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ON THE TOPOLOGY AND INDEX OF MINIMAL

SURFACES

Otis Chodosh & Davi Maximo

Abstract

We show that for an immersed two-sided minimal surface in
R3, there is a lower bound on the index depending on the genus
and number of ends. Using this, we show the nonexistence of
an embedded minimal surface in R3 of index 2, as conjectured
by Choe [4]. Moreover, we show that the index of an immersed
two-sided minimal surface with embedded ends is bounded from
above and below by a linear function of the total curvature of the
surface.

1. Introduction

A minimal surface in R
3 is a hypersurface that is a critical point of

the area functional. As a direct consequence of the maximum principle,
minimal surfaces of R3 must be non-compact. Hence, it is natural to
study minimal surfaces of R3 under some weaker finiteness assumption,
such as finite total curvature or finite Morse index.

Classically, the only known embedded minimal surfaces of finite total
curvature were the plane and catenoid, but in 1982, Costa [7] found
such an example with genus one and three ends (he only showed it
was embedded outside of a compact set, subsequently Hoffman–Meeks
[19] showed that it was embedded). Later, Hoffman–Meeks [20] con-
structed embedded examples with three ends and any positive genus.
More recently, there have been many new minimal surfaces with finite
total curvature constructed by various authors: for example, Kapouleas
[22] and Traizet [43] have developed (quite distinct) desingularization
techniques, while Weber–Wolf [47] have established a Teichmüller the-
oretical approach.

As shown by Fischer-Colbrie [11] and Gulliver–Lawson [16, 15], finite
Morse index is actually equivalent to finite total curvature and implies
that the surface is stable outside of a compact set. Work of Osserman
[33] concerning minimal surfaces of finite total curvature then implies
that finite index minimal surfaces are conformal to compact Riemann
surfaces punctured at finitely many points and the Gauss map extends

Received September 30, 2014.

399



400 O. CHODOSH & D. MAXIMO

meromorphically across the punctures. Moreover, the index of a surface
only depends on the Gauss map: it is equal to the number of eigenval-
ues less than two of the Laplacian induced by the (singular) metric of
constant curvature one, pulled back from S

2 by the Gauss map (see the
discussion in [29]).

There are a few examples of embedded minimal surfaces whose index
is known:

• The plane has index 0.
• The catenoid has index 1.
• The Costa–Hoffman–Meeks surfaces of genus g ≥ 1 have index
2g + 3 [32, 30].

On the other hand, it does not seem that the index of any of the more
recent embedded examples (as discussed above) is known.

The following bound is our main result. Below, we will demonstrate
how it implies that there are no embedded minimal surfaces in R

3 of
index 2.

Theorem 1. Suppose that Σ → R
3 is an immersed complete two-

sided minimal surface of genus g and with r ends. Then

index(Σ) ≥
2

3
(g + r)− 1.

This improves on the bound index(Σ) ≥ 2g
3 proven by Ros in [36,

Theorem 17]. We note that Choe has proven an interesting lower bound
for the index depending on a geometric quantity he terms the “vision
number” [4]. Moreover, Grigor’yan–Netrusov–Yau have argued in [14,
p. 206] that one may bound the index of an embedded surface from
below by a linear function of the number of the ends.

Our proof of Theorem 1 is inspired by the one used in [36] as well
as ideas of Miyaoka [28]. For minimal hypersurfaces in R

n, n ≥ 4,
the relationship between ends, harmonic functions/forms, and index
has been investigated in [34, 42, 3, 24]. A crucial aspect in the proof
of Theorem 1 is computing the dimension of a space of weighted L2-
harmonic forms; see [17] for results concerning this question in higher
dimensions.

Assuming “small index” or “simple topology,” several results classi-
fying finite total curvature minimal surfaces have been obtained:

• The plane is the unique two-sided stable (index 0) minimal sur-
faces, as proven independently by Fischer-Colbrie–Schoen [12], do
Carmo–Peng [8], and Pogorelov [35].

• There are no one-sided stable minimal surfaces. Partial results
were obtained by Ross [39] and the full statement was proven by
Ros [36].

• The catenoid and Enneper’s surface are the unique two-sided min-
imal surfaces of index 1, by work of López–Ros [26].
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• The plane is the unique embedded minimal surface of finite index
with one end, by [40, Proposition 1] and the maximum principle.

• The catenoid is the unique embedded finite index minimal surface
with two ends, as proven by Schoen [40].

• The plane and catenoid are the unique embedded finite index min-
imal surface of genus zero, as proven by López–Ros [27].

• The Hoffman–Meeks deformations of the Costa surface are the
only embedded finite index minimal surfaces with three ends and
genus one, by work of Costa [5, 6].

• The Chen–Gackstatter surface is the unique two-sided minimal
surface of genus one and with total curvature at least −8π as
shown by López [25] (see also [46]).

Using Theorem 1, we are able to show the non-existence of embedded
minimal surfaces of index 2. Such result was conjectured to be true by
Choe [4, Open Problem (v)]. We learned of it from David Hoffman.

Theorem 2. There is no embedded minimal surface in R
3 with index

equal to 2.

