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ABSTRACT.  A description of the topology of a compact inverse Clifford
semigroup S is given in terms of the topologies of its subgroups and that of the
semilattice X of idempotents. It is further shown that the category of compact
inverse Clifford semigroups is equivalent to a full subcategory of the category
whose objects are inverse limit preserving functors F:X -* G, where X is a com-
pact semilattice and G is the category of compact groups and continuous homo-
morphisms, and where a morphism from F:X -* G to G:Y -* G is a pair (e, w)
such that e is a continuous homomorphism of X into Y and w is a natural trans-
formation from F to Ge. Simpler descriptions of the topology of S are given in
case the topology of X is first countable and in case the bonding maps between
the maximal subgroups of S are open mappings.

A popular topic of study in compact semigroups has been the question, for
a given compact Hausdorff space, how many nonisomorphic continuous, associa-
tive multiplications of a given type will it admit? There is an older companion
question, and that is, for a given algebraic structure, is there a compact Hausdorff
topology which is compatible with all the operations, and if so, how many such
topologies exist? It is known that the abelian groups which admit such a com-
pact Hausdorff topology are certain products of copies of the group of rational
numbers, p-adic groups, finite groups, and Z(p°°) [4, Theorem 25.25].  Butan
abelian group may admit several such topologies.  For example, the additive group
of real numbers admits a compact /i-dimensional topology for each positive integer
n.  In the nonabelian case, there is the 1932 result by van der Waerden [9], in
which he described a system of "neighborhoods" about the identity of any group,
which was finer than any compact group topology for which the identity was not
isolated in the set of noncentral elements. He further proved that if a group ad-
mitted a topology giving it the structure of a compact simple Lie group, then each
of these algebraically defined neighborhoods was a neighborhood of the identity
relative to the given topology. Thus he gave what amounted to an algebraic de-
scription of the topology of a compact simple Lie group, which had an immediate
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generalization to semisimple Lie groups. It followed that an algebraic group admit-
ting the structure of a compact semisimple Lie group must admit exactly one com-
pact topology.

A similar result was achieved by J. D. Lawson in [6], in which he described
a "convergence" for nets in an algebraic lattice, which enabled him to algebraically
describe the open subsets of a compact lattice; he then used that result to give an
algebraic method for determining the topology of a compact semilattice.

Given these results, one natural question to ask is, what may we say about
those semigroups S which are semilattices of groups in the strongest sense, i.e.,
inverse Clifford semigroups?  The work of Bowman in [1] indicated that one
might hope to describe the topology of S in terms of those of the subgroups and
the semilattice of idempotents of S.   Such a description is achieved by Theorem 1
of this paper. Thus, in view of Lawson's result we can say that given an inverse
Clifford semigroup S with a preassigned compact topology on each of its sub-
groups, there exists at most one compact semigroup topology on S which induces
the preassigned topologies on the subgroups of S.  We obtain this result as a corol-
lary to Theorem 4 and to Corollary 16 of [6].  In §3 we give a description of
the category Ct of compact inverse Clifford semigroups which follows closely the
outline of Bowman's description of the full subcategory of Ct whose objects S
satisfy the property that E(S) (the semilattice of idempotents of S) is a perfect
semilattice. Theorems 6 and 7 give simpler topological constructions for certain
objects of the category Ct-

1. Introduction.
Definition. A semilattice is a commutative, idempotent semigroup. In

any semilattice X there is a natural ordering <, defined by x < y if and only if
xy = x.  It should be noted that for any two elements x and y of a semilattice X,
the product xy is the infimum relative to < of the set {x, y}.

Remark.   We shall use the convention throughout this paper whereby a
semilattice X is considered a small category whose objects are the elements of X
and for which a morphism x —*■ y exists from a point jc of X to a point y of X
if and only if y < x.  If F : X —* K is a functor from X into any category K,
then we denote F(x —*y) by F*.

Notation.   Categories with which we shall be working in this paper are
the category C of compact Hausdorff spaces and continuous maps, the category
CS of compact semigroups and continuous homomorphisms, and the categories
S2, G, and Ct of compact semilattices, groups, and inverse Clifford semigroups,
respectively, of which the latter three are full subcategories of CS.

Definition. A net {xa}aer in a semilattice X is said to be increasing if
whenever a < ß in T we have xa < xß in X.  We note here that if X is a com-
pact semilattice, then any increasing net {xa}aŒr in X converges to its supremum
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relative to the semilattice ordering (see Lemma 1.2 of [1]).
Definition. An inverse system {Sa ; ̂ ; T} in a category K consists of a

directed set T, objects Sa of K for each a G T, and morphisms ip% : Sa —> Sß in
K for each pair a, ß 6 T with ß < a, such that if a <ß <7 in T, then ^°^ = <&
Note that if {xa}aer is an increasing net in a semilattice X and if F is a functor
from X into any category K, then {xa; xa —*■ Xß\ T} is an inverse system in X
and {Fix^y, F^"; T} is an inverse system in K.

