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Abstract
In this paper we consider a Sparre Andersen risk process for which

the claim inter-arrival distribution is Erlang(2). Our purpose is to …nd
expressions for moments of the time to ruin, given that ruin occurs. To
do this, we de…ne an auxiliary function Á along the lines of Gerber and
Shiu (1998) and Gerber and Landry (1998). Our method of solution
di¤ers from that of Willmot and Lin (1999, 2000) who consider this
problem for the classical risk model, in that we …rst solve for the
auxiliary function Á.

1 Introduction
In this paper we consider the risk process studied by Dickson and Hipp
(1998). The process is a Sparre Andersen process with claim inter-arrival
times distributed as Erlang(2). We de…ne a sequence of independent and
identically distributed random variables fTig1i=1 representing the claim inter-
arrival times, with T1 being the time until the …rst claim. Each Ti has density
function

k(t) = ¯2te¡¯t for t > 0,

i.e. an Erlang(2) density with scale parameter ¯. This density belongs to
the class of phase-type(2) or Coxian(2) densities. (See Dickson and Hipp
(2000) or Willmot (1999) for details). In this paper we restrict our attention
to a member of this class rather than the whole class purely for ease of
presentation. The principles involved are unchanged for any other density in
this class.

We next de…ne a sequence of independent and identically distributed
random variables fXig1i=1 where Xi denotes the amount of the ith claim. We
denote by P the distribution function of Xi, and we assume throughout that
Xi has a density function denoted p. We use the notation mk = E(Xki ).
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Let c denote the insurer’s premium income per unit time. We assume
that this premium income is received continuously. We further assume that
cE(Ti) > E(Xi) for all i.

We de…ne the surplus process fU(t)gt¸0 as

U(t) = u+ ct¡
N(t)X

i=1

Xi

where the counting process fN(t)gt¸0 denotes the number of claims up to
time t. Let T denote the time to ruin, so that

T =
½

infftjU(t) < 0g
1 if U(t) > 0 for all t > 0:

Then the probability of ultimate ruin from initial surplus u is de…ned as

Ã(u) = Pr(T <1jU(0) = u).

We now de…ne a function Á by

Á(u) = E
£
e¡±T1fT<1gjU(0) = u

¤
, (1.1)

where 1f:g is the usual indicator function and ± is a non-negative parameter.
For the most part, we consider the situation when ± > 0. In this case, we
can think of ± either as being a force of interest, or as a dummy variable in
the context of Laplace transforms. (See Gerber and Shiu (1998) for details).
Note that when ± = 0, we have Á(u) = Ã(u). By noting that

(¡1)k
dk

d±k
Á(u)

¯̄
¯̄
±=0

= E
£
T k1fT<1gjU(0) = u

¤

we can …nd the moments of the time to ruin.
We remark that our function Á is a simple version of the more general

function studied by Gerber and Shiu (1998) and Willmot and Lin (1999,
2000) for the classical risk model. They considered

E
£
w(U(T¡); jU(T )j)e¡±T1fT<1gjU(0) = u

¤
(1.2)

where w is a non-negative function and U(T¡) denotes the surplus immedi-
ately prior to ruin. We have simply set w(x; y) = 1 for all x and y. Willmot
and Lin (2000) use the fact that this function satis…es a defective renewal
equation to …nd, amongst other things, a recursive scheme for deriving the
moments of the time to ruin in the classical risk model.
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In this paper, we take a di¤erent approach to both Gerber and Shiu (1998)
and Willmot and Lin (2000), although there are similarities in results. We
start by deriving an integro-di¤erential equation satis…ed by Á. We use this
equation to …nd the Laplace transform of Á from which we derive a simple
general expression for Á(0). In Section 4 we consider some solutions for the
moments of the time to ruin for particular forms of P by …rst solving for
Á. We also consider the case u = 0. We conclude by discussing in the …nal
section some of the di¤erences from the classical risk model and indicating
further lines of inquiry.

2 An integro-di¤erential equation for Á
In this section we show that Á satis…es an integro-di¤erential equation. This
equation will be the basis for our explicit solutions for Á in Section 4.

