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Abstract. We compute the Euler-Poincaré characteristic of the homogeneous compact
manifolds that can be described as minimal orbits for the action of a real form in a complex
flag manifold.

1. Introduction. A complex flag manifold is a simply connected homogeneous com-
pact complex manifold that is also a projective variety. It is the quotient M̂ = Ĝ/Q of a
connected complex semisimple Lie group Ĝ by a parabolic subgroup Q. Let a connected real
form G of Ĝ act on M̂ by left translations. This action decomposes M̂ into a finite number of
G-orbits. Among these, there is a unique orbit of minimal dimension, which is also the only
one that is compact (cf. [Wol69]).

In this paper we compute the Euler-Poincaré characteristic of the minimal orbit M . This
was already well known in the two cases where either M = M̂ , i.e., when G is transitive on
M̂ , or M is totally real, i.e., when Q∩G is a real form of Q, and, in particular, a real parabolic
subgroup of G. In these cases, indeed, explicit cell decompositions of M were obtained by
several authors (see, e.g., [CS99, DKV83, Koc95]). The Euler characteristic of M was also
computed in [MN01] for the case where M is a standard CR manifold. These are indeed
special cases of minimal orbits, in which, although Q ∩ G is not a real form of Q, M is
diffeomorphic to a real flag manifold.

Our treatment of the general case, here, utilizes several notions developed in [AMN06a]
for the study of the CR geometry of the minimal orbits. As in that paper, we shall use their
representation in terms of the cross-marked Satake diagrams associated to their parabolic CR
algebras. This makes easier to deal effectively with their G-equivariant fibrations, by reducing
the computation of the structure of the fibers to combinatorics on the Satake diagrams.

After observing that we may reduce to the case where G is simple, we show that in this
case the Euler characteristic is different from zero, and hence positive, when G is compact, or
of the complex type (in these cases M is diffeomorphic to a complex flag manifold), or of the
real types A II, D II and E IV and for some special real flag manifolds of the real types A I,
D I and E I. We explicitly compute χ(M) when Q is maximal parabolic and explain how, to
compute χ(M) for general M , we may always reduce to that special case.
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The paper is organized as follows. In Sections 2 and 3 we rehearse the basic notions on
complex flag manifolds and minimal orbits, and prove some results about G-equivariant fibra-
tions. In Section 4 we establish some general criteria and tools that will be used to compute
the Euler characteristic of the minimal orbits, and then in Section 5 we prove our main results.
In Section 6 we further illustrate our method through the discussion of some examples. The
final section is an appendix, containing a table that collects all the basic information on real
semisimple Lie algebras that is required for computing χ(M).

We wish to thank the anonymous referee for a remark that allowed us to simplify the
proof of Theorem 5.1.

NOTATION. Throughout this paper, a hat means that we are considering some com-
plexification of the corresponding bare object: For instance we use ĝ for the complexification
C ⊗R g of the real Lie algebra g, or M̂ for the complex flag manifold that contains the min-
imal orbit M . For the labels of real simple Lie algebras and Lie groups we follow [Hel78,
Table VI, Chapter X]. For the labels of the roots and the description of the root systems we
refer to [Bou68].

2. Complex flag manifolds. A complex flag manifold is the quotient M̂ = Ĝ/Q of a
complex semisimple Lie group Ĝ by a parabolic subgroup Q. We recall that Q is parabolic
in Ĝ if and only if its Lie algebra q contains a Borel subalgebra, i.e., a maximal solvable
subalgebra, of the Lie algebra ĝ of Ĝ. We also note that Ĝ is necessarily a linear group, and
that Q is connected, contains the center of Ĝ and equals the normalizer of q in Ĝ:

Q = {g ∈ Ĝ |Adĝ(g)(q) = q} .(2.1)

In particular, a different choice of a connected Ĝ′ and of a parabolic Q′, with Lie algebras ĝ′
and q′ isomorphic to ĝ and q, yields a complex flag manifold M̂ ′ that is complex-projectively
isomorphic to M̂. Thus a flag manifold M̂ is better described in terms of the pair of Lie
algebras ĝ and q.

Fix a Cartan subalgebra ĥ of ĝ that is contained in q. Let R be the root system with
respect to ĥ and denote by ĝα = {Z ∈ ĝ | [H,Z] = α(H)Z for any H ∈ ĥ} the root subspace
of α ∈ R. Then we can choose a lexicographic order “≺” of R such that ĝα ⊂ q for all
positive α. Let B be the corresponding system of positive simple roots. All α ∈ R are linear
combinations of elements of the basis B:

α =
∑
β∈B

kβ
αβ , kβ

α ∈ Z(2.2)

and we define the support suppB(α) of α with respect to B as the set of β ∈ B for which
k
β
α �= 0. The set Q = {α ∈ R | ĝα ⊂ q} is a parabolic set, i.e., is closed under root addition

and Q ∪ (−Q) = R. Let Φ ⊂ B be the subset of simple roots α for which ĝ−α �⊂ q. Then Q
and q are completely determined by Φ. Indeed,

Q = QΦ := {α 	 0} ∪ {α ≺ 0 | suppB(α) ∩Φ = ∅} = Qr
Φ ∪Qn

Φ ,(2.3)
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where

Qr
Φ = {α ∈ R | suppB(α) ∩Φ = ∅}(2.4)

Qn
Φ = {α ∈ R | α 	 0 and suppB(α) ∩Φ �= ∅} ,(2.5)

and for the parabolic subalgebra q we have the decomposition:

q = qΦ = ĥ+
∑

α∈QΦ

ĝα = qr
Φ ⊕ qn

Φ ,(2.6)

where

qn
Φ =

∑
α∈Qn

Φ

ĝα is the nilradical of qΦ , and(2.7)

qr
Φ = ĥ+

∑
α∈Qr

Φ

ĝα is a reductive complement of qn
Φ in qΦ .(2.8)

We also set

ĥ′Φ = ĥ ∩ [qr
Φ, qr

Φ ] ,(2.9)

ĥ′′Φ = {H ∈ ĥ | [H, qr
Φ] = 0} .(2.10)

Then

ĥ = ĥ′Φ ⊕ ĥ′′Φ(2.11)

and ĥ′′Φ is the center of the reductive Lie subalgebra qr
Φ .

