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Abstract. We give numerical, complete invariants for topological orbit equivalence and Kakutani orbit equiva-
lence in a class of substitution systems arising from primitive substitutions whose composition matrices have rational
Perron-Frobenius eigenvalues.

1. Introduction.

In a series of the papers [4], [6], [8], it was shown that several topological orbit structures
of Cantor minimal systems are completely classified in terms of associated dimension groups
which are purely algebraic objects. On the other hand, dimension groups of Cantor minimal
systems arinsing from primitive substitutions turned out in [1, 3] to be accesible in quite con-
crete forms. These results may leads to an attempt to investigate classifications up to topolog-
ical orbit structures of substitution systems arising from primitive substitutions. In the present
paper, we consider those classifications up to two kinds of topological orbit structures, which
are restricted to the class of substitution systems arising from primitive substitutions whose
composition matrices have rational Perron-Frobenius eigenvalues. Such restriction is not es-
sential on the classification of substitution systems concerning topological orbit structures,
i.e., a substitution system arising from a substitution whose composition matrix has a rational
Perron-Frobenius eigenvalue never has the same topological orbit structures as one arising
from a substitution whose composition matrix has an irrational Perron-Frobenius eigenvalue.
In the class of substitution systems arising from substitutions whose composition matrices
have rational Perron-Frobenius eigenvalues, we will find out numerical complete invariants
for orbit equivalence and Kakutani orbit equivalence which are concretely obtained from in-
formation associated with given substitutions.

In Sections 2 through 5, several known facts and results are briefly summarized; we
would like to refer the reader to [9] for details in Section 2; [1] for details in Sections 3 and 4;
[4] for details in Section 5.
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The way of construction of Markov measure in Proposition 6.4 was communicated to the
author by Professor Toshihiro Hamachi, to whom the author would like to show plenty of
appreciation .

2. Cantor minimal systems.

2.1. Stationary odometer systems. We say that (X, φ) is a Cantor minimal system
if X is a Cantor set, i.e., a totally disconnected compact metric space without isolated points;
equivalently, X has a countable basis of clopen (closed and open) sets and has no isolated
points, and furthermore φ is a minimal homeomorphism on X, i.e., every orbit Orbφ(x) :=
{φn(x) : n ∈ Z} of φ is dense in X. A typical example of a Cantor minimal system is the
so-called odometer system. Put X = ∏∞

i=1Xi where Xi = {0, 1, · · · , ni − 1}, ni ≥ 2 and
i ≥ 1. The infinite product space X is a compact abelian group by addition with carries to the
right. We define φ : X → X by addition of (1, 0, 0, · · · ) ∈ X1 × ∏∞

i=2Xi and call (X, φ) the
odometer system with base (n1, n2, n3, · · · ). Then clearly (X, φ) is a uniquely ergodic Cantor
minimal system with the unique Haar measure. In particular, when there exists i0 ≥ 1 such
that ni = ni+1 for all i ≥ i0, we call (X, φ) a stationary odometer system.

2.2. Substitution systems. Let A be a finite set such that |A| ≥ 2 and call it an
alphabet and call elements of A letters. A word on A is a finite (possibly empty) sequence
of letters. The length, as a sequence of letters, of a word u is denoted by |u|. We call a map
σ : A → A+(the set of nonempty words on A) a substitution on A. We extend σ to A+ or
AZ by concatenations in the following way. For u = u1u2 · · · uk ∈ A+,

σ(u) = σ(u1)σ (u2) · · · σ(uk) .
For x = · · · x−2x−1.x0x1x2 · · · ∈ AZ,

σ(x) = · · · σ(x−2)σ (x−1).σ (x0)σ (x1)σ (x2) · · · ,
where the dot means the fixed separation between the −1-st coordinate and the 0-th coordi-
nate. We say that a word u is a factor of a word v = v1 · · · vj , vi ∈ A if u = vl · · · vk for
some 1 ≤ l ≤ k ≤ j . We denote by L(σ ) the language of σ , i.e., the set of words on A which
are factors of σn(a) for some integer n ≥ 1 and letter a ∈ A.

DEFINITION 2.1. (1) The composition matrixM(σ) of a substitution σ on an alpha-
bet A is an A × A matrix whose (a, b)-entry is the number of occurrences of b in σ(a) for
a, b ∈ A.

(2) A substitution σ is said to be of constant length if |σ(a)| is constant for each letter
a.

(3) A substitution σ on A is said to be primitive if there exists some integer n ≥ 1 such
that a occurs in σn(b) for every a, b ∈ A.

A substitution σ is primitive if and only if M(σ) is primitive, i.e., there exists an integer
n ≥ 1 such that every element of M(σ)n is strictly positive.
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Throughout the present paper, we always assume that any substitution σ on an alphabet
A has the following properties:

(A) For every a ∈ A, it holds that limn→∞ |σn(a)| = +∞;
(B) there never exists an integer n0 ≥ 1 such that for any integer n ≥ n0 Ln(σ ) =

Ln+1(σ ), where Ln(σ ) = {u ∈ L(σ ) : |u| = n}.
A substitution σ is said to be aperiodic if Condition (B) is satisfied. These properties ensure
the well-definedness and the non-triviality of a topological dynamical system arising from a
substitution, which is defined in a moment.

Let σ be a substitution on alphabet A. As A × A is a finite set, we can show that there
exist two letters a, b ∈ A and an integer n ≥ 1 such that

(1) b is the last letter of σn(b);
(2) a is the first letter of σn(a);
(3) ba ∈ L(σ ).

Then, there uniquely exists an x ∈ AZ with the following properties:
(1) x−1 = b, x0 = a;
(2) σn(x) = x.

We refer to such an x ∈ AZ as an admissible fixed point of σn. We define

Xσ = {x ∈ AZ : every factor of x belongs to L(σ )} ,
which is well-defined thanks to Property (A). SinceXσ is a closed subset ofAZ and Condition
(B) ensures that Xσ is an infinite set, Xσ is a Cantor set and invariant for the shift T where
T is the full shift on AZ defined by (T x)i = xi+1, i ∈ Z. We denote the restricted action
of T on Xσ by Tσ . The dynamical system (Xσ , Tσ ) is called the substitution system arising
from a substitution σ . When σ is primitive, Xσ = OrbT (x) for any admissible fixed point
x of σn because it holds that L(σ ) = L(σ n) for every n ≥ 1. It is well known that the
substitution system arising from a primitive substitution is minimal and uniquely ergodic, see
[9, Theorems V.2 and V.13].

3. Induced systems and return words.

DEFINITION 3.1. Let σ be a substitution on an alphabet A. We call a word w on A a
return word to b.a if the following properties are satisfied:

(1) bwa ∈ L(σ );
(2) a is the first letter of w and b is the last letter of w;
(3) the word ba never occurs in the word w.

REMARK 3.2. (1) The number of the return words to b.a is finite because every
u ∈ L(σ ) occurs in any admissible fixed point of σn with a bounded gap, see the proof of [9,
Theorem V. 2];

(2) the length of a return word w to b.a represents the first return time to the cylinder
set [b.a] = {x ∈ Xσ | x−1 = b, x0 = a } of the points in the cylinder set [b.wa] = {x ∈
Xσ | x[−1,|w|] = bwa};
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(3) the set of return words to b.a is a ‘circular code’, see [1, Lemma 17].

The following property of a substitution is a significant concept in order to construct a
‘properly ordered Bratteli diagram’ whose ‘Bratteli-Vershik system’ is topologically conju-
gate to a substitution system arising from a given primitive substitution, see [1].

