, there is a potential risk that he might also learn how to ignore it, and 

thereby increase his identification accuracy on the long run (Wolford, Marchak, & 

Hughes, 1988; Beeck, Wagemans, & Vogels, 2007). In order to avoid this potential 

effect of learning the mask we decided to use masks that were phase randomized from 

trial to trial, so that the appearance of the mask was never the same from trial to trial. 

Further, the mask images were subjected to a threshold so that the mask images would 

contain just as many foreground pixels as the average of the stimuli images. Compared 

to any stimuli image, a random binary mask image covered approximately the same area 

of the screen, had approximately as many foreground pixels and had approximately the 

same frequency spectrum. The phase content of the mask images was however 
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randomized from trial to trial. A detailed description of the procedure used to generate 

the masks is available in Appendix A in (A. Petersen & Andersen, 2009). 

 

In (A. Petersen & Andersen, 2009) we describe six psychometric functions, which, for 

various reasons, are plausible candidates for describing letter identification as a function 

of exposure duration. In Bundesen’s original TVA he used the exponential distribution 

with an offset, μ as the psychometric function. We compared the exponential, the 

gamma and the Weibull psychometric functions, all of these having a temporal offset 

included, as well as the ex-Gaussian, the log-logistic and finally the squared-logistic, 

where the later is a psychometric function we believe have not been described before. 

The 3-parameter Weibull, gamma and ex-Gaussian distributions all contain the 2-

parameter exponential distribution as a special case, the 2-parameter log-logistic and the 

3-parameter squared-logistic distributions do not. 

 

All fits were conducted based on maximum-likelihood based procedures. The log-

logistic and the squared-logistic psychometric functions fit well to our experimental 

data, this can be seen in Figure 1, which shows residuals plotted as a function of 

exposure duration. 

 

 

Figure 1: Residuals plotted as a function of exposure duration from Experiment 1. Errorbars – too 

small to be distinguished clearly – show the standard error of the mean. There is one graph for 

each subject: a) AP, b) MH and c) MK. 
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For all three subjects the squared-logistic provided much better fits than the exponential. 

This is evident both in Figure 1 and in Figure 2, which shows proportion correct 

together with the fits of the exponential and the squared-logistic psychometric 

functions. 

 

 

Figure 2: Proportion correct averaged over letter identities. Error bars show the standard error of 

the mean. The fit of the exponential and the squared-logistic psychometric functions are shown as 

well. There is one graph for each subject: a) AP, b) MH and c) MK. 

 

Rather than plotting residuals such as in Figure 1, an alternative way to inspect the fits 

of the six psychometric functions is to plot their hazard functions (Figure 3). The hazard 

function characterizes the conditional probability density of encoding the object given 

that this has not previously happened. In Figure 3 we see the empirical hazard function, 

which we calculated from the data (Van Zandt, 2002), plotted along with the hazard 

function of the six psychometric functions, when these were fit to the empirical data. It 

is seen that the empirical hazard rate seems to evolve in a non-monotonic fashion as a 

function of time. The exponential distribution does not have a non-monotonic hazard 

function, and nor do the Weibull, the gamma or the ex-Gaussian distributions; the log-

logistic and the squared-logistic distributions, on the other hand, both show a hazard 

function that is non-monotonic.  
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Figure 3: The hazard function plotted against exposure duration. Grey squares represent the 

empirical hazard function, which was estimated directly from the data. Error bars indicate the 

standard deviation as estimated by a bootstrap procedure. The hazard functions of the various 

psychometric functions are displayed as coloured lines. There is one graph for each subject: a) AP, 

b) MH and c) MK. 

 

6.2 Whole and partial report: the generalized FIRM equations 

 

Originally TVA was formulated based on the assumption of an exponential 

psychometric function (Bundesen, 1990). To allow for other psychometric functions 

than this, the fixed-capacity independent race model (FIRM) equations that implement 

the storage capacity limit in TVA, have to be generalized. As we have already 

mentioned in Section 2.2 a contribution from our work is that we generalized the FIRM 

equations. The generalized FIRM equations which can be found in Appendix B in (A. 

Petersen & Andersen, 2009) allow the insertion of any desired psychometric function 

into TVA, and therefore TVA does no longer have to assume an exponential 

psychometric function. Therefore, with the generalized FIRM equations it has become 

possible to investigate if other psychometric functions generate better fits to data from 

whole and partial experiments than does the exponential psychometric function. 
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With the generalized FIRM equations, we inserted each of the six psychometric 

functions into TVA. The six models were fitted to the data for each of the two subjects 

in (Shibuya & Bundesen, 1988). Figure 4 shows the cumulative score distributions for 

these two subjects. The score is the number of correctly reported targets in a given trial. 

The score distribution is the distribution of correctly reported targets seen over trials 

having the same experimental conditions. The experimental conditions are defined by 

the number of targets, T and the number of distractors, D in the display as well as the 

exposure duration. The cumulative score distribution shows the probability of reporting 

at least j targets correctly. A careful visual inspection of Figure 4 reveals that the 

squared-logistic based model fits closer than the model based on the exponential 

psychometric function; this is true for both subject MP (Figure 4.a) and subject HV 

(Figure 4.b). 
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Figure 4: Cumulative score distributions from a whole and partial report experiment (Shibuya & 

Bundesen, 1988). Circular markers correspond to the proportion of scores of j or more (correctly 

reported targets) showed as a function of exposure duration. The legend for the scores is blue: j=1, 

green: j=2, red: j=3, turquoise: j=4 and violet j=5. Each graph shows data for a certain combination 

of the number of targets, T, and the number of distractors, D. The dotted lines represent the fit of 

the exponential psychometric function inserted into TVA. Solid lines represent the fit of the 

squared-logistic psychometric function inserted into TVA. There are two sub-figures, one for each 

subject: a) MP and b) HV. 
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6.3 The varying storage capacity of the visual short-term 
memory 

 

At a first glance it seems strange why VSTM storage capacity, K would vary from trial 

to trial as assumed in TVA. What neural mechanisms could cause such behaviour, and 

is it plausible that capacity is determined as a side product of some competitive 

interaction between the neural representations of the various objects in the visual field? 

A model for multi-object representation and interaction is the LCA model (Usher & 

Cohen, 1999; Usher & McClelland, 2001), which although it is still quite simple, was 

constructed to mimic interactions betweens ensembles of neurons. In a first attempt (A. 

Petersen et al., 2009) to integrate TVA (Bundesen, 1990) with the LCA model (Usher & 

Cohen, 1999) the model that we suggested was a slightly modified version of the LCA 

model. The model was defined as:  

 

     x

xz

zxx
x vGAFAFA

dt

dA
  



  

 

Modifications compared to the LCA model described in Chapter 4 were: 1) A unity 

leakage term was assumed 2) the Gaussian noise term was removed from the equation 

and 3) the input term was replaced with a Poisson spike train, G. The amplitude of the 

input is determined by the scaling factor, γ. The rate of arrival of the Poisson input 

spikes supporting the categorization of element x was defined as the hazard rate, vx of 

encoding element, x. Hazard rates (processing rates) were determined according to 

traditional TVA principles (see Section 2.1). More details can be found in (A. Petersen 

et al., 2009). 

 

In order to investigate if an LCA type of model can be used for determining the storage 

capacity limit in TVA, we evaluate the new model’s ability to fit experimental data 

from a classical whole and partial report study (Shibuya & Bundesen, 1988). The results 

from the fit can be seen in Figure 5 which shows again the cumulative score distribution 

for subject MP (same empirical data as shown in Figure 4.a above). As we mentioned 

previously the cumulative score distribution describes the probability of reporting at 

least j targets correctly. 
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Figure 5: Cumulative score distributions for subject MP in (Shibuya & Bundesen, 1988). 

Probability of correctly reporting at least j=1 target (blue, open circles), j=2 targets (green, open 

squares), j=3 targets (red, closed squares), j=4 targets (cyan, closed circles) and j=5 targets 

(magenta, open triangles). Empirically found values are plotted with symbols as markers. The 

dotted lines represent the fit by Shibuya & Bundesen (1988). Solid lines represent the performance 

of our neural network model. T and D denote the number of targets and distractors presented, 

respectively. 

 

Figure 5 gives a qualitative indication that using LCA to determine storage capacity 

yielded quite similar performance, as when one used the fixed-capacity race model, 

which has traditionally been a part of the TVA framework (Bundesen, 1990). A 

difference between Bundesen’s TVA and our new model was that the later was able to 

predict extreme scores of 5, indicating that storage capacity varies more broadly with 

the new model. 

 

6.4 Individual identities: is averaging okay? 

 

In the previous section we looked at performance when this was averaged across the 

different letter identities. Averaging was performed despite the fact that there is no 

obvious a priori reason to assume that the psychometric function preserves its shape 

when averaged across several stimuli in an identification task. In fact, the psychometric 

function for identification of individual letters as a function of contrast was investigated 

in (Alexander, Xie, & Derlacki, 1997). This study demonstrated a significant parametric 

dependency of the psychometric function on letter identity when investigating 

identification for 10 different Sloan letters. Though we vary exposure duration rather 

than contrast, we think it is reasonable to question whether averaging over letter 
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identities may affect the shape of the psychometric function. Therefore, we also fit the 6 

psychometric functions to the data without averaging across letter identity. 

 

In Figure 6 we illustrate the parameter differences between letters by showing parameter 

histograms as well as parameter scatter plots; data for all three subjects are shown. 

Under the assumption that the psychometric function obtained by averaging over letter 

identities is the true psychometric function we applied bootstrapping (Efron & 

Tibshirani, 1994) to check if the variance in the parameters of the psychometric 

functions for the individual letter identities can be ascribed entirely to an effect of 

random sampling or if it needs also to be ascribed to some systematic effect of letter 

identity. The bootstrapping consisted of fitting the psychometric function to 200 random 

re-samples of the data (averaged over letter identities) and then calculating the standard 

deviation for each of the model parameters based on the 200 model fits. The ovals in 

Figure 6 demark the bootstrap estimated confidence region to which we would expect 

95 % of the letters, placed according to their individual parameters, to be located. 

Clearly many letters are located outside the ovals. This shows that the model parameters 

vary significantly with letter identity. 
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Figure 6: Scatter plots and histograms for the parameters of the log-logistic model fitted to the data 

from Experiment 1. In the off-diagonal windows we see parameter pairs plotted against each other, 

while in the diagonal windows we see the parameter histograms. Each letter from A to Z was fitted 

individually giving each letter its own set of model parameters. There is a graph for each subject: a) 

AP, b) MH and c) MK. 
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6.5 Confusion: does it develop with exposure duration?   

 

Our dataset provides a unique opportunity to investigate confusion between letter 

identities. In Figure 7, we show the logarithm of the posterior mean for reporting the 

letter O for the different stimulus letters and the different exposure durations. This 

Bayesian approach (Ghosh, Delampady, & Samanta, 2006) is especially appropriate 

because for a large number of trials the posterior mean most often approach the 

maximum likelihood estimate; however the posterior mean has the advantage that it is 

always positive, this provides us with an opportunity to go into log-space. Seen across 

subjects, when the stimulus is actually an O the posterior mean increases with the 

stimulus exposure duration. For the stimulus letters C, G and Q the posterior mean first 

increases, then decreases as a function of exposure duration. This later pattern is 

especially evident for the letter Q. For subject MK it is particularly striking how all 

roundish letters: B, C, D, G, J, P, Q, R, S and U are the ones that most often are 

perceived to be an O. This shows that some letters are more confusable than others and 

that confusability is likely to be affected by the features shared between letter identities. 
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Figure 7: Log posterior mean of reporting an O shown as function of exposure duration and 

identity of the letter presented. The log-posterior mean was calculated assuming a uniform prior 

distribution. There is a graph for each subject: a) AP, b) MH and c) MK. 
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6.6 Contrast: does it affect the form of the psychometric 
function? 

 

In (A. Petersen & Andersen, 2009) we conducted a follow-up contrast experiment 

(Experiment 2) to test the ability of six psychometric functions (already mentioned in 

Section 6.1) to fit single-letter identification data at different stimulus contrast levels. 