Theorem 2.1 Á(u) satis…es the equation

c2
d2

du2
Á(u) ¡ 2(¯ + ±)c

d
du
Á(u) + (¯ + ±)2Á(u)

= ¯2
Z u

0
Á(u¡ x)p(x)dx+ ¯2 (1 ¡ P (u)) . (2.1)

Proof. By conditioning on the time and the amount of the …rst claim
we have

Á(u) =
Z 1

0
k(t)e¡±t

Z u+ct

0
Á(u+ ct¡ x)p(x)dxdt

+
Z 1

0
k(t)e¡±t

Z 1

u+ct
p(x)dxdt

giving

cÁ(u) =
Z 1

u
k

µ
s¡ u
c

¶
e¡±(s¡u)=c

Z s

0
Á(s¡ x)p(x)dxds

+
Z 1

u
k

µ
s¡ u
c

¶
e¡±(s¡u)=c

Z 1

s
p(x)dxds.
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Di¤erentiation gives

c
d
du
Á(u) =

¡1
c

Z 1

u
k0

µ
s¡ u
c

¶
e¡±(s¡u)=c

Z s

0
Á(s¡ x)p(x)dxds

¡1
c

Z 1

u
k0

µ
s¡ u
c

¶
e¡±(s¡u)=c

Z 1

s
p(x)dxds+

±
c
cÁ(u)

=
¡1
c

Z 1

u
¯2e¡(¯+±)(s¡u)=c

Z s

0
Á(s¡ x)p(x)dxds

¡1
c

Z 1

u
¯2e¡(¯+±)(s¡u)=c

Z 1

s
p(x)dxds

+
¯
c

Z 1

u
k

µ
s¡ u
c

¶
e¡±(s¡u)=c

Z s

0
Á(s¡ x)p(x)dxds

+
¯
c

Z 1

u
k

µ
s¡ u
c

¶
e¡±(s¡u)=c

Z 1

s
p(x)dxds+ ±Á(u)

= (¯ + ±)Á(u) ¡ 1
c

Z 1

u
¯2e¡(¯+±)(s¡u)=c

Z s

0
Á(s¡ x)p(x)dxds

¡1
c

Z 1

u
¯2e¡(¯+±)(s¡u)=c

Z 1

s
p(x)dxds,

and di¤erentiating a second time we get

c
d2

du2
Á(u) = (¯ + ±)

d
du
Á(u) +

¯2

c

Z u

0
Á(u¡ x)p(x)dx

+
¯2

c

Z 1

u
p(x)dx+

µ
¯ + ±
c

¶·
c
d
du
Á(u) ¡ (¯ + ±)Á(u)

¸
.

Hence

c2
d2

du2
Á(u) ¡ 2(¯ + ±)c

d
du
Á(u) + (¯ + ±)2Á(u)

= ¯2
Z u

0
Á(u¡ x)p(x)dx+ ¯2 (1 ¡ P (u)) .

We note that when ± = 0, (2.1) becomes

c2
d2

du2
Ã(u) ¡ 2¯c

d
du
Ã(u) + ¯2Ã(u) = ¯2

Z u

0
Ã(u¡ x)p(x)dx+ ¯2 (1 ¡ P (u))

in agreement with equation (2.1) of Dickson and Hipp (1998).
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3 The Laplace transform of Á
Throughout this paper we denote the Laplace transform of a function ° by

°¤(s) =
Z 1

0
e¡sx°(x)dx.

Before deriving the Laplace transform of Á, we consider what, in the termi-
nology of Gerber and Shiu (1998), is Lundberg’s fundamental equation for
our model.

Lemma 3.1 Let ± be strictly positive and de…ne

l(s) = c2s2 ¡ 2(¯ + ±)cs+ (¯ + ±)2.

Then there are two positive numbers r1 < (¯ + c)=± < r2 such that

l(ri) = ¯2p¤(ri); i = 1; 2: (3.1)

Proof. We have

l(0) = (¯ + ±)2 > ¯2 = ¯2p¤(0).

Also,

l0(s) = 2c2s¡ 2(¯ + ±)c

so that l has a turning point at (¯ + ±)=c. Further, l00(s) = 2c2 > 0, so that
l(s) has its minimum at s = (¯ + ±)=c. We note that

l
µ
¯ + ±
c

¶
= 0

and

lim
s!1
l(s) = 1.

