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On the topographic effects by Stokes’ formula
Abstract: Traditional gravimetric geoid determination re-
lies on Stokes’ formulawith removal and restoration of the
topographic effects. It is shown that this solution is in error
of the order of the quasigeoid-to-geoid difference, which is
mainly due to incomplete downward continuation (dwc)
of gravity from the Earth’s surface to the geoid. A slightly
improved estimator, based on the surface Bouguer gravity
anomaly, is also biased due to the imperfect harmonic dwc
the Bouguer anomaly. Only the third estimator, which uses
the (harmonic) surface no-topography gravity anomaly, is
consistent with the boundary condition and Stokes’ for-
mula, providing a theoretically correct geoid height.
The difference between the Bouguer and no-topography
gravity anomalies (on the geoid or in space) is the “sec-
ondary indirect topographic effect”, which is a necessary
correction in removing all topographic signals.
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1 Introduction
Stokes’ formula (Stokes 1849) is fundamental for gravi-
metric geoid determination. As it requires no masses out-
side the sphere of computation, traditionally (Heiskanen
and Moritz 1967, Ch. 3) the topographic signal on gravity
is removed, or reduced by a compensation mass below or
by a density layer at sea-level (direct topographic effect;
DITE on gravity). Another topographic correction is the
free-air correction, which provides a downward continu-
ation (dwc) of gravity from the Earth’s surface to sea-level.
By subtracting normal gravity at the reference ellipsoid a
Bouguer type of gravity anomaly is obtained. Adding the
so-called “secondary indirect topographic effect” (SITE),
Stokes’ operator yields the regularized geoid or co-geoid,
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and finally, after adding also the primary indirect topo-
graphic effect (PITE) on the geoid, for restoration of the
topographic signal, the geoid height follows.

More or less the same topographic corrections are
applied in one way or another in the modern Remove-
Compute-Restore (RCR) techniques for geoid determina-
tion (e.g., Forsberg 2001; Sideris 1994; Ellmann and Van-
icek 2007, Tziavos and Sideris 2013; Sanso and Sideris
2013). Some methods start from the classical gravity
anomaly on the geoid (as above), while others start from
M.S. Molodensky’s (Molodensky et al. 1962) surface grav-
ity anomaly. In the Least Squares Modification of Stokes’
formulawith Additive Corrections (LSMSA; Sjöberg 2003a,
2003b), the surface anomaly is used, and all topographic
corrections (the DITE, SITE, PITE as well as the dwc) of the
surface gravity anomaly are added as total effects to the
modified Stokes’ formula.

Belowwe will discuss and compare some of the above
principles for topographic corrections in geoid determi-
nation. To make the presentation more transparent, the
methods for applying Stokes’ formula are given without
corrections for atmosphericmasses and ellipsoidal effects.
Also, for simplicity, if not explicitly mentioned, the topo-
graphic mass reductions are considered only for the case
with removal of topography (Bouguer case) without mass
compensation. The theoretical discussion is followed by a
comparison using a simple Earth model.

2 The traditional solution to
Stokes’ formula

2.1 Basic formulas

In classical physical geodesy (Heiskanen and Moritz 1967,
Ch. 3; Sanso and Sideris 2013, Ch. 8) the reduction for the
topographic signal in the gravity anomaly warrants that
the (effect of the) forbidden external topographic masses
has been removed (or restored below sea-level), and the
gravity anomaly, located at sea-level, needs an additional
small correction, the SITE (denoted dgI), to be suitable
for Stokes’ integration on the co-geoid. Finally, by adding
the PITE (denoted dNTI ) the geoid height is obtained. The
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whole computational procedure can be expressed as

N1 =
R

4π𝛾0

∫︁∫︁
σ

S (ψ)∆greddσ + dNTI , (1)

where
dNTI =

VTg
𝛾0

(2)

is the PITE. Here R is the radius of the sphere of com-
putation (which approximates sea level), σ is the unit
sphere, S (ψ) is Stokes’ function with argument ψ being
the geocentric angle between integrationand computation
points, 𝛾0 is normal gravity at the reference ellipsoid, VTg
is the topographic potential on the geoid (denoted by sub-
script g), and the gravity anomaly suitable for Stokes’ in-
tegration becomes:

∆gred = ∆g̃B + dgI . (3)

The SITE is explicitly determined from

dgI = 2𝛾0R dN
T
I , (4)

and ∆g̃B is the estimated simple Bouguer gravity anomaly
at the geoid level, which can be expressed as

∆g̃B = gP − B + F − 𝛾0. (5)

Here gP is the observed gravity at the Earth’s surface point
P, B = 2πGρH is the Bouguer plate attraction (with G and
ρ being the gravitational constant and density of topogra-
phy, respectively) and F = −H(∂𝛾/∂h) ≈ 2𝛾0H/R is the
free-air correction. Here h and H are the geodetic and or-
thometric heights.

[In the classical definition ∆gredis an estimator for the
Bouguer gravity anomaly on the co-geoid. In a modern in-
terpretation with the refined Bouguer correction applied,
it is an estimator for the so-called no-topography gravity
anomaly on the geoid (see below).]

The simple Bouguer gravity anomaly is often im-
proved by replacing it by the refined Bouguer anomaly,
which means (at least theoretically) that the attraction of
all the topographic mass has been removed. Nevertheless,
the main limitation with this approach for geoid determi-
nation is caused by the free-air correction F, which is sup-
posed to represent the dwc of the surface Bouguer gravity
to the geoid. This could only be correct if the topographic
attraction were the only cause of the gravity disturbance.

According to Heiskanen and Moritz (1967, p. 142),
Hoffmann-Wellenhof and Moritz (2005, p. 150) and Sanso
and Sideris (2013, pp. 358 and 364) the correction dgI is
needed to correct the Bouguer gravity anomaly from the
geoid to the co-geoid prior to Stokes’ integration. We will
revise this definition of the SITE in the concluding remarks
(Sect. 7).

2.2 On the error of the traditional solution

The refined Bouguer attraction equals the total topo-
graphic attraction ATP , i.e.

ATP = −
(︂
∂VT
∂r

)︂
P
, (6)

and the refined Bouguer gravity anomaly, corresponding
to the simple Bouguer anomaly of Eq. (5), can be written:

∆g̃Bg = gP − ATP − 𝛾Q + d𝛾 = ∆gBP + d𝛾, (7a)

where ∆gBP is the surface Bouguer gravity anomaly at sur-
face point P, 𝛾Q is normal gravity at normal height (i.e. at
the telluroid), and

d𝛾 = 𝛾Q −
∂𝛾
∂hHP − 𝛾0 ≈ 0. (7b)

Hence, the traditional Bouguer anomaly of Eq. (7a) is prac-
tically equal to the surface Bouguer gravity anomaly.

Introducing the no-topography gravity anomaly (im-
plying that all topographic signal has been removed; see
Sect. 4) on the geoid:

∆gNTg = gg − 𝛾0 − ATg + dgI = ∆gBg + dgI , (8a)

where
∆gBg = gg − 𝛾0 − ATg , (8b)

we see that the traditional Bouguer gravity anomaly of
Eq. (7a) is related to the no-topography anomaly by the re-
lation

∆gred = ∆g̃Bg + dgI = ∆gNTg + Dg, (9a)

or approximately

∆gred ≈ ∆gBP + dgI , (9b)

where
Dg = ∆gBP − ∆gBg . (9c)

Here ∆gBP and ∆gBg are the rigorous Bouguer gravity anoma-
lies at the Earth’s surface and geoid, respectively. Hence,
Eq. (1) can be expressed