Experiment 2 was quite similar to Experiment 1 (described in Section 6.1). In 

Experiment 2 one subject (AP) completed 36,400 trials in a 26-Alternative Forced 

Choice procedure that encompassed exposures at 11 different contrast levels. In Figure 

8 we see how exposure duration and contrast level influence the proportion correct 

observed in Experiment 2. It is also seen how the squared-logistic psychometric 

function (which was the psychometric function that best characterised the data in     

Experiment 1) fits quite well to the data regardless of the contrast level used. This 

implies that the form of psychometric function is not dependent on the contrast level. 

 

Figure 8: Proportion correct averaged over letter identities for subject AP in our contrast 

experiment. Error bars show standard deviation of the mean. Also shown (as lines) are the fits of 

the squared-logistic psychometric function. The legend shows the negative Weber contrast that was 

used. 

 

In our experiments we varied both exposure duration and contrast, however our 

psychometric function is only defined as a function of the earlier. It is however 

unquestionable that the parameters of our psychometric function varies also with 

contrast. In Figure 9 we show how the estimated model parameters vary as a function of 

contrast. There seems to be a monotonic mapping between the three parameters of the 

squared-logistic psychometric function when the contrast is varied. With respect to the 

points corresponding to the fit to the negative Weber level of 0.129 these points seem to 
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deviate a bit from the general tendencies seen in the rest of the data points. The reason 

for this is unknown. This could perhaps be caused by a possible trading in parameters, 

for instance μ appear somewhat high, but clearly also σ and V appear quite high.  

Generally we see that when contrast is increased μ and σ go down whereas V goes up. 

For negative Weber contrast levels between 1 and 0.028 the relationship between μ and 

σ appears somewhat linear. In summary, there seems to be a systematic development in 

the model parameters as a function of stimulus contrast, still we have not derived 

expressions that describe the dependency of the psychometric function upon the contrast 

level. 
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Figure 9: Development of parameters as a function of contrast for subject AP in the contrast 

experiment. The figure contains 9 windows. There are 11 point markers in each graph in the off-

diagonal windows, one for each stimulus contrast level in the experiment; the darker the point 

marker, the larger the negative Weber contrast used, this is indicated in the legend. The diagonal 

windows show parameter histograms for the various contrast levels. 

 

6.7 Guessing rates: what do they reveal? 

 

When stimuli are presented in a sequential manner one might speculate whether the 

response in a given trial is influenced by earlier responses as well as stimuli earlier 

presented (Maloney, Dal Martello, Sahm, & Spillmann, 2005; Mozer, Kinoshita, & 

Shettel, 2007). The lag is defined as the number of trials between two sequential trials, 

per definition the first of two such sequential stimuli is said to be presented at lag-0. Let 

us define that the prior probability of a certain letter is the probability of reporting that 

letter not knowing a priori what letter is actually shown, the prior probability can easily 

be calculated from the data as the proportion of trials a certain letter is reported, 

averaging over all presentation conditions. From our dataset it is possible to investigate 

 



 40 

how the prior probability of reporting a letter identity at a certain lag depends on the 

reported letter at 0-lag. Similarly we can investigate if the presented letter at 0-lag 

influences the reported letter at a later lag.  

 

For the dependency of the reported letter at lag n > 0 on the reported letter at lag-0 Let 

us define that the prior probability of reporting the letter x at a certain lag n is denoted 

as: P(X=x) and that the prior probability of reporting the letter y at lag-0 is denoted as: 

P(Y=y). 

 

Then the joint probability of reporting x at lag n and y at lag-0 is: P(X=x Y=y) 
If we assume independence we must expect that 

 

M(n)26x26 := P(X=x Y=y)26x26 / (P(X=x)26x1 * P(Y=y)1x26) = 126x26 
 

Therefore if the elements in M(n) are far away from 1 this would generally indicate that 

the letter reported at lag n is influenced by the letter reported at lag-0. The reason why 

elements would generally not be equal to 1 is because of variation due to random 

sampling. To test whether the outcome of Y influences the outcome of X we define a list 

of on-diagonal elements Lon(n) = diag(M(n)). The complementary list of off-diagonal 

elements we define as Loff(n). Our aim is to investigate whether the letter reported at lag 

n is significantly influenced by the letter reported at lag-0. The statistical test that we 

use is a two-sample t-test (at 5% significance level) where we test whether the elements 

in Lon(n) stem from a different distribution than the elements in Loff(n). 

 

Similarly, we also test for the dependency of the reported letter at lag n > 0 on the 

presented letter at lag-0. In this case we simply define P(Y=y) to be instead the 

probability of the letter y being presented (rather than reported) at lag-0.  

 

From Table 1 we can see that both the reported letter and the presented letter at lag-0 

influence significantly the eight following letters that are reported. 
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Subject AP MH MK AP MH MK 

Lag/Type Report Report Report Present Present Present 

1 S S S S S S 

2 S S S S S S 

3 S S S S S S 

4 S S S S S S 

5 S S S S S S 

6 S S S S S S 

7 S S S S S S 

8 S S S S S S 

9 S S S S I S 

10 S I S I I I 

11 S S S S I I 

12 S I S I I I 

13 S I I I I I 

14 S I I I I I 

15 I I S I I I 

16 S I I S I I 

17 I I I I I I 

18 I I I I I I 

19 I I S I I I 

20 I I I I I I 

21 I I I    

22 I I I    

23 I I I    

24 I I I    

25 I I I    

 

Table 1: For each lag it is indicated whether the reported letter depends significantly (S) or 

insignificantly (I) on the letter reported at lag-0. Similarly, for each lag it is indicated whether the 

reported letter depends significantly (S) or insignificantly (I) on the letter presented at lag-0. It is 

possible to compare between subjects: AP, MH and MK and between dependency type: report and 

present. 

 

We see that both reported and presented letter at lag-0 plays a significant role for all 

reported letters 8 lags ahead. The median time between presentations is guesstimated to 

be about 3 seconds. This means that a letter presented at lag 8 is presented 

approximately 24 seconds after the letter presented at lag 0. The sensory (iconic) 

memory is expected to fade away within a second (Sperling, 1960) whereas the VSTM 

memory trace is often assumed to last for around 30 seconds (Brown, 1958; L. R. 

Peterson & M. J. Peterson, 1959; A. D. Baddeley & Scott, 1971). For this reason we 

think our dataset offers evidence on how items, having been either partly or completely 

encoded into our short-term memory system, influence encoding of trailing items. 

Across subject it is seen that reporting a letter implies a longer-lasting influence on later 

reports than does simply being presented to a letter. 

 

When estimating the psychometric function it is customary to assume that guessing 

rates do not vary over sessions. However, it might be the case that guessing rates do 

actually vary over sessions. Our dataset offers a unique chance to investigate this type 

of variation. It would be natural to assume that guessing rates must be close to the prior 

probability of reporting certain letter identities regardless of the identity of the letter 

actually presented. A difference is that where the guessing rates depend slightly on the 
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model assumed, the prior probabilities of the various letter identities do not. The reason 

for this is that the guessing rates are estimated together with the model chosen while the 

prior probabilities are calculated directly from the data. Therefore in Figure 10 we show 

the prior probabilities, and we can see how these vary quite systematically over 

sessions. This is perhaps most clearly seen for subject MK who over sessions shifts 

from reporting A’s to reporting K’s and O’s. This shows that systematic variation in the 

prior probabilities (the guessing rates) over sessions can in some cases occur. 
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Figure 10: Prior probability for reporting each of 26 letter identities shown for each of the 65 

experimental sessions.  The prior probability is the probability of reporting a specific letter before 

it is decided what letter should be shown. There is a graph for each subject: a) AP, b) MH and c) 

MK. 

 

6.8 Summary on our principal research question - the 
psychometric function 

 

In the previous sections we explained how we used 6 different psychometric functions 

to fit data from original experiments as well as data from (Shibuya & Bundesen, 1988). 

We further fitted the same psychometric functions to data from a single-letter 
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experiment that included 3 subjects and involved 4000 trials per subject (Bundesen & 

Harms, 1999). In Figure 11 we show AIC (Akaike, 1974) and BIC values (Schwarz, 

1978) for the six models that we tested as well as for the saturated model which is 

shown for reference purposes. AIC and BIC values are shown for the various datasets 

that we fitted, and for all of these we can see that the log-logistic and the squared-

logistic psychometric functions are clearly better models than the exponential 

psychometric function. 

 

Figure 11: Model feasibility cumulated over all subjects. In the different graphs wee see how 

successful the different psychometric functions are at modelling various datasets. The measures 

shown are AIC values (Akaike, 1974) and BIC values (Schwarz, 1978). In a) we see the results from 

fitting the function to the data from Experiment 1 averaged over letter identity. In b) we see the 

results from fitting the function to the data from Experiment 1 without averaging over letter 

identity. In c) We see the result from fitting to the data from the whole and partial report 

experiment in (Shibuya & Bundesen, 1988). In d) we see the results from fitting to the single-letter 

identification data from (Bundesen & Harms, 1999). In e) we see the result from fitting the 

functions to the data from Experiment 2. Finally in f) we see AIC and BIC measures cumulated 

over all datasets from the various experiments, including only the fit to the average single-letter 

data (i.e. not the fit to the individual letters) for Experiment 1. 
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7 Conclusion 
 

 

A review of TVA led to a series of research questions closely related to the 

psychometric function in TVA. In order to answer these questions we conducted 

extensive original psychophysical experiments (single-letter report), developed a new 

psychometric function (the squared-logistic) as well as we generalized an existing 

model of short-term memory capacity (the FIRM model) allowing us to integrate our 

new psychometric function into this model. The generalized FIRM model thereby 

allows us to address not only identification accuracy in single object report, but also 

identification accuracy in whole and partial report experiments. 

 

Single-letter 

 

In (A. Petersen & Andersen, 2009) we investigated visual letter identification as a 

function of exposure duration in order to study the shape of the psychometric function.  

Our experimental design reflected the fact that we deliberately aimed at having many 

trials per subject. In this way we could avoid averaging over subjects, which would 

possibly have affected the shape of the psychometric function. For practical reasons this 

only allowed us to include three subjects in the experiments. Fitting to original data 

from our comprehensive single-letter identification experiment (Experiment 1), the 

squared-logistic and the well-known log-logistic were shown to be the most optimal 

psychometric functions that we tested. Worth noticing both of these can be 

parameterized so that they have a non-monotonic hazard function. The squared-logistic, 

a psychometric function we found no previous accounts for, was developed with neuro-

biological motivation from NTVA (Bundesen & Habekost, 2008; Bundesen et al., 2005) 

and single-neuron studies by (Albrecht et al., 2002).  

 

In a psychological experiment such as single-object report we can not directly observe 

how the stochastic accumulation of activation takes place in the respective areas of the 

brain, however as we have suggested in Section 3.1 the proportion correct could reveal 

information about the first-passage-time of the underlying stochastic process, and so 

from this perspective our single-letter identification experiment would allow us to 

narrow down the field of model candidates that might be considered. In this respect our 

investigation seems to suggest that the first-passage-time distribution of the underlying 

process for character identification as a function of exposure duration has a non-

monotonic hazard function.   

 

Whole and partial report 

 

In addition to the original squared-logistic psychometric function, model synthesis also 

comprised generalizing the FIRM equations of TVA, which allowed us to assume any 

desired psychometric function when applying TVA to fit data from whole and partial 

report experiments. Inserting each of the psychometric functions into the Theory of 

Visual Attention (Bundesen, 1990), we fitted each of these models to data from whole 

and partial report type of experiments. We found that the closest to optimal 
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psychometric functions, also for modelling whole and partial report, where the squared-

logistic and the log-logistic.   

 

Capacity 

 

We showed that a model mimicking interactions between neuron ensembles is capable 

of explaining the variation in the storage capacity limit of the visual short-term memory. 

This was demonstrated when we modelled a whole and partial report data set using 

TVA to provide the input to an LCA type of model (A. Petersen et al., 2009). 

 

Contrast 

 

A confound to the generality of our psychometric function would be if the type of 

psychometric function depended on stimulus contrast. Therefore, we investigated 

accuracy in single-letter identification as a function of exposure duration at 11 different 

contrast levels (Experiment 2). We then fitted each of the six psychometric functions to 

the dataset. Our results showed that even for this broad range of contrast levels the 

squared-logistic and the log-logistic where the most optimal and the exponential the 

least optimal of the six psychometric functions we tested. 