DEFINITION 3.3. A substitution σ on an alphabetA is said to be proper if there exists
an integer n > 0 and two letters a, b ∈ A such that

(1) for every c ∈ A, b is the last letter of σn(c);
(2) for every c ∈ A, a is the first letter of σn(c).

REMARK 3.4. Every proper substitution has a unique admissible fixed point. Every
substitution system arising from a primitive substitution is topologically conjugate to the sub-
stitution system arising from some proper substitution, see [1, Lemma 9] or [3, Lemma 15].

Let σ be a non-proper and primitive substitution on an alphabet A. Then, there exist
letters a, b ∈ A and an integer k ≥ 1 such that

(1) a is the first letter of σk(a);
(2) b is the last letter of σk(b);
(3) ba ∈ L(σ ).

Let {w1, · · · , wr } be the set of return words to b.a. We define a substitution τ on the alphabet
R = {1, · · · , r} by

τ (i) = l1 · · · lj , if σk(wi) = wl1 · · ·wlj .

PROPOSITION 3.5 ([1, Lemma 21]). The substitution τ is a proper, primitive substi-
tution whose substitution system (Xτ , Tτ ) is topologically conjugate to the induced system on
[b.a] by Tσ .

4. Properly ordered Bratteli diagrams associated with substitution systems.

In this section, we would like to describe how we should construct a properly ordered
Bratteli diagram whose Bratteli-Vershik system is topologically conjugate to the substitution
system arising from a given primitive substitution. Such realizations as transformations on
diagrams of substitution systems will be useful in the proof of Proposition 6.4.

4.1. For proper substitutions. Let σ be a proper and primitive substitution on an
alphabet A. Then, we construct an infinite graph (V ,E) called a Bratteli diagram, where
V = ⋃∞

i=0 Vi is the vertex set and E = ⋃∞
i=1 Ei is the edge set, so that

(1) V0 is a singleton;
(2) Vi = A for every i ≥ 1;
(3) for each a ∈ V1, a single edge connects the top vertex v0 to a, where V0 = {v0};
(4) each edge e ∈ Ei connects a vertex in Vi to a vertex in Vi−1 for every i ≥ 2;
(5) there exists an edge inEi which connects a ∈ Vi to b ∈ Vi−1 if and only if b occurs

in σ(a) for every i ≥ 2;
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(6) the number of edges which connects a ∈ Vi to b ∈ Vi−1 is equal to that of occur-
rences of b in σ(a) for every i ≥ 2.
We define maps r, s : E → V by

r(e) = v, s(e) = u for e ∈ Ei if e connects v ∈ Vi+1 to u ∈ Vi .
Furthermore, we introduce a partial order ≤ on the edge set E so that

(7) e1, e2 ∈ E are comparable if and only if r(e1) = r(e2) in the same Vi ;
(8) if σ(a) = s(e1)s(e2) · · · s(ek), then e1 < e2 < · · · < ek , where {e1, e2, · · · , ek} =

r−1{a}, a ∈ Vi , i ≥ 2.
We call the infinite graph Bσ = (E, V,≤) with partial order a properly ordered Bratteli
diagram associated with a substitution σ . We define

XBσ =
{
(e1, e2, · · · ) ∈

∞∏
i=1

Ei : r(ei) = s(ei+1) for every i ≥ 1

}
,

which is topologized so as to be a Cantor set by declaring that the collection of all the cylinder
sets [e1, e2, · · · , ek] defined as follows is an open basis:

[e1, e2, · · · , ek] = {(f1, f2, · · · ) ∈ XBσ : fi = ei for every 1 ≤ i ≤ k}
where ei ∈ Ei for every 1 ≤ i ≤ k and r(ei) = s(ei+1) for every 1 ≤ i < k. Now, we define
the so-called Vershik map VBσ on XBσ as follows. If x = (x1, x2, · · · ) ∈ XBσ has an integer
i ≥ 1 such that xi is not maximal in r−1r(xi) we define VBσ (x) = (x ′

1, x
′
2, · · · , x ′

i , xi+1,

xi+2, · · · ) where x ′
i is the immediate successor of xi in r−1r(xi) and x ′

j is the unique minimal

edge in r−1(s(x ′
j+1)) for every 1 ≤ j < i. For x = (x1, x2 · · · ) ∈ XB whose entry xi is

maximal in r−1r(xi) for every i ≥ 1, we define VBσ (x) to be the element in XBσ whose
entries are all minimal. The map VBσ : XBσ → XBσ turns out to be a homeomorphism
which is topologically conjugate to (Xσ , Tσ ), see [1, Proposition 20]. We call (XBσ , VBσ ) the
Bratteli-Vershik system associated with Bσ .

4.2. For non-proper substitutions. Let σ be a non-proper and primitive substitution
on an alphabet A, and let letters a, b ∈ A, an integer k ≥ 1, {w1, · · · , wr } and τ be as in
Section 3. From the previous subsection, we immediately obtain a properly ordered Bratteli
diagram Bτ , whose associated Bratteli-Vershik system (XBτ , VBτ ) is topologically conjugate
to (Xτ , Tτ ). As (Xτ , Tτ ) is topologically conjugate to an induced system on [b.a] by Tσ , we
define a properly ordered Bratteli diagram Bσ associated with a substitution σ , so that asso-
ciated Bratteli-Vershik system (XBσ , TBσ ) is topologically conjugate to (Xσ , Tσ ), by means
of changing the single edge connecting a vertex i ∈ R in the first level to the top vertex into
|wi | edges. This operation corresponds to the so-called tower construction in ergodic theory.
A partial order on the edge set of Bσ , except the edge set of the first level, keeps that of Bτ
and it is trivial how a partial order on the first level edge set of Bσ should be given. In the
same way as in the previous subsection, VBσ is defined on the infinite path space XBσ . For
either case when a given substitution σ is proper or non-proper, we can say that
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THEOREM 4.1 ([1, Proposition 20]). (XBσ , VBσ ) is topologically conjugate to
(Xσ , Tσ ).

5. Dimension groups of Cantor minimal systems.

Let (X, φ) be a Cantor minimal system. We denote by C(X,Z) the abelian group of in-
teger valued continuous functions onX with pointwise addition and define C(X,Z+) = {f ∈
C(X,Z)|f ≥ 0},Bφ = {f ◦φ−f : f ∈ C(X,Z)} andMφ = {φ-invariant regular Borel prob-
ability measure}.

DEFINITION 5.1. The dimension group modulo the coboundary subgroup of a Cantor
minimal system (X, φ) is the pair of an abelian group K0(X, φ) and its distinguished subset
K0+(X, φ) which are defined by

K0(X, φ) = C(X,Z)/Bφ; K0+(X, φ) = C(X,Z+)/Bφ .

DEFINITION 5.2. The dimension group modulo the infinitesimal subgroup of a Cantor
minimal system (X, φ) is the pair of an abelian group K̃0(X, φ) and its distinguished subset
K̃0+(X, φ) which are defined by

K̃0(X, φ) = C(X,Z)/ Inf(X, φ); K̃0+(X, φ) = C(X,Z+)/ Inf(X, φ) ,

where Inf(X, φ) = {f ∈ C(X,Z) : ∫
X f dµ = 0 for every µ ∈ Mφ}.