N1 ≈
R

4π𝛾0

∫︁∫︁
σ

S (ψ)
(︁
∆gNTg + Dg

)︁
dσ + dNTI

= T
NT
g
𝛾0

+ dN1 +
VTg
𝛾0

= N + dN1, (10a)

where the error dN1 follows from

dN1 =
R

4π𝛾0

∫︁∫︁
σ

S (ψ)Dgdσ

= R
4π𝛾0

∫︁∫︁
σ

S (ψ) ∆gBPdσ −
R

4π𝛾0

∫︁∫︁
σ

S (ψ) ∆gBg dσ

≈ T
NT
P − TNTg

𝛾0
≈ ζ − N + V

T
g − VTP
𝛾0

≈ −∆g
B

𝛾0
H. (10b)
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Also, ζ is theheight anomaly and TNT is theno-topography
disturbing potential (see, e.g., Vanicek et al. 2004 or
Sjöberg 2010) defined by

ζ = TP/𝛾Q and TNT = T − VT , respectively, (11)

and T is the disturbing potential. Eq. (10b) means that the
error of the traditional geoid solution, Eq. (1), is of the or-
der of the difference between the height anomaly and the
geoid height, which is negligible for low elevation topog-
raphy, but may range to several decimetres in high moun-
tains. Onemay argue that this error should decrease when
applying topographic compensation for the topographic
reduction. Theoretically, the compensation has no effect
on a correct application of Stokes’ formula, but it will af-
fect the bias obtained by Eq. (10b) such that

dNc1 ≈ ζ − N + dV
c
g − dV cP
𝛾0

, (12)

where dV c is the difference between the topographic and
compensation potentials. If one uses isostatic or Helmert
compensation, one can expect that the last term of Eq. (12)
is negligible in most cases. Hence, the bias remains on the
same order when using a strategy with topographic com-
pensation.

3 A minor refinement of the
traditional technique

We now start from the surface gravity anomaly defined as

∆gP = gp − 𝛾Q , (13)

where P is a point on the Earth’s surface and Q is the cor-
responding point at normal height (i.e. on the telluroid)
along the ellipsoidal normal through P. The Bouguer cor-
rection is again assumed as the rigorous topographic cor-
rection on gravity:

(dgdir)P = −A
T
P =

(︂
∂VT
∂r

)︂
P

(14)

so that the surface Bouguer anomaly becomes

∆gBP = ∆gP + (dgdir)P . (15)

The dwc of the Bouguer gravity anomaly to the geoid is
performed by a harmonic reduction, denoted ()*, e.g. by
solving Poisson’s integral equation (Heiskanen andMoritz
1967, p. 35; Hofmann-Wellenhof andMoritz 2005, p. 28-29).
[One example where one starts from the surface Bouguer
anomaly and downward continue it in free-air is given

in Sanso and Sideris (2013, Sect. 10.2).] Hence, by this
technique one obtains Stokes’ integral solution with topo-
graphic corrections as

N2 =
R

4π𝛾0

∫︁∫︁
σ

S (ψ)
[︂(︁
∆gB

)︁*
+ dgI

]︂
dσ + dNTI . (16)

Already at this stage we may point out that this solution
is biased, as r∆gB is not harmonic below the topographic
surface, as a topographic signal still remains (see also the
next section). In Sect. 5 we estimate the bias of N2 .

4 A modern approach to Stokes’
formula

Wenow start from the decomposition of the disturbing po-
tential into the NT and topographic potentials (Vanicek et
al. 2004; Vajda et al. 2007):

T = TNT + VT . (17)

Considering also the boundary condition of physical
geodesy (Heiskanen and Moritz 1967, Sect. 2-14):

∆g = −∂T∂r +
∂𝛾
∂h

T
𝛾
≈ −∂T∂r − 2

T
r , (18)

where the approximation is the result of the spherical ap-
proximation of the derivative of 𝛾 w.r.t. the geodetic height
(h), it follows that the surface gravity anomaly can be de-
composed into a NT gravity anomaly (∆gNT) and a topo-
graphic gravity anomaly (∆gT):