 

Letter identity 

 

Another confound that we wanted to investigate is one that might be relevant in many 

types of experimental studies where it has been practise to average performance over 

letter identities; in our study this could have caused the shape of the psychometric 

function to be corrupted. Therefore we produced enough data so that we could 

investigate if the form of psychometric function would depend on whether we averaged 

over the individual letter identities or not. Our results showed that there were significant 

differences between the parameters of the psychometric functions for the individual 

letter identities, however our results also showed that, averaging or not, the exponential 

remained the poorest psychometric function that we tested. Similarly, averaging or not, 

the squared-logistic and the log-logistic remained the best psychometric functions that 

we tested. 

 

Confusion matrices 

 

A popular approach to single-letter identification has been to study letter confusion 

matrices (Townsend, 1971; Gervais, Harvey, & Roberts, 1984; Liu, Klein, Xue, Zhang, 

& Yu, 2009). From these studies it is evident that each letter identity posses unique 

confusion characteristics. Similar letters are presumably more confusable, so the general 

aim in confusion studies is to extract the feature space of letter coding based on the 

letter’s confusability. A recent development is that it has been demonstrated that letter 

identification requires the processing of a set of features that all seem to be processed at 

different timescales (Fiset et al., 2008a; Fiset, Blais, Ethier-Majcher, et al., 2008a). 

Since each letter identity is composed of a unique feature set the later finding seems to 

suggest that information available for discriminating between letters evolves as a 

function of exposure duration. Analysing Figure 7 we found evidence that the pattern of 

confusion changes as a function of exposure duration. Also we saw that similar letters 
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were more often confused. This later pattern was especially evident for the letter Q. For 

subject MK it was striking how all roundish letters: B, C, D, G, J, P, Q, R, S and U were 

the ones that most often were perceived to be an O. Even though we did not attempt to 

clarify the constituent features of visual letter based on the confusion matrices, we still 

think that letter confusion matrices could potentially reveal interesting knowledge about 

the temporal order in which visual features are processed. 

 

Guessing rates 

 

We analysed guessing by calculating prior probabilities for reporting the individual 

letter identities. We investigated how the prior probabilities depended on both 

previously presented and previously reported letters. Our analysis showed that both 

presented and reported letters influence reports 8 letters ahead even though these are 

presented about 24 seconds later. Comparing across subjects we found that reporting a 

letter implies an even longer-lasting impact (35-50 seconds) on later reports than do 

letters presented. 

 

Also we investigated how the prior probabilities developed over experimental sessions. 

We found systematic variation in the prior probabilities over session, especially this was 

clear for subject MK who over sessions shifted from reporting A’s to reporting K’s and 

O’s. Further we suggest the reader to compare Figure 10 with Figure 6, where it is 

interesting to observe that exactly A, K an O appear as outliers for subject MK. We 

have no bulletproof explanation why this is, but a thought is that it might be related to 

some training effect combined with the observed change in prior probabilities over 

sessions. Comparing between subjects we see that the prior probabilities depend heavily 

on the individual subject. 

 

Summary 

 

Analysing our data we fitted six different psychometric functions to our own original 

data as well as original data from (Shibuya & Bundesen, 1988) and (Bundesen & 

Harms, 1999). As psychometric functions we used: the exponential, the gamma, the 

Weibull, the ex-Gaussian, the log-logistic and finally the squared-logistic distribution, 

which we developed ourselves. For our own original data as well as for the original data 

from (Shibuya & Bundesen, 1988) and (Bundesen & Harms, 1999) we calculated AIC 

and BIC for each of the six psychometric functions that we tested. Evaluating these 

measures we noted a unanimous result, namely that the log-logistic and the squared-

logistic were the most optimal and the exponential the least optimal of the psychometric 

functions we had tested. Our results strongly indicate that performance in single, whole 

and partial report can be modelled more optimally if one either uses the 2-parameter 

log-logistic or the 3-parameter squared-logistic psychometric function rather than the 2-

parameter exponential that has traditionally been assumed in TVA. Our results improve 

accuracy in TVA paradigms, which count numerous applications with respect to 

diagnostics of cognitive disorders and certain types of vision deficits. TVA has 

particularly been applied to the whole and partial report paradigm, but in addition to that 

our new psychometric function can also be used directly to address more accurately 

performance in single-object report, which has quite interestingly been shown to be a 

good indicator of Alzheimer’ disease. 
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7.1 Summary of contributions 

 

In this thesis we have provided a number of important contributions: 

 

 It was shown that the 2-parameter log-logistic and the original 3-parameter 

squared-logistic are better distributions than the exponential (AIC- and BIC-

wise) for modelling the psychometric function for single-letter identification as a 

function of exposure duration. Furthermore, as is also justified in NTVA, we 

showed that the appropriate distribution has a non-monotonic hazard rate.  

 

 We formulated the generalized FIRM equations which allow the insertion of any 

desired psychometric function (rather than only the exponential) into TVA. The 

generalized FIRM equations represent an example of how choosing the most 

plausible psychometric function does not in any way exclude the usage of TVA. 

In fact, insertion of an alternative psychometric function enabled TVA to 

provide an even better description of whole and partial report data. Inserted into 

the generalized FIRM equations, the log-logistic and the squared-logistic were 

the psychometric functions tested that enabled the best description of whole and 

partial report data. 

 

 We constructed a new type of pattern mask to prevent that the mask should bias 

the individual letters differently. To what extent this purpose was actually served 

by the mask, we do not know. Our mask algorithm generates masks that are 

constructed so that specified features of the masks depend on the features of the 

specific stimulus set used, and so it would seem that the algorithm can be re-

used to suit other sets of stimuli if needed. 

 

 We showed that there is a significant difference in the difficulty of reporting the 

26 different letter identities. However, averaging across letter identities did not 

alter the fact that the log-logistic and squared-logistic psychometric functions 

were the most appropriate ones that we tested. 

 

 We showed that the limited, but varying capacity of the visual short-term 

memory could be explained as the outcome of a neural mechanism. Such 

mechanism might be rooted in interactions between competing neuron 

ensembles, this can be modelled by the LCA model, and so this might give 

promise to this type of model. 

 

 Finally, as will be presented shortly in Section 7.2, the thesis also suggests five 

topics for future work. These topics cover diverse themes such as: 1) possible 

application areas in cognitive diagnostics, 2) neurodynamical modelling of 

perception, 3) extraction of the visual features representing objects in our brains, 

4) psychometric functions and assumptions as well as 5) duration of visual 

short-term memories. 
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7.2 Directions for future work 

 

Someone once said that doing research to answer scientific questions is like throwing 

logs on a fire in order to light up a dark night. In some way the more logs you throw, the 

more darkness seem to surround you. Our scientific work undoubtedly answered some 

of the questions we posed; however as seems generally true, our answers also raise an 

even larger set of new questions to be addressed in the future. Some of the more 

interesting of these questions are:  

 

1) Could the models that we developed improve diagnostics of Alzheimer’s 

patients, and what about other patient groups, people with word blindness, 

reading disabilities, people with HD, multiple sclerosis? 

 

Our work offers a psychometric function that can model accuracy in single-object 

identification with unprecedented accuracy. Inserting our new psychometric function 

into TVA we further provide a better means for modelling also whole and partial report. 

Single, whole as well as partial report has all shown to provide information on the state 

of Alzheimer’s disease (A. D. Baddeley et al., 2001; Bublak et al., 2006; Cronin-

Golomb et al., 1995; Mendola et al., 1995). Especially single-object report was shown 

to be perhaps the most promising cognitive task to indicate AD (Cronin-Golomb et al., 

1995; Mendola et al., 1995). We speculate that imposing either the log-logistic or the 

squared-logistic when fitting single-letter data, is likely to provide an even more 

efficient predictor of AD. Also if other parameters than the threshold (Mendola et al. 

used only the 50 % percent threshold) contains information on the deficit then 

combining the parameters from the psychometric function, for instance the threshold 

and the slope for the log-logistic, could be a feasible way to build a more accurate 

estimator of the cognitive deficit. Performance in other patient groups would of course 

also be interesting to investigate. 

 

2) What type of accumulator models would show a first-passage-time distribution 

that mimics the hazard function of distributions such as the log-logistic or the 

squared-logistic? To what extent would the Ornstein-Uhlenbeck show this 

behaviour?  

 

We showed that the log-logistic and the squared-logistic were well-suited distributions 

to use as the psychometric function for visual identification as a function of exposure 

duration. Further we noted that the psychometric function seems to show a non-

monotonic hazard function. If we relate this to the class of stochastic accumulator 

models that we introduced earlier, then this means that we need only to focus on the 

subset of these which possess such non-monotonic first-passage-time distribution. As 

the LCA model can be reduced to the OU model in the case of single elements being 

presented, we therefore speculate to what extent the OU or similar types of models 

would show this behaviour (Aalen et al., 2008; Aalen & Gjessing, 2001, 2004). This 

might be relevant to investigate in future studies.  
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3) What would be an optimal way to analyse the temporal development observed in 

the letter confusion matrices, and does confusability tell us something about 

letter features and the binding of these? 

 

 

We think that datasets such as ours might be used to tell us something about the order in 

which features are processed and combined in order to allow for identification. As an 

example we saw that our dataset could be used to track the temporal time-course of 

letter confusability. In Figure 7 we showed the log posterior mean of reporting an O as a 

function of exposure duration and identity of the letter presented. It was clear that for 

roundish letters (such as for Q) the log posterior mean of reporting an O seemed to first 

increase and then to decrease as a function of exposure duration. If the reported letter 

depends on the features processed then this might suggest that some features are 

processed earlier on than others (Fiset, Blais, Arguin, et al., 2008b; Fiset et al., 2008b). 

Assuming that different letter features are processed at different time-scales, then a 

possible way to go would be to construct a clever factor analysis type of algorithm 

capable of extracting estimates of the visual features used for human letter 

identification. These estimates might then be based on letter confusion matrices such as 

ours. 

 

4) Is it possible to device a unified psychometric function for visual identification 

that takes into account duration, contrast and size? Furthermore, would such a 

psychometric function satisfy the laws of Ricco and Bloch? 

 

For the detection task Bloch’s low predict how performance varies as a function of time 

and contrast. It is not clear however, whether this law also holds in the case of 

identification (Smith, 1998; Palmer, Huk, & Shadlen, 2005; Scharnowski, Hermens, & 

Herzog, 2007), for example in single-letter report. Therefore it would be relevant to 

investigate this. A law similar to Bloch’s law is Ricco’s law (Schwartz, 1998; 

Strasburger, 2005). Ricco’s law defines how performance in a detection task varies as a 

function of contrast and size; obviously one could also investigate how the 

psychometric function depends on the size of the stimulus, and whether this dependence 

is in accordance with Ricco’s law. 

 

5) Does guessing depend on previously reported - or previously presented letters 

and should we perhaps expect guessing rates to vary over sessions? 

 

Our work showed that guessing rates were significantly influenced by both previously 

reported and previously presented letters. The duration of the effect from presented 

letters seemed to be at least 24 seconds while the effect from reported letters was even 

longer (35-50 seconds). We should note that our investigation was not corrected for the 

cases in which a letter in a previous trial was both presented and reported, though it 

would seem that it would be more likely to report a letter if it was presented. Therefore 

a direction for future work could be to perform such kind of correction, so that the effect 

of presented and reported letters on later reports can be statistically separated. If the 

duration and strength of the effect of previous presented and reported letters on later 

reports can be described, then this information could be used to create a more precise 

model for deciding the probability of a correct report. Also, related to the observation 

that guessing rates seem to develop systematically over sessions, it might be interesting 
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to study why this is. Perhaps the subject shifts from attending an initial set of features to 

gradually attending a feature set that more effectively provides a means to discriminate 

between the various stimulus categories. 





