ON THE TOPOLOGY OF MINIMAL ORBITS IN COMPLEX FLAG MANIFOLDS

Andrea Altomani, Costantino Medori and Mauro Nacinovich

(Received October 11, 2007, revised March 7, 2008)

Abstract

We compute the Euler-Poincaré characteristic of the homogeneous compact manifolds that can be described as minimal orbits for the action of a real form in a complex flag manifold.

1. Introduction. A complex flag manifold is a simply connected homogeneous compact complex manifold that is also a projective variety. It is the quotient $\hat{M}=\hat{\mathbf{G}} / \mathbf{Q}$ of a connected complex semisimple Lie group $\hat{\mathbf{G}}$ by a parabolic subgroup \mathbf{Q}. Let a connected real form \mathbf{G} of $\hat{\mathbf{G}}$ act on \hat{M} by left translations. This action decomposes \hat{M} into a finite number of \mathbf{G}-orbits. Among these, there is a unique orbit of minimal dimension, which is also the only one that is compact (cf. [Wol69]).

In this paper we compute the Euler-Poincaré characteristic of the minimal orbit M. This was already well known in the two cases where either $M=\hat{M}$, i.e., when \mathbf{G} is transitive on \hat{M}, or M is totally real, i.e., when $\mathbf{Q} \cap \mathbf{G}$ is a real form of \mathbf{Q}, and, in particular, a real parabolic subgroup of \mathbf{G}. In these cases, indeed, explicit cell decompositions of M were obtained by several authors (see, e.g., [CS99, DKV83, Koc95]). The Euler characteristic of M was also computed in [MN01] for the case where M is a standard CR manifold. These are indeed special cases of minimal orbits, in which, although $\mathbf{Q} \cap \mathbf{G}$ is not a real form of \mathbf{Q}, M is diffeomorphic to a real flag manifold.

Our treatment of the general case, here, utilizes several notions developed in [AMN06a] for the study of the CR geometry of the minimal orbits. As in that paper, we shall use their representation in terms of the cross-marked Satake diagrams associated to their parabolic CR algebras. This makes easier to deal effectively with their \mathbf{G}-equivariant fibrations, by reducing the computation of the structure of the fibers to combinatorics on the Satake diagrams.

After observing that we may reduce to the case where \mathbf{G} is simple, we show that in this case the Euler characteristic is different from zero, and hence positive, when \mathbf{G} is compact, or of the complex type (in these cases M is diffeomorphic to a complex flag manifold), or of the real types A II, D II and EIV and for some special real flag manifolds of the real types A I, DI and EI. We explicitly compute $\chi(M)$ when \mathbf{Q} is maximal parabolic and explain how, to compute $\chi(M)$ for general M, we may always reduce to that special case.

[^0]The paper is organized as follows. In Sections 2 and 3 we rehearse the basic notions on complex flag manifolds and minimal orbits, and prove some results about \mathbf{G}-equivariant fibrations. In Section 4 we establish some general criteria and tools that will be used to compute the Euler characteristic of the minimal orbits, and then in Section 5 we prove our main results. In Section 6 we further illustrate our method through the discussion of some examples. The final section is an appendix, containing a table that collects all the basic information on real semisimple Lie algebras that is required for computing $\chi(M)$.

We wish to thank the anonymous referee for a remark that allowed us to simplify the proof of Theorem 5.1.