Let (G,G+) be a dimension group arising from a Cantor minimal system (X, φ) in the
sense of Definitions 5.1 or 5.2. We say that an element u of G+ is an order unit if for every
a ∈ G+ there is an integer n ≥ 1 such that a ≤ nu, which means nu − a ∈ G+. Let
[χX] be the equivalence class of the characteristic function χX taking value 1 everywhere
on X. We call [χX] the distinguished order unit of G. For dimension groups (G,G+) and
(H,H+) arising from Cantor minimal systems in the sense of Definitions 5.1 or 5.2, a group
isomorphism ϑ : G → H is called an order isomorphism if ϑ(G+) = H+.

A state p on a dimension group
(
K0(X, φ),K0+(X, φ)

)
is a group homomorphism from

K0(X, φ) to R such that p(K0+(X, φ)) ⊂ R+ and p([χX]) = 1. Denote by S the set of states
on (K0(X, φ),K0+(X, φ)). Then, there exists a bijection betweenMφ and S which is defined
so that each µ ∈ Mφ is mapped to the state defined by [f ] 	→ ∫

f dµ for each f ∈ C(X,Z),
see [6, Theorem 5.5]. The inverse map of the bijection sends each p ∈ S to the unique
µ ∈ Mφ which satisfies that µ(A) = p([χA]) for any clopen set A ⊂ X.

Let (X, φ) be a Cantor minimal system with a unique invariant probability measure µ.
As seen above, the unique state p on K0(X, φ) is defined by p([f ]) = ∫

X f dµ for each
f ∈ C(X,Z). Then, we have that

ker(p) =
{
[f ] ∈ K0(X, φ) :

∫
X

f dµ = 0

}
= Inf(X, φ)/Bφ .

Since Bφ is a subgroup of Inf(X, φ), it follows that K0(X, φ)/ ker(p) is order isomorphic to
K̃0(X, φ) by an order isomorphism sending [χX] + ker(p) to [χX] ∈ K̃0(X, φ). i.e., there
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exists a group isomorphism ϑ : K0(X, φ)/ ker(p) → K̃0(X, φ) such that ϑ(K0+(X, φ)/
ker(p)) = K̃0+(X, φ) and ϑ([χX] + ker(p)) = [χX]. It also follows from the homomorphism
theorem thatK0(X, φ)/ ker(p) is order isomorphic to Im(p) = 〈µ(E) : E ⊂ X is clopen〉 by
an order isomorphism sending [χX] + ker(p) to 1. Finally, we have that

LEMMA 5.3. If (X, φ) is a uniquely ergodic Cantor minimal system with a unique
φ-invariant probability measure µ, then (K̃0(X, φ), K̃0+(X, φ), [χX]) is order isomorphic to
(〈µ(E) : E ⊂ X is clopen〉, 〈µ(E) : E ⊂ X is clopen〉 ∩ R+, 1) by an order isomorphism
preserving the order units.

6. Results.

The following version of the Perron-Frobenius Theorem is necessary for the subsequent
arguments.

THEOREM 6.1 (a portion of [7, Theorem 4.2.3]). LetA be a nonnegative and primitive
matrix. Then, A has a positive eigenvector vA with corresponding eigenvalue λA > 0 which
is simple. Any positive eigenvector of A is a positive multiple of vA.

We call λA the Perron-Frobenius eigenvalue ofA and vA a Perron-Frobenius eigenvector
of A. The following is a known fact.

LEMMA 6.2. Assume that a nonnegative, integral and primitive matrix M has a ra-
tional eigenvalue λ. Then, λ is integral and λ > 1 if λ is the Perron-Frobenius eigenvalue of
M .

PROOF. Put λ = p/q where p, q > 0 are relatively prime integers. Let f (x) =
xs + as−1x

s−1 + · · ·+ a1x+ a0 be the characteristic polynomial ofM(σ), where s is the size
of M . Since f (λ) = 0,

ps + as−1p
s−1q + as−2p

s−2q2 + · · · + a1pq
s−1 + a0q

s = 0 .

Therefore, we have that

(as−1p
s−1 + as−2p

s−2q + · · · + a1pq
s−2 + a0q

s−1)q = −ps .
Since as−1p

s−1 +as−2p
s−2q+· · ·+a1pq

s−2 +a0q
s−1 is integral, q divides ps . This forces

that p = 1 and hence λ is integral.
Furthermore, suppose that λ is the Perron-Frobenius eigenvalue of M . To the contrary,

assume that λ = 1. Then, it follows from the Perron-Frobenius Theorem that there exists a
vector v > 0 with Mv = v. Since M is primitive, there exists an integer k ≥ 1 such that each
entry ofMk is a strictly positive integer. Hence, vi = ∑s

j=1M
k
ij vj > vi for 1 ≤ i ≤ r , which

is a contradiction. �
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6.1 Invariant probability measure.

LEMMA 6.3. Let σ be a non-proper, primitive substitution on an alphabetA and λ be
the Perron-Frobenius eigenvalue of M(σ). Let k ≥ 1 and τ be as in Section 3. Then, the
Perron-Frobenius eigenvalue of M(τ) is λk .

PROOF. Let {w1, · · · , wr } and R as in Section 3 and put s = |A|. Define an R × A

matrix S by

Si,c = the number of occurrences of c in wi, for every i ∈ R and c ∈ A .
It is verified that each (i, c)-entry of bothM(τ)S and SM(σ)k are the number of occurrences
of c in σk(wi) and we hence have that M(τ)S = SM(σ)k . Let v ∈ Rs+ be a right Perron-
Frobenius eigenvector of M(σ) whose entries are all strictly positive and put u = Sv ∈ Rr+.
Then, we have that

M(τ)u = M(τ)Sv = SM(σ)kv = λkSv = λku .

It follows from the Perron-Frobenius Theorem that λk is the Perron-Frobenius eigenvalue of
M(τ). �

PROPOSITION 6.4. Let σ be a primitive substitution and λ be the Perron-Frobenius
eigenvalue of M(σ). Then,

(1) when σ is proper, it follows that

〈µ(E) : E ⊂ Xσ is clopen〉 = 〈αa/(d · λn) : a ∈ A, n ≥ 0〉,
where µ is the unique Tσ -invariant probability measure and α = (αa)a∈A ∈ Ns is a left
Perron-Frobenius eigenvector ofM(σ) and d = ∑

a∈A αa;
(2) when σ is non-proper, it follows that

〈µ(E) : E ⊂ Xσ is clopen〉 = 〈βi/(d · λkn) : i ∈ R, n ≥ 0〉 ,
where k, R, βi and d are defined as follows: let k, {w1, · · · , wr }, R and τ be as in Section 3
and let β = (βi)i∈R ∈ Nr be a left Perron-Frobenius eigenvector of M(τ). Then, we define
d = ∑

i∈R |wi |βi .
PROOF. As the Bratteli-Vershik system associated with a properly ordered Bratteli di-

agram Bσ constructed in Section 4 is topologically conjugate to (Xσ , Tσ ) and each clopen
subset of XBσ is a finite union of cylinder sets, it is enough to know the measures of cylinder
sets of XBσ evaluated by the unique VBσ -invariant probability measure in order to compute
〈µ(E) : E ⊂ X is clopen〉.

First, we shall consider the case when a given primitive substitution σ is proper. Let Bσ
be as in Subsection 4.1, and put s = |A|. Suppose that there is a sequence p(1), p(2), p(3), · · ·
of row vectors in Rs+ which satisfies that∑

a∈A
p(1)a = 1 and p(k+1)M(σ) = p(k) for every k ≥ 1 . (∗)
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It follows from these conditions that there exists a finitely additive probability measure ν on
the algebra C generated by all the cylinder sets ofXBσ , which is exactly the algebra of clopen
sets, such that

ν([e1, e2, · · · , ek]) = p
(k)
r(ek)

for every cylinder set [e1, e2, · · · , ek] ⊂ XBσ .