 

Appendix A Paper for ICCM2009 
 

 

 



 

 

56 



Towards a neural network model of the visual short-term memory 
 

Anders Petersen
1
 (ap@imm.dtu.dk) 

Søren Kyllingsbæk
1,2

 (sk@imm.dtu.dk) 

Lars Kai Hansen
1
 (lkh@imm.dtu.dk) 
 

1
Department of Informatics, Technical University of Denmark,  

Richard Petersens Plads, B. 321,   

2800 Kgs. Lyngby, Denmark 

 
2
Department of Psychology, Copenhagen University 

Linnésgade 22,  

1361 Copenhagen, K, Denmark 

 

 

Abstract 

In this paper a neural network model of visual short-term 
memory (VSTM) is presented. The model aims at integrating 
a winners-take-all type of neural network (Usher & Cohen, 
1999) with Bundesen’s (1990) well-established mathematical 
theory of visual attention. We evaluate the model’s ability to 
fit experimental data from a classical whole and partial report 
study. Previous statistic models have successfully assessed 
the spatial distribution of visual attention; our neural network 
meets this standard and offers a neural interpretation of how 
objects are consolidated in VSTM at the same time. We hope 
that in the future, the model will be developed to fit 
temporally dependent phenomena like the attentional blink 
effect, lag-1 sparing, and attentional dwell-time. 
 

Keywords: visual attention, visual short-term memory, the 
magical number 4, winners-take-all network  

Introduction 

For everyday life, it is important for us to be able to 

perceive, comprehend, and react to events in our 

environment. Often, our rate of success is heavily dependent 

upon how efficient and how fast we can process, interpret 

and react to sensory stimuli, e.g. like when we are driving a 

car. 

In the following we shall refer to visual attention as the 

process that enables us to focus our processing resources to 

certain important objects in the visual scene. Following the 

theory of visual attention (TVA, Bundesen, 1990) we 

assume that features have already been extracted and objects 

successfully segregated on the basis of their individual 

feature spaces. Our model deals with the important question 

of how only a limited sub span of all objects are actually 

selected and further encoded into VSTM. 

Cattell already in the late 19
th

 century demonstrated a 

surprising limit in how many objects that can be perceived 

at the same time – a limit only about 4 objects which may 

be held in the VSTM at the same time (Cattell, 1886; 

Cowan, 2000). This finding is independent of the number of 

objects visually presented at the same time (Sperling, 1960). 

Evidence further exist that the “magical number” of 3-to-4 

objects is largely independent of how many features are 

encoded for each object, i.e. the complexity of the visual 

object, does not hold an influence on the memorial capacity 

of the VSTM; see (Luck & Vogel, 1997), but see also 

(Alvarez & Cavanagh, 2004).  

Modelling the function of the VSTM, it is essential that 

the inherent capacity limitation is properly mimicked, since 

it seems a fundamental limit of the system. Most likely the 

VSTM would be heavily overloaded, should the system lack 

the ability to represent only the most salient of the visually 

appearing objects 

The model 

The model that we are presenting in this paper can actually 

be understood as three consecutive processes (See Figure 1).  

The first process is simply extraction of visual features, 

we speak of this process as ‘object matching’, since we find 

it relevant to think that objects in the visual field are to some 

extent ‘matched’ against objects representations in Visual 

Long-Term Memory (VLTM). In this paper we do not 

consider the problem of which feature extraction techniques 

are biologically most plausible or perhaps technically most 

appropriate to use. 

The second process that we shall consider in more detail 

is ‘the attentional race’. According to Shibuya & Bundesen 

(1988), all objects in the visual scene take a place in what 

one could think of as a race to become encoded. In Shibuya 

& Bundesen’s race model, the ‘odds’ that a given object is 

selected as a winner in the race is directly related to the rate 

value with which the object participates. It is worth noting 

that the race is a stochastic, rather than a deterministic 

process, meaning that no one can beforehand predict readily 

which objects will win the race. 

The third and last process that we shall consider is that of 

‘storage’ of object representation in VSTM. Inspired by 

(Usher & Cohen, 1999) we propose a competitive neural 

network model of VSTM, directly linking with several 

important assumptions expressed in Bundesen’s Theory of 

Visual Attention (Bundesen, 1990). 

 



 
 

Figure 1: The Model Scheme – a partial report example. The task is to report the targets, i.e. digits and ignore the 

distractors, i.e. letters. The model predicts how visual elements participate in a race, where the winners become selected to be 

encoded in visual-short-term memory. Generally targets are processed faster than distractors, however we also see that in the 

example homogeneity is not assured, i.e. the targets (and distractors) are not of equal size (could also be contrast, letter type 

etc.) and therefore in the example they are illustrated as being processed with slightly different rates.  

 

The neural theory of visual attention 

The theory of visual attention (TVA) proposed by Bundesen 

(1990) is a unified theory of visual recognition and 

attentional selection. TVA provides a mathematical 

framework describing how the visual system is able to 

select individual objects in the visual field S, based on the 

visual evidence, η and the setting of two different types of 

visual preference parameters (pertinence, π  and bias, β), 

representing the influence from higher cortical areas, 

including VLTM. 

The output of the TVA-model is a set of rate parameters v 

that are directly related to the probability that a given 

characterization, object x belongs to category i, is encoded 

into the VSTM. The rate parameters are given by: 
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Where the attentional wx weight of object x is:  
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Here η(x,i) is defined as the strength of the sensory evidence 

that object x belongs to the visual category i. The pertinence 

of the visual category j is denoted by πj and setting of these 

values effectively implements the so-called filtering 

mechanism. The perceptual decision bias of a visual 

category i is denoted by βi and setting of these values 

conversely implements a complementary mechanism called 

pigeonholing.  

The filtering mechanism increases the likelihood that 

elements belonging to a target category are perceived, 

without biasing perception in favor of perceiving the 

elements as belonging to any particular category.  

Pigeonholing, conversely changes the probability that a 

particular category i is selected without affecting the 

conditional probability that element x is selected given that 

category i is selected. 

A neural interpretation of TVA is given in (NTVA, 

Bundesen, Habekost, & Kyllingsbæk, 2005). Basically here 

pigeonholing (selection of features) is considered an 

increase in the rate of firing of neurons while filtering 

(selection of objects) is considered an increased 

mobilization of neurons. 

Corresponding to the interpretation in NTVA the fraction 

wx/�wz in equation (1), which is the relative attentional 

weight of object x compared to the weight of all objects z in 

the visual field S, can be directly interpreted as the relative 

fraction of neurons allocated to process a given object x, 



compared to the total number of neurons processing just any   

object z belonging to the visual field S. 

Each and every encoding generally takes the form object 

x belongs to category i.  

Denoting the set of all features as R the total processing 

capacity, can be considered a constant C, which equals the 

sum of all encoding rates v; see (Bundesen, 1990). 

 

 ( )��
∈∈

=
RiSx

ixvC ,  (3) 

 

Shibuya and Bundesen (1988) assume target as well as 

distractor homogeneity in their whole and partial report 

paradigm. This means that processing capacity is distributed 

equally among targets as well as among distracotors. When 

this is the case the rates of encoding for targets, vT and for 

distractors, vD can be calculated according to the formulas: 
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Where T and D denote the number of targets and 

distractors presented, respectively. The ratio of 

discrimination between distractors and targets is denoted α. 

The effective exposure duration τ is smaller than the 

actual exposure duration t by an amount t0 corresponding to 

the temporal threshold before conscious processing begins. 

However the effective exposure duration can not be 

negative so computationally it is set to: 
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In the neural network model that we shall now describe 

we adopt the parameters C, α and t0 and further, following 

Bundesen, we make use of equation (4) and equation (5).  

 

The neural network model of VSTM 

In TVA object features are encoded independently, and 

further there is the assumption that only one feature needs to 

be encoded for the object to be stored in VSTM. On the 

other hand; and in agreement with (Luck & Vogel, 1997), 

several features of the same object can be in the encoded 

state, and still it will only count as if one object is stored in 

VSTM. For this reason, and because here we are concerned 

about objects rather than features encoded, we simply sum 

over the entire number of object features, and in this way we 

obtain the total encoding rate vx for object x: 
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An object x can enter VSTM once it receives external 

excitation, G taking the shape of Poisson distributed spike 

trains, arriving with the rate parameter vx. (See Figure 2).  

A neural assembly that has obtained a positive level of 

activation will automatically seek to re-excite itself, so that 

it can stay in VSTM, at the same time trying to inhibit 

activation in other neuron assemblies representing other 

objects, i.e. working to suppress other object from co-

temporally being stored in VSTM. 

The initial condition for the simulations is that all neuron 

assemblies start with an activation of zero, i.e. no objects 

are initially stored in VSTM. As a consequence neither re-

excitation nor lateral inhibition exists, before the assemblies 

are externally activated. 

 

 
 

Figure 2: The neural network model of VSTM. The total 

number of neuron assemblies is N and each assembly is 

represented by a level of activation A 

  

Implementation 

The activation Ax of neuron assembly x (representing object 

x) is given by the first order differential equation: 
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The above equation characterizes a leaky accumulator 

model. There is passive decay of the activation towards the 

rest level, with a time constant chosen as 1, reflecting the 

time scale that physiologically is observed with synaptic 

currents (Usher & Cohen, 1999). 

F is a squashing function that keeps the activation within 

bounds:  
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As a consequence of the squashing function F, the 

parameter α*
 is the limiting value of maximal self-excitation 

that assemblies can up-hold and the parameter �
*
 is the 

limiting maximal value of inhibition that can be sent from 

one assembly to another. 

Also the model assumes we can not have negative self-

excitation, i.e. self-inhibition and further the model does not 

implement any terms that could account for excitation 

laterally between the assemblies. The latter effect could for 

instance be included if one wanted to account for 

semantically related objects and their effect on the number 

of reported objects. 

The attentional significance that object i is present in the 

visual field R is represented by the encoding rate vi. In our 

model we follow the approach from (Bundesen, 1990) and 

interpret this rate as the firing rate of a Poisson spike 

generator G. Hence �
*
 characterizes the amplitude of the 

Poisson distributed input spikes arriving to the neuron 

assembly x. 

The model was implemented in Matlab’s Simulink 

toolbox. At least in the operated parameter domain we judge 

the stiffness of the system to be negligible so for simplicity 

we numerically apply Euler integration
1
. 

 

Model performance 

The dataset 

The data covers the performance of a single subject, 

participating in an extensive series of whole and partial 

report experiments. The subject was instructed to report 

targets, i.e. digits while ignoring distractors, i.e. letters 

displayed on an imaginary circle around a small fixation 

cross at the center of the screen. In practice experimental 

trials covered twelve whole and partial report conditions. In 

these the number of targets, T was between 2 and 6 and the 

number of distractors, D was between 0 and 6. Further, 

exposure durations t were varied systematically at 10, 20, 

30, 40, 50, 70, 100, 150 and 200 ms. Each experimental 

condition was repeated 60 times but trials were mixed so 

that the subject had no a-priori knowledge of the 

experimental condition. Moreover trials were grouped into 

blocks to minimize the element of fatigue. Each presented 

character was immediately followed by a mask lasting for 

500 ms. Further information can be found in (Shibuya & 

Bundesen, 1988).  

                                                           
1 Assuming that only one spike should be allowed in each time 

step we must keep the integration step size sufficiently small. If the 

processing capacity C is 60 Hz, and the integration step size is kept 

at dt = 0.001, then the risk that two or more spikes will be present 

in a given time step is as low as 0.36 %. 

Performance of the neural network model 

Figure 3 shows accumulated score distributions. The score 

is defined as the number of targets reported correctly. The 

upper most curve represents the accumulated score of j = 1, 

i.e. the probability of reporting 1 or more targets correctly. 

Other curves represent accumulated probabilities for 

reporting at least 2, 3, 4 or even 5 targets.  

Shibuya and Bundesen (1988) proposed a mixture model, 

mixing probabilities obtained with using a statistical model 

that assumed memorial capacities of either K = 3 or K = 4 

respectively. 

There is a relatively close fit between the proposed 

mixture model and the empirical data. We see however that 

data points obtained with exposure duration around 50 ms 

are generally under-fitted and more noticeably the model 

does not account for cases where more than 4 targets are 

reported, as is actually the case in two out of three of the 

lower most plots. 

What we observe with the previous model can be 

considered a trade-off between two conflicting demands. 

The first demand is to fit the initial part of the curves, i.e. 

the larger the processing capacity C the steeper the curves 

will rise, on the other hand the second demand, which is to 

keep the score distribution reasonably low for long exposure 

durations, require that the processing capacity C is not set 

too high. Hence the setting of C is set subject to a 

compromise. 