Definition. Let {Sa; <^; T] be an inverse system in a category K.  An in-
verse limit {S; ipa; T} of the system {5a; <^; T} consists of an object S oíK and
morphisms ^a : S —► Sa for each a in T, such that tpa = i^^ whenever a < 0 in
r, and such that if {T; \pß', F] is any other such system, then there exists a unique
morphism \¡/:T—> S such that \j/ß = ^i// for each ß 6 T.

Example.  If {xa}aBr is an increasing net in a semilattice X with supremum
x, then {x; x —*xa; T} is an inverse limit of the system {xa; xa —> Xß\ T}.

Notation.   Let {Sa; ^; T] be an inverse system in the category of sets
and functions.  Let n^piS^ denote the Cartesian product of the sets Sa. We de-
note the subset {(sa)a€.r ■ <f%(sa) = sß whenever ß < a} of IIaer Sa by
lim {Sa; ^; T}. For the sake of brevity, we shall use the notation lim Sa when
the directed set and morphisms can be easily inferred.  If for each ß G r we de-
note by <Pß the restriction to lim Sa of the j3th projection itß : ri^p Sa —*■ Sß,
then {limSa; ipa; T} is an inverse limit of the system {Sa; yf¡¡; T} provided the
set lim Sa is nonempty. Observe that if {Sa; <(fj¡; T} is an inverse system in the
category C or the category CS, then lim Sa still makes sense and {lim Sa;<pa; V}
is an inverse limit of {Sa; $%; T} in that category.

Definition. Let F be a functor from a category K to a category L.  Then
we say that F is inverse limit preserving if whenever {5; ipa ; T} is an inverse limit
of the system {Sa; yf, T} in K then {F(S)\ F(<pa); T} is an inverse limit of the
system {F(Sa); F(tpß); F} in L.  Thus a functor F from a compact semilattice X
into a category K is inverse limit preserving if and only if for each increasing net
frcJaer *n %tne system {F(x); F*®; T} (where x is the supremum of {xa:a£r})
is an inverse limit in K of the system {F(xa); F**; T}.

We omit the proof of the following lemma, which is rather straightforward
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and depends on the uniqueness (up to homeomorphism or isomorphism) of in-
verse limits in the categories concerned.

Lemma 1. Let F be a functor from a compact semilattice X into the category
C (CS). Then F is inverse limit preserving if and only if for each increasing net
frcJaer z" Xand supremum x ofthat net the map <f>x : F(x) —*■ limF(xa) de-
fined as yx(s) = (F* (s))aeT, is a homeomorphism (continuous isomorphism) on-
to UmF(xa).

2. The construction theorems.
Definition. Let F be a functor from a semilattice X into the category CS.

We define the algebraic semigroup S(F) to be the set (JjteA'W x F(x) witn mul-
tiplication given by (x, s)(y, t) - (xy,Fxy(s)Fly(t)). That S(F) is indeed a semi-
group is an easy exercise.  For more general algebraic constructions of this nature,
see [8].

Consider now an inverse limit preserving functor F from a compact semilat-
tice X into the category G of compact groups. A. H. Clifford [3] showed that
the algebraic semigroup S(F) is an inverse semigroup which is the union of its
subgroups, i.e., an inverse Clifford semigroup, and that any such semigroup could
be thus constructed.  In 1970, Bowman [1] described a topology on S(F) for the
case where the semilattice X had a neighborhood basis of subsemilattices at each
point. Relative to this topology S(F) was a compact semigroup, and any com-
pact inverse Clifford semigroup whose semilattice of idempotents had a Lawson
basis for its topology could be thus constructed. Theorem 1 below gives a com-
pact topology on S(F) for the general case which is the "right" topology when-
ever that makes sense. That is, whenever S(F) admits a compact semigroup topol-
ogy relative to which the groups {x} x F(x) inherit their own topologies, then
that topology is the topology given below. Before we proceed with our descrip-
tion of that topology, we shall need the following technique, which was used by
J. D. Lawson in [6].

Lemma 2. Let X be a compact semilattice, and x an element of X. Let A
be the collection of all sequences {Un}"=l of open sets in X such that for each n,
xeUn+1ÇÛ2n+1ç Un.  Then A is directed by {i/„}~=i < {£0~=i «/«"<* only
if Un 2 U'n for each n. Moreover, for each X = {Un}^=1 in A the intersection
n~=i Un is a compact subsemilattice of X with zero yx, and {yjJxeA is an in-
creasing net in X with supremum x.

Definition. Let F : X —*■ C be an inverse limit preserving functor from the
compact semilattice X into the category C.  For each open subset U of X, each
element u&U, and each open subset V of F(u), we define
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wF(y,(u,v))=  u   m * {Fzrun
xBU;x>u

When no confusion can result from our doing so we shall drop the subscript F.