Proof. If index(Σ) = 2, then Theorem 1 implies that

g + r ≤
9

2
.

As Σ has finite total curvature, an embedded end is asymptotic either
to a plane or catenoid by [40, Proposition 1]. As such, if r = 1, then the
maximum principle implies that Σ is a plane, which is stable. Moreover,
by [40, Theorem 3], if r = 2, then Σ is a catenoid, which has index 1.
As such r ≥ 3, so the only possibilities are (g, r) ∈ {(0, 3), (1, 3), (0, 4)}.
However, [27] rules out the genus zero possibilities: the only embedded,
complete minimal surfaces in R

3 with finite total curvature and genus
zero are the plane and catenoid. Hence, it remains to rule out the
possibility g = 1, r = 3. By [6], such a surface must be a member of the
Hoffman–Meeks deformation family of the Costa surface (cf. [18, §4]).
However, [4] (cf. [18, Corollary 7.2]) shows that each member of this
family has index at least 3.1 q.e.d.

Remark 3. It is interesting to observe that a similar argument in the
index 0 and 1 case allows us to show that an embedded minimal surface
of index 0 must be the plane, while an embedded minimal surface of
index 1 must be the catenoid. As such, this gives an alternative proof
(in the case of embedded surfaces) of the well known results [12, 8, 26].
See also [4, §4].

1By [32], the Costa surface has index equal to 5. It is not clear to us exactly how
the index behaves under deformations of the flat end; fortunately for our purposes, it
is sufficient to notice that the symmetries of the deformation family force the index
to be at least 3.
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Remark 4. Without requiring embeddedness, there are several more
examples of minimal surfaces whose index is known:

• Enneper’s surface has index 1.
• The Chen–Gackstatter surface has index 3 [29, Corollary 15], as
does the Richmond surface [44].

• The Jorge–Meeks surface [21, §5] with r ≥ 3 ends has index 2r−3
[29, Corollary 15].

• More generally, if the Gauss map of a minimal surface Σ has
branching values which all lie on an equator of S2, then index(Σ) =
2d− 1, where d is the degree of the Gauss map [29, Corollary 15].

• There is an immersed minimal surface of genus zero with four
flat ends which has index 4, studied by Kusner [23], Rosenberg–
Toubiana [37, 38] and Bryant [1, 2]; see [29, Corollary 26] and
[18, p. 88].

As pointed out to us by David Hoffman, Theorem 2 and the list of exam-
ples of the index of minimal surfaces raises several interesting questions:

• Is 2 the only number which is not the index of a two-sided minimal
surface?

• Can there exist an embedded minimal surface of nonzero even
index?

• Can there exist an embedded minimal surface of index 3?

Pertaining to the first question, note that all odd numbers (as well as
0 and 4) are known to be attained as the index of a two-sided minimal
surface. Moreover, Choe [4, Theorem 7] and Nayatani [31, Corollary
3.3] have independently shown the non-existence of immersed minimal
surfaces with index 2 and genus zero.

Finally, because our lower bound in Theorem 1 depends linearly on
the genus and number of ends, we are able to establish a linear inequality
between the index and finite total curvature of minimal surfaces with
embedded ends. That such a lower bound should hold was conjectured
by Grigor’yan–Netrusov–Yau [14, p. 203] and some partial results along
these lines were proven there. Our bound should also be compared to
the remark by Fischer-Colbrie in [11, p. 132] that there should be an
explicit relation between the index and geometry of the Gauss map.

Theorem 5. For Σ a two-sided minimal surface in R
3 with embedded

ends and finite total curvature, we have that

−
1

3
+

2

3

(
−

1

4π

ˆ
Σ
κ

)
≤ index(Σ) ≤ (7.7)

(
−

1

4π

ˆ
Σ
κ

)
.

Proof. The upper bound has been proven in [45] (we note that more
refined upper bounds have been proven by Ejiri–Micallef [9]). The lower
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bound follows by combining Theorem 1 with the Jorge–Meeks relation

−
1

4π

ˆ
Σ
κ = g + r − 1,

between the total curvature and Euler characteristic of such a surface
[21] (see also [13] and [18, (2.21)]). q.e.d.

It would be interesting to remove the requirement in Theorem 5 that
Σ has embedded ends. This would require understanding how the spin-
ning of the ends (cf. [18, Definition 2.3]) affects the index. For example,
observe that Theorem 1 gives the useless bound index(Σ) ≥ −1

3 for
Enneper’s surface, precisely because it does not take into account the
behavior of the end.

1.1. Outline of the paper. In Section 2, we collect several well known
facts about minimal surfaces of finite index. We also construct the cutoff
function which is used repeatedly in the sequel. Then, in Section 3, we
show that one may find weighted eigenfunctions for the Jacobi operator,
which will allow us to plug the test functions constructed in Section 4
into the second variation quadratic form; by allowing functions with
slower decay, we can find good test functions (coming from harmonic
1-forms) which correspond to the ends of the minimal surface, not just
the topology in the compact region. Finally, in Section 5, we prove
Theorem 1.