Addressing the performance of our neural network model 

we think it clearly meets the standard of Shibuya and 

Bundesen’s model. The neural model does however seem to 

have some trouble predicting 4 recognized items in the 

situations where no distractors were presented. Possibly this 

misfit can be diminished by running a more exhaustive 

optimization of model parameters. The parameters used for 

producing the figure were: α*
 = 5, β* 

= 0.1, �
*
 = 2, C = 61.5 

Hz, t0 = 23 ms and α = 0.367. Moreover, and in contrast to 

Shibuya and Bundesen’s model, our new model readily 

demonstrates its capability of predicting extreme cases, 

where more than 4 objects are reported. 



 
Figure 3: Accumulated score distribution for subject MP in (Shibuya & Bundesen, 1988). Probability of correctly reporting 

at least 1 target (blue, open circles), 2 targets (green, open squares), 3 targets (red, closed squares), 4 targets (cyan, closed 

circles) and 5 targets (magenta, open triangles). Empirically found values are plotted with symbols as markers. The dotted 

lines represent the fit by Shibuya & Bundesen (1988). Solid lines represent the performance of our neural network model. T 

and D denote the number of targets and distractors presented, respectively. 

 

 

Discussion 

 

This work represents an attempt to integrate the Theory of 

Visual Attention (Bundesen, 1990) with a simple type of 

winners-take-all type of network (Usher & Cohen, 1999), in 

the sense that the later implements a limited storage 

capacity of VSTM. Our new dynamic model of visual 

attention and VSTM is able to account for the complete set 

of data from whole and partial report experiments. Where 

the previous account by Shibuya and Bundesen (1988) 

treated extreme scores as outliers, the new model 

encompasses these as natural consequences of the internal 

dynamics. Further, the model explains VSTM capacity and 

consolidation as the result of a dynamic process rather than  

as a static store, which capacity is independent of processing 

capacity and the attentional set of the subject.  

From daily life we know that humans are able to identify 

a very larger number of different objects. Therefore, we 

might think that we would have to include a neural 

assembly for each of these many objects candidates in our 

model of identification. However, what we shall argue is 

that our model’s predictions are not affected if irrelevant 

neural assemblies (representing non-stimuli type of objects) 

are not included in the model, a useful feature which we of 

course make use of when we simulate with the model. The 

reason for this is that in the model only activated neural 



assemblies affect other assemblies, and so there is no lateral 

inhibition from inactive neural assemblies (which irrelevant 

assemblies tend to be) upon any other assembly. This means 

that adding more irrelevant assemblies generally does not 

affect our conclusions, except that computationally 

simulations become slower. 

The model described gives no account of identification of 

individual features of an object; however it would be 

possible to approach this situation by having one neural 

assembly in the network per object feature, rather than just 

one neural assembly per object. In this case assemblies 

representing features that belonged to the same object might 

be modeled as having little or no lateral inhibition, ensuring 

that several features of the same object can be encoded 

without taking up additional VSTM storage space (Luck & 

Vogel, 1997). 

Speaking of adding more neural assemblies, we ought to 

touch upon what it is that we think an assembly represents. 

Does the assembly manifest itself in one or more neurons, 

and how would this relate to efficient or distributed 

processing? The way we think about the model is that the 

assemblies conceptually represent different states of neural 

activation. As assumed, these states interact and as we have 

described we suppose that feedback mechanisms play an 

important role in keeping the activation of the assembly 

sustained, allowing for visual short-term memories. 

A possible confound of the model is that it does not 

consider internal noise, which is likely to play a key role in 

many neural systems. A way to deal with this would be to 

transform the input stage (the Poisson distributed spike 

trains, arriving with the rate parameter v) to a stochastic 

diffusion process with wiener noise process included. For 

this to make sense the activation threshold for consciousness 

would have to take a higher value than the level of initial 

activation. 

In future studies, we think it would be relevant to explore 

the implication of transforming the model into a stochastic 

differential equation as mentioned above. Because the 

model is temporally dependent it would also be interesting 

to know if it would be able to address the dynamic 

consolidation in VSTM found in temporally extended 

paradigms such as the attentional blink paradigm and 

studies of attentional dwell time; e.g. (Ward, Duncan, & 

Shapiro, 1996). Here, consolidation in VSTM is strongly 

dependent on competition between items already encoded 

into VSTM and visual items presented at a later point in 

time. Incorporation of such a competitive process follows 

naturally from the dynamic architecture of the present 

model.  
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Abstract 

The psychometric function of single letter identification is typically described as a function of 

stimulus intensity. However, the effect of stimulus exposure duration on letter identification 

remains poorly described. This is surprising because the effect of exposure duration has played a 

central role in modelling performance in whole and partial report tasks in which multiple 

simultaneously presented letters are to be reported (Shibuya & Bundesen, 1988). Therefore, we 

investigated visual letter identification as a function of exposure duration. On each trial, a single 

randomly chosen letter (A-Z) was presented at the centre of the screen. Exposure duration was 

varied from 5 to 210 milliseconds. The letter was followed by a pattern mask. Three subjects each 

completed 54,080 trials in a 26-Alternative Forced Choice procedure. We compared the 

exponential, the gamma and the Weibull psychometric functions, all of these having a temporal 

offset included, as well as the ex-Gaussian, the log-logistic and finally the squared-logistic, which is 

a psychometric function which we believe, has not been described before. The log-logistic and the 

squared-logistic psychometric function fit well to experimental data in both the present study and in 

a previous study of single-letter identification accuracy. Also, we conducted an experiment to test 

the ability of the psychometric functions to fit single-letter identification data, at different stimulus 

contrast levels; also here the same psychometric function prevailed. Finally, after insertion into 

Bundesen’s Theory of Visual Attention (Bundesen, 1990), the same psychometric functions enable 

closer fits to data from a previous whole and partial report experiment. 

 



Introduction 

A visual scene typically contains several objects, one or more which are of special importance for 

us to identify and some that are not. Being able to quantify and model the accuracy of visual object 

identification in multi-object displays is important for such diverse areas such as reading speed and 

learning (Pelli & Tillman, 2007; Rasinski, 2000), traffic safety (Baldock, Mathias, McLean, & 

Berndt, 2007; Richardson & Marottoli, 2003), human-computer interaction (Chen & Chien, 2005; 

Chien, Chen, & Wei, 2008) and diagnostics of perceptive and cognitive disorders (Behrmann, 

Nelson, & Sekuler, 1998; Cheong, Legge, Lawrence, Cheung, & Ruff, 2007; Habekost & Starrfelt, 

2008).   

 

Whole and partial report experiments concern visual identification in multi-element displays which 

can be thought of as simplified visual scenes compared to the more complex ones that we typically 

encounter in real life. In whole report a number of simultaneously presented target elements are to 

be reported by the subject. Partial report is similar to whole report, except that distractor elements 

(elements that are not be reported) are concurrently included in the display.  

 

Bundesen’s Theory of Visual Attention (TVA, Bundesen, 1990) offers a quantitative model linking 

perception of single isolated objects to perception of multiple objects in whole and partial report 

experiments. The theory assumes that the total amount of perceptual processing resources, which 

determine the rate of perceptual processing, is limited. The processing resources are distributed 

evenly among target objects. Through attentional filtering a proportionally smaller amount of 

processing resources is allocated to distractor objects. After processing resources are allocated, all 

objects participate in a race for being encoded into the visual short term memory (VSTM), which 



has a limited storage capacity. Since the time course of encoding is so central to TVA, the theory 

has mainly been applied to experiments in which stimulus exposure duration has been the 

independent variable. In Appendix B we present relevant formulas from TVA. When applied to 

single objects TVA is reduced to the psychometric function for object identification as a function of 

stimulus exposure duration but, surprisingly, few studies (for an exception see Bundesen & Harms, 

1999) have studied this topic. This is our motivation for studying the psychometric function for 

letter identification as a function of stimulus exposure duration in more detail.  

 

A psychometric function ψ(t; θ, γ, λ) quantifies the probability of a correct report as a function of 

some stimulus attribute t, which is our case is exposure duration. It is characterized by a number of 

parameters that include the parameter set θ of the function F as well as two additional parameters, γ 

and λ, that denote the guessing and lapsing probabilities, respectively. We define the guessing 

probabilities as the fraction of times an un-informed observer presses (intentionally or accidently) 

each of the keys included in the response set. The lapsing probability we define as the relative 

fraction of accidental key presses, averaged over all keys in the response set. The psychometric 

function ψ, which includes correction for guessing and lapsing, can be written as  
 t;,,  F t;  1   1F t;       1     F t;  

 

What we shall generally speak of as the psychometric function is the function F, i.e. the 

psychometric function after correction for guessing and lapsing (Treutwein & Strasburger, 1999; 

Wichmann & Hill, 2001). In the following we will describe six psychometric functions, which, for 

various reasons, are plausible candidates for describing letter identification as a function of 

exposure duration.   



 

The exponential distribution with a temporal offset included was used as the psychometric function 

in TVA (Bundesen, 1990). Ignoring the temporal offset, this psychometric function assumes that 

encoding into VSTM can be considered events from a homogenous Poisson process, for which the 

waiting time is well known to be exponentially distributed. The exponential distribution has the 

parameter set θ={v,μ}, where v > 0  is the rate and μ > 0 is the temporal offset of the Poisson 

process, and the distribution is defined by: 

 

          tfortFandtforetF tv 0;1;  

 

From a psychophysical perspective, it is strange that there should be a fixed temporal offset before 

encoding can take place, and that after this point the encoding rate is constant; instead, we find it 

more plausible that the encoding rate rises as a smooth function of exposure duration. The gamma, 

the Weibull and the ex-Gaussian distributions all represent generalisations of the exponential 

distribution, and all of these are smooth functions.  

 

The Weibull distribution has the parameter set θ={μ,σ,k}, where μ, σ, k > 0 It reduces to the 

exponential distribution when the shape parameter k = 1. The Weibull distribution has previously 

been used for modelling the psychometric function of visual contrast detection, visual 

discrimination as well as visual identification when these were investigated as a function of 

stimulus contrast (Pelli, 1985, 1987; Pelli, Burns, Farell, & Moore-Page, 2006). When the Weibull 

distribution has μ > 0 it includes an offset. The three-parameter Weibull distribution function is 

defined as: 
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The gamma distribution has the parameter set θ={μ,σ,k}, where μ, σ, k > 0. The gamma distribution 

corresponds to the waiting-time distribution, when waiting for k independent, and identically 

distributed events, that each has an exponentially distributed waiting time-distribution and it thus 

reduces to the exponential distribution when k = 1. If correct identification depends on the firing of 

several independent neural units firing as Poisson processes, then the gamma distribution could 

describe the psychometric function of identification as a function of stimulus duration. Based on a 

similar argument the gamma distribution has been fitted to response time distributions (Van 

Breukelen, 1995; Luce, 1991). Noting that  is the complete gamma function, and γ is the lower 

incomplete gamma function, the three-parameter gamma distribution function is defined as: 
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The Ex-Gaussian distribution has the parameter set θ={μ,σ,τ}, where μ, σ, τ > 0. The ex-Gaussian 

approaches the exponential distribution in the limit, to be exact when μ=0 and σ→0. The Ex-

Gaussian distribution characterises the sum of an exponential distributed variable and a Gaussian 

distributed variable. Thus, if Gaussian noise is added to the temporal offset, , in the exponential 

distribution the waiting times for perceptual processing would be distributed according to the ex-

Gaussian distribution. The ex-Gaussian has been used for modelling reaction-time data (Luce, 

1991). Noting that Φ is the Gaussian distribution function, the ex-Gaussian distribution function is 

defined as: 
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An important question is what causes the shape of a psychometric function? Clearly the shape must 

reflect the construct and limitations of the physical mechanism underlying perception, i.e. it must 

reflect the neural activity in the task relevant areas of the brain. It has previously been demonstrated 

that individual sensory neurons show response functions (firing rate vs. stimulus intensity) that 

closely resemble the psychometric function seen in detection tasks, such as the logistic distribution 

(Lansky, Pokora, & Rospars, 2007). In NTVA, which is a neural interpretation of TVA (Bundesen, 

Habekost, & Kyllingsbæk, 2005), it is assumed that the rate at which stimuli are perceptually 

processed is proportional to neural firing rates in the visual cortex. Mathematically, the processing 

rate is the hazard rate. Further descriptions of the concept of hazard rate can be found in (Luce, 

1991; Van Zandt, 2002; Aalen & Gjessing, 2001). The processing rate is explicit in the exponential 

function where it equals the parameter, v. For other psychometric functions the hazard rate is 

generally not explicit but can easily be derived (see Appendix B).  