Now

d
ds
¯2p¤(s) = ¡¯2

Z 1

0
xe¡sxp(x)dx < 0

so that ¯2p¤(s) is a decreasing function of s, and is always positive. Hence,
for s > 0, l(s) intersects ¯2p¤(s) at two distinct points, one on each side of
(¯ + ±)=c.
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We make two observations about Lundberg’s fundamental equation. First,
as ± ! 0+, it is easy to see from the above arguments that r1 ! 0+, and
that as equation (3.1) becomes equation (3.2) of Dickson and Hipp (1998),
r2 goes to the parameter Dickson and Hipp denote s0. (We will use this
notation later.) Second, Lundberg’s fundamental equation has in certain cir-
cumstances a negative root which we denote by ¡R, where R > 0. When
± = 0, R is the adjustment coe¢cient.

We can now use Lundberg’s fundamental equation to …nd the Laplace
transform of Á. In addition, we use the derivation of the Laplace transform
to …nd a general expression for Á(0).

Theorem 3.1 The Laplace transform of Á is

Á¤(s) =
¯2(s¡ r1)(s¡ r2)´¤(s)
l(s) ¡ ¯2p¤(s) (3.2)

where

´(y) =
Z 1

y
e¡r2(x¡y)g(x)dx,

and

g(y) =
Z 1

y
e¡r1(x¡y) (1 ¡ P (x)) dx.

Proof. Taking the Laplace transform of (2.1) we get

c2
¡
s2Á¤(s) ¡ sÁ(0) ¡ Á0(0)

¢
¡ 2(¯ + ±)c (sÁ¤(s) ¡ Á(0)) + (¯ + ±)2Á¤(s)

= ¯2Á¤(s)p¤(s) + ¯2m1q¤(s)

where

Á0(0) =
d
du
Á(u)

¯̄
¯̄
u=0

and

q¤(s) =
1
m1s

(1 ¡ p¤(s)).

(Thus, q¤ is the Laplace transform of the ladder height density in the classical
risk model. We later denote the kth moment of this distribution by ¹k.) Then

Á¤(s) =
c2sÁ(0) + c2Á0(0) ¡ 2(¯ + ±)cÁ(0) + ¯2m1q¤(s)
c2s2 ¡ 2(¯ + ±)cs+ (¯ + ±)2 ¡ ¯2p¤(s)

=
c2sÁ(0) + c2Á0(0) ¡ 2(¯ + ±)cÁ(0) + ¯2m1q¤(s)

l(s) ¡ ¯2p¤(s) (3.3)
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Since r1 is a zero of the denominator of (3.3), it must also be a zero of the
numerator, giving

c2r1Á(0) + ¯2m1q¤(r1) = 2(¯ + ±)cÁ(0) ¡ c2Á0(0) (3.4)

so that

Á¤(s) =
c2Á(0)(s¡ r1) + ¯2m1(q¤(s) ¡ q¤(r1))

l(s) ¡ ¯2p¤(s) . (3.5)

Now de…ne

g(y) =
Z 1

y
e¡r1(x¡y)(1 ¡ P (x))dx.

Then following arguments in Dickson and Hipp (1998),

m1 (q¤(s) ¡ q¤(r1)) = (r1 ¡ s)g¤(s)

so that

Á¤(s) =
(s¡ r1)

¡
c2Á(0) ¡ ¯2g¤(s)

¢

l(s) ¡ ¯2p¤(s) . (3.6)

Now note that since l(r2) ¡ ¯2p¤(r2) = 0, and r2 > r1,

c2Á(0) ¡ ¯2g¤(r2) = 0

giving

Á¤(s) =
¯2(s¡ r1)(g¤(r2) ¡ g¤(s))

l(s) ¡ ¯2p¤(s)

=
¯2(s¡ r1)(s¡ r2)´¤(s)
l(s) ¡ ¯2p¤(s)

where

´(y) =
Z 1

y
e¡r2(x¡y)g(x)dx.

Corollary 3.1 We can write Á(0) in terms of q¤ as

Á(0) =
¯2m1

c2
q¤(r1) ¡ q¤(r2)
r2 ¡ r1

(3.7)
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Proof. This follows from (3.5). Since Á¤(s) > 0 and r2 is a zero of the
denominator of (3.5), it is also a zero of the numerator.

We will use this form of Á(0), rather that Á(0) = ¯2g¤(r2)=c2; in Section
4.

Remark 3.2 It is a straightforward task to show that

´(y) =
1

r2 ¡ r1

Z 1

y

¡
e¡r2(z¡y) ¡ e¡r1(z¡y)

¢
(1 ¡ P (z))dz

so that we could have derived (3.2) by interchanging r2 and r1 in the proof
of Theorem 3.1.