Theorem 1. Let X be a compact semilattice, and let F:X —► Cbe an
inverse limit preserving functor from X into C  Let S = [Jxex {x} x F(x), and
let T be the collection of subsets of S defined as follows. A subset 0 of S is in T
if and only if for each element {x, s) of 0 there exists an open subset U of X
such that

(1) xGU;and
(2) if y G U and y <x, then there exists an open subset VofF(y) such

that
(a) (x, s) G W(U, (y, V)) Ç 0, and
(b) if (z, f) G W(c7, (y, V)) then for any w GU with w <z there ex-

ists an open subset W of F(w) such that (z, t) G W(U, (w, W)) Ç 0.
Then T is a compact topology on S (F).

Proof.  That T is a topology on S(F) is a tedious but straightforward
proof. We proceed to show that T is a compact topology.

By the Axiom of Choice, there exists a function C:X—► Uxex^tö sucn
that C(x) G F(x), for all ï£I   Let us fix such a function C for later use.

Let {(xa, sa)}aer be a net in S.  Then the net {xa}aSr must cluster to
some point x G X.   Suppose for contradiction that the net {(xa, sa)}aBr clusters
to no point of {x} x F(x). Then for each element t of F(x), there exists 0t G J
such that (x, r) G 0t and {(xa, sa)}aer is eventually outside 0t. Now for each
t, let Ut be an open subset of X and Vt an open subset of F(x) such that (x, t) G
W(t/f, (x, Vt)) Ç 0t. Then t G Vt. Hence the collection {Vt }/e/r(x) is an open
covering of F(x). Since F(x) is compact, there exists a finite collection {tv t2,
. . . , tn] of elements of F(x) such that F(x) Ç \J"=1 Vt.. Hence {x} x F(x) Ç
(J"=1 0f.. But the net {(xa, sa)}aer is eventually outside 0t., for/ = 1,2, ...,n.
Hence {(xa, sa)}aer is eventually outside 0 =U"=i 0t.- With no loss of general-
ity, we assume the net is entirely outside 0.

Now let {VjJxeA be the net in X associated with the point jc G X, as de-
scribed in Lemma 2. Fix X = {Un}~=l in A. We claim that there exists a se-
quence {a(«)}~=1 from T such that xa(n)xa(n+^ ••• xa{n+m) G U„, for all n
and m.   Such a sequence may be chosen recursively, but we shall merely go over
the first few steps. Firstly, the nets {*tt}aGr and {x^x^^j, both converge in X
to x, so there exists a(l) G T such that both xa^ and xa^x are in Uv By
continuity there exists an open neighborhood Vt of x in X such that xa,l<.V1
Ç Ul. Now we choose a(2) in V such that both .x^o) and xa(2)* are m ^2 n
Fj. Note that we have *a(i)Xa(2) G*a(i) ^i í ^i• To proceed to the next
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step, we note that xa^2yX G U2 màthztxa^xa^xGxa^V1 Ç£/j,sothat
by continuity of multiplication we obtain an open neighborhood V2 of x such
that xa^V2 - ^2 an(* *a(i)*a(2) ^2 ? ^i• We ^en proceed to choose a(3) in
T so that both xa^ and *a(3)* are in U3d V2. It is clear that this is a well-
defined recursive process, by means of which we obtain the desired sequence
{a(«)}^=1. Now for each positive integer n, the sequence

ixa(n)xa{n+l) '" *a(n + m)->m=l

is a decreasing sequence in X and therefore converges to its infimum, which we
shall denote by z„. But for positive integers m, n we must have

xa(n)xa(n+l) '" xa(,n + m) ^ xa(n+ l)xa(n + 2) '" xa(n + my

Hence zn < z„+1 for each positive integer n, since < is a closed partial order on
X.   So the sequence {z„}~=1 is an increasing sequence and must therefore con-
verge to its supremum zx. Note that zn G Un for all n, so that zx G fï~=i ^„
and hence >>x < zx.  Let PK be the product space n~=1F(z„), and define a se-
quence  {p„}"=1 in PK as follows: for each positive integer m, the mth coordinate
of pn is given by

ffmO»n)=^5í")(í«,(„)).      «f«<«:
(*)

= C(zm), otherwise.

Let px be a cluster point in /\ of the sequence {p„}"=1. Notice that for all posi-
tive integers i and / with / </ we must have F*'.(n.(px)) = tTj(P\), since for m > j
we have Fzzl(Vj(pm)) = 7r,(pm).  Hence px G limF(zn).  Since F is inverse limit
preserving, we know by Lemma 1 that the map y:F(zx) —► lim F(zn) defined as
tp(s) = (F|x(s))™=1 is onto, so that there exists an element tx of F(zx) such that
^x)="vr>x),foraU«.

Now since the sequences {a(«)}^=1, {z„}~=1, and {p„}~=1 are dependent
on X, let us relabel them as a(n) = a(X, «), z„ = zXn, and pn = pXn.

Consider the product space P = nXeA F(yk), and define the net {<7>JxeA
in P as follows: for each 7 G A,

(t) 7= CGO>       otherwise.