All Cartan subalgebras of ĝ are equivalent, modulo inner automorphisms, and all simple
basis of a fixed root system R are equivalent for the transpose of inner automorphisms of ĝ

normalizing ĥ. Thus the correspondence Φ ↔ qΦ is one-to-one between the subsets Φ of
an assigned system B of simple roots of R and the complex parabolic Lie subalgebras of ĝ,
modulo inner automorphisms. In other words, the flag manifolds associated to a connected
semisimple complex Lie group with Lie algebra ĝ are parametrized by the subsets Φ of a basis
B of simple roots of its root system R, relative to any Cartan subalgebra ĥ of ĝ.

The choice of a Cartan subalgebra ĥ of ĝ contained in q yields a canonical Chevalley
decomposition of the parabolic subgroup Q:

PROPOSITION 2.1. With the notation above, we have a Chevalley decomposition

Q = Qn
Φ � Qr

Φ ,(2.12)

where the unipotent radical Qn
Φ is the connected and simply connected Lie subgroup of Ĝ with

Lie algebra qn
Φ , and Qr

Φ is the reductive1 complement with Lie algebra qr
Φ . The reductive Qr

Φ

is characterized by

Qr
Φ = ZĜ(ĥ′′Φ) = {g ∈ Ĝ |Adĝ(g)(H) = H for all H ∈ ĥ′′Φ} .(2.13)

1According to [Kna02] we call reductive a linear Lie group G, having finitely many connected components,
with a reductive Lie algebra g, and such that Adĝ(G) ⊂ Int(ĝ).
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Moreover, Qr
Φ is a subgroup of finite index in NĜ(qr

Φ) = {g ∈ Ĝ |Adĝ(qr
Φ) = qr

Φ} and
Q ∩ NĜ(qr

Φ) = Qr
Φ .

PROOF. A complex parabolic subgroup can also be considered as a real parabolic sub-
group. The Chevalley decomposition (2.12) reduces then to the Langlands decomposition
Q = MAN, with N = Qn

Φ and MA = Qr
Φ . Thus our statement reduces to [Kna02, Proposi-

tion 7.82(a)].
Next we note that qr

Φ is the centralizer of ĥ′′Φ in ĝ and is its own normalizer. This yields
the inclusion Qr

Φ ⊂ NĜ(qr
Φ). Since NĜ(qr

Φ) is semi-algebraic, it has finitely many connected
components. Thus its intersection with Qn

Φ is discrete and finite, and thus trivial because Qn
Φ

is connected, simply connected and unipotent. �

3. The structure of minimal G-orbits. Let M̂ = Ĝ/Q be a flag manifold for the
transitive action of the connected semisimple complex linear Lie group Ĝ, and G a connected
real form of Ĝ. Note that G is semi-algebraic, being a topological connected component of an
algebraic group. We know from [Wol69] that there are finitely many G-orbits. Fix any orbit
M and a point x ∈ M . We can assume that Q ⊂ Ĝ is the stabilizer of x for the action of Ĝ in
M̂ . We keep the notation in §2, and we also set G+ = Q ∩ G for the stabilizer of x in G, so
that M  G/G+. Let g ⊂ ĝ be the Lie algebra of G and g+ = q ∩ g the Lie algebra of G+.

We summarize the results of [AMN06a, p. 491] by stating the following

PROPOSITION 3.1. With the notation above, g+ contains a Cartan subalgebra h of g.
If h is any Cartan subalgebra of g contained in g+, there are a Cartan involution ϑ : g→ g

and a decomposition

g+ = n⊕w = n⊕ l⊕ z(3.1)

such that
(i) n is the nilpotent ideal of g+, consisting of the elements X ∈ g+ for which

adg(X) : g→ g is nilpotent,
(ii) w = l⊕ z is reductive,

(iii) z ⊂ h is the center of w and l = [w,w] its semisimple ideal,
(iv) h, n, z and l are invariant under the Cartan involution ϑ of g.

We have the following

PROPOSITION 3.2. Keep the notation introduced above. The isotropy subgroup G+ is
the closed real semi-algebraic subgroup of G:

G+ = NG(qΦ) = {g ∈ G |Adĝ(g)(qΦ) = qΦ} .(3.2)

The isotropy subgroup G+ admits a Chevalley decomposition

G+ =W � N ,(3.3)

where
(i) N is a unipotent, closed, connected, and simply connected subgroup with Lie alge-

bra n,
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(ii) W is a reductive Lie subgroup, with Lie algebra w, and is the centralizer of z in G:

W = ZG(z) = {g ∈ G |Adg(g)(H) = H for all H ∈ z} .(3.4)

PROOF. Let g ∈ G+. Then Adg(g)(w) is a reductive complement of n in g+. Since all
reductive complements of n are conjugated by an inner automorphism from Adg+(N), we can
find a gn ∈ N such that Adg+(g

−1
n g)(w) = w. Consider the element gr = g−1

n g . We then
have:

Adg(gr )(w) = w , Adĝ(gr )(qΦ) = qΦ ,

Adĝ(gr )(q
n
Φ) = qn

Φ , Adĝ(gr )(q̄Φ) = q̄Φ ,

because gr ∈ Q ∩ Q̄. We consider the parabolic subalgebra of ĝ defined by

qΦ′ = qn
Φ ⊕ (qr

Φ ∩ q̄Φ) = qn
Φ + (qΦ ∩ q̄Φ) .

It has the property that qr
Φ′ = q̄r

Φ′ is the complexification of w. Clearly, Adĝ(gr )(qΦ′) = qΦ′

and Adĝ(gr )(q
r
Φ′) = qr

Φ′ . By Proposition 2.1, gr ∈ ZĜ(ĥ′′
Φ′). The statement follows because

gr ∈ G and ĥ′′
Φ′ is the complexification of z. �

Among the G-orbits in M̂ there is one, and only one, say M , that is closed, and that we
shall call henceforth the minimal orbit. Fix a point x ∈ M . We can assume that Q is the
stabilizer of x in Ĝ. Then the orbit M is completely determined by the datum of the real Lie
algebra g of G and of the complex Lie subalgebra q of ĝ corresponding to Q. In [AMN06a]
we called the pair (g, q), consisting of the real Lie algebra g and of the parabolic complex
Lie subalgebra q of its complexification ĝ, a parabolic minimal CR algebra. This is a special
instance of the notion of CR algebra that was introduced in [MN05] (for the general orbits
and their corresponding parabolic CR algebras, we refer the reader to [AMN06b]).

We recall that (g, q) is effective if g+ does not contain any ideal of g. We remark that this
means that the action of G on M is almost effective.