Acknowledgements. We are very grateful to David Hoffman for bring-
ing the index two problem to our attention, as well as sharing with us
his insight and enthusiasm. We acknowledge useful and enjoyable dis-
cussions with Rafe Mazzeo, Mario Micallef, and Rick Schoen concerning
this work and thank Simon Brendle and Brian White for their interest
and encouragement. We additionally thank the referee for a careful
reading and several useful remarks. O.C. was partially supported by
the National Science Foundation Graduate Research Fellowship under
Grant No. DGE-1147470. D.M. thanks Fernando Codá Marques for his
mentorship and the Simons Foundation for its support by way of the
AMS-Simons Travel Grant.

2. Finite index minimal surfaces

For Σ an immersed two-sided minimal surface in R
3 with 0 ∈ Σ,

we consider the stability operator defined by L := −Δ + 2κ and the
associated quadratic form

Q(φ, φ) :=

ˆ
Σ
|∇φ|2 + 2κφ2.

Here, κ is the Gauss curvature of Σ. Throughout, we will denote by
BR(0) = {x ∈ R

3 : |x| < R} the extrinsic ball of radius R and BΣ
R(0) =
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{x ∈ Σ : dΣ(x, 0) < R} the intrinsic ball of radius R. Furthermore, C
will denote a constant which is allowed to change from line to line.

Definition 6. For R > 0, we define the index of Σ∩BΣ
R(0), denoted

by index(Σ∩BΣ
R(0)), to be the number of negative eigenvalues for L on

Σ ∩BΣ
R(0) with Dirichlet boundary conditions. We define the index of

Σ to be

index(Σ) := lim
R→∞

index(Σ ∩BΣ
R(0)),

and say that Σ has finite index if this limit is finite.

See [29, 18] for further discussion of finite index minimal surfaces. We
will always assume that Σ has finite index throughout this paper. Recall
that if Σ is a two-sided immersed minimal surface of finite index in R

3,
then it has finite total curvature [11]. Hence, as a consequence of [33],
we have that Σ is conformally equivalent to a compact Riemann surface
Σ of genus g, punctured at finitely many points p1, . . . , pr; moreover,
the Gauss map extends across the punctures as a meromorphic map. In
particular, such a Σ is properly immersed. This implies that when Σ
is known to have finite index, then we may also compute the index by
taking the limit of extrinsic balls (we only consider R in the dense set
so that Σ is transverse to the sphere SR(0)):

index(Σ) = lim
R→∞

index(Σ ∩BR(0)).

Additionally, we have that if E is an end of Σ, then the homothetic
rescaling 1

R
E converges, on compact subsets of R

3 \ {0}, to a single
plane through the origin, taken with finite multiplicity. We note that
this implies that the Gauss curvature of Σ decays at least quadratically,
i.e., |κ| ≤ C(1 + |x|2)−1. By the Gauss equations, this also shows that

the second fundamental form h satisfies |h| ≤ C(1 + |x|2)−
1

2 . Here, and
throughout the rest of the paper, we will use |x| to denote the Euclidean
norm of x.

Lemma 7. For every R > 0 sufficiently large, we may find ϕR ∈
C2
c (Σ) and C > 0 independent of R so that:

1) 0 ≤ ϕR ≤ 1,
2) suppϕR ⊂ B2R(0) ∩ Σ,
3) ϕR ≡ 1 on BR(0) ∩ Σ,
4) |∇ϕR| ≤

C
R
,

5) |ϕRΔϕR| ≤
C
|x|2

on Σ ∩ (B2R(0) \BR(0)).

Proof. First, define ϕ(x) to be a smooth function on R
3 which sat-

isfies 0 ≤ ϕ ≤ 1, suppϕ ⊂ B2(0) and ϕ ≡ 1 on B1(0). Then, let
ϕR(x) := ϕ( x

R
) restricted to Σ. Properties (1)–(3) follow automat-

ically from this definition. Property (4) follows by scaling and the
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fact that ϕ is a smooth function of bounded support. Finally, (5) fol-
lows from a scaling argument, along with the fact each component of
1
R
Σ ∩ (B3(0) \B 1

2

(0)) converges to a plane through the origin, possibly

with multiplicity (which, in particular, implies that it has uniformly
bounded second fundamental form in the annular region). q.e.d.

3. Weighted spaces

Fix δ > 0. We define the weighted space L2
−δ(Σ) to be the completion

of smooth compactly supported functions with respect to the norm

‖f‖2
L2
−δ

(Σ) :=

ˆ
Σ
(1 + |x|2)−δf2,

where |x| is the Euclidean distance. This norm clearly comes from an
inner product, making L2

−δ into a Hilbert space. We also will consider

the space of 1-forms ω on Σ with |ω| ∈ L2
−δ; for clarity of notation, we

denote the Hilbert space of such forms by L 2
−δ(Σ). It is convenient to

write L 2(Σ) instead of L 2
−0(Σ) for the space of 1-forms whose norm is

in L2(Σ).
The natural eigenfunction equation associated to the stability opera-

tor in the weighted space L2
−δ is

Δf − 2κf + λ(1 + |x|2)−δf = 0.

We will refer to these as (−δ)-eigenfunctions of the stability operator.
The following Proposition is an extension of [11, Proposition 2] to the
weighted case. It was inspired by the fact that the index of a qua-
dratic form associated to a Schrödinger operator taken with respect to
weighted and unweighted L2-spaces is the same; cf. [41] and the refer-
ences therein.