Notation. Throughout this paper, a hat means that we are considering some complexification of the corresponding bare object: For instance we use $\hat{\mathfrak{g}}$ for the complexification $\boldsymbol{C} \otimes_{\boldsymbol{R}} \mathfrak{g}$ of the real Lie algebra \mathfrak{g}, or \hat{M} for the complex flag manifold that contains the minimal orbit M. For the labels of real simple Lie algebras and Lie groups we follow [Hel78, Table VI, Chapter X]. For the labels of the roots and the description of the root systems we refer to [Bou68].
2. Complex flag manifolds. A complex flag manifold is the quotient $\hat{M}=\hat{\mathbf{G}} / \mathbf{Q}$ of a complex semisimple Lie group $\hat{\mathbf{G}}$ by a parabolic subgroup \mathbf{Q}. We recall that \mathbf{Q} is parabolic in $\hat{\mathbf{G}}$ if and only if its Lie algebra \mathfrak{q} contains a Borel subalgebra, i.e., a maximal solvable subalgebra, of the Lie algebra $\hat{\mathfrak{g}}$ of $\hat{\mathbf{G}}$. We also note that $\hat{\mathbf{G}}$ is necessarily a linear group, and that \mathbf{Q} is connected, contains the center of $\hat{\mathbf{G}}$ and equals the normalizer of \mathfrak{q} in $\hat{\mathbf{G}}$:

$$
\begin{equation*}
\mathbf{Q}=\left\{g \in \hat{\mathbf{G}} \mid \operatorname{Ad}_{\hat{\mathfrak{g}}}(g)(\mathfrak{q})=\mathfrak{q}\right\} \tag{2.1}
\end{equation*}
$$

In particular, a different choice of a connected $\hat{\mathbf{G}}^{\prime}$ and of a parabolic \mathbf{Q}^{\prime}, with Lie algebras $\hat{\mathfrak{g}}^{\prime}$ and \mathfrak{q}^{\prime} isomorphic to $\hat{\mathfrak{g}}$ and \mathfrak{q}, yields a complex flag manifold \hat{M}^{\prime} that is complex-projectively isomorphic to \hat{M}. Thus a flag manifold \hat{M} is better described in terms of the pair of Lie algebras $\hat{\mathfrak{g}}$ and \mathfrak{q}.

Fix a Cartan subalgebra $\hat{\mathfrak{h}}$ of $\hat{\mathfrak{g}}$ that is contained in \mathfrak{q}. Let \mathcal{R} be the root system with respect to $\hat{\mathfrak{h}}$ and denote by $\hat{\mathfrak{g}}^{\alpha}=\{Z \in \hat{\mathfrak{g}} \mid[H, Z]=\alpha(H) Z$ for any $H \in \hat{\mathfrak{h}}\}$ the root subspace of $\alpha \in \mathcal{R}$. Then we can choose a lexicographic order " \prec " of \mathcal{R} such that $\hat{\mathfrak{g}}^{\alpha} \subset \mathfrak{q}$ for all positive α. Let \mathcal{B} be the corresponding system of positive simple roots. All $\alpha \in \mathcal{R}$ are linear combinations of elements of the basis \mathcal{B} :

$$
\begin{equation*}
\alpha=\sum_{\beta \in \mathcal{B}} k_{\alpha}^{\beta} \beta, \quad k_{\alpha}^{\beta} \in \mathbf{Z} \tag{2.2}
\end{equation*}
$$

and we define the support $\operatorname{supp}_{\mathcal{B}}(\alpha)$ of α with respect to \mathcal{B} as the set of $\beta \in \mathcal{B}$ for which $k_{\alpha}^{\beta} \neq 0$. The set $\mathcal{Q}=\left\{\alpha \in \mathcal{R} \mid \hat{\mathfrak{g}}^{\alpha} \subset \mathfrak{q}\right\}$ is a parabolic set, i.e., is closed under root addition and $\mathcal{Q} \cup(-\mathcal{Q})=\mathcal{R}$. Let $\Phi \subset \mathcal{B}$ be the subset of simple roots α for which $\hat{\mathfrak{g}}^{-\alpha} \not \subset \mathfrak{q}$. Then \mathcal{Q} and \mathfrak{q} are completely determined by Φ. Indeed,