Since it holds that ν([e1, e2, · · · , ek]) = ν([e′1, e′2, · · · , e′k]) for any cylinder sets
[e1, e2, · · · , ek] and [e′1, e′2, · · · , e′k] with r(ek) = r(e′k), the finitely additive measure ν is
VBσ -invariant. Then, by the Hopf extension theorem, we can uniquely extend ν to a VBσ -
invariant probability measure on the Borel σ -algebra of XBσ . The observation in the first
paragraph shows that

〈µ(E) : E ⊂ Xσ is clopen〉 = 〈ν(E) : E ⊂ XBσ a cylinder set〉. (∗∗)

Now, we construct the so-called ‘Markov measure’ ν on the Borel σ -algebra of XBσ
which is invariant under VBσ . Define an ‘initial distribution’ {pa : a ∈ A} by pa = αa/d and
a ‘transition probability’ {pa,b : a, b ∈ A} by pa,b = 1/λ · αb/αa . Then, we define

ν([e1, e2, · · · , ek]) = pr(e1)pr(e1),r(e2) · · ·pr(ek−1),r(ek)

= αr(e1)

d

αr(e2)

λ · αr(e1)

αr(e3)

λ · αr(e2)

· · · αr(ek)

λ · αr(ek−1)

= αr(ek)

d · λk−1 for every cylinder set [e1, e2, · · · , ek] ⊂ XBσ .

The sequence {p(k)}k≥1 of row vectors defined by p(k)a = αa/(d ·λk−1) for each a ∈ A and k ≥
1 satisfies Property (∗) and, as we observed above, we consequently obtain a VBσ -invariant
probability measure ν such that ν([e1, e2, · · · , ek]) = αr(ek)/(d · λk−1) for every cylinder set
[e1, e2, · · · , ek] ⊂ XBσ . It follows from (∗∗) that

〈µ(E) : E ⊂ Xσ is clopen〉 =
〈 αa

d · λi : i ≥ 0, a ∈ A
〉
.

This completes the proof for the case when a given substitution σ is proper.
Next, we consider the case when σ is non-proper. Let Bσ be as in Subsection 4.2 and

k ≥ 1 be as in Section 3. Define an initial distribution {pi : i ∈ R} by pi = βi/d and a
transition probability {pi,j : i, j ∈ R} by pi,j = 1/λk · βj/βi . Then, we define

ν([e1, e2, · · · , el]) = pr(e1)pr(e1),r(e2) · · ·pr(el−1),r(el)

= βr(el)

d · λk(l−1)
for every cylinder set [e1, e2, · · · , el] ⊂ XBσ .

The sequence {p(l)}l≥1 of row vectors defined by p(l)i = βi/(d · λk(l−1)) for each i ∈ R and
l ≥ 1 satisfies that∑

i∈R
|wi |p(1)i = 1 and p(l+1)M(τ) = p(l) for every l ≥ 1
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because of Lemma 6.3 and, by the same argument as in the above case when σ is proper, we
hence obtain a VBσ -invariant probability measure ν on the Borel σ -algebra of XBσ such that

ν([e1, e2, · · · , el]) = βr(el)/(d · λk(l−1)) for every cylinder set [e1, e2, · · · , el] ⊂ XBσ .

Finally, we have that

〈µ(E) : E ⊂ Xσ is clopen 〉 =
〈

βi

d · λkn : i ∈ R, n ≥ 0

〉
.

This completes the proof. �

DEFINITION 6.5. Let σ be a primitive substitution on an alphabet A whose composi-
tion matrix M(σ) has a rational Perron-Frobenius eigenvalue λ. We define a subset Γ (σ) of
N by

Γ (σ) = {factor of d · λn for some n ≥ 1} ,
where a natural number d is defined as in Proposition 6.4.

REMARK 6.6. Obviously, there is no ambiguity for the definition of d in the case when
a given substitution σ is proper in the above definition. On the other hand, in the case when a
given substitution σ is non-proper, it is verified from the following corollary that Γ (σ) does
not depend on choices of a, b ∈ A and k ≥ 1 although d depends on them.

COROLLARY 6.7. Let σ be a primitive substitution whose composition matrix M(σ)
has a rational Perron-Frobenius eigenvalue λ. Then,

〈µ(E) : E ⊂ Xσ is clopen〉 = {n/m : n ∈ Z,m ∈ Γ (σ)} ,
where µ is the unique Tσ -invariant probability measure.

PROOF. First, suppose that σ is proper. Let α and d be as in (1) of Proposition 6.4.
Since λ is an integer, it follows from Proposition 6.4 that

〈µ(E) : E ⊂ Xσ is clopen〉 = 〈αa/m : a ∈ A,m ∈ Γ (σ)〉 .
Since the greatest common divisor of {αa : a ∈ A} is one, there exists an integer na for each
a ∈ A, such that

∑
a∈A naαa = 1. We have therefore that

〈αa/m : a ∈ A,m ∈ Γ (σ)〉 = {n/m : n ∈ Z,m ∈ Γ (σ)} ,
and that

〈µ(E) : E ⊂ Xσ is clopen〉 = {n/m : n ∈ Z,m ∈ Γ (σ)} .
In the same way, we can obtain a proof for the case when σ is non-proper. �

LEMMA 6.8 ([5, Lemma 2.4]). Let (X, φ) be a Cantor minimal system. Suppose that
f ∈ C(X,Z) satisfy 0 <

∫
f dµ < 1 for every µ ∈ Mφ . Then, there exists a clopen subset A

in X such that
∫
f dµ = µ(A) for every µ ∈ Mφ . In other words f − χA ∈ Inf(X, φ).
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COROLLARY 6.9. Let σ be a primitive substitution whose composition matrix M(σ)
has a rational Perron-Frobenius eigenvalue λ and µ be the unique invariant regular Borel
probability measure for (Xσ , Tσ ). Then,

{µ(E) : E ⊂ Xσ is clopen} = {n/m : 0 ≤ n ≤ m,m ∈ Γ (σ)} .

PROOF. To see that {µ(E) : E ⊂ Xσ is clopen } = {n/m : 0 ≤ n ≤ m,m ∈ Γ (σ)},
suppose that n/m ∈ {n/m : 0 ≤ n ≤ m,m ∈ Γ (σ)}. We may assume without loss of
generality that 0 < n/m < 1. As it is the map [f ] 	→ ∫

f dµ that implements the order
isomorphism between K̃0(Xσ , Tσ ) and 〈µ(E) : E ⊂ Xσ is clopen〉, there exists an f ∈
C(Xσ ,Z) such that

∫
f dµ = n/m. From Lemma 6.8, we conclude therefore that there exists

a clopen set E ⊂ Xσ such that µ(E) = ∫
f dµ = n/m. The converse inclusion holds from

Corollary 6.7. �

6.2. Invariant for orbit equivalence.

DEFINITION 6.10. We say that two Cantor minimal systems (X1, φ1) and (X2, φ2)

are (topologically) orbit equivalent if there exists a homeomorphism F : X1 → X2 such that
F(Orbφ1(x)) = Orbφ2(F (x)) for each x ∈ X1.

The next theorem is a portion of the theorem in [4].