Proposition 8. Suppose that Σ has finite index k = index(Σ) in
the usual L2-sense; see Definition 6. Fixing δ ∈ (0, 1), there exists
a k-dimensional subspace W of L2

−δ(Σ) with an L2
−δ-orthornormal ba-

sis of (−δ)-eigenfunctions for the stability operator f1, . . . , fk. Letting
the associated eigenvalues be λ1, . . . , λk, each λi < 0 and, moreover,
Q(φ, φ) ≥ 0 for φ ∈ C∞0 (Σ) ∩W⊥, where W⊥ ⊂ L2

−δ(Σ) is the L2
−δ(Σ)

orthogonal complement of W .

Proof. We will adapt the arguments in [11, Proposition 1], except it
is convenient to work in extrinsic (rather than intrinsic) balls, because
of the weighted setting. First, note that there is R0 so that Σ \BR0

(0)
is stable. We claim that (taking R0 larger if necessary) for R > R0 we
may find a function η which satisfies

η ≡ 0 on BR(0),

η ≡ 1 on Σ \B2R(0),
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has |∇η| ≤ 6/R, and so that |∇η|2 ≤ 4(1−η2)
R2 on B2R(0). As remarked

above, the only difference between our setting and [11, p. 124] is that we
are using extrinsic, rather than intrinsic balls. To find such a function,
choose η̃ ∈ C∞(R3) with η̃1 ≡ 0 on B1(0), η̃1 ≡ 1 on R

3 \ B2R(0) and
|∇R3 η̃1| ≤ 2. Then, we may define η̃ := 1− (1− η̃1)

2, and η(x) := η̃( x
R
).

The desired gradient bounds on η now follows by a blow-down argument
exactly as in Lemma 7.

Rearranging the stability inequality as in [11, p. 125], we obtain, for
any φ ∈ C∞c (Σ),
(1)

−

ˆ
Σ
2κ(ηφ)2 ≤

ˆ
Σ
|∇(ηφ)|2 =

ˆ
Σ
η2|∇φ|2 + 2ηφ 〈∇η,∇φ〉+ φ2|∇η|2,

and

(2)

ˆ
BR(0)

|∇φ|2 ≤ Q(φ, φ) +

(
8

R2
+ sup

B2R(0)
2|κ|

)
︸ ︷︷ ︸

:=CR

ˆ
B2R(0)

φ2.

In particular, we have that

−CR(1 +R2)δ‖φ‖2
L2
−δ

(Σ) ≤ −CR

ˆ
Σ
φ2 ≤ Q(φ, φ).

Choose R1 ≥ R sufficiently large so that k = index(Σ) = index(Σ ∩
Bρ(0)) for ρ > R1. Let {f1,ρ, . . . , fk,ρ} and {λ1,ρ, . . . , λk,ρ} denote the
L2
−δ(Bρ(0))-Dirichlet eigenfunctions and eigenvalues respectively of an

L2
−δ(Bρ(0))-orthonormal basis, constructed by minimizing the Rayleigh

quotient

Q(φ, φ)/‖φ‖2
L2
−δ (Σ∩Bρ(0))

(note that there are exactly k such eigenfunctions since the L2 and L2
−δ

norms are equivalent in Bρ). It is not hard to check that this implies
that

Δfi,ρ − 2κfi,ρ + λi,ρ(1 + |x|
2)−δfi,ρ = 0.

Because max{λ1,ρ, . . . , λk,ρ} is decreasing with ρ, there exists ε0 > 0 so
that λi,ρ < −ε0. On the other hand, the inequality we have just proven

shows that λi,ρ ≥ −CR(1 +R2)δ.
Now, plugging φ = fi,ρ into (1) (extending φ to be zero outside of

Bρ(0)), we obtain as in [11, p. 125]:

−

ˆ
Σ
2κ(ηfi,ρ)

2 ≤

ˆ
Σ
η2|∇fi,ρ|

2 + 2ηfi,ρ 〈∇η,∇fi,ρ〉+ f2
i,ρ|∇η|2

=

ˆ
Σ
η2|∇fi,ρ|

2 +
1

2

〈
∇η2,∇f2

i,ρ

〉
+ f2

i,ρ|∇η|2

=

ˆ
Σ
η2|∇fi,ρ|

2 − η2
(
fi,ρΔfi,ρ + |∇fi,ρ|

2
)
+ f2

i,ρ|∇η|2
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=

ˆ
Σ
f2
i,ρ|∇η|2 − η2fi,ρΔfi,ρ

=

ˆ
Σ
f2
i,ρ|∇η|2 − 2κ(ηfi,ρ)

2 + λi,ρ(1 + |x|
2)−δ(ηfi,ρ)

2.

Hence,

ε0‖ηfi,ρ‖
2
L2
−δ
≤ (−λi,ρ)‖ηfi,ρ‖

2
L2
−δ

≤

ˆ
Σ
f2
i,ρ|∇η|2

≤
36

R2
‖fi,ρ‖

2
L2(Σ)

≤
36

R2
(1 +R2)δ‖fi,ρ‖

2
L2
−δ

(Σ)

=
36

R2
(1 +R2)δ.