4 Some explicit solutions
In this section we consider two individual claim amount distributions - ex-
ponential and a mixture of two exponentials. Willmot and Lin (2000) show
how to the …nd the moments of the time to ruin in the classical model for
each of these claim distributions. We do the same here for our model, but
take a di¤erent approach. We …nd the functional form of Á and show how
this can be used to …nd moments of the time to ruin, illustrating the method
by …nding the …rst two moments in each case.

We also consider the case u = 0 and show that we can …nd moments of
the time to ruin even without an explicit solution for Á(u), u > 0.

4.1 Exponential individual claims
Result 4.1 When P (x) = 1 ¡ expf¡®xg, x > 0,

Á(u) = (1 ¡R=®) expf¡Rug
where ¡R is the negative root of Lundberg’s fundamental equation.

Proof. This follows by a very standard argument (see, e.g., Gerber
(1979)). For this form of P , (2.1) becomes

c2
d2

du2
Á(u) ¡ 2(¯ + ±)c

d
du
Á(u) + (¯ + ±)2Á(u) = ¯2e¡®u

·
®

Z u

0
Á(x)e®xdx+ 1

¸
:

(4.1)

From this we …nd that

0 = c2
d3

du3
Á(u) +

£
®c2 ¡ 2(¯ + ±)c

¤ d2
du2
Á(u)

+
£
(¯ + ±)2 ¡ 2®(¯ + ±)c

¤ d
du
Á(u) +

£
®(¯ + ±)2 ¡ ¯2

¤
Á(u): (4.2)
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Inserting for p¤(s) in Lundberg’s fundamental equation we get

c2s3 +
£
®c2 ¡ 2(¯ + ±)c

¤
s2 +

£
(¯ + ±)2 ¡ 2®(¯ + ±)c

¤
s+ ®(¯ + ±)2 ¡ ¯2 = 0:

The roots of Lundberg’s fundamental equation (r1, r2 and ¡R ) are therefore
also those of the characteristic equation of (4.2) which gives

Á(u) = ·1er1u + ·2er2u + ·3e¡Ru:

The coe¢cients ·1 and ·2 must be zero, since Á(u) ! 0 as u! 1, giving

Á(u) = Á(0)e¡Ru.

We …nd that

Á(0) = 1 ¡R=®

by inserting the functional form for Á in (4.1).
As noted in Section 1,

(¡1)k
dk

d±k
Á(u)

¯̄
¯̄
±=0

= E
£
T k1fT<1gjU(0) = u

¤
.

Thus, we can …nd the moments of the time to ruin by di¤erentiating our func-
tional form for Á an appropriate number of times. To emphasise dependence
on ±, we now write R = R±. Then

d
d±
Á(u) = ¡R

0
±

®
e¡R±u ¡ (1 ¡R±=®)(R0±u)e¡R±u.

where, from now on, 0 denotes di¤erentiation with respect to ±.
R0 is the adjustment coe¢cient, given by

R0 =
®c¡ 2¯ +

p
a2c2 + 4®¯c

2c
:

From Lundberg’s fundamental equation,

c2R2
± + 2(¯ + ±)cR± + (¯ + ±)2 = ¯2(1 ¡R±=®)¡1;

we …nd by di¤erentiating that

2c2R±R0± + 2(¯ + ±)cR0± + 2cR± + 2(¯ + ±) = ¯2(1 ¡R±=®)¡2R0±=®. (4.3)
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c E(T jT <1) V (T jT <1)
1:1 10:21 + 8:990u 1600 + 1500u
1:3 3:536 + 2:479u 66:70 + 55:53u
1:5 2:192 + 1:261u 16:03 + 11:98u

Table 4.1: Mean and variance of T jT <1, exponential claims

Setting ± = 0 we …nd that

R00 =
2(¯ + cR0)

¯2®(®¡R0)¡2 ¡ 2c2R0 ¡ 2¯c
:

Since Ã(u) = (1 ¡R0=®)e¡R0u we have

E(T jT <1) =
R00
®

1
1 ¡R0=®

+R00u

= R00

µ
1

®¡R0
+ u

¶
.

Similarly, we get

1
Ã(u)

d2

d±2
Á(u)

¯̄
¯̄
±=0

=
2u(R00)2 ¡R000
®¡R0

¡R000u+ (R00u)
2

= E(T 2jT <1),

where, by di¤erentiating (4.3),

R000 =
R00

¡
2 + 4cR00 + 2c2(R00)2 ¡ 2¯2®(®¡R0)¡3(R00)2

¢

2(¯ + cR0)
.