Let q be a cluster point in P of the net {<7>J\eA- Then for fixed 7, 5 G A with
7 < 5 we have F¿6 (qj = iry(qx) for all X > 8. Thus q G lim F(>x). Since F is
inverse limit preserving, we can choose an element u of F(x) such that Fy (u) =
7r7(<7) for each 7 G A.

Now (jc, u) G 0, so there exists an open subset U of X such that (x, s) —
(x, u) satisfies conditions (1) and (2) of the statement of the theorem.  Choose

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE TOPOLOGY OF A CLIFFORD SEMIGROUP 259

X = {ty~=i in A such that Ul ç U.  Since yx G (X=i UnCUxçu and yx <x,
there exists in F(yK) an open neighborhood V of F*x(u) such that if y = yx and
s = u then (2a) and (2b) are satisfied. Now Fx («) = TTx(q), so irx(q) G K
Since the net {n^fa-y)}.,.^ clusters to irx(q), there exists 5 G A such that ö > X
and 7TX(<76) G V.  So we obtain from (t) that F**(ts) G V.  But since 5 > X,
z6 G U.   Hence (z6, r6) G û/(t/, (y^, K)). Note that zSl is also in U, since if
S = {U6n}'n°-l then z6, G i/51 Ç Í/I Ç C/.   Since z61 < z6, by (2b) there exists
an open subset W of F(zs t) such that (zs, t6) G W(í/, (z6 (, KO) Ç Ö. Hence
F|« (ijjew.   ButF|66i(rs) = 7r1(>6), soff1(ps)e K>.  Since the sequence
{7r1(p6n)}"=1 clusters to ïïjCPj), we must have irl(p6n) G W for some n.   So by

M> *3f '">(»«<8.«)) e W-   B«t *«(«.„) S C8n Ç Cfc, Ç Ux Ç K  Hence
(^(S.n)' sa(s,n)) e ^(17, (z6 j, KO) Ç 0. But this is a contradiction to our as-
sumption that the net {(xa, sa)}aBr lay entirely outside 0. So the net
{(xa, sa)}aer does cluster to some point of {x} x F(x), and we conclude that
the topology T is compact.

Whether or not the above topology is Hausdorff in all cases is not clear.
Any counterexample would have to be constructed from a non-Lawson semilat-
tice, in view of Bowman's work and Corollary 4.2 of this paper, (for examples of
non-Lawson semilattices, see [7] ) and any direct attempts at a proof are ham-
pered by the lack of a good description of a basis at any particular point of S.
It should be mentioned here that any attempts at a proof of Hausdorffness
would seem to need something like Lemma 3 of §4.  Theorem 3 emphasizes the
importance of the Hausdorffness question.

The following theorem demonstrates a method for constructing continuous
maps between the spaces constructed in Theorem 1.

Theorem 2. Let each of X and Y be a compact semilattice, and let F:
X —*■ C and G:Y —* C be inverse limit preserving functors; let S = U^ea-W x
F(x) and S' = \Jyey 0>} * G(y).  Then any continuous homomorphism e:X—+ Y
can be considered a functor, so that the composition Ge is a functor from X into
C. Let co be a natural transformation from F to Ge.   Then the function f:S—+S'
defined as f((x, s)) = (e(x), cox(s)) is a continuous map relative to the topologies
on S and S' given by Theorem 1.

Proof.  We first note that if U' is any open subset of Y, U = e~l(U'),
y G U, y' = e(y), V an open subset of G(y'), and V = co"1^'). then

fdl¡F(U, (y, V))) ç wG(U', O', V')).
For if (jc, s) G WF(U, (y, V)), then x G U and y < x, and F* (s) G V, which im-
plies that e(x) G U',y = e(y) < e(x), and uyF*(s) G V. Since co is a natural
transformation from F to Ge, we have co^F* = G^jco^, so that Gyix^ (cjx(s))
G V'. Hence/((x, s)) = (e(x), ux(s)) G WG(U', (y\ V)).
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Now let 0' be an open subset of S'. We wish to show that f~l(0') = 0
is open in S.  So let (x, s) G 0, say f((x, s)) = (je', s') G 0'. Then we choose an
open neighborhood U' of x' in 7 which satisfies (1) and (2) of Theorem 1 rela-
tive to (x, s) and 0'. Let U=e~1(U'). Then if y G Uaná y <x, we have
y = e(y) < e(x) = x', so there exists an open subset V' of Ge(z) such that
(2a) and (2b) are satisfied. Let V = oj"1^'). By the preceding paragraph,
fHpiU, 0, V)) Cf-l(\))G(U', (/, V'))) Cf~l(0) = 0'- Also, we have xEU
and 7 <x, and since co^F^s) = Gfax(s) = G£'V) G V'> we have F£(s) G
u-\V') = V.  So (x, s) G WF([/, (j, 10) C 0.