THEOREM 6.11 ([4, Theorem 2.2]). Let (Xi, φi) be Cantor minimal systems (i =
1, 2). The following are equivalent:

(1) (X1, φ1) and (X2, φ2) are orbit equivalent.
(2) The dimension groups (K̃0(Xi, φi), K̃

0+(Xi, φi)), i = 1, 2, are order isomorphic
under an order isomorphism preserving the distinguished order units.

THEOREM 6.12. Let σ and σ ′ be primitive substitutions both of whose composition
matrices have rational Perron-Frobenius eigenvalues. Then,

(1) (Xσ , Tσ ) and (Xσ ′, Tσ ′) are orbit equivalent if and only if Γ (σ) = Γ (σ ′);
(2) (Xσ , Tσ ) is orbit equivalent to a stationary odometer system.

PROOF. (1) If (Xσ , Tσ ) and (Xσ ′ , Tσ ′) are orbit equivalent, then it follows from
Lemma 5.3 and Theorem 6.11 that 〈µ(E) : E ⊂ Xσ is clopen〉 and 〈µ′(E) : E ⊂ Xσ ′ is
clopen 〉 are order isomorphic by a group isomorphism preserving 1. It also follows from
Corollary 6.7 that 〈µ(E) : E ⊂ Xσ is clopen〉 and 〈µ′(E) : E ⊂ Xσ ′ is clopen〉 are sub-
groups of Q. A group isomorphism ϑ from a subgroup of Q to a subgroup of Q such that
ϑ(1) = 1 turns out to be only the identity map. We hence have the equality

〈µ(E) : E ⊂ Xσ is clopen〉 = 〈µ′(E) : E ⊂ Xσ ′ is clopen〉 .

Therefore, Corollary 6.7 shows that

{n/m : n ∈ Z,m ∈ Γ (σ)} = {n/m : n ∈ Z,m ∈ Γ (σ ′)} .
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Therefore, for an arbitrary m ∈ Γ (σ), there exist integers 0 < n′ ≤ m and m′ ∈ Γ (σ ′) such
that 1/m = n′/m′. This implies that m = m′/n′ ∈ Γ (σ ′) because m′ ∈ Γ (σ ′). Finally, we
conclude that Γ (σ) = Γ (σ ′).

To show the converse implication, suppose that Γ (σ) = Γ (σ ′). Then, it follows that
{n/m : n ∈ Z,m ∈ Γ (σ)} = {n/m : n ∈ Z,m ∈ Γ (σ ′)}. This together with Corollary 6.7
shows that

〈µ(E) : E ⊂ Xσ is clopen〉 = 〈µ′(E) : E ⊂ Xσ ′ is clopen〉 .
This together with Lemma 5.3 shows that K̃0(Xσ , Tσ ) and K̃0(Xσ ′, Tσ ′) are order isomorphic
by an isomorphism preserving the distinguished order units. From Theorem 6.11, we conclude
therefore that (Xσ , Tσ ) and (Xσ ′ , Tσ ′) are orbit equivalent.

(2) It follows from Lemma 5.3 and Corollary 6.7 that K̃0(Xσ , Tσ ) is order isomorphic
to {n/(d · λk) : n ∈ Z, k ≥ 1} for some integers d, λ > 1 by an isomorphism sending the
distinguished order unit of K̃0(Xσ , Tσ ) to 1. On the other hand, the dimension group modulo
the infinitesimal subgroup of the stationary odometer system (X, φ) with base (d, λ, λ, · · · )
is order isomorphic, by an isomorphism mapping the distinguished order unit of K̃0(X, φ) to
1, to {n/(d · λk) : n ∈ Z, k ≥ 1}. These together with Theorem 6.11 imply that (Xσ , Tσ ) is
orbit equivalent to the stationary odometer system (X, φ). �

COROLLARY 6.13. If σ is a primitive substitution of constant length, then (Xσ , Tσ )
is orbit equivalent to a stationary odometer system.

PROOF. By the assumption, λ := |σ(a)| is constant for any a ∈ A. Since the Perron-
Frobenius eigenvalue of M(σ) is not less than the smallest row sum and not bigger than the
largest row sum, λ is the Perron-Frobenius eigenvalue of M(σ). By (2) of Theorem 6.12,
(Xσ , Tσ ) turns out to be orbit equivalent to a stationary odometer system. �

EXAMPLE 6.14. There exist non-proper, primitive substitutions σ and σ ′ such that
(1) M(σ) = M(σ ′);
(2) the Perron-Frobenius eigenvalue of M(σ) is rational;
(3) (Xσ , Tσ ) and (X′

σ , T
′
σ ) are not orbit equivalent.

We define two non-proper substitutions σ and σ ′ on the alphabet {a, b} by σ(a) = abb,
σ(b) = aaa; σ ′(a) = bab, σ ′(b) = aaa. Then it follows that Tσ is orbit equivalent to
the stationary odometer system with base (5, 3, 3, · · · ) and so is Tσ ′ to the one with base
(2, 5, 3, 3, · · · ).

THEOREM 6.15. For arbitrary integers d > 1 and λ > 1, there exists an aperiodic,
proper and primitive substitution σ of constant length such that

Γ (σ) = {factor of d · λnfor some n ≥ 1} .
PROOF. Take an integer m ≥ 1 such that λm > d . Take the d-dimensional integral

vector v =t (λm, λm, · · · , λm, (λm − d + 1)λm). Let M be the integral d × d matrix whose
(i, j)-entry is the κj−1(i)-th entry of v for 1 ≤ i, j ≤ d where κ is the permutation on
{1, 2, · · · , d} defined by κ(d) = 1 and κ(i) = i + 1 if 1 ≤ i < d . Every row sum of M is
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λ2m. Let σ be one of substitutions on the alphabet {1, 2, · · · , d} which satisfy the following
conditions:

(i) M(σ) = M;
(ii) 1 is the first letter of σ(i) for each i ∈ {1, 2, · · · , d};

(iii) d is the last letter of σ(i) for each i ∈ {1, 2, · · · , d};
(iv) each of the words 11 and 12 occurs in some σ(i).

It is easily seen that the substitution σ is proper, primitive and of constant length. It also
follows from Theorem 6.12 that

Γ (σ) = {factor of d · λ2mn for some n ≥ 1} = {factor of d · λn for some n ≥ 1} .
In the rest of the proof, we have to see the aperiodicity of σ . We have to show that
limn→∞ |Ln(σ )| = +∞. Since λm �= (λm − d + 1)λm, i �= j implies σ(i) �= σ(j)

and also implies σk(i) �= σk(j) for every integer k ≥ 1. Since σk(2) �= σk(1) and
|σk(1)σ k(1)| = |σk(1)σ k(2)| for every integer k ≥ 1, there exists a strictly increasing se-
quence {ni}∞i=1 of positive integers such that |Lni (σ )| < |Lni+1(σ )| for every integer i ≥ 1.
This completes the proof. �

The following is the converse of Corollary 6.13.

COROLLARY 6.16. For arbitrary integers d > 1 and λ > 1, there exists a proper,
primitive and aperiodic substitution of constant length whose associated substitution system
is orbit equivalent to the odometer system with base (d, λ, λ, · · · ).

PROOF. It follows from Theorem 6.15 that there exists a proper, primitive and aperiodic
substitution σ of constant length such that

Γ (σ) = {factor of d · λn for some n ≥ 1} .
Then, the same argument in the proof of (2) of Theorem 6.12 shows that (Xσ , Tσ ) is orbit
equivalent to the odometer system with base (d, λ, λ, · · · ). �

COROLLARY 6.17. For any primitive substitution σ whose composition matrixM(σ)
has a rational Perron-Frobenius eigenvalue, there exists a proper, primitive substitution σ ′ of
constant length whose associated substitution system (Xσ ′ , Tσ ′) is orbit equivalent to (Xσ , Tσ ).