 

Exposing cats and monkeys to transient stationary gratings with a duration of 200 ms, (Albrecht, 

Geisler, Frazor, & Crane, 2002) mapped out the instantaneous firing rates of responsive neurons in 

the visual striate cortex. The typical temporal profile of the firing rates is similar to the profile that 

(Bundesen & Habekost, 2008, p. 116) expect follows the abrupt onset of a stimulus: ‘When a 

stimulus appears abruptly (a kind of successive contrast), firing rates of typical neurons responding 

to the stimulus first increase rapidly, then reach a maximum, and finally decline and approach a 

somewhat lower, steady state level’. Therefore, it is likely that the psychometric function for object 



identification as a function of exposure duration has a non-monotonic hazard rate. Accordingly, a 

preliminary report (Shibuya, 1994) described the hazard function in a 2-AFC discrimination task, in 

which exposure duration was varied, as having a non-monotonic hazard rate. However, all of the 

functions described above have monotonic hazard rates. Therefore, we find it worthwhile to 

consider also two psychometric functions that have similar temporal profiles, i.e. non-monotonic 

hazard functions. 

 

The log-logistic is such a distribution, since with appropriately chosen parameters; it has a uni-

modal, and hence non-monotonic hazard function. The Log-logistic (or Fisk) distribution is the 

probability distribution of a random variable whose logarithm has a logistic distribution. It has been 

used for modelling various kinds of diffusion processes (Brüederl & Diekmann, 1995; Diekmann, 

1992). Also it has been used for modelling proportion correct in single-digit identification as a 

function of contrast (Strasburger, 2001). The Log-logistic distribution has the parameter set 

θ={μ,σ}, where μ, σ >0. Noting that the parameter σ determines the steepness, and μ is the median 

survival time, the log-logistic distribution function is defined as: 
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The squared-logistic distribution is another distribution with a non-monotonic hazard function. We 

describe the squared-logistic because we found it to be a simple function which has a hazard 

function that closely resembles the instantaneous firing rate of single neurons in the visual cortex 

like those depicted in (Albrecht et al., 2002). Compared to the hazard function of the log-logistic 

distribution the hazard function of the squared-logistic distribution seems to drop off faster after the 



peak, and furthermore the hazard approaches the quasi-stationary level V rather than continuing to 

drop off as t→∞. The squared-logistic has the parameter set θ={V,μ,σ}, where V, μ, σ > 0. We 

define the squared-logistic distribution function as: 
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We named the distribution the squared-logistic because, the shape of the mean cumulative hazard 

function in the interval between 0 and t as a function of time has the shape of a logistic distribution 

function squared. This can be seen by dividing the negative exponent (the cumulative hazard 

function) of the distribution by the size t of the temporal interval. Note that V scales the hazard rate 

and that it is straightforward to derive the probability density function if needed. 

 

To find the most appropriate psychometric function we evaluate each of the six functions described 

above on four data sets, two of which are from original experiments and two of which stem from 

previous experiments. 

 

In Experiment 1 we investigate the psychometric function of single-letter identification as a 

function of exposure duration. As an initial approach we average performance across the different 

letter identities although there is no a priori reason to assume that the psychometric function 

preserves its shape when averaged across several stimuli in an identification task. In fact, the 

psychometric function for identification of individual letters as a function of contrast was 

investigated in (Alexander, Xie, & Derlacki, 1997). This study demonstrated that the psychometric 

function for identification of 10 Sloan letters depended significantly on letter identity. Though we 



vary exposure duration rather than contrast, we think it is reasonable to assume that averaging over 

letter identities may affect the shape of the psychometric function. Therefore, we also fit the 6 

psychometric functions to the data without averaging across letter identity. 

 

Experiment 2 is similar to Experiment 1 but the contrast is varied between 11 different levels; the 

number of repetitions is lowered and shorter exposure durations are used for higher stimulus 

contrast levels. Bundesen and Harms (1999) showed
 
that the psychometric function for letter 

identification as a function of exposure duration is very fast for high contrast stimuli. This is 

problematic because it is difficult to present letter stimuli with such high temporal resolution. 

Therefore, in Experiment 1 we decided to use a lower contrast level than that used by Bundesen and 

Harms (1999).
 
The effect of changing the stimulus contrast level was demonstrated by Di Lollo and 

co-workers (Di Lollo, von Mühlenen, Enns, & Bridgeman, 2004, fig. 4) when they investigated 

visual single-object identification, also as a function of exposure duration. In their study, proportion 

correct as a function of exposure duration was plotted for four different contrast levels, and from 

visual inspection, it is evident that identification accuracy drops as stimulus contrast is decreased; 

however they did not fit psychometric functions to their data.  A reasonable question to ask is, if 

different stimulus contrast levels might also favour different types of psychometric functions for 

single-letter identification as a function of exposure duration, or alternatively that the same 

psychometric function can be used, only with different parameter values. The question is 

particularly relevant here because the psychometric function determined in Experiment 1 accounts 

for identification of stimuli that are displayed at a relatively lower contrast than has traditionally 

been the case in TVA studies (Shibuya & Bundesen, 1988; Bundesen & Harms, 1999).  

 



Bundesen & Harms (1999) investigated the psychometric function of letter identification as a 

function of exposure duration. In this study the exponential psychometric function was used to 

model the data from the three subjects each carrying out a total of 4000 trials. Bundesen and Harms 

(1990) did not however, fit any other psychometric function to their data. Here, we compare the fits 

of the 6 psychometric functions described above to their original data. 

 

Shibuya and Bundesen (1988) conducted a whole and partial report experiment with two observers 

each completing 6480 trials. In whole report, observers were presented with 2-6 visual targets 

(digits). In partial report, up to 8 distractors (letters) were presented with the targets. Observers’ 

performance was recorded as the proportion of scores of j or more (correctly reported targets). 

Shibuya and Bundesen showed that TVA could account very well for the observed data. Until now 

TVA has assumed an exponential psychometric function but in Appendix B we show how to 

generalize it to allow for other psychometric functions by letting the encoding process be a non-

homogenous Poisson process. Here, we insert each of the six psychometric functions described 

above into TVA and test each of these six models against Shibuya and Bundesen’s original data. 

 

In summary, our aim is to investigate the psychometric function of visual identification as a 

function of exposure duration. We evaluate six selected psychometric functions for single letter 

identification when averaging data over letter identities and also for each individual letter identity. 

By inserting each psychometric function into TVA we also evaluate their appropriateness for 

describing performance in whole and partial report. 



Methods 

Paradigm 

The task was to report a single stimulus letter cued by a fixation point and terminated by a mask. 

The report was carried out as a forced choice procedure with 26 alternatives (26-AFC). A trial 

commenced with the fixation point marker being displayed for 1000 ms. Immediately after this the 

stimulus letter was shown. A randomized mask, lasting for 500 ms, followed the stimulus and then 

the report display consisting of the 26 letters of the alphabet was shown. The subject had to report 

which stimulus letter he thought was the one presented by typing the letter on a standard Danish 

keyboard. When a letter was pressed the corresponding letter in the alphabet would blink, providing 

feedback to the subject. After this, the alphabet disappeared and a new trial would start. Each time 

the subject had carried out 100 new trials a message was displayed on the screen stating how many 

trials remained. On average, a trial took about 3 seconds. The stimulus conditions varying between 

trials were the identity of the letter and the exposure duration. All experimental blocks contained all 

stimulus conditions twice but the order of the stimulus conditions was randomly permuted for each 

block. 

Subjects 

Two Danish students of engineering as well as one of the authors served as subjects. The two 

students, subject MK and subject MH, were paid by the hour. Subject MK was a 24-year-old male 

with corrected to normal vision (contact lenses) and subject MH was a 21-year-old male, with 

corrected to normal vision (glasses). Subject AP was a 28-year old male with normal visual acuity. 

Subjects MK and MH were naïve about the purpose of the experiment, subject AP was not. 



Stimulus display 

The fixation point marker was a dot (·), except for subject AP in Experiment 1, where the fixation 

point marker was a cross (+). The fixation point marker was shown at the centre of the screen, when 

the system was ready for a trial. The luminance of the point marker was: 8.9 Cd/m
2
. The 

background luminance of the screen was fixed at 45.7 Cd/m
2
 in both Experiment 1 and 2. 

 

The stimulus consisted of a single capital letter displayed at the fixation point. The letter could be 

any of the 26 letters of the English alphabet. The font used was New Courier. The letter was 

presented centrally (foveally) at the location of the fixation point. The letter subtended a visual 

angle of about 1.1° vertically and 1.1° horizontally.  

Mask 

The mask consisted of a binary image that was randomly generated for each trial. The procedure 

that was used for generating the instances of the mask was based on phase scrambling of the 

stimulus images in the Fourier domain. The procedure is described in detail in Appendix A. The 

mask was shown immediately after the stimulus was removed from the screen. The physical size of 

the mask was so that it would cover the area where all possible stimuli from A to Z had been 

presented, this means that the mask subtended about 1.3° vertically and 1.3° horizontally. The 

luminance of the binary mask was 45.7 Cd/m
2
 in the light regions and 0 Cd/m

2
 in the dark regions.  

Report display 

In the report display the entire alphabet from A to Z was displayed in a single row. The vertical 

angle between the vertical centre of the row of letters displayed and down to the bottom of the 

screen was 9°. The alphabet was printed in the same size as used for the stimuli letters. The entire 



row of letters subtended about 1.1° vertically and 33° horizontally. The luminance of the letters in 

the report display was 32.2 Cd/m
2
.  

Apparatus 

The subject was seated in front of a computer-driven (NVIDIA GeForce 7950 GT) cathode ray 

screen (17” Flatron 915FT Plus) at a viewing distance of 57 cm in a darkened room. The viewing 

distance was chosen so that 1° of visual angle corresponded to approximately 1 cm on the screen. 

The refresh rate of the monitor was set to 200 Hz and the pixel resolution was 480 times 640. The 

monitor was pre-heated for at least half an hour before any experimental session was initiated. The 

experiment was written in Matlab™, using the Psychophysics Toolbox (Brainard, 1997, Pelli, 

1997). 

Analysis 

We fitted the psychometric functions and TVA to our data by maximizing the likelihood using a 

quasi-Newtonian optimization routine provided by the Matlab™ optimization toolbox. We used a 

number of different starting points. We also added random noise to the parameters after 

convergence and then restarted the optimization. This was done to increase the chances of finding a 

global rather than a local minimum. 

Experiment 1 

In this experiment the negative Weber contrast of the stimulus letters was fixed at 0.0460. The 

experiment consisted of 65 sessions for each subject. Within a session each letter was presented two 

times at all exposure durations. There were 16 different exposure durations: 35, 40, 45, 50, 55, 60, 

70, 80, 90, 100, 115, 130, 145, 165, 185 and 210 ms. With this setup a session contained a total of 2 

x 26 x 16 = 832 trials. The time to complete a session was about 40 minutes, after each session the 



subject took a break for 10 minutes. A subject was not allowed to complete more than 5 sessions 

per day, and was told not to engage in any more sessions if they felt tired.  

Experiment 2 

In this experiment the stimulus was shown at 11 different contrast levels. Within each session the 

stimulus contrast level was fixed while it varied randomly between sessions. A total of 5 sessions 

contained the same contrast level, and within each session each condition was repeated two times. 

In total 55 sessions were completed. After each session the subject took a break for 10 minutes. The 

subject did not complete more than 6 sessions per day, and further did not engage in any more 

sessions if he felt tired. 