∆g = ∆gNT + ∆gT , (19a)

where

∆gNT = −∂T
NT

∂r + ∂𝛾∂h
TNT
𝛾
≈ −∂T

NT

∂r − 2T
NT

r (19b)

and

∆gT = −∂V
T

∂r + ∂𝛾∂h
VT
𝛾
≈ −∂V

T

∂r − 2
VT
r . (19c)

We notice that the topographic correction −∆gT (yield-
ing the NT anomaly) differs from the gravity correction
dgdir (yielding the Bouguer gravity anomaly). This is be-
cause the NT anomaly applies an additional correction
(“the SITE at point level”) for the change of the normal
height due to the removal of the topographic signal. See
also Heiskanen andMoritz (1967, Sect. 8-11) and Hofmann-
Wellenhof and Moritz (2005, Sect. 8-9). The NT anomaly,
but not the Bouguer anomaly, can be correctly downward
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continued from the surface to the geoid as a harmonic
function (when pre-multiplied by r). In this case the solu-
tion to Stokes’ integral becomes:

N3 =
R

4π𝛾

∫︁∫︁
σ

S (ψ)
(︁
∆gNT

)︁*
dσ + dNTI , (20)

The first term on the right side of Eq. (20) is the NT geoid
height:

R
4π𝛾0

∫︁∫︁
σ

S (ψ)
(︁
∆gNT

)︁*
dσ = T

NT
g
𝛾0

= NNT , (21)

so that Eq. (20) becomes

N3 = NNT + dNTI =
TNTg + VTg

𝛾0
= Tg

𝛾0
= N . (22)

This shows that the solution N3 yields the correct geoid
height. Hence, the NT anomaly is a rigorous gravity
anomaly that suits Stokes’ formula in contrast to the
Bouguer gravity anomaly.

This method (with topographic compensation by
Helmert condensation) is used in the UNB geoid model
(Ellmann and Vanicek 2007; Vanicek et al. 2013). Eq. (20)
is also the basis in the LSMSA geoid modelling technique
(Sjöberg 2003aand 2003b),whichhasbeenappliedby sev-
eral authors (e.g., Kiamehr 2006, Ulotu 2009, Ågren et al.
2009 and Abbak et al. 2012).

5 The bias in the refined traditional
solution

The solution N2 of Eq. (16) can be expressed as

N2 = N + R
4π𝛾0

∫︁∫︁
σ

S (ψ) 2R

[︂(︁
VT

)︁*
− VTg

]︂
dσ (23)

where the last term is a bias in this solution. As the topo-
graphic potential is not harmonic inside the topographic
masses, it follows that

(︀
VT

)︀* ≠ VTg and the bias follows.
As shown by Sjöberg (2007)(︁

VT
)︁*
− VTg = 2πGρ

(︂
H2 − 2H3

3R

)︂
, (24)

so that the bias of N2 can be written

dN2 =
Gρ
2𝛾0

∫︁∫︁
σ

S (ψ)
(︂
H2 − 2H3

3R

)︂
dσ, (25)

which can also be expressed in the spectral form as

dN2 =
Gρ
2𝛾0

∞∑︁
n=0

1
n − 1

[︂(︁
H2

)︁
n
+ 2
3R

(︁
H3

)︁
n

]︂
, (26)

where
(︁
Hk

)︁
n
are Laplace harmonics of Hk , k=2,3. This er-

ror can reach several decimetres in the highestmountains,
and it does not change with topographic compensation.