Now suppose (z, t) G W(í/, (y, F)), and suppose w EU with w < z.  Then
if e(z) = z' and coz(í) = ?', we have (z, t') G WG(£/', (y', V% and w' = e(w) is
a point of U' below z' in y, so that there exists an open subset W' of G(w') such
that (z, t') G WG(Í/', (w', W')) C 0'. We now argue exactly as before that if
W = u~l(W) then (z, t) G WF(U, (w, W)) Ç 0. We conclude that 0 is open and
therefore that / is continuous.

Note the use of Theorem 2 in the proof of the following theorem.

Theorem 3. Let X be a compact semilattice, and let F:X—+ CS be an
inverse limit preserving functor into the category CS of compact semigroups.  Let
S(F) have the topology as described in Theorem 1. Then multiplication is sepa-
rately continuous on S(F), and if S(F) is Hausdorff then 5(F) is a compact
semigroup.

Proof. We first show that multiplication is separately continuous on S(F).
Let (x, s) G S(F), and let X : S(F) —*■ S(F) be left translation by (x, s). Then
the left translation X^ : X —*■ X defined by X^OO = xy is a continuous homomor-
phism on X.  Letw.F—*FXX be defined by coy(t) = F*J)(s)F^(i). We observe
that a; is a natural transformation since the following diagram is commutative for
all y and z with z < y.

F(y)-^->FXx(y)
Fy Fxy

F(z)->F\x(z)
Since X(y, t) = (Xx(y), coy(t)) for all (y, t) G S(F), we conclude by Theorem 2
that X is continuous. So all left translations are continuous. Similarly all right
translations are continuous.

The only thing to be shown now is that if S(F) is Hausdorff, then the mul-
tiplication m : S(F) x S(F) —*■ S(F) is continuous. We shall prove this fact by
showing that there exists an inverse-limit-preserving functor G from the compact
semilattice X x X into the category CS such that S(F) as a topological space is
homeomorphic to S(F) x S(F) and such that the map n : S(G) —► S(F) induced
by the following diagram is continuous.
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S(F) x S(F) s S(G)

>S(F)

Let G : X x X -*■ CS be defined by G((x, y)) = F(x) x F(y) and
GUw) ^S' ^ = Wï®' Fw(^ whenever z < x and w <;>.   It is a straightfor-
ward exercise to show that G is an inverse limit preserving functor. It is also clear
that the map a : S(G) —» S(F) x S(F) defined as a((x, y), (s, t)) = ((x, s), (y, t))
is a bijection. We proceed to show that a is continuous. For this it suffices to
show that 7Tja and 7r2a are continuous. But note that ir1:X x X —► X is a con-
tinuous homomorphism and that co : G —► Fnl defined as U(xyJ(s, t)) = s is a
natural transformation, with ^^((x, y), (s, t)) = (ir^x, y), iO(x y^(s, t)), so that
Wjö is continuous by Theorem 2.  Similarly, 7T2a is continuous.  So a is a topo-
logical isomorphism between S(G) and S(F) x S(F).

We show that n : S(G) —*■ S(F) defined as

n((x, y), (s, 0) - (xy, F^y(s)Fyy(t))

is continuous in the same way. For if m :X x X —*■ X is the multiplication on
the semilattice X, then m is a continuous homomorphism, since it is commutative.
We now define a natural transformation p : G —> Fm as p.^x y^(s, f) = F^syF^^t).
(The reader should verify that the following diagram is indeed commutative when-
ever (z, w) < (x, y).)

G((x,y))-^->F(xy)

^(z,w)
Fxy

Hz.w)
G((z, w))-> F(zw)

Finally, we note that for each ((x, y), (s, t)) G S(G), n((x, y), (s, t)) = (m'(x, y),
p,x   Js, t)), so that n is continuous by Theorem 2. Hence m is continuous and
S(F) is a compact semigroup.

3. The category Ct. The following theorem describes the process by which
one can reconstruct an object S of Ct from its semilattice of idempotents, its
maximal subgroups H(e), and the maps s —* se which carry H(f) into H(e) when-
ever e and / are idempotents with e < /

Theorem 4. Let S be a compact inverse Clifford semigroup with idempo-
tents X.   Then X is a compact semilattice, and the functor F:X —► G defined by
F(x) = H(x) for each x GX and Fy(s) = ys for each xEX.se H(x), and y<x,
is inverse limit preserving.  Furthermore, S(F) is a compact semigroup with the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



262 D. P. YEAGER

topology of Theorem I, and S(F) and S are topologically isomorphic under the
correspondence (x, s) —► s.

Proof. That X is a compact semilattice is well known. That F:X —*■ G
is indeed a functor was done by Clifford [3], and the fact that it is inverse limit
preserving is due to Hunter [5]. It is clear that the map (x, s) —*■ s is an alge-
braic isomorphism of S(F) onto S.  So all that is left for us to show is the con-
tinuity of that map.