 

For the stimuli, having the negative Weber contrast levels of 0.083, 0.046, 0.028, 0.020, and 0.018 

the exposure durations were the same as the ones in Experiment 1, that is: 35, 40, 45, 50, 55, 60, 70, 

80, 90, 100, 115, 130, 145, 165, 185 and 210 ms. The time to complete one of these sessions was 

about 40 minutes. This session type contained a total of 2  26  16 = 832 trials. For the stimuli, 

having the negative Weber contrast levels of 0.370, 0.210 and 0.129, the exposure durations were: 

10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 and 65 ms. The time to complete one of these sessions was 

about 30 minutes. This session type contained a total of 2  26  12 trials = 624 trials. For the 

stimuli, having the negative Weber contrast levels of 1.000, 0.906 and 0.626 the exposure durations 

were: 0, 5, 10, 15, 20, 25, 30 and 35 ms. The time to complete one of these sessions was about 20 

minutes. This session type contained a total of 2  26  8 trials = 416 trials. 

 



Results 

In order to examine which psychometric function would describe the data when averaged across 

letter identity we fitted each of the six psychometric functions to the data from Experiment 1. The 

guessing rate was set to γ = 1/26 and the lapsing rate (λ = 1-2 %) was estimated from the data, as 

the average of the survivor function, 1-, (at 165, 185 and 210 ms). In Figure 1 we show the model 

error (the signed residual) as a function of exposure duration. Residuals are shown for the different 

psychometric functions and, comparing between the three different subjects, it is seen that the 

residuals vary systematically with exposure duration; notably, all of the psychometric functions 

overshoot around 40 to 60 ms and immediately after undershoot slightly less around 60-70 ms. It is 

seen from Figure 1 that the exponential is the least optimal model in the comparison, and further it 

is apparent that the residual for the squared-logistic and log-logistic are relatively small compared to 

the residuals of the other psychometric functions. 

 

Figure 1 

 

To further illustrate how well the psychometric functions fit the data, the proportion correct as a 

function of exposure duration averaged over all letter identities is shown in Figure 2. Also shown is 

the fit of the exponential psychometric function used in TVA and the fit of the squared-logistic 

psychometric function which we found provided the best fit (see Figure 1). For all subjects (AP, 

MH and MK) it is clear that for short exposure durations the proportion correct is slowly rising up 

until 20 % correct, which is not predicted by the exponential psychometric function, which rises 

abruptly in the beginning.  

 

Figure 2 



 

In order to study whether the hazard function of the psychometric function, F resembles the 

development of firing rates we show the hazard functions of the various models in Figure 3 with the 

empirical hazard rates. Across all subjects we consistently see that the empirical hazard rate rises 

smoothly and then falls to some lower level. Note, however, that the uncertainty of the hazard 

estimate increases as a function of exposure duration. The uncertainty bars (showing standard 

deviation) in the plot were obtained with the help of bootstrap analysis (Efron & Tibshirani, 1994), 

which consisted of fitting 1000 random re-samples of the data and calculating the standard 

deviation of these fits at each experimental condition. Note that since the hazard is calculated 

between neighbouring data points the exposure durations used in this plot are different than in 

Figure 1. Further for long exposure durations, as the psychometric function reaches ceiling, the 

hazard estimates become very imprecise or even infinite (Van Zandt, 2002), therefore we left these 

later estimates out of the plots. 

 

Figure 3 

 

To study to what extent the psychometric function depends on letter identity we also fitted each of 

the psychometric functions to the data from Experiment 1 without averaging over letter identities. 

The guessing rates were allowed to vary between letter identities, however the lapsing rates were 

not; i.e. these were the same as described above for the averaged data. To illustrate the parameter 

differences between letters, in Figure 4, we show parameter histograms as well as parameter scatter 

plots. These are shown for subject AP. Under the assumption that the psychometric function 

obtained by averaging over letter identities is the true psychometric function we applied 

bootstrapping (Efron & Tibshirani, 1994) to check if the variance in the parameters of the 

psychometric functions for the individual letter identities can be ascribed entirely to an effect of 



random sampling or if it needs also to be ascribed to some systematic effect of letter identity. The 

bootstrapping consisted of fitting the psychometric function to 200 random re-samples of the data 

averaged over letter identities and then calculating the standard deviation for each of the model 

parameters based on the 200 model fits. The ovals in Figure 4 demark the bootstrap estimated 

confidence region to which we would expect 95 % of the letters, placed according to their 

individual parameters, to be located. Clearly many letters are located outside the ovals. This shows 

that the model parameters vary significantly with letter identity. 

 

Figure 4 

 

To examine how the psychometric function as a function of exposure duration depends on contrast, 

in Figure 5 we show proportion correct for the various contrast conditions in Experiment 2. For this 

experiment we note that the guessing rate, γ = 1/26, and further we shall assume that the lapsing 

rate, λ = 0. The fit by the squared-logistic psychometric function is also shown in Figure 5. The fit is 

very close for all the contrast levels that we investigated.  

 

Figure 5 

 

With the aim of investigating if any of the alternative psychometric functions can improve the 

ability of TVA to describe whole and partial report data, we inserted each of the six psychometric 

functions in TVA (See Appendix B). The six models were fitted to the data for each of the two 

subjects in (Shibuya & Bundesen, 1988). Clearly the squared-logistic fits closer than the 

exponential psychometric function; this is true for both subject MP (Figure 6.a) and subject HV 

(Figure 6.b).  The squared-logistic, for example, is able to account for correct reports at very short 



exposure durations because it does not rise abruptly in the beginning as does the exponential 

psychometric function used in (Shibuya & Bundesen, 1988). 

 

Figure 6 

 

Model feasibility for the different experiments is shown in Figure 7. The figures show AIC values 

(Akaike, 1974) and BIC values (Schwarz, 1978) for each psychometric function applied to each 

data set. AIC and BIC measures are shown summed over all subjects. Also included is the saturated 

model for reference. There are two graphs for Experiment 1, one for fitting the data averaged over 

letter identities (Figure 7.a) and one for fitting the data not averaging over the individual letter 

identities (Figure 7.b). In both graphs, comparing both AIC and BIC measures, we see that the 

exponential is the poorest and the squared-logistic and the log-logistic are the best psychometric 

functions. The model performance for the data in Experiment 2 is shown in Figure 7.c, we see that 

the ranking of the various models is quite similar to that found for Experiment 1, and further 

measures seem consistent between AIC and BIC measures. In Figure 7.d we show model 

performance with respect to modelling the whole and partial report data from (Shibuya & 

Bundesen, 1988). The ranking of the psychometric functions appear similar to what was seen for 

Experiments 1 and 2, and there appears to be a consistency between AIC and BIC measures. Finally 

Figure 7.e shows model performance with respect to modelling the data in (Bundesen & Harms, 

1999). For this experiment, we again see that both the squared-logistic and the log-logistic are better 

models than the exponential psychometric function. However we see that the Weibull and gamma 

psychometric functions fit the data from this experiment better, which might appear curious if we 

compare this result with the results from modelling the other datasets. However, for most of the 

trials in (Bundesen & Harms, 1999) performance had reached ceiling level. Therefore, because of 



fewer informative trials, we should be careful about putting too much weight on this dataset in the 

decision about which psychometric function is the most appropriate one to use. 

 

An overview of model feasibility summed over all experiments, when averaging over letter 

identities, is shown in Figure 7.f. The graph shows the sum of AIC and BIC measures for the data in 

Experiment 1 and 2 as well as the data in (Shibuya & Bundesen, 1988) and (Bundesen & Harms, 

1999). To ensure consistency with the way the other datasets were modelled, for Experiment 1 we 

include the AIC and BIC values obtained after fitting the data, when data was averaged over letter 

identities. Thereby the AIC and BIC values found when modelling the individual letters in 

Experiment 1 (cf. Figure 7.b) are not included in the sums shown in Figure 7.f. From Figure 7.f we 

see that the three-parameter squared-logistic is the best model with the two-parameter log-logistic 

model as the runner-up. The two-parameter exponential distribution is clearly the poorest model. 

The ranking appears consistent over AIC and BIC measures, and also for both AIC and BIC, we see 

that the exponential is poorer, while the squared-logistic is better, than the saturated model. For the 

most optimal psychometric function for individual letters we refer to Figure 7.b, which shows that 

although the AIC and BIC measures disagree whether the squared-logistic or the log-logistic 

psychometric function provides the best fit the two measures do agree that the squared-logistic and 

log-logistic provide a much better fit than the exponential psychometric function.  

 

 

Figure 7 

 

 



Discussion 

TVA (Bundesen, 1990) has been successfully used to model data from whole and partial report type 

of experiments (Shibuya & Bundesen, 1988).  For this, TVA used the exponential distribution as 

the underlying psychometric function; however since many other psychometric functions exist, we 

wondered whether a more optimal psychometric function could be found. In order to answer that 

question we conducted Experiment 1, which was a single-letter identification experiment, similar to 

that of (Bundesen & Harms, 1999), in which exposure duration was varied at a single fixed contrast 

level. Our first idea was to generalise the psychometric function by simply including an additional, 

third parameter. The Weibull, the gamma and the ex-Gaussian all represented simple 

generalisations of the exponential psychometric function, and all of these proved to be better 

models as measured by AIC and BIC comparisons.  

 

From NTVA (Bundesen et al., 2005) comes the prediction that the hazard rate of the psychometric 

function should follow the firing rates of neurons in the visual cortex, which have been shown to 

develop non-monotonically over time (Albrecht et al., 2002). Therefore we included two additional 

psychometric functions which both have a non-monotonic hazard function: the log-logistic which is 

a well-known distribution and the squared-logistic, which is a biologically inspired distribution we 

developed ourselves. The three-parameter squared-logistic generally produced the best results, but 

the two-parameter log-logistic came out as the runner-up, comparing all six different psychometric 

functions (see Figure 7). 

 

To illustrate how well the different psychometric functions fit the single-letter identification data 

from Experiment 1 in Figure 1.a-c we showed the model error as a function of exposure duration for 

the three different subjects. Comparing across the three subjects, it is clear that the error function 



develops systematically over time. Even for the best fitting psychometric function, that is the 

squared-logistic, it appears that first there is an overshoot around 40-60 ms and then an undershoot 

around 60-70 ms. In Figure 3 we compared the empirically estimated hazard functions with the 

hazard functions of the various psychometric functions used. When seen across all subjects in 

Experiment 1, it is seen (from both Figure 1 and Figure 3) that we find that there is a small, but 

consistent, systematic misfit as a function of exposure duration, and so we invite future studies to 

find an even better suited model than we did for characterising the temporal development of 

identification accuracy. 

 

To the best of our knowledge, this study is unique in the sense that it contains enough trials per 

subject to allow us to accurately fit the psychometric function for each individual letter. For 

instance in the earlier single-letter identification study that we mentioned (Bundesen & Harms, 

1999) averages over all stimuli letters were used. Our study offers novel knowledge about how 

dependent the parameters of the psychometric function are on letters identity. Making use of 

bootstrapping (Efron & Tibshirani, 1994) we found that the parameters of the estimated 

psychometric functions of the individual letters vary more than would be expected from random 

sampling variance alone. It is however common to average the psychometric function over letter 

identities, and therefore it is relevant to ask whether it is reasonable to use the same type of 

psychometric function, both when fitting individual letters, as well as when fitting the data averaged 

over letters identities. Our results showed that the log-logistic and squared-logistic psychometric 

functions are optimal in both of these two situations. This means that although the model 

parameters depend on letter identity, the type of psychometric function does not. Therefore, it still 

seems reasonable in many types of experiments to average over letter identities to reduce the 

demand on the total number of trials. 



 

Worried that our search for an optimal psychometric function would suffer from being contrast-

specific, we conducted Experiment 2 to verify the performance of the various psychometric 

functions at a number of different stimulus contrast levels. The result of fitting the data from 

Experiment 2 is illustrated in Figure 7.c. For Experiment 2 the ranking of the psychometric 

functions was quite similar to the one we had previously seen for Experiment 1. In Figure 5 we 

showed how well the squared-logistic psychometric function fits the data from Experiment 2. 

 

Interestingly the two best-fitting models we found, namely the log-logistic and the squared-logistic 

both have a non-monotonic hazard function in line with the prediction of Bundesen and Habekost 

(2008). Other distributions including the Cauchy and the log-normal also have a non-monotonic 

hazard function, but these distributions did not provide as good fits (not shown) as the log-logistic 

and squared-logistic did. The log-logistic distribution is a special case of the Burr distribution, 

which again is a special case of the generalized beta distributions of the second kind (Bookstaber & 

McDonald, 1987). Little improvement in fitting was found when testing these generalizations (not 

shown), which is why here we do not go into more detail on these functions. Non-monotonic hazard 

functions are described in (Aalen & Gjessing, 2001). 