Table 4.1 shows the functions E(T jT <1) and V (T jT <1) for three values
of c when ® = 1 and ¯ = 2. We make the following comments about the
results for this model:

(1) The solution for Á is of the same form under our model as it is under
the classical risk model. Consequently, the form of our expressions for
the …rst two moments of T jT < 1 is the same as under the classical
risk model. See Willmot and Lin (2000) for details.

(2) The formulae in Table 4.1 show that as c increases, both E(T jT <1)
and V (T jT < 1) decrease. As we increase c from 1.1 to 1.5 the
probability or ruin decreases, but if ruin occurs, it is likely to occur
sooner when c = 1:5 than when c = 1:1.
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(3) In the previous section, we derived a general expression for Á(0) in
terms of the positive roots of Lundberg’s fundamental equation. For
this choice of P , Á(0) can also be expressed in terms of the negative
root. We have

Á(0) =
¯2

c2(®+ r1)(®+ r2)
= 1 ¡R=®.

4.2 Mixed exponential individual claims
We now consider the case when P is a mixture of two exponential distribu-
tions. The method of solution for Á also applies for a mixture of more than
two exponential distributions. We have chosen the simplest mixed exponen-
tial distribution simply to illustrate ideas. A full description of the techniques
applicable in the general case is given by Dickson and Gray (1984). Their
arguments for the classical risk model also apply to our model.

Result 4.2 Let

P (x) = 1 ¡ µ expf¡®1xg ¡ (1 ¡ µ) expf¡®2xg, x ¸ 0;

where 0 < µ < 1. Then

Á(u) = º1;±e¡R1;±u + º2;±e¡R2;±u

where ¡R1;±(= ¡R) and ¡R2;± are the negative roots of Lundberg’s funda-
mental equation, and º1;± and º2;± are functions of ± satisfying

º1;±
®k ¡R1;±

+
º2;±

®k ¡R2;±
=

1
®k

(4.4)

for k = 1; 2.

Proof. The proof follows by exactly the same arguments as in the case of
exponential claims. Once again Á satis…es a di¤erential equation whose char-
acteristic equation has the same roots as Lundberg’s fundamental equation.

We can solve for the moments of T following the method in the previous
subsection. We have

d
d±
Á(u) =

2X

i=1

¡
º 0i;± ¡ ºi;±R0i;±u

¢
e¡Ri;±u;
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so that

E(T jT <1) =
1
Ã(u)

2X

i=1

¡
ºi;0R0i;0u¡ º 0i;0

¢
e¡Ri;0u:

Di¤erentiating Lundberg’s fundamental equation with respect to ±, then set-
ting ± = 0 gives

R0i;0 =
2(¯ + cRi;0)

¯2 (µ®1(®1 ¡Ri;0)¡2 + (1 ¡ µ)®2(®2 ¡Ri;0)¡2) ¡ 2c2Ri;0 ¡ 2¯c

for i = 1; 2. By di¤erentiating (4.4) we …nd that
2X

i=1

Ã
º0i;0

®k ¡Ri;0
+

ºi;0R0i;0
(®k ¡Ri;0)2

!
= 0

for k = 1; 2. Thus, we can solve for º01;0 and º 02;0, and hence we can …nd
E(T jT <1).

Expressions for higher moments of T jT < 1 can be found by further
di¤erentiation of Á, Lundberg’s fundamental equation and (4.4).

Example 4.1 Let µ = 0:25, ®1 = 0:25, ®2 = 0:75, ¯ = 2 and c = 1:5. Then
we …nd the following:

R1;0 = 0:0824 R2;0 = 1:2983
R01;0 = 3:0749 R02;0 = 0:1915
º1;0 = 0:7520 º2;0 = 0:0391
º 01;0 = ¡9:3612 º02;0 = 1:5333

This gives

E(T jT <1) =
9:3612 + 2:3124u¡ e¡1:2159u (1:5333 ¡ 0:0075u)

0:7520 + 0:0391e¡1:2159u
.