$$
\begin{equation*}
\mathcal{Q}=\mathcal{Q}_{\Phi}:=\{\alpha \succ 0\} \cup\left\{\alpha \prec 0 \mid \operatorname{supp}_{\mathcal{B}}(\alpha) \cap \Phi=\emptyset\right\}=\mathcal{Q}_{\Phi}^{r} \cup \mathcal{Q}_{\Phi}^{n}, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathcal{Q}_{\Phi}^{r}=\left\{\alpha \in \mathcal{R} \mid \operatorname{supp}_{\mathcal{B}}(\alpha) \cap \Phi=\emptyset\right\} \tag{2.4}\\
\mathcal{Q}_{\Phi}^{n}=\left\{\alpha \in \mathcal{R} \mid \alpha \succ 0 \text { and } \operatorname{supp}_{\mathcal{B}}(\alpha) \cap \Phi \neq \emptyset\right\} \tag{2.5}
\end{gather*}
$$

and for the parabolic subalgebra \mathfrak{q} we have the decomposition:

$$
\begin{equation*}
\mathfrak{q}=\mathfrak{q}_{\Phi}=\hat{\mathfrak{h}}+\sum_{\alpha \in \mathcal{Q}_{\Phi}} \hat{\mathfrak{g}}^{\alpha}=\mathfrak{q}_{\Phi}^{r} \oplus \mathfrak{q}_{\Phi}^{n} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{q}_{\Phi}^{n}=\sum_{\alpha \in \mathcal{Q}_{\Phi}^{n}} \hat{\mathfrak{g}}^{\alpha} \quad \text { is the nilradical of } \mathfrak{q}_{\Phi}, \text { and } \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{q}_{\Phi}^{r}=\hat{\mathfrak{h}}+\sum_{\alpha \in \mathcal{Q}_{\Phi}^{r}} \hat{\mathfrak{g}}^{\alpha} \quad \text { is a reductive complement of } \mathfrak{q}_{\Phi}^{n} \text { in } \mathfrak{q}_{\Phi} \tag{2.8}
\end{equation*}
$$

We also set

$$
\begin{gather*}
\hat{\mathfrak{h}}_{\Phi}^{\prime}=\hat{\mathfrak{h}} \cap\left[\mathfrak{q}_{\Phi}^{r}, \mathfrak{q}_{\Phi}^{r}\right] \tag{2.9}\\
\hat{\mathfrak{h}}_{\Phi}^{\prime \prime}=\left\{H \in \hat{\mathfrak{h}} \mid\left[H, \mathfrak{q}_{\Phi}^{r}\right]=0\right\} . \tag{2.10}
\end{gather*}
$$

Then

$$
\begin{equation*}
\hat{\mathfrak{h}}=\hat{\mathfrak{h}}_{\Phi}^{\prime} \oplus \hat{\mathfrak{h}}_{\Phi}^{\prime \prime} \tag{2.11}
\end{equation*}
$$

and $\hat{\mathfrak{h}}_{\Phi}^{\prime \prime}$ is the center of the reductive Lie subalgebra \mathfrak{q}_{Φ}^{r}.
All Cartan subalgebras of $\hat{\mathfrak{g}}$ are equivalent, modulo inner automorphisms, and all simple basis of a fixed root system \mathcal{R} are equivalent for the transpose of inner automorphisms of $\hat{\mathfrak{g}}$ normalizing $\hat{\mathfrak{h}}$. Thus the correspondence $\Phi \leftrightarrow \mathfrak{q}_{\Phi}$ is one-to-one between the subsets Φ of an assigned system \mathcal{B} of simple roots of \mathcal{R} and the complex parabolic Lie subalgebras of $\hat{\mathfrak{g}}$, modulo inner automorphisms. In other words, the flag manifolds associated to a connected semisimple complex Lie group with Lie algebra $\hat{\mathfrak{g}}$ are parametrized by the subsets Φ of a basis \mathcal{B} of simple roots of its root system \mathcal{R}, relative to any Cartan subalgebra $\hat{\mathfrak{h}}$ of $\hat{\mathfrak{g}}$.