PROOF. Denote by λ the Perron-Frobenius eigenvalue ofM(σ). Then, Γ (σ) = {factor
of d · λn for some n ≥ 1} for some integer d > 0. It follows from Theorem 6.15 that there
exists a proper, primitive and aperiodic substitution σ ′ of constant length such that Γ (σ) =
Γ (σ ′). Therefore, Theorem 6.12 shows that (Xσ , Tσ ) and (Xσ ′ , Tσ ′) are orbit equivalent. �

Therefore, at least at the level of orbit equivalence, the class of substitution systems
whose associated composition matrices have rational Perron-Frobenius eigenvalues coincides
with the class of substitution systems arising from substitutions of constant length. In general,
we cannot say that for a primitive substitution σ whose composition matrix has a rational
Perron-Frobenius eigenvalue, there exists a primitive substitution of constant length whose
associated substitution system is topologically conjugate to (Xσ , Tσ ). This is verified from the
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following example: Let σ be a primitive substitution on the alphabet {a, b} defined by σ(a) =
ababa, σ(b) = abb. If there exists a primitive substitution ζ of constant length with length
λ whose associated substitution system (Xζ , Tζ ) is topologically conjugate to (Xσ , Tσ ), then
the set of eigenvalues in the measurable sense of Tσ is necessarily Z/hZ × Z[λ−1] for some
integer h ≥ 1, [9, Theorem VI. 15]. But the only eigenvalue of Tσ is 1, i.e., Tσ is weakly
mixing, [9, Corollary VI. 23] and so this is a contradiction because weak mixing is invariant
for measurable conjugacy, thus topological conjugacy. However, the author does not know
whether at the level of strong orbit equivalence the counterpart to Corollary 6.17 holds, or
not.

6.3. Invariant for Kakutani orbit equivalence.

DEFINITION 6.18. Let (Xi, φi) be Cantor minimal systems (i = 1, 2). We say that
(X1, φ1) and (X2, φ2) are Kakutani orbit equivalent if there exist two Kakutani equivalent,
i.e., having conjugate induced systems, Cantor minimal systems (Yi , ψi) (i = 1, 2) such that
(Xi, φi) is orbit equivalent to (Yi, ψi), respectively for i = 1, 2.

THEOREM 6.19 ([4, Proposition 2.7]). Let (Xi, φi) be Cantor minimal systems (i =
1, 2). Then (X1, φ1) is Kakutani orbit equivalent to (X2, φ2) if and only if the dimension
groups K̃0(Xi, φi), i = 1, 2, are order isomorphic by an order isomorphism not necessarily
preserving the distinguished order units.

LEMMA 6.20. If (X1, φ1) and (X2, φ2) are Kakutani orbit equivalent Cantor mini-
mal systems, then there exist clopen subsets A1 ⊂ X1 and A2 ⊂ X2 such that the induced
transformations (φ1)A1 and (φ2)A2 are orbit equivalent.

PROOF. Let (Y1, ψ1) and (Y2, ψ2) be Kakutani equivalent Cantor minimal systems
such that (Xi, φi) is orbit equivalent to (Yi, ψi) for each i = 1, 2. There exist clopen sub-
sets Bi of Yi for each i = 1, 2 such that the induced transformations (ψ1)B1 and (ψ2)B2 are
topologically conjugate. Since φ1 and ψ1 are orbit equivalent, there exists a homeomorphism
F1 : X1 → Y1 such that F1(Orbφ1(x)) = Orbψ1(F1(x)) for all x ∈ X1. Put A1 = F−1

1 (B1)

and define a homeomorphism F ′
1 : A1 → B1 by x 	→ F1(x). Then, for all x ∈ A1,

F ′
1(Orb(φ1)A1

(x)) = F1(Orbφ1(x) ∩ A1)

= F1(Orbφ1(x)) ∩ F1(A1)

= Orbψ1(F1(x)) ∩ B1

= Orb(ψ1)B1
(F1(x))

= Orb(ψ1)B1
(F ′

1(x)) ,

which shows the orbit equivalence between (φ1)A1 and (ψ1)B1 . The same procedure as above
shows the existence of a clopen set A2 ⊂ X2 such that (φ2)A2 and (ψ2)B2 are orbit equivalent.
We conclude therefore that φA1 and φA2 are orbit equivalent. �
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LEMMA 6.21. Let (X, φ) be a Cantor minimal system, µ be a φ-invariant probability
measure and A be a nonempty clopen subset of X. Then,

〈µ(E) : E ⊂ X is clopen〉 = 〈µ(E) : E ⊂ A is clopen〉 .
PROOF. It is enough to show that µ(E) ∈ 〈µ(E) : E ⊂ A is clopen〉 for any clopen

set E ⊂ X. Let E be an arbitrary clopen subset of X. Since φ is minimal, there exists an
n0 ≥ 1 such that X = ⋃n0−1

i=0 φi(A). Put A0 = A,A1 = φ(A) \ A0, A2 = φ2(A) \ (A0 ∪
A1), · · · , An0−1 = φn0−1(A) \ ⋃n0−2

i=0 Ai , which compose a partition of X into clopen sets

and it follows that E = ⋃n0−1
i=0 (Ai ∩ E) is a disjoint union. Put Ei = φ−i (Ai ∩ E) for each

0 ≤ i < n0 which is a clopen subset of A. It follows from the above argument that

µ(E) =
n0−1∑
i=0

µ(Ai ∩ E) =
n0−1∑
i=0

µ(Ei) .

This completes the proof. �

COROLLARY 6.22. Let (X, φ) be a uniquely ergodic Cantor minimal system with a
unique invariant probability measure µ. Let A be a nonempty clopen subset of X and µA be
the unique φA-invariant probability measure. Then,

〈µA(E) : E ⊂ A is clopen〉 = µ(A)−1〈µ(E) : E ⊂ X is clopen〉 .
PROOF. The unique φA-invariant probability measure µA is defined by µA(E) =

µ(E)/µ(A) for a measurable set E ⊂ A. Therefore, we have that

〈µA(E) : E ⊂ A is clopen〉 = 〈µ(E)/µ(A) : E ⊂ A is clopen〉
= µ(A)−1〈µ(E) : E ⊂ X is clopen〉 .

The last equality follows from Lemma 6.21. �

LEMMA 6.23. Let M be a nonnegative, integral and primitive matrix and λ be the
Perron-Frobenius eigenvalue of M . Then, there exists a right Perron-Frobenius eigenvector
of M whose entries are all rational if and only if λ is rational.

PROOF. Suppose that v is a right Perron-Frobenius eigenvector of M whose entries
are all rational. Since Mv = λv,

∑
i vi ∈ Q and (Mv)i ∈ Q for each i, we see that λ =∑

i (Mv)i/
∑
i vi ∈ Q.