Moreover, we have (see [AMN06a, p. 490]) the following

PROPOSITION 3.3. Let M be the minimal orbit associated to the pair (g, q). If g =⊕m
i=1 gi is the decomposition of g into the direct sum of its simple ideals, then

(1) qi = q ∩ ĝi is parabolic in ĝi ,
(2) q =⊕m

i=1 qi ,
(3) M = M1 × · · · ×Mm, where Mi is a minimal orbit associated to the pair (gi , qi ),
(4) (g, q) is effective if and only if all (gi , qi ) are effective, i.e., if qi �= ĝi for all

i = 1, . . . ,m.

We showed in [AMN06a, Proposition 5.5] that g+ = g ∩ q contains a maximally non-
compact Cartan subalgebra h of g. Fix such a maximally noncompact Cartan subalgebra
h ⊂ g+ of g, and, accordingly, a Cartan involution ϑ and a decomposition (3.1) as in Propo-
sition 3.1.
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Let

g = k⊕ p(3.5)

be the Cartan decomposition defined by ϑ . Then h = h+ ⊕ h−, with h+ = h ∩ k and
h− = h ∩ p. Moreover, k is the Lie algebra of a maximal compact subgroup K of G. The
group K is connected and semi-algebraic. Hence the isotropy subgroup K+ = K ∩ Q has
finitely many connected components and thus, since, by [Mon50], K acts transitively on the
minimal orbit M ,

M = K/K+ .(3.6)

Let R be the root system of ĝ with respect to ĥ. By duality, the conjugation in ĝ defined
by the real form g defines an involution α → ᾱ in the root system R. A root α is real when
ᾱ = α, imaginary when ᾱ = −α, and complex when ᾱ �= ±α. The condition that h is
maximally noncompact is equivalent to the fact that all imaginary roots α are compact, i.e.,
that ĝα ⊂ k̂ = C ⊗ k. We indicate by R• the set of imaginary roots.

We also showed (see [AMN06a, Proposition 6.2]) that, by choosing a suitable lexico-
graphic order in R, we have, with the notation in §2:

(1) R+ = {α 	 0} ⊂ Q ,
(2) ᾱ 	 0 for all complex α in R+.

Let B be the system of simple roots in R+. The involution α → ᾱ defines an involution
α→ ε(α) on B \R•, with the property that ᾱ = ε(α)+∑

β∈B∩R• t
β
α β. It is described on the

corresponding Satake diagrams (cf. [Ara62]) by joining by a curved arrow all pairs of distinct
simple roots (α, ε(α)).

Let Φ ⊂ B and q = qΦ be as in §2. Then the Satake diagram S of g, with cross-marks
corresponding to the roots in Φ, yields a complete graphic description of the minimal orbit M

(see [AMN06a, §6]). We call the pair (S,Φ) the cross-marked Satake diagram associated to
M , or equivalently, to the pair (g, q).

An inclusion QΦ ⊂ QΦ′ of parabolic subgroups of Ĝ defines a natural Ĝ-equivariant fi-
bration (Ĝ/QΦ) → (Ĝ/QΦ′), yielding by restriction a G-equivariant fibration M → M ′
of the corresponding minimal orbits. In the following proposition we describe these G-
equivariant fibrations in terms of the associated cross-marked Satake diagrams.

PROPOSITION 3.4. Let M and M ′ be minimal orbits for the same G, associated to the
pairs (g, qΦ) and (g, qΦ′), respectively, with Φ ′ ⊂ Φ. Let E be the set of all roots α ∈ B
with

({α} ∪ suppB(ᾱ)
) ∩ Φ ′ �= ∅. Consider the Satake diagram S ′′ obtained from the Satake

diagram S of g by erasing all nodes corresponding to the set E and all lines and arrows issued
from them.

Then the G-equivariant fibration M → M ′ has connected fibers that are minimal orbits
M ′′, corresponding to the cross-marked Satake diagram (S ′′,Φ ′′), where Φ ′′ = Φ \ E .

PROOF. Let H = ZG(h) = {h ∈ G |Adg(h)(H) = H, for all H ∈ h} be the Cartan
subgroup of G corresponding to h. We have Adĝ(h)(qΦ) = qΦ and Adĝ(h)(qΦ′) = qΦ′ for
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all h ∈ H. Hence H ⊂ G+ ⊂ G′+, where G+ = G∩QΦ and G′+ = G∩QΦ′ . We decompose
G′+ = W′ � N′ according to (3.3), with a W′ that satisfies (3.4). Then H ⊂ W′ and, since h

is maximally noncompact in g′+, it is also maximally noncompact in w′ = Lie(W′). Thus, by
[Kna02, Proposition 7.90], all connected components of W′, and hence also of G′+, intersect
H and, a fortiori, G+. Therefore the fiber G′+/G+ is connected.

The fact that M ′′ is the minimal orbit associated to (S ′′,Φ ′′) is the contents of [AMN06a,
Proposition 7.3]. �

In the following two lemmata we give sufficient conditions, in terms of cross-marked
Satake diagrams, in order that two minimal orbits be diffeomorphic.

LEMMA 3.5. We keep the notation introduced above. Let

Π = Φ ∪ {α ∈ B \R• | supp(ᾱ) ∩Φ �= ∅} ,(3.7)

and M∗ the minimal orbit corresponding to (g, qΠ). Then the canonical G-equivariant map
M∗ → M is a diffeomorphism.

PROOF. By Proposition 3.4, M∗ → M is a G-equivariant fibration whose fiber reduces
to a point, and hence a diffeomorphism. �

From Lemma 3.5 we obtain

LEMMA 3.6. We keep the notation introduced above. Let M1, M2 be minimal orbits
associated to pairs (g, qΦ1), (g, qΦ2), respectively, for the same semisimple real Lie algebra
g, and with suitable Φ1,Φ2 ⊂ B. Let

Π1 = Φ1 ∪ {α ∈ B | supp(ᾱ) ∩Φ1 �= ∅} ,
Π2 = Φ2 ∪ {α ∈ B | supp(ᾱ) ∩Φ2 �= ∅} .

If Π1 = Π2, then there is a G-equivariant diffeomorphism M1 → M2.

PROOF. Indeed, by Lemma 3.5, we have a chain of G-equivariant diffeomorphisms
M1

∼←− M∗1 M∗2
∼−→ M2. �

We also have the following

PROPOSITION 3.7. We keep the notation introduced above. By erasing all nodes cor-
responding to roots in Π and all lines and arrows issuing from them, we obtain a new
Satake diagram S ′′Φ , that is the Satake diagram of a Levi subalgebra l of g+ = q ∩ g. Then

R′′Φ = Qr
Φ ∩Q̄r

Φ is the root system of the complexification l̂ of l with respect to its Cartan sub-

algebra ĥ ∩ l̂, that is, the complexification of the maximally noncompact Cartan subalgebra
h ∩ l of l.