This implies thatˆ
Σ\B2R(0)

(1 + |x|2)−δf2
i,ρ ≤ cR−2(1−δ),

for any R ∈ [R0,
1
2ρ]. On the other hand, (2) implies thatˆ

BR(0)
f2
i,ρ + |∇fi,ρ|

2 ≤ CR

ˆ
B2R(0)

f2
i,ρ ≤ CR(1 +R2)δ.

From this, the proof may be completed as in [11, p. 126], using a di-
agonal argument along with the fact that W 1,2(Σ ∩ BR(0)) compactly
embeds into L2

−δ(Σ ∩BR(0)) for R > 0 fixed. q.e.d.

Lemma 9. For δ ∈ (0, 1) and f a (−δ)-eigenfunction of the stability
operator L with eigenvalue λ < 0, as constructed Proposition 8, we have
that ˆ

Σ
|∇f |2 <∞.

Proof. For R > 0 chosen sufficiently large, consider the cutoff function
ϕR constructed in Lemma 7. We computeˆ

Σ
ϕ2
R|∇f |2

= −

ˆ
Σ
ϕ2
RfΔf + 2ϕRf 〈∇ϕR,∇f〉

= λ

ˆ
Σ
ϕ2
Rf

2(1 + |x|2)−δ −

ˆ
Σ
ϕ2
R2κf

2 −

ˆ
Σ
(ϕRΔϕR + |∇ϕR|

2)f2.

The first integral tends to ‖f‖2
L2
−δ

(Σ)
< ∞ as R → ∞. The second

integral is bounded as R →∞, because |κ| ≤ C(1 + |x|2)−1 and δ < 1.
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Finally, using the bounds on the derivatives of ϕR obtained in Lemma
7, the third integral is actually tending to zero:

ˆ
Σ
(|ϕRΔϕR|+ |∇ϕR|

2)f2

≤
C

R2

ˆ
Σ∩(B2R(0)\BR(0))

f2

≤
C

R2
(1 + 4R2)δ

ˆ
Σ∩(B2R(0)\BR(0))

f2(1 + |x|2)−δ

=
C

R2
(1 + 4R2)δ‖f‖2

L2
−δ

(Σ),

which tends to zero as R→∞. q.e.d.

4. Ends and harmonic 1-forms

An essential observation is that because we are considering a space
which is slightly bigger than L2(Σ), the ends of Σ give rise to extra
harmonic 1-forms which can be used as test functions in the index op-
erator. We denote by H 1(Σ) the set of harmonic 1-forms on Σ. Note
that no decay assumptions are imposed on H 1(Σ).

We will use x1, x2, x3 as the Euclidean coordinates on R
3 and we will

often rotate Σ so that an end in question has limiting normal vector
(0, 0, 1). In this case, we will write x′ = (x1, x2, 0) for the point x
projected to the {x3 = 0} plane.

Lemma 10. Fix δ > 0. If Σ has r ends, there exists 2r − 2 linearly
independent harmonic 1-forms on Σ, ω1, . . . , ω2r−2 so that each ωi ∈
L 2
−δ(Σ) ∩H 1(Σ) and so that no non-trivial linear combination of the

ωi is in L 2(Σ).

Proof. By [10, p. 51], for two distinct points pi, pj ∈ Σ and local
holomorphic coordinates zi, zj vanishing at pi, pj, there exists ω̃ij, a

meromorphic (complex) abelian differential which has a dzi
zi

singularity

at pi and a −
dzj
zj

singularity at pj, and which is holomorphic on Σ \

{pi, pj}. If pi, pj are the punctures in Σ corresponding to ends of Σ, it is
not hard to see that {ω̃12, ω̃13, . . . , ω̃1r} is a C-linearly independent set
of r − 1 holomorphic differentials on Σ. As in [10, Proposition III.2.7],
taking the complex conjugate to obtain anti-holomorphic differentials,
we may find an R-linearly independent set of 2r−2 harmonic differentials
{ω1, . . . , ω2r−2}.

Now, we will show that these forms ω̃ are in L 2
−δ(Σ) for any δ > 0.

Suppose that X : D\{0} → R
3 is a conformal parametrization of an end

E. If z is a local coordinate on D, then the Weierstrass representation
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implies that

X(z) = Re

ˆ
(φ1, φ2, φ3),

where (φ1, φ2, φ3) =
1
2 ((g

−1−g)dh, i(g−1+g)dh, 2dh) for a meromorphic
function g and 1-form dh on D. We claim that φ1, φ2 both have a
pole of the same order (which is at least two) at 0 and that φ3 has a
pole of lower order. This follows from well known arguments (cf. [18,
Proposition 2.1]) which we now recall. The induced metric on the end
E may be written as

(|φ1|
2 + |φ2|

2 + |φ3|
2)|dz|2.