Conversely, suppose that λ is rational. A right Perron-Frobenius eigenvector v of M
is exactly a vector satisfying (λI − M)v = 0. Since the eigenspace corresponding to the
eigenvalue λ is one dimensional, we obtain that rank(λI −M) = s − 1 where s is the size of
M . At last, there exist rational numbers ri , 1 ≤ i ≤ s − 1, such that vi = rivs and it follows
that v =t (r1, · · · , rs−1, 1) is a right Perron-Frobenius eigenvector of M whose entries are all
rational. �

THEOREM 6.24 ([7, Theorem 4.5.12]). Let M be a nonnegative, primitive matrix
with Perron-Frobenius eigenvalue λ. Let v,w be right, left Perron-Frobenius eigenvectors
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ofM , i.e., vectors v,w > 0 such thatMv = λv, wM = λw, and normalized so that wv = 1.
Then, for each i and j,

(Mn)i,j = [(viwj )+ ρi,j (n)]λn,
where ρi,j (n) → 0 as n → ∞.

From this theorem, it is verified that the vector (limn→∞
∑
j (M

n)i,j /λ
n)i is a right

Perron-Frobenius eigenvector of M .

COROLLARY 6.25. Let M be a nonnegative, primitive matrix with Perron-Frobenius
eigenvalue λ. If strictly positive vector v satisfies that Mkv = λkv for some k ≥ 1, then
Mv = λv.

PROOF. Suppose that Mkv = λkv for some k ≥ 1. It follows from Theorem 6.24 and
the Perron-Frobenius Theorem that there exists a constant c > 0 such that

vi = c lim
n→∞

∑
j (M

kn)i,j

λkn
for every i .

It is easily seen that

lim
n→∞

∑
j (M

kn)i,j

λkn
= lim
n→∞

∑
j (M

n)i,j

λn
.

We conclude therefore that v is a right Perron-Frobenius eigenvector of M . �

PROPOSITION 6.26. Let σ, σ ′ be primitive substitutions, λ and λ′ be the Perron-
Frobenius eigenvalues of M(σ) and M(σ ′), respectively. If (Xσ , Tσ ) and (Xσ ′ , Tσ ′) are
Kakutani orbit equivalent, then λ and λ′ are both rational or both irrational simultaneously.

PROOF. Suppose that (Xσ , Tσ ) and (Xσ ′ , Tσ ′) are Kakutani orbit equivalent and λ is
rational. Letµ andµ′ be the unique invariant probability measures of Tσ and Tσ ′ , respectively.
Lemma 6.20 shows that there exist clopen sets A ⊂ Xσ and A′ ⊂ Xσ ′ such that the induced
transformations (Tσ )A and (Tσ ′)A′ are orbit equivalent. It thus follows that

〈µA(E) : E ⊂ A is clopen〉 = 〈µ′
A′(E) : E ⊂ A′ is clopen〉 ,

where µA and µ′
A′ are the unique invariant probability measures of (Tσ )A and (Tσ ′)A′ , respec-

tively, which are defined by µA(E) = µ(E)/µ(A) for a measurable E ⊂ A and µ′
A′(E) =

µ(E)/µ(A′) for a measurable E ⊂ A′. It thus follows from Corollary 6.22 that

µ(A)−1〈µ(E) : E ⊂ Xσ is clopen〉 = µ′(A′)−1〈µ′(E) : E ⊂ Xσ ′ is clopen〉 .
It follows from the assumption that µ′(A′)−1〈µ′(E) : E ⊂ Xσ ′ is clopen〉 ⊂ Q. Since
Proposition 6.4 shows the existence of real numbers r ′, d ′ > 0, integers k > 0 (k = 1 if σ
is proper; k is as in (2) of Proposition 6.4 if σ is non-proper.) and n′ ≥ 0 with µ′(A′) =
r ′/(d ′ ·λ′kn′

), it follows also from Proposition 6.4 that there exist real numbers αi , 1 ≤ i ≤ i0,
such that

µ′(A′)−1〈µ′(E) : E ⊂ Xσ ′ is clopen〉 = 〈αi/λ′kn : 1 ≤ i ≤ i0, n ≥ −n′〉 .
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Since 〈αi/λ′kn : 1 ≤ i ≤ i0, n ≥ −n′〉 ⊂ Q, we have that αi ∈ Q for every
1 ≤ i ≤ i0 and therefore that λk ∈ Q. It follows from Lemma 6.23 that there exists a
right Perron-Frobenius eigenvector v > 0 of M(σ ′)k whose entries are all rational. Then,
Corollary 6.25 shows that v is a right Perron-Frobenius eigenvector of M(σ ′). Finally, it
follows again from Lemma 6.23 that λ′ is rational. �

LEMMA 6.27. Let (X1, φ1) and (X2, φ2) be Cantor minimal systems with unique in-
variant probability measures µ1 and µ2, respectively. If there exist nonempty clopen sets
Ai ⊂ Xi, i = 1, 2, such that the induced transformations (φ1)A1 and (φ2)A2 are orbit
equivalent, then (X1, φ1) and (X2, φ2) are Kakutani orbit equivalent.

PROOF. Assume that there exist nonempty clopen sets Ai ⊂ Xi , i = 1, 2, such that
(φ1)A1 and (φ2)A2 are orbit equivalent. Let νi , i = 1, 2, be the unique invariant probabil-
ity measures of (φ1)A1 and (φ2)A2 , respectively, defined by νi(E) = µi(E)/µi(Ai) for a
measurable E ⊂ Ai , for i = 1, 2. It follows from the assumption that

〈ν1(E) : E ⊂ A1 is clopen〉 = 〈ν2(E) : E ⊂ A2 is clopen〉 . (∗∗∗)

Here, we have from Lemma 6.21 that

〈νi(E) : E ⊂ Ai is clopen〉 = µi(Ai)
−1〈µi(E) : E ⊂ Xi is clopen〉 ,

for each i = 1, 2. Therefore, it follows from (∗∗∗) that

µ1(A1)
−1〈µ1(E) : E ⊂ X1 is clopen〉 = µ2(A2)

−1〈µ1(E) : E ⊂ X2 is clopen〉 .

Hence, we conclude that there exists an r > 0 such that

〈µ1(E) : E ⊂ X1 is clopen〉 = r〈µ2(E) : E ⊂ X2 is clopen〉

and that 〈µ1(E) : E ⊂ X1 is clopen〉 and 〈µ2(E) : E ⊂ X2 is clopen〉 are order isomorphic.
At last, it follows from Lemma 5.3 and Theorem 6.19 that (X1, φ1) and (X2, φ2) are Kakutani
orbit equivalent. �

THEOREM 6.28. Let σ and σ ′ be primitive substitutions both of whose composition
matrices have rational Perron-Frobenius eigenvalues λ and λ′, respectively. Then, (Xσ , Tσ )
and (Xσ ′, Tσ ′) are Kakutani orbit equivalent if and only if {prime factor of λ} = {prime factor
of λ′}.

PROOF. Suppose that (Xσ , Tσ ) and (Xσ ′, Tσ ′) are Kakutani orbit equivalent. It follows
from Lemma 6.20 and Corollary 6.22 that there exist nonempty clopen sets A ⊂ Xσ and
A′ ⊂ Xσ ′ such that

µ(A)−1〈µ(E) : E ⊂ Xσ is clopen〉 = µ′(A′)−1〈µ′(E) : E ⊂ Xσ ′ is clopen〉 .
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It follows from Corollary 6.7 that there exist integersm0, n0,m1 and n1 such that

µ(A)−1〈µ(E) : E ⊂ Xσ is clopen〉 =
{
λn0

m0

m

λn
: m ∈ Z, n ≥ 0

}
,

µ′(A′)−1〈µ′(E) : E ⊂ Xσ ′ is clopen〉 =
{
λ′n1

m1

m

λ′n : m ∈ Z, n ≥ 0

}
.