PROOF. Since qΠ ∩ g = qΦ ∩ g = g+, we can as well assume that Φ = Π . The inter-
section w = qr ∩ q̄r ∩ g is a reductive complement of the nilradical of g+ and its semisim-
ple ideal l = [w,w] is a Levi subalgebra of g+. The associated root system of qr ∩ q̄r ,
with respect to ĥ, and of l̂ with respect to its Cartan subalgebra ĥ ∩ l̂, is Qr

Π ∩ Q̄r
Π . We

observe that ᾱ ∈ Qr
Π for all simple α ∈ B \ Π . Hence, for α ∈ Qr

Π , also ᾱ ∈ Qr
Π ,
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because suppB(ᾱ) ⊂ ⋃
β∈suppB(α) suppB(β̄) and hence, when suppB(α) ∩ Π = ∅, also

suppB(ᾱ) ∩ Π = ∅. This shows that Qr
Π = Q̄r

Π and that suppB(α) ⊂ B \ Π for all
α ∈ Qr

Π . Since B \ Π ⊂ Qr
Π , we proved that B \ Π is a system of simple roots for

R′′Φ = Qr
Π = Qr

Π ∩ Q̄r
Π . Since the nodes of S ′′Φ are exactly those corresponding to the

simple roots in B \Π , this proves our contention. �

From Lemma 3.6, we obtain in particular the following

PROPOSITION 3.8. If g is a simple Lie algebra of the complex type, then every minimal
orbit M of G is diffeomorphic to a complex flag manifold.

PROOF. The Satake diagram of g consists of two disjoint connected graphs, whose
nodes correspond to two sets of simple roots, each root of one set being strongly orthogo-
nal to all roots of the other, B′ = {α′1, . . . , α′l} and B′′ = {α′′1 , . . . , α′′l }, with curved arrows
joining α′j to α′′j . Let J ⊂ {1, . . . , l} be the set of indices for which either α′j or α′′j are cross-
marked, i.e., belongs to Φ ⊂ B = B′ ∪B′′. By Lemma 3.6, our M is diffeomorphic to the M ′
corresponding to the parabolic qΦ′ with Φ ′ = {α′j | j ∈ J }. By [AMN06a, Theorem 10.2],
M ′ is complex and, hence, a complex flag manifold. �

4. Euler characteristic of minimal orbits. Let M = K/K+ be a homogeneous
space for the transitive action of a compact connected Lie group K. It is known (see, e.g.,
[GHV73, p. 182]) that its Euler characteristic χ(M) is nonnegative. Moreover, it is positive
exactly when the rank of the isotropy subgroup K+ equals the rank of K. In this case the
identity component K0+ of the isotropy K+ contains the center of K and hence M̃ = K/K0+
is the universal covering of M . Indeed, we can reduce to the case of a semisimple K and
thus assume that K is simply connected. The number of sheets of M̃ → M equals then the
order |π1(M)| of the fundamental group of M . By using [MT91, Ch. VII, Theorem 3.13] for
instance, we obtain

χ(M̃) = |W(K)|
|W(K0+)| ,(4.1)

χ(M) = |W(K)|
|W(K0+)| · |π1(M)| .(4.2)

We have the following

PROPOSITION 4.1. Let M = G/G+ = K/K+, as in (3.6), be a minimal orbit. Then
K+ = K ∩ G+ is a maximal compact subgroup of G+, contained in the maximal compact
subgroup K of G. Also, the following are equivalent:

(1) χ(M) > 0.
(2) rk(K) = rk(K+), i.e., K+ contains a maximal torus of K.
(3) g+ contains a maximally compact Cartan subalgebra of g.
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PROOF. The proof of the equivalence (1)⇔ (2) is contained in [Wan49]. Thus we need
only to prove that (2) ⇔ (3). We also observe that K+ is a maximal compact subgroup of
G+ because of (3.6).

Let k and k+ be the Lie algebras of K and K+, respectively. Assume that k+ contains
a maximal torus t of k. Take a maximal Abelian subalgebra a of g+, consisting of adg-
semisimple elements, and with a ⊃ t. We claim that a is a Cartan subalgebra of g+ and
therefore also of g, and clearly it will also be maximally compact in g. Indeed, since g+ con-
tains a Cartan subalgebra of g, all Cartan subalgebras of g+ are also Cartan subalgebras of
g. Since g+ is adg-splittable (see [AMN06a, Proposition 5.4]), its Cartan subalgebras are its
maximal Abelian Lie subalgebras consisting of adg-semisimple elements (cf., e.g., [Bou75,
Chap. VII, §5, Prop. 6]).

Vice versa, if a is a maximally compact Cartan subalgebra of g contained in g+, then
a ∩ k = a ∩ k+ is a maximal torus of k and k+. Thus K and K+ have the same rank. �

In the following we shall keep the notation in §3. In particular, we fix a maximally
noncompact Cartan subalgebra h of g contained in g+, standard with respect to the Cartan
decomposition (3.5) associated to the Cartan involution ϑ of Proposition 3.1. To express the
equivalent conditions (1), (2) and (3) of Proposition 4.1 in terms of the description in §3,
we need to rehearse first the construction of the Cartan subalgebras of a real semisimple Lie
algebra from [Kos55, Sug59, Kna02].

LEMMA 4.2. With the notation above, every Cartan subalgebra of g is equivalent,
modulo an inner automorphism, to a Cartan subalgebra a which is standard with respect to
the triple (k, p, h−). This means that a has noncompact part a− ⊂ h− and compact part
a+ ⊂ k.

All standard Cartan subalgebras a are obtained in the following way:
(1) fix a system α1, . . . , αr of strongly orthogonal real roots in R;
(2) fix X±αi ∈ ĝ±αi ∩ g with [X−αi , Xαi ] = Hαi , [Hαi ,X±αi ] = ±2X±αi , for i =

1, . . . , r;
(3) let d = dα1 ◦ · · · ◦ dαr , where dαi = Adĝ

(
exp(iπ(X−αi −Xαi )/4)

)
, for i =

1, . . . , r (d is the Cayley transform with respect to α1, . . . , αr );
(4) set a = d(ĥ) ∩ g.

NOTATION. For a real semisimple Lie algebra g, with associated Satake’s diagram S,
we shall denote by ν = ν(g) = ν(S) the maximum number of strongly orthogonal real roots
in R.