By completeness at the end, at least one of the φi must have a pole at
z = 0. If no φi has a pole of order larger than one, then we may write,
for i = 1, 2, 3,

φi(z) =
ai
z

+ bi(z),

where ai ∈ C and bi(z) are holomorphic on D. By assumption, at least
one of the ai are nonzero. Because log z = log |z|+ i arg z, X(z) will not
be well defined unless ai ∈ R for i = 1, 2, 3. However, the explicit form
of the Weierstrass representation implies that

φ2
1 + φ2

2 + φ2
3 ≡ 0,

which could only happen if a1 = a2 = a3 = 0, which contradicts com-
pleteness of the end E. We may assume that g(0) = 0; then, by the
explicit form of the Weierstrass representation φ1, φ2 have a pole of the
same order (at least two), which is of higher order than the pole of φ3.
In particular,

φ1(z) =
A

zk+1
+

B1(z)

zk
,

φ2(z) =
iA

zk+1
+

B2(z)

zk
,

φ3(z) =
B3(z)

zk
,

where A ∈ C and the functions Bi(z) are holomorphic on D and k ≥ 1.
Integrating this, we see that shrinking D if necessary, there is a constant
C > 0 so that

C−1|z|−k ≤ |X(z)| ≤ C|z|−k.

Now, using the fact that the squared norm of a 1-form times the vol-
ume element is a pointwise conformally invariant quantity, we compute∥∥∥∥dzz

∥∥∥∥2
L 2
−δ(D\{0})

≤

ˆ
D\{0}

1

|z|2
(1 + C−1|z|−k)−δ <∞,

for δ > 0. Because this computation applies for each end, we see that
the forms constructed above all lie in L 2

−δ(Σ).
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Finally, note that if some non-trivial linear combination ω of the ωi’s
is in L 2(Σ), then by conformal invariance of the L 2-norm, we have that
ω ∈ L 2(Σ\{p1, . . . , pr}). However, a harmonic form with bounded L 2-
norm away from a point singularity extends across the singularity, so ω
must necessarily extend to Σ. From this, it is clear that such a linear
combination could not exist. q.e.d.

Corollary 11. Fix δ > 0. If Σ has genus g and r ends, then we may
find a 2(g + r − 1)-dimensional subspace V ⊂ L 2

−δ(Σ) ∩H 1(Σ).

Proof. It is clear that L2(Σ) ∩H 1(Σ) has R-dimension 2g. This is
because L2(Σ) ∩H 1(Σ) corresponds to the harmonic 1-forms on Σ, as
discussed in the previous proof. Moreover, no non-trivial linear combi-
nation of the ωi’s constructed in the previous lemma can be in L2(Σ).
This establishes the claim. q.e.d.

Lemma 12. By rotating Σ, we may ensure that ∗dx1, ∗dx2 �∈ L 2
−δ(Σ)

for δ ∈ (0, 12 ).

Proof. Fixing an end E of Σ, we may assume that the Gauss map
limits to (0, 0, 1) along E by rotating Σ. From this, taking E further
out if necessary, we may arrange that ∗dx1 and ∗dx2 have norm at least
1
2 and that |ν · ∂

∂x3
| ≥ 1

2 along E. Because the blow-down of E is a

plane of finite multiplicity, the projection π : E → Π = {x3 = 0} has a
uniformly bounded number of pre-images. Putting these facts together,
we obtain

‖∗dx1‖
2
L2
−δ

(E) ≥ C

ˆ
Π
(1 + |x|2)−δ =∞,

for δ < 1
2 , and similarly for ∗dx2. q.e.d.

Lemma 13. For δ ∈ (0, 1) and ω ∈ L 2
−δ(Σ) ∩H 1(Σ), we have thatˆ

Σ
|∇ω|2 <∞.

Proof. Recall that the Bochner formula yields Δω = κω, for Δ the
rough Laplacian along Σ. Hence,ˆ

Σ
ϕ2
R|∇ω|2 = −

ˆ
Σ
ϕ2
R 〈Δω, ω〉 −

ˆ
Σ

〈
∇ϕ2

Rω,∇ω
〉

= −

ˆ
Σ
ϕ2
Rκ|ω|

2 −
1

2

ˆ
Σ

〈
∇ϕ2

R,∇|ω|
2
〉

= −

ˆ
Σ
ϕ2
Rκ|ω|

2 +

ˆ
Σ
(ϕRΔϕR + |∇ϕR|

2)|ω|2.

From this, the result follows in a similar manner to Lemma 9. q.e.d.

The following Bochner-type formula and the rigidity statement due
to Ros is of crucial importance in our proof of Theorem 1. Recall that
h is the second fundamental form of Σ.
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Lemma 14 ([36, Lemma 1]). For Σ an orientable nonflat minimal
surface immersed in R

3 and ω a harmonic 1-form on Σ. Then, for
k = 1, 2, 3

Δ 〈ω, dxk〉 − 2κ 〈ω, dxk〉 = 2 〈∇ω, h〉Nk,

where N = (N1, N2, N3) is the normal vector to Σ and Δ is the intrinsic
Laplacian for functions on Σ. Moreover, 〈∇ω, h〉 ≡ 0 if and only if
ω ∈ L∗(Σ) = span{∗dx1, ∗dx2, ∗dx3}.

Following [36], we will write this lemma succinctly as follows: Let

Xω := (〈ω, dx1〉 , 〈ω, dx2〉 , 〈ω, dx3〉).