Since µ(A)−1〈µ(E) : E ⊂ Xσ is clopen〉 = µ′(A′)−1〈µ′(E) : E ⊂ Xσ ′ is clopen〉, it
follows that {

λn0

m0

m

λn
: m ∈ Z, n ≥ 0

}
=

{
λ′n1

m1

m

λ′n : m ∈ Z, n ≥ 0

}
.

Therefore, for every integer n ≥ 0 there exist integersm(n) and k(n) such that

1

λ′n = λn0

m0
· m(n)
λk(n)

.

We hence have that m0λ
k(n) = λn0 ·m(n) · λ′n for every n ≥ 0 and that λ′n|m0λ

k(n) for every
n ≥ 0. Let p > 1 be a prime factor of λ′ and take n ≥ 0 so that m0 < pn. Then, we neces-
sarily have that p divides λ, which concludes that {prime factor of λ′} ⊂ {prime factor of λ}.
The converse inclusion can be shown in the same way.

To show the converse implication of the theorem, suppose that {prime factor of λ} =
{prime factor of λ′}. From Corollary 6.7, there exist integers d, d ′ > 0 such that

〈µ(E) : E ⊂ Xσ is clopen〉 = {n/(d · λm) : n ∈ Z,m ≥ 0} ,
〈µ′(E) : E ⊂ Xσ ′ is clopen〉 = {n/(d ′ · λ′m) : m ∈ Z, n ≥ 0} .

It follows from Corollary 6.9 that there exist clopen sets A ⊂ Xσ and A′ ⊂ Xσ ′ with µ(A) =
1/d and µ′(A′) = 1/d ′. It follows from Corollary 6.22 that

〈µA(E) : E ⊂ A is clopen〉 = {n/λm : n ∈ Z,m ≥ 0} ,
〈µ′
A′(E) : E ⊂ A′ is clopen〉 = {n/λ′m : n ∈ Z,m ≥ 0} ,

where µA and µA′ are the unique invariant probability measures of the induced transforma-
tions (Tσ )A and (Tσ ′)A′ , respectively. It follows from the assumption that 〈µA(E) : E ⊂
A is clopen〉 = 〈µ′

A′(E) : E ⊂ A′ is clopen〉. This shows the orbit equivalence between
(Tσ )A and (Tσ ′)A′ and it finally follows from Lemma 6.27 that Tσ and Tσ ′ are Kakutani orbit
equivalent. �

EXAMPLE 6.29. There are two proper and primitive substitutions whose composition
matrices have a common irrational Perron-Frobenius eigenvalue but their associated substi-
tution systems are not Kakutani orbit equivalent. We shall define substitutions σ and σ ′ by
σ(a) = abac, σ(b) = ca, σ(c) = aaccc; σ ′(a) = aaabb, σ ′(b) = aab respectively. Their
composition matrices are respectively

M(σ) =
⎛
⎝2 1 1

1 0 1
2 0 3

⎞
⎠ and M(σ ′) =

(
3 2
2 1

)
,
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whose common Perron-Frobenius eigenvalue is 2 + √
5. The left Perron-Frobenius eigen-

vectors of M(σ) and M(σ ′) are given by ((
√

5 − 1)/2, (−√
5 + 3)/2) and (

√
5/5, (5 −

2
√

5)/5,
√

5/5), respectively. A direct computation shows that

K̃0(Xσ , Tσ ) ∼= Z +
√

5

5
Z and K̃0(Xσ ′ , Tσ ′) ∼= Z + 3 − √

5

2
Z

whose order structures and order units are both inherited from (R,R+, 1). We suppose that
G = Z + αZ and H = Z + βZ for irrational numbers α and β. The necessary and sufficient
condition forG andH to be order isomorphic is that α is equivalent to β, i.e., for the continued
fraction expansions [a0.a1, a2, · · · ] of α and [b0.b1, b2, · · · ] of β there exist integersm,n ≥ 1
such that ai+m = bi+n for every integer i ≥ 0 where the dot means the separation between the
integral part and the fractional part, see [2, Theorem 3.2]. The continued fraction expansions
of

√
5/5 and (3−√

5)/2 are respectively [0.2, 4, 4, · · · ] and [0.2, 1, 1, · · · ]. So the dimension
groups Z + √

5/5Z and Z + (3 − √
5)/2Z are not order isomorphic and Tσ and Tσ ′ are not

Kakutani orbit equivalent from Theorem 6.19.

6.4. Examples.
(1) (Thue-Morse sequence) Put A = {a, b} and define a primitive substitution σ on

A by σ(a) = ab, σ (b) = ba. It follows that a is the first letter of σ 2(a), b is the last letter of
σ 2(b) and ba ∈ L2(σ ). Then, the return words to b.a are w1 = abb, w2 = ab, w3 = aabb

andw4 = aab. PutR = {1, 2, 3, 4} and define a proper primitive substitution τ as in Section 3
by τ (1) = 1234, τ (2) = 124, τ (3) = 13234 and τ (4) = 1324. The composition matrix of τ
is given by

M(τ) =

⎛
⎜⎜⎝

1 1 1 1
1 1 0 1
1 1 2 1
1 1 1 1

⎞
⎟⎟⎠ ,

whose left Perron-Frobenius eigenvector β ∈ N4 defined as in (2) of Proposition 6.5 is given
by (1, 1, 1, 1). We have that d = 12, where d is defined as in (2) of Proposition 6.5. Since the
Perron-Frobenius eigenvalue of M(σ) is 2, we have that

Γ (σ) = {3m · 2n : m ∈ {0, 1}, n ≥ 0} .
(2) (Rudin-Shapiro sequence) Put A′ = {a, b, c, d} and define a primitive substitu-

tion σ ′ by σ ′(a) = ab, σ ′(b) = ac, σ ′(c) = db and σ ′(d) = dc. It follows that a is the
first letter of σ ′2(a) and b is the last letter of σ ′2(b) and ba ∈ L2(σ

′). Then, the return words
to b.a are w1 = ab, w2 = acabdb, w3 = acdcacab, w4 = acabdbdcdb, w5 = abdb,
w6 = acdcacdcdbdcacab, w7 = abdbdcdbdcacdcdb, w8 = acdcacdcdbdcacdcdb and
w9 = abdbdcdbdcacab. Put R′ = {1, 2, 3, 4, 5, 6, 7, 8, 9} and define a proper and primitive
substitution τ on R′ as in Section 3 by τ (1) = 12, τ (2) = 1345, τ (3) = 1632, τ (4) = 13475,
τ (5) = 145, τ (6) = 168932, τ (7) = 147985, τ (8) = 168985 and τ (9) = 147962. The
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composition matrix of τ is given by

M(τ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0
1 1 1 0 0 1 0 0 0
1 0 1 1 1 0 1 0 0
1 0 0 1 1 0 0 0 0
1 1 1 0 0 1 0 1 1
1 0 0 1 1 0 1 1 1
1 0 0 0 1 1 0 2 1
1 1 1 1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whose left Perron-Frobenius eigenvector β ∈ N9 defined as in (2) of Proposition 6.5 is given
by (4, 2, 2, 2, 2, 1, 1, 1, 1). Therefore, we have that d = 128 = 27, where d is defined as in
(2) of Proposition 6.5. Since the Perron-Frobenius eigenvalue of M(σ ′) is 2, we have that

Γ (σ ′) = {2n : n ≥ 0} .
We hence conclude that (Xσ , Tσ ) and (Xσ ′ , Tσ ′) are not orbit equivalent but Kakutani orbit
equivalent.
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