From Lemma 4.2 we deduce the criterion:

PROPOSITION 4.3. Let M be the minimal orbit corresponding to the pair (g, qΦ). Let
l be a Levi subalgebra of g+. Then χ(M) > 0 if and only if one of the following equivalent
conditions is satisfied:

Qr
Φ contains a maximal system of strongly orthogonal real roots of R.(4.3)

ν(l) = ν(g).(4.4)
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PROOF. The Cartan subalgebras of g contained in g+ are conjugated, modulo inner
automorphisms of g+, to standard Cartan subalgebras that are contained in w = qr ∩ g.
Decompose the reductive real Lie algebra w as w = l ⊕ z, where z is the center of w and
l = [w,w] its semisimple ideal, that is a Levi subalgebra of g+. We have z ⊂ h and h =
z ⊕ (h ∩ l). Thus a maximally compact Cartan subalgebra of g+ will be conjugate to one of
the form z⊕ e, with e a maximally compact Cartan subalgebra of l. By Lemma 4.2, these are
obtained via a Cayley transform d = dα1 ◦ · · · ◦ dαr for a system of strongly orthogonal real
roots α1, . . . , αr in Qr

Φ . Hence the statement follows. �

5. Classification of the minimal orbits with χ(M) > 0. Throughout this section,
we shall consistently employ the notation of the previous sections. In particular, l will always
denote a Levi subalgebra of g+, k the compact Lie subalgebra in the decomposition (3.5). We
set ks+ for the maximal compact subalgebra k ∩ l of l.

By using the result of Proposition 3.4, the computation of χ(M) for a minimal orbit M

can be reduced to the the case where, for the associated CR algebra (g, q), the real Lie algebra
g is simple and the parabolic q is maximal, i.e., Φ = {α} for some α ∈ B. Thus we begin by
considering this special case:

THEOREM 5.1. Let M be the minimal orbit associated to the effective pair (g, q{α}),
with g simple and a maximal parabolic q{α} ⊂ ĝ for α ∈ B.

Then χ(M) > 0 if and only if either one of the following conditions holds:
(i) g is either of the complex type, or compact, or of the real non split types A II, D II,

E IV and α is any root in B.
(ii) g is of the real types A I, D I, E I, and α ∈ B is chosen as in Table 1.

Here we list all pairs of real noncompact g and α ∈ B for which χ(M) > 0, also computing
χ(M) in the different cases.

PROOF. When g is either of the complex type, or compact, or of the real types A II,
D II, E IV, we have ν(g) = ν(S) = 0 and thus the necessary and sufficient condition of
Proposition 4.3 to have χ(M) > 0 is trivially satisfied. Moreover, we know from [AMN06a,
Theorem 8.6] that M is simply connected, and therefore M̃ = M and χ(M̃) = χ(M).

Before discussing the remaining cases, we note that a necessary condition for χ(M) > 0
is that rk(K) < rk(G). Indeed, when rk(K) = rk(G), Condition (2) of Proposition 4.1 implies
that g+ contains a compact Cartan subalgebra. This in turn implies that the orbit M is complex
and thus coincides with the complex flag manifold M̂ . But this may occur only if g is either
of the complex type, or compact, or of real types A II, D II. The first two cases have already
been considered, while in the remaing two cases rk(K) < rk(G).

Thus, to complete the proof, we need only to consider the cases where we may have
rk(K) < rk(G), namely, [A I], [A II], [D I], [D II], [E I], [E IV]. We shall do this by comparing
ν(S) with ν(S ′′{α}) for the different types of g.
[A I] Here g = sl(n,R) and α = αi with 1 ≤ i < n. Then l  sl(i,R)⊕ sl(n− i,R).

Hence ν(S ′′{αi }) = [i/2]+[(n− i)/2] and thus [n/2] = [i/2]+[(n− i)/2], i.e., i(n− i) ∈ 2Z,
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TABLE 1.

type g α condition χ(M̃) χ(M)

A I sl(n,R) αi i · (n− i) ∈ 2Z 2
([n/2]
[i/2]

) ([n/2]
[i/2]

)

α2i−1 1 ≤ i ≤ n 2i
(
n
i

)
2i

(
n
i

)
A II sl(n,H )

α2i 1 ≤ i < n
(
n
i

) (
n
i

)

D I
so(p, 2n− p)

n ≥ 4
2 ≤ p ≤ n

α1 p + 1 ∈ 2Z 4 2

α1 2 2

so(1, 2n− 1)
D II αi 2 ≤ i ≤ n− 2 2i

(
n−1
i−1

)
2i

(
n−1
i−1

)
n ≥ 4

αi n− 1 ≤ i ≤ n 2n−1 2n−1

E I eI αi i ∈ {1, 6} 6 3

αi i ∈ {1, 6} 3 3

E IV eIV αi i = 2, 3, 5 192 192

α4 144 144

is the necessary and sufficient condition in order that ν(S) = ν(S ′′{α}). We have k  so(n) and
ks+  so(i)⊕ so(n− i). Thus, when χ(M) > 0, we have

χ(M̃) = 2[(n+1)/2]−1[n/2]!
2[(i+1)/2]−1[i/2]! · 2[(n−i+1)/2]−1[(n− i)/2]! = 2

([n/2]
[i/2]

)
.

We also have π1(M)  Z2 (see, e.g., [Wig98]), and hence χ(M) = ([n/2]
[i/2]

)
.

[A II] Here g = sl(n,H ), and ν(S) = 0 yields χ(M) > 0 for any choice of α. If
α = α2i−1, for 1 ≤ i ≤ n, then l  sl(i − 1,H ) ⊕ sl(n − i,H ). Hence k  sp(n) and
ks+  sp(i − 1)⊕ sp(n− i). Thus

χ(M) = χ(M̃) = 2nn!
2i−1(i − 1)! · 2n−i(n− i)! = 2i

(
n

i

)
.

If α = α2i with 1 ≤ i < n, then l  sl(i,H ) ⊕ sl(n − i,H ). Thus ks+  sp(i) ⊕ sp(n − i)

and

χ(M) = χ(M̃) = 2nn!
(2i (i)!)(2n−i(n− i)!) =

(
n

i

)
.
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[D I] We have g  so(p, 2n − p) with 2 ≤ p ≤ n and ν(S) = 2[p/2]. Because of
the symmetry of S, the minimal orbits corresponding to Φ = {αn−1} and to Φ = {αn} are
diffeomorphic. Thus we can assume in the following that i �= n− 1. We obtain:

l 




sl(i,R)⊕ so(p − i, 2n− p − i) if 1 ≤ i ≤ p

�⇒ ν(S ′′α) =
[

i

2

]
+ 2

[
p − i

2

]

sl(p,R)⊕ su(i − p)⊕ so(2n− 2i) if p < i ≤ n, i �= n− 1

�⇒ ν(S ′′α) =
[
p

2

]
< 2

[
p

2

]
.