The choice of a Cartan subalgebra $\hat{\mathfrak{h}}$ of $\hat{\mathfrak{g}}$ contained in \mathfrak{q} yields a canonical Chevalley decomposition of the parabolic subgroup \mathbf{Q} :

Proposition 2.1. With the notation above, we have a Chevalley decomposition

$$
\begin{equation*}
\mathbf{Q}=\mathbf{Q}_{\Phi}^{n} \ltimes \mathbf{Q}_{\Phi}^{r}, \tag{2.12}
\end{equation*}
$$

where the unipotent radical \mathbf{Q}_{Φ}^{n} is the connected and simply connected Lie subgroup of $\hat{\mathbf{G}}$ with Lie algebra \mathfrak{q}_{Φ}^{n}, and \mathbf{Q}_{Φ}^{r} is the reductive ${ }^{1}$ complement with Lie algebra \mathfrak{q}_{Φ}^{r}. The reductive \mathbf{Q}_{Φ}^{r} is characterized by

$$
\begin{equation*}
\mathbf{Q}_{\Phi}^{r}=\mathbf{Z}_{\hat{\mathbf{G}}}\left(\hat{\mathfrak{h}}_{\Phi}^{\prime \prime}\right)=\left\{g \in \hat{\mathbf{G}} \mid \operatorname{Ad}_{\hat{\mathfrak{g}}}(g)(H)=H \text { for all } H \in \hat{\mathfrak{h}}_{\Phi}^{\prime \prime}\right\} \tag{2.13}
\end{equation*}
$$

[^1]Moreover, \mathbf{Q}_{Φ}^{r} is a subgroup of finite index in $\mathbf{N}_{\hat{\mathbf{G}}}\left(\mathfrak{q}_{\Phi}^{r}\right)=\left\{g \in \hat{\mathbf{G}} \mid \operatorname{Ad}_{\hat{\mathfrak{g}}}\left(\mathfrak{q}_{\Phi}^{r}\right)=\mathfrak{q}_{\Phi}^{r}\right\}$ and $\mathbf{Q} \cap \mathbf{N}_{\hat{\mathbf{G}}}\left(\mathfrak{q}_{\Phi}^{r}\right)=\mathbf{Q}_{\Phi}^{r}$.

Proof. A complex parabolic subgroup can also be considered as a real parabolic subgroup. The Chevalley decomposition (2.12) reduces then to the Langlands decomposition $\mathbf{Q}=\mathbf{M A N}$, with $\mathbf{N}=\mathbf{Q}_{\Phi}^{n}$ and $\mathbf{M A}=\mathbf{Q}_{\Phi}^{r}$. Thus our statement reduces to [Kna02, Proposition 7.82(a)].

Next we note that \mathfrak{q}_{Φ}^{r} is the centralizer of $\hat{\mathfrak{h}}_{\Phi}^{\prime \prime}$ in $\hat{\mathfrak{g}}$ and is its own normalizer. This yields the inclusion $\mathbf{Q}_{\Phi}^{r} \subset \mathbf{N}_{\hat{\mathbf{G}}}\left(\mathfrak{q}_{\Phi}^{r}\right)$. Since $\mathbf{N}_{\hat{\mathbf{G}}}\left(\mathfrak{q}_{\Phi}^{r}\right)$ is semi-algebraic, it has finitely many connected components. Thus its intersection with \mathbf{Q}_{Φ}^{n} is discrete and finite, and thus trivial because \mathbf{Q}_{Φ}^{n} is connected, simply connected and unipotent.
3. The structure of minimal G-orbits. Let $\hat{M}=\hat{\mathbf{G}} / \mathbf{Q}$ be a flag manifold for the transitive action of the connected semisimple complex linear Lie group $\hat{\mathbf{G}}$, and \mathbf{G} a connected real form of $\hat{\mathbf{G}}$. Note that \mathbf{G} is semi-algebraic, being a topological connected component of an algebraic group. We know from [Wol69] that there are finitely many \mathbf{G}-orbits. Fix any orbit M and a point $x \in M$. We can assume that $\mathbf{Q} \subset \hat{\mathbf{G}}$ is the stabilizer of x for the action of $\hat{\mathbf{G}}$ in \hat{M}. We keep the notation in $\S 2$, and we also set $\mathbf{G}_{+}=\mathbf{Q} \cap \mathbf{G}$ for the stabilizer of x in \mathbf{G}, so that $M \simeq \mathbf{G} / \mathbf{G}_{+}$. Let $\mathfrak{g} \subset \hat{\mathfrak{g}}$ be the Lie algebra of \mathbf{G} and $\mathfrak{g}_{+}=\mathfrak{q} \cap \mathfrak{g}$ the Lie algebra of \mathbf{G}_{+}.