6 An example for a simple Earth
Model

Let us assume that the Earth is a homogeneous sphere of
radius R and massM and a topography with potential VT .
In addition there is a mass homogeneity within the sphere
that generates a space variable potential dV and gravity
ν. Then the geopotential can be written

W = U + dV + VT , (27)

where
U = GM/r (28)

is the chosen normal potential (equal to the potential of
the homogeneous sphere). The disturbing potential be-
comes

T = W − U = dV + VT , (29)

and the PITE and geoid height can be expressed:

dNTI =
V tg
𝛾0

and N = dVg + V
T
g

𝛾0
. (30)

Moreover, from Eqs. (13), (15) and (19a) the surface,
Bouguer and NT gravity anomalies become:

∆gP = ∆νP +∆gTP , ∆gBP = ∆νP −2
VTP
rP

and ∆gNTP = ∆νP .
(31)

where
∆νP = νP − 2

dVP
rP

(32)

is the gravity anomaly caused by themass homogeneity in
the sphere of radius R, which implies that

(dV)* = dVg and (∆ν)* = ∆νg . (33)

Hence, by inserting Eq. (31) into Eqs. (16) and (20) one
arrives at the biased and unbiased geoid solutions

N2 =
R

4π𝛾0

∫︁∫︁
σ

S (ψ)

[︃(︂
∆ν − 2V

T

r

)︂*
+ 2V

T
g
R

]︃
dσ + V

T
g

𝛾0

= N + 1
2π𝛾0

∫︁∫︁
σ

S (ψ)
[︂
VTg −

(︁
VT

)︁*]︂
dσ (34)

and
N3 =

dVg + VTg
𝛾0

= N . (35)
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Finally, we also consider the solution N1 given by Eqs. (1)
- (5). In this case we have

∆g̃B = 𝛾P + νP + gTP − B + F − 𝛾0. (36)

Moreover, if we assume that B is the refined Bouguer at-
traction as in Eq. (6), i.e. B = gTP , and 𝛾P+F ≈ 𝛾g , it follows
that

∆gred ≈ νP + 𝛾g − 𝛾0 + 2
VTg
R ≈ νP +

∂𝛾
∂r N + 2V

T
g
R

= νP − 2
dVg
R = ∆gNTg + νP − νg , (37)

so that Eq. (1) yields the biased solution

N1 =
R

4π𝛾0

∫︁∫︁
σ

S (ψ)∆greddσ +
VTg
𝛾0

≈ N + R
4π𝛾0

∫︁∫︁
σ

S (ψ) (νP − νg) dσ. (38)

7 Concluding remarks
The traditional Bouguer gravity anomaly, Eq. (5), includes
approximations that are too crude for today’s accurate de-
mands on geoid determination. The error of the resulting
geoid solution, of the order of the quasigeoid-to-geoid dif-
ference, is significant in mountainous areas. The bias re-
mains of the same order when adding a compensation
for the topographic reduction. Also, the second estimator,
based on a surface Bouguer gravity anomaly, yields a bi-
ased geoid estimate due to the erroneous harmonic down-
ward continuation of a non-harmonic gravity anomaly.
Only the third geoid estimator, based on the surface NT
gravity anomaly, is unbiased.

The traditional assumption that the SITE is needed
only for geoid determination as a change of normal grav-
ity from the geoid to the co-geoid is too narrow minded.
Instead, the SITE is always needed as a part of the to-
pographic reduction (with or without topographic com-
pensation) of the surface, as well as the classical grav-
ity anomaly to a rigorous gravity anomaly, free from to-
pographic signal. Only such a gravity anomaly is consis-
tent with the boundary condition of physical geodesy and
Stokes’ formula. It is also a requirement for analytical con-
tinuation of the anomaly.

Another view of the SITE is as follows (Vajda et al.
2006). The gravity disturbance is physically an attraction.
Accordingly, it is completely reduced for the topographic
signal by the DITE

(︀
−AT

)︀
, which is the removal of the

topographic attraction. In contrast, the gravity anomaly

is not an attraction, implying that it needs both the DITE
and SITE to fully remove the influence of the topographic
masses. In other words, the direct topographic effect on
the gravity anomaly is the sum of the traditional DITE and
SITE.

Geoid determination is an example of gravity inver-
sion, and for such operations the NT gravity anomaly is
preferred to the Bouguer gravity anomaly. Accordingly, the
isostatic gravity anomaly needs compensations not only
for the DITE but also for the SITE. See Sjöberg (2013).
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