The equation [i/2] + 2[(p − i)/2] = 2[p/2], for integral i with 1 ≤ i ≤ p, is solvable if
and only if p is odd, and in this case we also need to have i = 1. Thus χ(M) > 0 if and
only if p = 2h + 1 is odd and α = α1. Then k = so(2h + 1) ⊕ so(2n − 2h − 1) and
ks+  so(2h)⊕ so(2n− 2h− 2). Hence in this case we have

χ(M̃) = 2hh! · 2n−h−1(n− h− 1)!
2h−1h! · 2n−h−2(n− h− 1)! = 4 .

We also have π1(M)  Z2 (see, e.g., [Wig98]), and hence χ(M) = 2.
[D II] We have g  so(1, 2n − 1), with n ≥ 4, and R does not contain any real root,

so that Condition (4.4) is trivially fulfilled. We have k  so(2n− 1). When α = α1, we have
ks+  so(2n− 2). Thus

χ(M) = χ(M̃) = 2n−1(n− 1)!
2n−2(n− 1)! = 2 .

If α = αi with 2 ≤ i ≤ n− 2, we obtain ks+  su(i − 1)⊕ so(2n− 2i) and

χ(M) = χ(M̃) = 2n−1(n− 1)!
(i − 1)!2n−i−1(n− i)! = 2i

(
n− 1

i − 1

)
.

When α ∈ {αn−1, αn}, we obtain ks+  su(n− 1) and therefore

χ(M) = χ(M̃) = 2n−1(n− 1)!
(n− 1)! = 2n−1 .

The exceptional Lie algebras. We shall discuss the case of the noncompact real forms
of the exceptional Lie algebras of type E I and E IV by comparing ν = ν(g) = ν(S) with
ν′′ = ν(l) = ν(S ′′{α}). Since the proceeding is straightforward, we limit ourselves to list the
Levi subalgebra l of g+ and the corresponding value of ν′′, for each different choice of α ∈ B
(see Table 2).

Looking up to the list, we see that ν = ν′′ if, and only if, either:
(i) g is of type E I and α ∈ {α1, α6}, or

(ii) g is of type E IV and α is any element of B.
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TABLE 2.

type g ν α l ν′′

α1, α6 so(5, 5) 4

E I eI 4
α2 sl(6,R) 3

α3, α5 sl(2,R)⊕ sl(5,R) 3

α4 sl(3,R)⊕ sl(2,R)⊕ sl(3,R) 3

α1, α6 so(8) 0

E IV eIV 0 α2, α3, α5 su(4) 0

α4 su(2)⊕ su(2)⊕ su(2) 0

In case (i), ks+  so(5) ⊕ so(5) and hence |W(K+)| = 64 = 26. We have k = sp(4) and
hence |W(K)| = 384 = 244!. Thus χ(M̃) = 384/64 = 6. Finally, since π1(M)  Z2 (see,
e.g., [Wig98]), the manifold M̃ is a two-fold covering of M , and we obtain that χ(M) = 3.

In the case (ii), we have k = fIII (the compact form of the complex simple Lie algebra of
type F4), so that |W(K)| = 1,152 = 2732. We need to distinguish the different cases:

(1) If α = α1, α6, then ks+  so(9), so that |W(K+)| = 384 = 244! and χ(M) =
χ(M̃) = 1,152/384 = 3.

(2) If α = α2, α3, α5, then ks+ = l = su(3). Hence |W(K+)| = 6 = 3! and χ(M) =
χ(M̃) = 1,152/6 = 192.

(3) If α = α4, then ks+ = su(2) ⊕ su(2) ⊕ su(2). Hence |W(K+)| = 8 = 23 and
χ(M) = χ(M̃) = 1,152/8 = 144. �

The computation of the Euler characteristic in the general case reduces to the previous
theorem and to the well-known formula χ(M) = χ(M ′) · χ(M ′′), that is valid for a smooth
fiber bundle M → M ′ with typical fiber M ′′.

In particular, we obtain the following

THEOREM 5.2. Let M be the minimal orbit associated to the effective pair (g, q) of the
real semisimple Lie algebra g and the complex parabolic subalgebra q of its complexification
ĝ. Let g = ⊕m

i=1 gi be the decomposition of g into the direct sum of its simple ideals. For
each i = 1, . . . ,m, consider the pair (gi , qi ) for qi = q ∩ ĝi . Then the Euler characteristic
χ(M) of M is always nonnegative and is positive if and only if each gi is one of the following:

(1) of the complex type;
(2) compact;
(3) of the real types A II, D II, E IV;



416 A. ALTOMANI, C. MEDORI AND M. NACINOVICH

(4) of the real type A I, with gi  sl(n,R) and Φi = {αj1 , . . . , αjr } for a sequence of
integers {jh}0≤h≤r+1 with

0 = j0 < j1 < · · · < jr < jr+1 = n and
r∑

h=0

[(jh+1 − jh)/2] = [n/2] ;

(5) of the real type D I, with gi  so(p, 2n−p) with p odd, 3 ≤ p ≤ n and Φi = {α1};
(6) of the real type E I, with Φi ⊂ {α1, α6}.
PROOF. We recall that χ(M) ≥ 0 by [Wan49], because M is the homogeneous space

of a compact group.
With the notation of Proposition 3.3, χ(M) = χ(M1) · · ·χ(Mm), where Mi is a mini-

mal orbit associated to the pair (gi , qi ). Therefore it suffices to prove the theorem under the
additional assumption that g is simple.

Let q = qΦ for a set Φ of simple roots contained in a basis B, that corresponds to the
nodes of the Satake diagram S of g.

If α ∈ Φ and M ′ is the minimal orbit associated to (g, q{α}), then we have a G-equivariant
fibration M → M ′, say with fiber M ′′, and χ(M) = χ(M ′) ·χ(M ′′). The condition χ(M ′) >

0 is then necessary in order that χ(M) �= 0.
Thus, by Theorem 5.1, the conditions of the theorem are necessary.
Since ν(S) = 0 when g is either of the complex type, or compact, or of one of the real

types A II, D II, E IV, all ∅ �= Φ ⊂ B lead in these cases to χ(M) > 0. Also, the case (5) is
clear, because, by Theorem 5.1, in that case we may have χ(M) > 0 only with Φ = {α1}.