We summarize the results of [AMN06a, p. 491] by stating the following
Proposition 3.1. With the notation above, \mathfrak{g}_{+}contains a Cartan subalgebra \mathfrak{h} of \mathfrak{g}. If \mathfrak{h} is any Cartan subalgebra of \mathfrak{g} contained in \mathfrak{g}_{+}, there are a Cartan involution $\vartheta: \mathfrak{g} \rightarrow \mathfrak{g}$ and a decomposition

$$
\begin{equation*}
\mathfrak{g}_{+}=\mathfrak{n} \oplus \mathfrak{w}=\mathfrak{n} \oplus \mathfrak{l} \oplus \mathfrak{z} \tag{3.1}
\end{equation*}
$$

such that
(i) \mathfrak{n} is the nilpotent ideal of \mathfrak{g}_{+}, consisting of the elements $X \in \mathfrak{g}_{+}$for which $\operatorname{ad}_{\mathfrak{g}}(X): \mathfrak{g} \rightarrow \mathfrak{g}$ is nilpotent,
(ii) $\mathfrak{w}=\mathfrak{l} \oplus \mathfrak{z}$ is reductive,
(iii) $\mathfrak{z} \subset \mathfrak{h}$ is the center of \mathfrak{w} and $\mathfrak{l}=[\mathfrak{w}, \mathfrak{w}]$ its semisimple ideal,
(iv) $\mathfrak{h}, \mathfrak{n}, \mathfrak{z}$ and \mathfrak{l} are invariant under the Cartan involution ϑ of \mathfrak{g}.

We have the following
Proposition 3.2. Keep the notation introduced above. The isotropy subgroup \mathbf{G}_{+}is the closed real semi-algebraic subgroup of \mathbf{G} :

$$
\begin{equation*}
\mathbf{G}_{+}=\mathbf{N}_{\mathbf{G}}\left(\mathfrak{q}_{\Phi}\right)=\left\{g \in \mathbf{G} \mid \operatorname{Ad}_{\hat{\mathfrak{g}}}(g)\left(\mathfrak{q}_{\Phi}\right)=\mathfrak{q}_{\Phi}\right\} \tag{3.2}
\end{equation*}
$$

The isotropy subgroup \mathbf{G}_{+}admits a Chevalley decomposition

$$
\begin{equation*}
\mathbf{G}_{+}=\mathbf{W} \rtimes \mathbf{N} \tag{3.3}
\end{equation*}
$$

where
(i) \mathbf{N} is a unipotent, closed, connected, and simply connected subgroup with Lie algebra \mathfrak{n},
(ii) \mathbf{W} is a reductive Lie subgroup, with Lie algebra \mathfrak{w}, and is the centralizer of \mathfrak{z} in \mathbf{G} :

$$
\begin{equation*}
\mathbf{W}=\mathbf{Z}_{\mathbf{G}}(\mathfrak{z})=\left\{g \in \mathbf{G} \mid \operatorname{Ad}_{\mathfrak{g}}(g)(H)=H \text { for all } H \in \mathfrak{z}\right\} . \tag{3.4}
\end{equation*}
$$