Then,

ΔXω − 2κXω = 2 〈∇ω, h〉N,

where this equation is to be interpreted in the component by compo-
nent sense. As in [36], for vector fields X and Y along Σ with com-
ponents (X1,X2,X3) and (Y1, Y2, Y3), we denote by Q(X,Y ) the sum∑3

i=1Q(Xi, Yi). For example, for a vector field X along Σ, we have that

Q(X,X) = −

ˆ
Σ
〈ΔX − 2κX,X〉 ,

where the integrand is the Euclidean inner product of the following
vector fields along X

(ΔX1 − 2κX1,ΔX2 − 2κX2,ΔX3 − 2κX3) and (X1,X2,X3).

5. Proof of Theorem 1

We fix some δ ∈ (0, 12) and assume that Σ is appropriately rotated so
that Lemma 12 applies. By Proposition 8, there are (−δ)-eigenfunctions
f1, . . . , fk ∈ L2

−δ(Σ) which span W ⊂ L2
−δ(Σ) and so that for φ ∈

C∞0 (Σ) ∩W⊥, we have Q(φ, φ) ≥ 0. By Corollary 11, we may find a
2(g + r − 1)-dimensional subset V ⊂ L 2

−δ(Σ) ∩H 1(Σ).
Suppose that ω ∈ V has the property that each component of Xω is

in W⊥ (where the orthogonal complement is taken with respect to the
L2
−δ-inner product). Abusing notation, we will write this as Xω ∈W⊥.

We claim that ω = c(∗dx3) for some c ∈ R. This will imply Theorem
1 as follows: requiring Xω ∈ W⊥ represents 3k linear equations in V ,
hence if 3k < 2(g+r)−3, then we may find a two dimensional subspace

Ṽ ⊂ V so that all ω ∈ Ṽ satisfy Xω ∈ W⊥. This cannot happen if we
know that the only such ω are in the linear span of ∗dx3.

Hence, suppose that ω ∈ V satisfies Xω ∈ W⊥. Pick any compactly
supported smooth vector field Y with Y ∈ W⊥. We first claim that
Q(Xω, Y ) = 0 for all such Y . Choose R sufficiently large so that BR(0)
contains the support of Y . We set

Xt := ϕR(Xω + tY + f1c1 + · · · + fkck),
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where ϕR is the test function constructed in Lemma 7. Here, the vectors
cj ∈ R

3 depend on Xω, ϕR and are chosen so that Xt ∈ W⊥. In
particular, we are requiring thatˆ

Σ
ϕR(Xω + f1c1 + · · ·+ fkck)fj(1 + |x|

2)−δ = 0,

where we have used the fact that Y ∈ W⊥ and ϕRY = Y . Because
Xωfj ∈ L2(Σ) and the f1, . . . , fk form an L2

−δ-orthonormal basis for W ,
the dominated convergence theorem guarantees that the cj tend to 0 as
R→∞.

Because Xt ∈W⊥, we have that 0 ≤ Q(Xt,Xt). Note that

Q(Xω, Y ) = Q(ϕRXω, Y ) = Q(Xω, ϕRY ) = Q(ϕRXω, ϕRY ).

As such,

0 ≤ Q(Xt,Xt) = Q(ϕRXω, ϕRXω) + t2Q(Y, Y ) + 2tQ(Xω, Y )

+ 2

k∑
i=1

Q(ϕRXω, ϕRfici)

+

k∑
i,j=1

Q(ϕRfici, ϕRfjcj).

Because the cj ’s are independent of t, this implies that

Q(Xω, Y )2 ≤Q(Y, Y )

(
Q(ϕRXω, ϕRXω)︸ ︷︷ ︸

(I)

+2

k∑
i=1

Q(ϕRXω, ϕRfici)︸ ︷︷ ︸
(II)

(3)

+

k∑
i,j=1

Q(ϕRfici, ϕRfjcj)︸ ︷︷ ︸
(III)

)
.

We claim that the term in parenthesis tends to zero as R → ∞. To
show this, we consider each term in (3) separately. Using Lemma 14,
we have

(I) = Q(ϕRXω, ϕRXω) =

ˆ
Σ
(|∇(ϕRXω)|

2 + 2κϕ2
R|Xω|

2)

= −

ˆ
Σ
〈Δ(ϕRXω)− 2κϕRXω, ϕRXω〉

= −

ˆ
Σ
ϕ2
R 〈ΔXω − 2κXω ,Xω〉

−

ˆ
Σ
(ϕRΔϕR|Xω|

2 + 2 〈∇ϕRXω, ϕR∇Xω〉)

= −

ˆ
Σ

(
ϕRΔϕR|Xω|

2 +
1

2

〈
∇ϕ2

R,∇|Xω|
2
〉)
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=

ˆ
Σ
|∇ϕR|

2|Xω|
2.