Thus we only need to consider the cases (4) and (6).
(4) When g  sl(n,R) and Φ = {αj1, . . . , αjr }, the Levi subalgebra of g+ is l ⊕r

h=0 sl(jh+1 − jh,R). Hence ν′′ = ∑r
h=0 [(jh+1 − jh)/2] and the condition ν′′ = ν =

[n/2] is necessary and sufficient for having χ(M) > 0.
Since ks+ 

⊕r
h=0 so(jh+1 − jh), we obtain χ(M) = [n/2]!/∏r

h=0[(jh+1 − jh)/2]!.
(6) By Theorem 5.1, it only remains to consider the case where Φ = {α1, α6}. Let M ′

be the minimal orbit corresponding to (eI, q{α6}) and M ′′ the fiber of the fibration M → M ′.
By Proposition 3.4, M ′′ is the minimal orbit associated to (so(5, 5), q{α1}). We know from
Theorem 5.1 that χ(M ′) = 3 and χ(M ′′) = 2. Thus χ(M) = χ(M ′) · χ(M ′′) = 6. �

6. Some examples.

EXAMPLE 6.1. The method outlined above can also be applied in the classical cases.
Let for instance g = so(2n), with n ≥ 3. We can assume that q=qΦ with Φ={αj1, . . . , αjr },
for a sequence of integers 0 = j0 < j1 < · · · < jr ≤ jr+1 = n with jr �= n − 1. Then
we obtain: l = ks+ = so(2(n − jr )) ⊕⊕r−1

h=0 su(jh+1 − jh). Hence, for the corresponding

M = M
Dn

j1,...,jr
we obtain
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χ(M
Dn

j1,...,jr
) =




2jr n!∏r
h=0(jh+1 − jh)! if jr ≤ n− 2 ,

2n−1n!∏r−1
h=0(jh+1 − jh)!

if jr = n .

EXAMPLE 6.2. Let us turn now to the case D II. Let g  so(1, 2n − 1), with n ≥ 4
and q = qΦ with Φ = {αj1, . . . , αjr }, where again we assume that 0 = j0 < j1 < · · · < jr ≤
jr+1 = n, and jr �= n − 1. We note that, by Lemma 3.6, M = M

[D II]n
j1,...,jr

is diffeomorphic to
the minimal orbit associated to (g, qΦ′), where Φ ′ = Φ ∪ {α1}. Thus we can as well assume
that α1 ∈ Φ, i.e., that j1 = 1. Since for the minimal orbit M ′ associated to (g, q{α1}) we have
χ(M ′) = 2, we can apply Proposition 3.4 to the G equivariant fibration M → M ′. Since the
fiber M ′′ is the complex flag manifold M

Dn−1
j2−1,...,jr−1, we conclude that

χ(M
[D II]n
1,j2,...,jr

) = 2 · χ(M
Dn−1
j2−1,...,jr−1) .

EXAMPLE 6.3. Assume that g  sl(n,H ) is of the real type [A II]2n−1 and that
q = qΦ with Φ = {α2j1−1, . . . , α2jr−1} for a sequence of integers satisfying 0 = j0 <

j1 < · · · < jr < jr+1 = n + 1. Consider the minimal orbit M
[A II]2n−1
2j1−1,...,2jr−1. Since

ᾱ2h = α2h−1 + α2h + α2h+1 for 1 ≤ h ≤ n − 1, we obtain that the Levi subalgebra of
g+ is l =⊕r

h=0 sl(jh+1 − jh − 1,H ). Hence we obtain

χ(M
[A II]2n−1
2j1−1,...,2jr−1) =

2nn!
r∏

h=0

(
2jh+1−jh−1(jh+1 − jh − 1)!)

= 2rn!
r∏

h=0

(jh+1 − jh − 1)!
.

EXAMPLE 6.4. Consider the case where g = eIV. We have already discussed the case
where Φ ⊂ {α1, α6}. Assume therefore that Φ ∩ {α2, α3, α4, α5} �= ∅. We observe that, by
Lemma 3.6, the minimal orbit associated to (eIV, qΦ) is diffeomorphic to the minimal orbit
associated to (eIV, qΦ∪{α1,α6}). Thus we can proceed as in the discussion of the case [D II].
Indeed, we can assume that Φ = {α1, αj1 , . . . , αjr , α6} with r ≥ 1. By considering the G-
equivariant fibration over M ′ = ME IV

1,6 associated to (eIV, q{α1,α6}), we obtain by Proposition

3.4 that the fiber is M ′′ = M
D4
j1−1,...,jr−1. Hence, since

χ(ME IV
1,6 ) = χ(ME IV

6 ) · χ(M
[D II]5
1 ) = 3 · 2 = 6 ,

we obtain

χ(ME IV
1,j1,...,jr ,6) = 6 · χ(M

D4
j1−1,...,jr−1) .

7. Appendix. In Table 3 we give, for each noncompact simple Lie algebra of the real
type, a linear representation g, its maximal compact subalgebra k, the order of the Weyl group
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TABLE 3.

type g k |W(K)| ν l

A I sl(n,R) so(n) 2[ n+1
2 ]−1 · [n

2

]!
[
n
2

]
n− 1

A II sl(n,H ) sp(n) 2n · n! 0 2n− 1

A III
su(p, q)

2 ≤ p ≤ q
s(u(p)⊕ u(q)) p! · q! p p + q − 1

A IV
su(1, q)

q ≥ 1
u(q) q! 1 q

B I
so(p, 2n+ 1− p)

2 ≤ p ≤ n
so(p)⊕ so(2n+ 1− p) 2n−1 [p

2

]![ 2n+1−p
2

]! p n

B II
so(1, 2n)

n ≥ 1
so(2n) 2n−1n! 1 n

C I sp(2n,R) u(n) n! n n

C II
sp(p, q)

0 < p ≤ q
sp(p)⊕ sp(q) 2p+qp! · q! p p + q

D I

so(p, 2n− p)

n ≥ 4

2 ≤ p ≤ n

so(p)⊕ so(2n− p)
2n−p+2[ p−1

2 ]

× [
p
2

]
!
[

2n−p
2

]
!