Let ¡p : S(F) —+ S be defined by $x, s) = s, and let M be an open subset
of 5.  Suppose for contradiction that 0 = V~! (M) is not °Pen m 5(F). Then
for some point (x, s) in 0, it must be true that there is no open subset U of X
which satisfies (1) and (2) of Theorem 1. Let such a point (x, s) in 0 be fixed.

Fix an open neighborhood U of x in X. Then U does not satisfy condition
(2), so there exists an element yv of U such that y v < jc and no open neighbor-
hood V of F'^s) in F(yrj) will satisfy (2a) and (2b).

Fix an open neighborhood V of Fy  (s) in F(yv). Then V fails to satisfy
either (2a) or (2b).  But failure to satisfy (2a) implies failure to satisfy (2b), so
without loss of generality V fails to satisfy (2b). Thus there exists an element
(x(u, vy S(U, vy) of W(U, (yUt V)) and an element z(f/j K) of U such that z(U¡ K)
^x(u, v) and f°r any open neighborhood W of Fz(u'yKs(u,v)) *n F(.z(u,V))
it is false that W((7, (z^ Vy W)) Ç 0. So for each such W, choose a point

(w(u,v,wy hu,v,w)) e W(tf, iz(u,vy ROAO.
Now let A be the collection of all open neighborhoods W of F?¡v'yKs(u,v)

in F{z,y y-,). Then A is directed by reverse inclusion. The net i^u.v.wyweA
is contained in S\M, so it must cluster to a point t^v v^ in S\M.   Recall that
hv. v)hu, v, w) = K$;% W) ({(u. v, w))e w for each weA- We wish t0 use
this fact to show that

(*) z(u, V) f(u, V) = z(u, V) s(u, vy

Well, if N is any open neighborhood of z^ v^ s^ v^ in S, then W - N D F(z,v y.)
is an element of A, and if W' G A with W' Ç W then z(t/> v) r(r/( v¡ w>) EW' ÇW
£N, so the net {z(U,V)t(U,v,W)^weA converges in S to z(u,V)s(U,vy But by
continuity of multiplication that net also clusters to z,v v^ t,v Vy Thus we have
shown that (*) holds.

Now let us allow V to vary.  Let S be the collection of all open neighbor-
hoods V of Fy  (s) in Ffyrj) directed by reverse inclusion. Consider the net
{z(u,vy s(u vy Uu vfivex in A" x S x S.  It must cluster to some point
(zy, sv, trj) in X x S x S.  Note that the map (x, s, t) —► (xs, xt) is continuous,
so that {(z(t/( j^y yy z(f/i yyt^rj K))} Ker clusters at (zusu, Zjjtjf).  But by (*)
that net is contained in As. Hence {zySij, Zjjtrj) G As. That is,
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(t) zusU ~ zUtrJ-

Note also that since (x^v Vy s(f7 V)) E W(U, (yUt V)), we h.weyus(UV) E V,
for all V E 2.  By an argument like that used in proving (*), we can show that

(?) yusu=yus-

Note that for all VE2, t{U V) fi M, so that tv G M.
Finally, let T be the collection of all open neighborhoods of x in X, directed

by reverse inclusion. Then the net {(yUt zUt Sy, trj)}uer must cluster to a point
(y, z, s', t) in X x X x S x S.   Furthermore, since rj:S —* X taking an element
s of S to the idempotent in H(s) is continuous, and since yUt zv, v(Srj), and
riQrj) are all in U for each U E T, we must have y = z = r¡(s') = i?(i) = X.   By
(f), we have zs' = zt, that is, s = t.   By (i>), we have ys = ys, or s = s.   Hence
s = t.  But tv ^ M, for all U, so t fi M.  Thus s € M, which is a contradiction.
So 0 is open and <¿> is continuous.

Hence S(F) and S are topologically isomorphic, and the proof is complete.

Corollary 4.1. Let each of S and S' be a compact inverse Clifford semi-
group, and let f.S —► S' be an algebraic homomorphism. Iff is continuous from
the idempotents X of S to the idempotents Y of S' and on each of the subgroups
of S, then f is continuous on S.

Proof.  Let F : X —*■ G and G : Y —+ G be the maximal group functors,
and let e : X —*■ Y and wx : F(x) —► Ge(x) be the restrictions off, for each x E X
Then co is a natural transformation from Fto Ge, so the map/ :S(F)—+ S(G) defined by
by f'(x, s) = (e(x), o)x(s)) is continuous. We obtain the result now by commutativity
of the following diagram, where y : S(F) —► S and y : S(G) —*■ S' are the topolog-
ical isomorphisms given by Theorem 4.

fS(F)- -*S(G)

f
f V

S'

Corollary 4.2. Let each of S and S' be a compact inverse Clifford semi-
group, and let f:S —+S' be an algebraic isomorphism of S onto S '. If the re-
striction off to each of the subgroups of S is continuous, then f is a topological
isomorphism. Hence an inverse Clifford semigroup admits at most one compact
semigroup topology which induces a preassigned topology on each of its sub-
groups.