This satisfiesˆ
Σ
|∇ϕR|

2|Xω|
2 ≤

C

R2

ˆ
B2R(0)

|Xω|
2

≤ C
(1 + (2R)2)δ

R2

ˆ
B2R(0)∩Σ

|Xω|
2(1 + |x|2)−δ

≤ C
(1 + (2R)2)δ

R2
‖Xω‖

2
L2
−δ(Σ) → 0,

as R → ∞, as long as δ < 1. Furthermore, the second term in (3)
satisfies

(II) = Q(ϕRXω, ϕRfici)

= −

ˆ
Σ
ϕR 〈Xω,ci〉 (Δ(ϕRfi)− 2κϕRfi)

= −

ˆ
Σ
ϕ2
R 〈Xω,ci〉 (Δfi − 2κfi)

−

ˆ
Σ
ϕR 〈Xω,ci〉 (ΔϕRfi + 2 〈∇ϕR,∇fi〉)(4)

= λi

ˆ
Σ
ϕ2
R 〈Xω,ci〉 fi(1 + |x|

2)−δ −

ˆ
Σ
ϕRΔϕR 〈Xω,ci〉 fi(5)

− 2

ˆ
Σ
ϕR 〈Xω,ci〉 〈∇ϕR,∇fi〉 .

The first term in (5) tends to zero as R→∞ by the dominated conver-
gence and choice of Xω ∈W⊥. The second term in (5) tends to zero as
follows:∣∣∣∣

ˆ
Σ
ϕRΔϕR 〈Xω,ci〉 fi

∣∣∣∣
≤

C

R2
|ci|

ˆ
(B2R(0)\BR(0))∩Σ

|Xω||fi|

≤ C
(1 + (2R)2)δ

R2
|ci|

ˆ
(B2R(0)\BR(0))∩Σ

(1 + |x|2)−δ|Xω||fi|

≤ C
(1 + (2R)2)δ

R2
|ci|‖Xωfi‖L2

−δ(Σ) → 0.

The third term in (5) tends to zero by Hölder’s inequality and Lemma 9:∣∣∣∣
ˆ
Σ
ϕR 〈Xω,ci〉 〈∇ϕR,∇fi〉

∣∣∣∣
≤ |ci|

(ˆ
Σ
|∇ϕR|

2|Xω|
2

) 1

2

(ˆ
Σ\BR(0)

|∇fi|
2

) 1

2
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≤ C
(1 + 4R2)

δ
2

R
|ci|‖Xω‖L2

−δ(Σ)

(ˆ
Σ\BR(0)

|∇fi|
2

) 1

2

.

Finally, we have that the third term in (3) satisfies

(III) = Q(ϕRcifi, ϕRcjfj) = −
1

2
〈ci,cj〉

ˆ
Σ
ϕRfj(Δ(ϕRfi)− 2κϕRfi)

−
1

2
〈ci,cj〉

ˆ
Σ
ϕRfi(Δ(ϕRfj)− 2κϕRfj)

=
1

2
(λi + λj) 〈ci,cj〉

ˆ
Σ
ϕ2
Rfifj(1 + |x|

2)−δ − 〈ci,cj〉

ˆ
Σ
ϕRΔϕRfifj

− 〈ci,cj〉

ˆ
Σ
ϕR 〈∇ϕR, fi∇fj + fj∇fi〉

=
1

2
(λi + λj) 〈ci,cj〉

ˆ
Σ
ϕ2
Rfifj(1 + |x|

2)−δ + 〈ci,cj〉

ˆ
Σ
|∇ϕR|

2fifj.

This tends to zero as R→∞ because the ci are tending to zero andˆ
Σ
|∇ϕR|

2|fifj| ≤ C
(1 +R2)δ

R2
‖fi‖L2

−δ
(Σ)‖fj‖L2

−δ
(Σ) → 0.

The above computations show that Q(Xω, Y ) = 0 for all compactly
supported smooth vector fields Y ∈ W⊥. Fix an arbitrary smooth
vector field Ỹ ∈W⊥ and let

ỸR := ϕR(Ỹ + f1c1 + · · ·+ fkck),

where the cj are chosen so that ỸR ∈ W⊥. Observe (as above) that
cj → 0 as R → ∞ by the dominated convergence theorem. Hence,

using Lemma 14 and the compact support of ỸR, we have that

0 = Q(Xω, ỸR) = −

ˆ
Σ

〈
ΔXω − 2κXω, ỸR

〉
= −2

ˆ
Σ
〈∇ω, h〉

〈
N, ỸR

〉
.

Lemma 13 shows that |∇ω| ∈ L2(Σ), and because the second funda-

mental form satisfies |h| ≤ (1 + |x|2)−
1

2 , we may use the dominated
convergence theorem to see thatˆ

Σ
〈∇ω, h〉

〈
N, Ỹ

〉
= 0.

Similarly, we may show that for any vector α ∈ R
3 and eigenfunction

fi ∈W from Proposition 8, thenˆ
Σ
〈∇ω, h〉 〈N, fiα〉 = 0.

Putting this together, we obtain 〈∇ω, h〉 = 0. Thus, ω ∈ L∗(Σ) =
span{∗dx1, ∗dx2, ∗dx3}. However, we have assumed that Σ is rotated



ON THE TOPOLOGY AND INDEX OF MINIMAL SURFACES 415

so that Lemma 12 applies. Hence, we must have that ω = c(∗dx3) as
claimed.
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