2
[p

2

]
n

D II
so(1, 2n− 1)

n ≥ 4
so(2n− 1) 2n−1(n− 1)! 0 n

D III
so∗(2n)

n ≥ 2
u(n) n! [

n
2

]
n

E I eI sp(4) 384 4 6

E II eII su(2)⊕ su(6) 1,440 4 6

E III eIII so(10)⊕R 1,920 2 6

E IV eIV f4 1,152 0 6

E V eV su(8) 40,320 7 7

E VI eVI su(2)⊕ so(12) 46,080 4 7

E VII eVII e6 ⊕R 51,840 3 7

E VIII eVIII so(16) 5,160,960 8 8

E IX eIX su(2)⊕ e7 5,806,080 4 8

F I fI su(2)⊕ sp(3) 96 4 4

F II fII so(9) 384 1 4

GI gI so(3)⊕ so(3) 16 2 2
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of the maximal compact subgroup K of a connected Lie group with Lie algebra g, the number
ν of the elements of a maximal system of strongly orthogonal real roots of R, the dimension
l of a Cartan subalgebra of g. The numbers ν are essentially computed in [Sug59]. However,
since the computation is rather implicit there, we also give an explicit list of maximal systems
of strongly orthogonal roots for each listed case.

We denote by Γ a maximal system of strongly orthogonal real roots in R. For each case
of the list we describe below an explicit Γ .

[Al]. R = {±(ei − ej ) | 1 ≤ i < j ≤ n}.
A I ν = [n/2] Γ = {ei − en+1−i | 1 ≤ i ≤ ν}
A II ν = 0 Γ = ∅
A III ν = p Γ = {ei − en+1−i | 1 ≤ i ≤ ν}
A IV ν = 1 Γ = {e1 − en}

[Bl]. R = {±ei | 1 ≤ i ≤ l} ∪ {±ei ± ej | 1 ≤ i < j ≤ l}.
B I ν = p even Γ = {e2j−1 ± e2j | 1 ≤ j ≤ p/2}
B I ν = p odd Γ = {e2j−1 ± e2j | 1 ≤ j ≤ (p − 1)/2} ∪ {ep}
B II ν = 1 Γ = {e1}

[Cl]. R = {±2ei | 1 ≤ i ≤ l} ∪ {±ei ± ej | 1 ≤ i < j ≤ l}.
C I ν = l Γ = {2ei | 1 ≤ i ≤ l}
C II ν = p Γ = {e2i−1 + e2i | 1 ≤ i ≤ p}

[Dl]. R = {±ei ± ej | 1 ≤ i < j ≤ l}.
D I ν = 2[p/2] Γ = {e2h−1 ± e2h | 2h ≤ p}
D II ν = 0 Γ = ∅
D III ν = [l/2] Γ = {e2h−1 + e2h | 1 ≤ h ≤ [l/2]} .

[E6, E7, E8] Following [Bou68], we set

R(e8) = {±ei ± ej ) | 1 ≤ i < j ≤ 8} ∪
{

1

2

8∑
i=1

(−1)ki ei

∣∣∣∣ ki ∈ Z ,

8∑
i=1

ki ∈ 2Z

}
,

R(e7) = R(e8) ∩ {e7 + e8}⊥ ,

R(e6) = R(e8) ∩ {e6 + e8, e7 + e8}⊥ ,

so that in particular R(e6) ⊂ R(e7) ⊂ R(e8).
Likewise, the basis of simple roots can be considered as included one into the other:

B(e6) = {α1, . . . , α6} ⊂ B(e7) = {α1, . . . , α7} ⊂ B(e8) = {α1, . . . , α8} for α1 = 1
2 (e1 −
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e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2, α3 = e2 − e1, α4 = e3 − e2, α5 = e4 − e3,
α6 = e5 − e4, α7 = e6 − e5, α8 = e7 − e6.

Set

βi =
{

ei − ei+1 for odd i ,

ei−1 + ei for even i ,

so that βi ∈ R(e6) for i ≤ 4, βi ∈ R(e7) for i ≤ 7, βi ∈ R(e8) for i ≤ 8. Note that
{βi | 1 ≤ i ≤ 8} is a system of eight strongly orthogonal roots in R(e8).

Since the conjugation in the non-split forms are better expressed in terms of the simple
roots αi , to describe the maximal sets Γ , we also found it convenient to introduce other roots
γi , defined as linear combinations of the simple roots αi :

γ1 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 = 1 2 3 2 1
2 ∈ R(e6) ,

γ2 = α1 + α3 + α4 + α5 + α6 = 1 1 1 1 1
0 ∈ R(e6) ,

γ3 = α3 + α4 + α5 = 0 1 1 1 0
0 ∈ R(e6) ,

γ4 = α1 + α2 + 2α3 + 2α4 + α5 = 1 2 2 1 0 0
1 ∈ R(e7) ,

γ5 = α1 + α2 + 2α3 + 2α4 + 2α5 + 2α6 + α7 = 1 2 2 2 2 1
1 ∈ R(e7) ,

γ6 = α1 + 2α2 + 2α3 + 4α4 + 3α5 + 2α6 + α7 = 1 2 4 3 2 1
2 ∈ R(e7) ,

γ7 = α2 + α3 + 2α4 + 2α5 + 2α6 + α7 = 0 1 2 2 2 1
1 ∈ R(e7) ,

γ8 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = 2 3 4 3 2 1
2 ∈ R(e7) ,

γ9 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 = 2 4 6 5 4 3 2
3 ∈ R(e8) .

We can describe a system Γ of strongly orthogonal roots for the real simple Lie algebra
of the exceptional types E6, E7, E8 by

E I ν = 4 Γ = {β1, β2, β3, β4} ,
E II ν = 4 Γ = {α4, γ1, γ2, γ3} ,
E III ν = 2 Γ = {γ1, γ2} ,
E IV ν = 0 Γ = ∅ ,

E V ν = 7 Γ = {β1, β2, β3, β4, β5, β6, β7} ,
E VI ν = 4 Γ = {α1, γ4, γ5, γ6} ,
E VII ν = 3 Γ = {α7, γ7, γ8} ,
E VIII ν = 8 Γ = {β1, β2, β3, β4, β5, β6, β7, β8} ,
E IX ν = 4 Γ = {α7, γ7, γ8, γ9} .

[F4]. We have

R = {±ei | 1 ≤ i ≤ 4} ∪ {±ei ± ej | 1 ≤ i < j ≤ 4} ∪
{±e1 ± e2 ± e3 ± e4

2

}
.
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Then we have

F I ν = 4 Γ = {e1 ± e2, e3 ± e4} ,
F II ν = 1 Γ = {α1 + 2α2 + 3α3 + 2α4} = {e1} .

[G2]. We have

R = {±(ei − ej ) | 1 ≤ i < j ≤ 3} ∪ {±(2ei − ej − ek) | {i, j, k} = {1, 2, 3}} .

G I ν = 2 Γ = {e1 − e2, 2e3 − e1 − e2} .
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