Proof. If e : X —► Y denotes the restriction of/ to the idempotents X of
5, then e is continuous by Corollary 16 of [6]. Hence/is continuous by Corol-
lary 4.1.
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The preceding theorems motivate the following definition, which generalizes
Bowman's definition in [1]. The notation is patterned after that of Carruth and
Clark in [2].

Definition . The category F(Í2; G) is defined to be the category whose ob-
jects are inverse limit preserving functors F:X—*G from compact semilattices X in-
to G, with morphisms given as follows. For objects F:X—*G and G: Y —> G of
F(Í2; G), a morphism from F to G is a pair (e, co), where e :X —► Y is a continuous
homomorphism and co :F—► Ge is a natural transformation. The composition of
two morphisms (e, co):F—»• G and (e\ co'):G —*H'\% given by (e\ co')» (e, co) =
(e' » e, cOg » co), where (co^ is w'e(x) '■ Ge(x) —* He'e(x), for each x in X.

Definition. We define F'(Í2; G) to be the full subcategory of F(Í2; G)
whose objects F satisfy the property that S(F) is Hausdorff.

We now have the major components to a proof of the following theorem.

Theorem 5. C¿is equivalent to F'(Í2; G).

Outline of proof.   Let K : C¿—+ F'(Í2; G) be defined as follows. For
each object S of Ct, with idempotents X, let K(S) be the maximal group functor
F'.X —*G, and for each morphism f : S—*■ S' ia Ct, let K(f) = (e, co) where e
and ojx are restrictions of/, for each x in X.  Let L : F'(Í2; G) —* Ct be such
that ¿(F) is the semigroup S(F) with the topology of Theorem 1, and

¿(e, co) (x, s) = (e(x), 03x(s))

for each morphism (e, co) : F —► G in F'(Í2; G) and each point (x, s) in S(F).
One then checks that K and L are indeed functors, that K°L is naturally equiva-
lent to 1f'(£2;g)> and that L°K is naturally equivalent to lCf.

4. The first axiom semilattice case. Here we consider the case of compact
inverse Clifford semigroups 5 with idempotents X, where X is first axiom. In
this case the topology is described by the following theorem.

Theorem 6. Let X be a compact first axiom semilattice, and let F:X—*
C be an inverse limit preserving functor. Let S = UxexW x F(x)>an^ ^et T
be the collection of subsets 0 of S which satisfy the following property. For
each element (x, s)of 0, there exists an open subset U of X such that

(1') x GU; and
(2') if y G U and y < x, then there exists an open subset V of F(y) such

that(x,s)GW(U,(y, V))Ç0.
Then Tis a compact topology on S.

Proof. That T is a topology is a straightforward argument. To show that
Tis compact, we proceed as in Theorem 1 to assume the negation and obtain a
net {(xa, sa)}aer in S, a point xEX, and a set 0 G Twith {x} x F(x) Ç 0, such
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that xa clusters to jc but the net {(xa, sa)}aBr is entirely outside 0. We then
note that the net 0>x} given by Lemma 2 is eventually constant, i.e., there ex-
ists X such that yx = zx = x.  Thus tx E F(x), so (x, tx) E 0. Let U satisfy (l')
and (2') above with s = fx. Then there exists n such that zXn G U and UXn Ç {/.
Let V be an open subset of F(zXn) such that (x, tx) G W(U, (zn, V)) Ç 0- Then
nn(P\) = FX\ (l\) G ^» so tneie exists w > « such that Trn(pXm) G K   That is,

FXÜKm)(sa(l,m)) e K   But xa(X>w) G C/Xm ç t/x„ ç U, so (xû(X>m), sa(X>m))
G W(U, (zn, Vf) Ç 0, a contradiction.

Remark.   Let X be a compact first axiom semilattice, and let F : X —* C
be an inverse limit preserving functor.  Let 5 = U^e^í*} x F(x), and let Tl
and T2 be the topologies on S defined by Theorems 1 and 6, respectively. Clearly,
then, Tj ç T2. Hence, whenever Tj is Hausdorff, we will have Tt = T2. So
the topology on a compact inverse Clifford semigroup with first axiom semilattice
of idempotents is given by Theorem 6. We state this result as a corollary.

Corollary 6. Let S be a compact inverse Clifford semigroup with idem-
potents X, and suppose X is first axiom. Let F:X —> G be the maximal group
functor.  Then S(F) is a compact semigroup when given the topology of Theorem
6, and the map (x, s) —*■ s of S(F) onto S is a topological isomorphism.

5. The Hausdorffness question-a partial result. The following lemma
would seem to indicate an affirmative answer to the Hausdorffness question. We
will use it as a tool to achieve a partial result along these lines in Theorem 7.

Lemma 3. Let X be a compact semilattice, and let F.X —► C be an in-
verse limit preserving functor.  Then for any x EX and any pair of nonempty dis-
joint closed subsets A and B of F(x), there exists a neighborhood Uofx such
that if y EUandy<x, then F*(A) n FX(B) = 0.