A graph of this function shows that E(T jT < 1) is approximately linear in
u for u ¸ 5:

4.3 Zero initial surplus
When the initial surplus is zero, we can …nd moments of the time to ruin for
any individual claim amount distribution by di¤erentiating (3.7) with respect
to ±. Consider

³(±) =
q¤(r1) ¡ q¤(r2)
r2 ¡ r1

. (4.5)
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Then

d
d±
³(±) =

¡1
r2 ¡ r1

Z 1

0
(r01e

¡r1x ¡ r02e¡r2x)xq(x)dx

¡q
¤(r1) ¡ q¤(r2)
(r2 ¡ r1)2

(r02 ¡ r01):

If we insert r1 = r1;± in Lundberg’s fundamental equation, then di¤erentiate
with respect to ±, we …nd that

r01;0 =
d
d±
r1;±

¯̄
¯̄
±=0

=
1

c¡ 0:5¯m1
.

Similarly, we …nd that (in an obvious notation)

r02;0 =
2(¯ ¡ cs0)

2¯c¡ 2c2s0 ¡ ¯2
R1
0 xe

¡s0xp(x)dx
.

It therefore follows that

E(T jT <1) =
¯2m1

c2Ã(0)

·
1
s0

µ
r01;0¹1 ¡ r02;0

Z 1

0
xe¡s0xq(x)dx

¶

+
1
s20

(1 ¡ q¤(s0)) (r02;0 ¡ r01;0)
¸

.

We can …nd Ã(0) from formula (3.3) of Dickson and Hipp (1998). Alterna-
tively,

Ã(0) = lim
±!0+

Á(0) =
¯2m1

c2
1 ¡ q¤(s0)
s0

.

Similarly, we …nd that

r001;0 =
2r01;0 ¡ 4c(r01;0)2 + (r01;0)3

¡
2c2 ¡ ¯2m2

¢

2¯

and

r002;0 =
2r02;0 ¡ 4c(r02;0)2 + (r02;0)3

£
2c2 ¡ ¯2

R1
0 xe

¡s0xp(x)dx
¤

2(¯ ¡ cs0)
.
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c E(T jT <1) V (T jT <1) s0
1:1 16:58 4901 2:822
1:3 5:721 245:5 2:430
1:5 3:540 67:45 2:137

Table 4.2: Table Mean and variance of T jT <1, Pareto claims, u = 0

Di¤erentiating (4.5) a second time leads to

E(T 2jT <1) =
¯2m1

c2s0Ã(0)

·
2(r02;0 ¡ r01;0)

s0

µ
r01;0¹1 ¡ r02;0

Z 1

0
xe¡s0xq(x)dx

¶

+(r01;0)
2¹2 ¡ r001;0¹1 + r002;0

Z 1

0
xe¡s0xq(x)dx

¡(r02;0)
2
Z 1

0
x2e¡s0xq(x)dx

+
µ
2(r02;0 ¡ r01;0)2

s20
¡ r

00
2;0 ¡ r001;0
s0

¶
(1 ¡ q¤(s0))

¸
.

Example 4.2 Let p be the Pareto density with parameters 4 and 3, so that
q is the Pareto density with parameters 3 and 3. Given a value for c, we can
solve numerically for s0. Table 4.2 shows the functions E(T jT < 1) and
V (T jT < 1) and the value of s0 for the same three values of c as in Table
4.1, again with ¯ = 2.

5 Concluding remarks
In this paper we have shown that some well-known techniques can be used
to solve for the function Á, of which the function Ã is a special case. In cases
where we can solve explicitly for Á we can then also solve for the moments
of the time to ruin. This di¤ers from the method of Willmot and Lin (2000),
who consider the classical risk model. Their method requires an explicit
solution for the ultimate ruin probability in order to obtain explicit solutions
for the moments of the time to ruin. The approach presented in this paper
also applies to the classical risk model.

In the case of the classical risk model, the function corresponding to Á
satis…es a defective renewal equation - see Gerber and Shiu (1998). The same
is true for a classical risk model perturbed by a di¤usion process - see Gerber
and Landry (1998). However, the techniques presented in these papers do
not seem to lead to a defective renewal equation for Á. Curiously, Á appears
to satisfy an excessive renewal equation. This results from inversion of Á¤.
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However, at least in the special case ± = 0, we know that Á does satisfy a
defective renewal equation.

In the classical risk model, the defective renewal equation for the function
corresponding to Á is the starting point for the analysis by Willmot and
Lin (1999, 2000). This approach allows them to derive results such as the
covariance of the time to ruin and the de…cit at ruin in a uni…ed manner. It
is not apparent that their approach readily extends to our model. However,
if we de…ne Á by (1.2) rather than (1.1), we may be able to derive explicit
solutions to the sort of problems they consider.
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