 

After insertion of each of the six psychometric functions into TVA (Bundesen, 1990), further 

described in Appendix B, the three-parameter squared-logistic enabled the closest fits (see Figure 

7.d) to the data from (Shibuya & Bundesen, 1988). A close runner-up was the log-logistic 

psychometric function. 

 



In general over all datasets that we fitted (single-letter as well as whole and partial report) it is clear 

(see Figure 7) that the squared-logistic is the most optimal psychometric function of the ones that 

we have considered. An alternative to using the three-parameter squared-logistic psychometric 

function is to use the log-logistic psychometric function, which comes in as a close runner-up. 

Despite having only two parameters, the log-logistic still provides very good fits to the data. It is 

worth noticing that Bundesen’s exponential psychometric function also had two parameters; 

however the log-logistic provides much better fits. 

 

We investigated visual letter identification as a function of exposure duration and describe the 

squared-logistic, a psychometric function we found no previous accounts for, and which we 

developed motivated by NTVA (Bundesen et al., 2005) and single-neuron studies by (Albrecht et 

al., 2002). Both the squared-logistic and the well-known log-logistic can model a non-monotonic 

hazard function and both of these two psychometric functions fit well to experimental data from 

single-letter identification experiments; finally inserted into TVA (Bundesen, 1990), both 

psychometric functions improve fits to data from whole and partial report type of experiments. For 

all datasets that we modelled we found that the three-parameter squared-logistic and the two-

parameter log-logistic were clearly better models than the two-parameter exponential psychometric 

function, which has until now been used with TVA. 
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Appendix A: Generating a random Fourier mask  

 

Here we explain the method we used for generating a new random mask M for each trial. The idea 

behind the method is to generate a binary mask that should have a power spectrum that is close to 

the average power spectrum of the stimulus images used. Further for each trial the phase content of 

the mask should be randomised. 

 

Our starting point is that we have N binary stimulus images of size X1 times X2, the n’th image 

fn(x1,x2) has pixel coordinates x1 and x2. Noting that w1 and w2 are the pixel coordinates in frequency 

space, the discrete Fourier transform of the n’th stimulus image can be written as: 

 

  2211

2

2

1

11 1

2121 ,),(
xwixwi

X

x

X

x

nn eexxfwwF


 
  

 

The average Fourier transform F of the N stimulus images can be calculated as: 

 

ˆ F (w1,w2) 
1

N
Fn (w1,w2)

n1

N

  

 

Let Θ be a matrix that has size X1 times X2. We now define the randomly phase-shifted average 

Fourier transform as:  
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We note that entries in Θ are chosen randomly for each trial and subject to the constraint that F
ϕ 

should be a Hermitian matrix. The entries for Θ are drawn in conjugated pairs with zero real and 

random imaginary part. Also note that for the later equation the DC-frequency and the half 

sampling frequency fs/2 were not phase-scrambled, because both frequency components should be 

kept real. 

 

 

The discrete inverse Fourier transform of F
ϕ
 can be written as: 
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We now define the rounded average number of pixels ν in the N stimulus images that takes on the 

value 1 rather than 0 as 
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We now perform a threshold operation so that the ν elements in fϕ that have the largest values are 

set to one in M and the rest of the elements are set to zero; i.e. if we define as Sν the set of elements 

in fϕ
 
that have the ν largest values, then the random Fourier mask M is found as: 

 

M x1, x2 
1 if f  x1, x2  S

0 else



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Appendix B: The theory of visual attention and the generalized 

fixed-capacity independent race model 

 

TVA (Bundesen, 1990) provides an account of performance in whole and partial report. In TVA 

any target or distractor is denoted as an element, and further it is assumed that a subject only 

correctly identifies the elements that are stored in visual short-term memory. Further, subjects only 

obtain a chance to store an element if the element is encoded. 

Encoding 

The hazard rate that a particular element, i, is encoded into VSTM is proportional to how large a 

portion of processing resources the element receives. Any element in the visual field S receives a 

certain portion vi of the total processing capacity C, which is assumed to be invariant with respect to 

the number of elements in the display: 

 

C  v i

iS

  

 

It serves as a simplification to assume homogeneity of the visual display (Shibuya & Bundesen, 

1988). This appears a reasonable assumption as long as all elements have the same size, the same 

contrast, the same eccentricity etc. The homogeneity assumption means that all targets receive the 

same amount of processing resources denoted vt. In the same way all distractors receive the same 

amount vd of processing resources which is proportionally smaller than the amount that targets 

receive. The ratio of processing resources α is defined as: 
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Let us assume a homogenous display that contains T targets and D distractors. The processing 

resources vt of any target is then given by: 

 

C  v i

iS

  C  Tv t  Dvd  Tv t  Dv t  T  D v t  v t 
C

T  D
 

 

Storage 

As we have already seen, TVA describes the factors that determine the probability that any given 

target in a multi-element visual display is encoded into visual short-term memory, however as 

VSTM typically has only about 3-4 storage places, TVA assumes that not all elements that become 

encoded are actually stored. Bundesen (1990) assumes that the occupation of places occurs through 

a so-called race, that is, any newly encoded element will lead to immediate occupation of one 

storage place if and only if there is still any storage place left in the VSTM. 

 

Let us define that f and F and are the probability density and the distribution function for target 

encoding respectively. Similarly we also define that g and G are the probability density and the 

distribution function for distractor encoding.  

 

According to the fixed-capacity independent race model (FIRM, Shibuya & Bundesen, 1988) the 

probability of a score of j (targets reported) from a display containing T targets and D distractors 

exposed for τ seconds can be written as: 
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where P1 is the probability that the score equals j and the total number of elements (targets and 

distractors) entering VSTM is less than K. The number of distractors entering VSTM is denoted by 

m and m  min(D,K-j-1). If j=K, P1=0; otherwise: 
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and P2 is the probability that the score equals j and the total number of elements equals K and the 

K
th

 element entering the VSTM is a target. The number of distractors entering VSTM denoted by m 

is always K-j. If j=0, or j<K-D, P2=0; otherwise: 
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and P3 is the probability that the score equals j and the total number of elements equals K and the 

K
th

 element entering the VSTM is a distractor. The number of distractors entering VSTM denoted 

by m is always K-j. If j=K, or j<K-D, P3=0; otherwise:
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Shibuya and Bundesen (1988) derived explicit score probabilities under the assumption that 

encoding proceeds as a homogenous Poisson process. This corresponds to assuming (ignoring their 

suggested temporal offset) that the hazard rates are constant over time. Our contribution is to allow 

the hazard rates to be time-varying, although we still assume that the hazard rates (for the different 

elements presented) are mutually proportional functions of time (cf. Bundesen, 1990, 1993, 1998). 

The way we relax this assumption is explained in the following where we derive a set of generalised 

FIRM equations. For the generalized FIRM equations, which are characterized by a non-

homogenous Poisson process for encoding, with hazard λt(t) and cumulative hazard function Λt(t), 

we can write the following probability distribution function for target encoding: 

 

F(t) 1 exp  t t   

 

By differentiating the probability distribution using the chain rule we arrive at the probability 

density function for target encoding: 
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Similarly, for distractors we can formulate the probability density function g and the probability 

distribution G in terms of the hazard λd(t) and the cumulative hazard function Λd(t) for distractor 

encoding.  

 

We are now able to derive a set of explicit score probabilities that are valid under the generalized 

FIRM conditions. By inserting the expressions for F(t) and G(t) it is straightforward to calculate the 

probability P1 when the cumulative hazard functions t(t) and d(t) are known: 
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Deriving the expression for P2 is a little more complex: 
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In the first step, we insert the expressions for F(t), G(t) and f(t) while the second step is a simple 

reduction. The third step uses the binomial expansion while the fourth step is again a simple 

reduction. The fifth step uses integration by substitution, noticing that  tΛ /  , to arrive at the 

final expression. Similarly, we can derive the following expression for P3: 
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From these three expressions we can calculate the score probability, 321),,;( PPPDTjP  ,
 

from the cumulative hazard function, Λt(t). To find the cumulative hazard function, Λt(t), from a 

distribution function, F(t), we note that it can be calculated as the negative logarithm of the survivor 

function (Luce, 1991), i.e.: 

 

 t (t)  log 1 F t   
 

Thus, all distribution functions including all psychometric functions known to us can be inserted 

into TVA using the above derivations. Note that in the case of a single target letter, the distribution 

function F(t) is the psychometric function. 

 

Finally, let us note that our assumption of an in-homogenous Poisson process for visual encoding; 

rather than a homogenous one as was assumed in (Bundesen, 1990); does not necessarily conflict 

with the idea of a total processing capacity C, if one assumes that this is no longer constant but 

rather varying in time. In this way we can use the same formulas for dividing processing resources 

between elements as used in (Bundesen, 1990). Also we note that the processing rate, v, which was 

previously a constant, is now a time-varying function λ(t) that corresponds to the hazard of 

encoding an element.  

 



Figure legends 

 

Figure 1 

Residuals, plotted as a function of exposure duration, from Experiment 1. Error bars – too small to 

be distinguished clearly – show the standard error of the mean. There is one graph for each subject: 

a) AP, b) MH and c) MK. 

 

Figure 2 

Proportion correct in Experiment 1 averaged over letter identities. Error bars show the standard 

error of the mean. The fit of the exponential and the squared-logistic psychometric functions are 

shown as well. There is one graph for each subject: a) AP, b) MH and c) MK. 

 

Figure 3 

The hazard function plotted against exposure duration. Grey squares represent the empirical hazard 

function, which was estimated directly from the data. Error bars indicate the standard deviation as 

estimated by a bootstrap procedure. The hazard functions of the various psychometric functions are 

displayed as coloured lines. There is one figure for each subject: a) AP, b) MH and c) MK. 

 

Figure 4 

Scatter plots and histograms for the parameters of the log-logistic model fitted to the data from 

subject AP in Experiment 1. In the off-diagonal windows we see parameter pairs plotted against 

each other, while in the diagonal windows we see the parameter histograms. Each letter from A to Z 

was fitted individually giving each letter its own set of model parameters. 

 



Figure 5 

Proportion correct averaged over letter identities (as circles) for subject AP in Experiment 2. Error 

bars show standard deviation of the mean. Also shown (as lines) are the fits of the squared-logistic 

psychometric function. The legend shows the negative Weber contrast that was used. The horizontal 

dashed line shows the guessing level. 

 



Figure 6 

Cumulative score distributions from a whole and partial report experiment (Shibuya & Bundesen, 

1988). Circular markers correspond to the proportion of scores of j or more (correctly reported 

targets) showed as a function of exposure duration. The legend for the scores is: blue: j=1, green: 

j=2, red: j=3, turquoise: j=4 and violet j=5. Each graph shows data for a certain combination of the 

number of targets, T, and the number of distractors, D. The dotted lines represent the fit of the 

exponential psychometric function inserted into TVA. Solid lines represent the fit of the squared-

logistic psychometric function inserted into TVA. There are two sub-figures, one for each subject: 

a) MP and b) HV. 

 

Figure 7 

Model feasibility cumulated over all subjects. In the different figures wee see how successful the 

different psychometric functions are at modelling various datasets. The measures shown are AIC 

values (Akaike, 1974) and BIC values (Schwarz, 1978). In a) we see the results from fitting the 

functions to the data from Experiment 1 averaged over letter identities. In b) we see the results from 

fitting the functions to the data from Experiment 1 without averaging over letter identities. In c) we 

see the result from fitting the functions to the data from Experiment 2. In d) we see the result from 

fitting our models to the data from the whole and partial report experiment in (Shibuya & 

Bundesen, 1988). In e) we see the results from fitting our functions to the single-letter identification 

data from (Bundesen & Harms, 1999). Finally, in f) we see AIC and BIC measures cumulated over 

all datasets from the various experiments, including only the fit to the average single-letter data (i.e. 

not the fit to the individual letters) for Experiment 1. 
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