Proof.  Suppose no such neighborhood exists. Then every open set U
containing jc contains av^ <jc such that

Fxu(A)nFxu(B)^0.

Now let {VjJxsa De Lawson's net converging up to x, as described in
Lemma 1.

Fix X G A, say X = {t/„}"=1. Let ̂  G t/, such that yl <x and F^(A) D
F't(B) ± 0. Choose a neighborhood Vl of x such thâtylVl CUV  Let Wj =
U1 and W2 = Vinu2. Then choose y2 G W2 such that><2 <x and Fx (A) n
Fx (B) + 0. Again choose an open neighborhood V2 of jc such that^2F2 ç W2.
Then y 2 E U2 uidyly2 =yly2x Eyxy2V2 ÇylW2 ÇyiVi ÇU1. We can
thus recursively define a sequence {y„}"=1 in X such that for each positive inte-
ger n, we have
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(1) yn < je and F*n(B) ± 0, and
(2) the sequence iynyn+l "• 7„+m}™=0 is contained in U„.

Now for each positive integer n, the sequence {ynyn+i '" yn+m^m=o converges
to its infimum znE Un. Recall from the proof of Theorem 1 that the sequence
{z„}™=1 is an increasing sequence and converges to its supremum z^, and that
yx < zx. Now for each positive integer n, note that F^n(Fx (A) fl Fy (B)) Ç
Fxn(A) D Fxn(B), so that Fxn(A) n F*n(5) ¥=0.   Hence for each « we can
choose anEA and bnEB such that F* (an) = F* (¿>n). The sequence
{{an, è„)}^=i must cluster to some point (ax, bx) oî A x 2?.   We claim that
Fx (ax) = Fy (bK).  For each positive integer m, the sequence

'■m

is contained in the diagonal AF(Zm).  Hence (F*m x Fxm) (aK, bK) E àF(Zm),
since Fx   is continuous.  So Fx (ax) = F* (bx), for all m.   But since F is in-Zm 2mv   A./ Zm<-   A-"
verse limit preserving, this means Fx (aK) = Fx (b^), and consequently Fx (ax) =
Fy (bx). Notice that we have found a net {(aA, bK)}XlBA inAxB such that
Fy (ax) = Fx (bK), for each X G A.  That net must cluster to some point (a, b)
EAxB, which must satisfy Fx (a) = Fx (b) for each X G A.  Since F is inverse
limit preserving, we have a = b.   Thus we have reached a contradiction, and the
theorem is proven.

Definition.  C0 is defined to be the subcategory of C whose morphisms
are open maps.  G0 and CS0 are defined similarly.

Theorem 7. Let X be a compact semilattice, and let F : X —> C0 be an
inverse limit preserving functor.  Let S be the set U*e;r W x ^(*)>an^ ¡et T &e
the topology on S given by Theorem 1.  Then T is Hausdorff.

Proof.  Let U and V be open subsets of X with V2 Ç U, v E V, and W an
open subset of F(v).  Define B{U, V, (v, W)) to be those elements (x, s) of S
such that xEV and for which there exists z EU such that z < xv and Fx(s) E
FVZ(W). Then B{U, V, (v, W)) is in T for all such U, V, v, and W.

Now let (x, s) and (y, t) be distinct elements of 5.   If x ¥= y, then there ex-
ist disjoint open sets U and U' about x and y, respectively, in X.  Let

0= U {x)xF(x), 0'=  U   WkW
xec/ *ei/»

Then 0 and 0' are disjoint neighborhoods in S about (x, s) and (y, t).
Suppose now that x - y and s =£ t.   Let W and W' be neighborhoods in

F(x) about s and t, respectively, such that W n W' = 0. Let M be an open neigh-
borhood in X about x such that whenever y E M and y < x, then FX{W) O
F* (Ñ?) = 0. Let £/ and V be open subsets of X such that jcGFÇK2ÇÎ/Ç
C/2 CM.  Then (x, s) G B{U, V, (jc, WO). (*. 0 E B(U, V, (x, W')), and
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B(U, V, (jc, HO) n B(U, V, (x, W')) = 0.

Thus (jc, s) and (y, t) can be separated by sets in T, and the proof is complete.
Definition.  Let S be a compact inverse Clifford semigroup. We say that

the multiplication on S is full if for any two idempotents jc, y in S with jc < y
we have that xH(y) is an open subset of H(x). We then define the category Ctf
to be the full subcategory of Ct whose objects have full multiplications.

Corollary 7.1. Let X be a compact semilattice, and F : X —* CS0 an
inverse limit preserving functor.   Then S (F) is a compact semigroup with the to-
pology of Theorem 1 ; moreover, if the codomain of F is G0, then S(F) is an ob-
ject of Ctf.

Corollary 7.2.  Ctf is equivalent to the full subcategory F(£2; G0) of
F(Í2; G) whose objects are functors F.X —► G0 from compact semilattices X in-
to the category G0.
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