Proof. Let $g \in \mathbf{G}_{+}$. Then $\operatorname{Ad}_{\mathfrak{g}}(g)(\mathfrak{w})$ is a reductive complement of \mathfrak{n} in \mathfrak{g}_{+}. Since all reductive complements of \mathfrak{n} are conjugated by an inner automorphism from $\mathrm{Ad}_{\mathfrak{g}_{+}}(\mathbf{N})$, we can find a $g_{n} \in \mathbf{N}$ such that $\operatorname{Ad}_{\mathfrak{g}_{+}}\left(g_{n}^{-1} g\right)(\mathfrak{w})=\mathfrak{w}$. Consider the element $g_{r}=g_{n}^{-1} g$. We then have:

$$
\begin{aligned}
\operatorname{Ad}_{\mathfrak{g}}\left(g_{r}\right)(\mathfrak{w}) & =\mathfrak{w}, \quad \operatorname{Ad}_{\hat{\mathfrak{g}}}\left(g_{r}\right)\left(\mathfrak{q}_{\Phi}\right)=\mathfrak{q}_{\Phi}, \\
\operatorname{Ad}_{\hat{\mathfrak{g}}}\left(g_{r}\right)\left(\mathfrak{q}_{\Phi}^{n}\right) & =\mathfrak{q}_{\Phi}^{n}, \quad \operatorname{Ad}_{\hat{\mathfrak{g}}}\left(g_{r}\right)\left(\overline{\mathfrak{q}}_{\Phi}\right)=\overline{\mathfrak{q}}_{\Phi},
\end{aligned}
$$

because $g_{r} \in \mathbf{Q} \cap \overline{\mathbf{Q}}$. We consider the parabolic subalgebra of $\hat{\mathfrak{g}}$ defined by

$$
\mathfrak{q}_{\Phi^{\prime}}=\mathfrak{q}_{\Phi}^{n} \oplus\left(\mathfrak{q}_{\Phi}^{r} \cap \overline{\mathfrak{q}}_{\Phi}\right)=\mathfrak{q}_{\Phi}^{n}+\left(\mathfrak{q}_{\Phi} \cap \overline{\mathfrak{q}}_{\Phi}\right) .
$$

It has the property that $\mathfrak{q}_{\Phi^{\prime}}^{r}=\overline{\mathfrak{q}}_{\Phi^{\prime}}^{r}$, is the complexification of \mathfrak{w}. Clearly, $\operatorname{Ad}_{\hat{\mathfrak{g}}}\left(g_{r}\right)\left(\mathfrak{q}_{\Phi^{\prime}}\right)=\mathfrak{q}_{\Phi^{\prime}}$ and $\operatorname{Ad}_{\hat{\mathfrak{g}}}\left(g_{r}\right)\left(\mathfrak{q}_{\Phi^{\prime}}^{r}\right)=\mathfrak{q}_{\Phi^{\prime}}^{r}$. By Proposition 2.1, $g_{r} \in \mathbf{Z}_{\hat{\mathbf{G}}^{\prime}}\left(\hat{\mathfrak{h}}_{\Phi^{\prime}}^{\prime \prime}\right)$. The statement follows because $g_{r} \in \mathbf{G}$ and $\hat{\mathfrak{h}}_{\Phi^{\prime}}^{\prime \prime}$ is the complexification of \mathfrak{z}.

Among the \mathbf{G}-orbits in \hat{M} there is one, and only one, say M, that is closed, and that we shall call henceforth the minimal orbit. Fix a point $x \in M$. We can assume that \mathbf{Q} is the stabilizer of x in $\hat{\mathbf{G}}$. Then the orbit M is completely determined by the datum of the real Lie algebra \mathfrak{g} of \mathbf{G} and of the complex Lie subalgebra \mathfrak{q} of $\hat{\mathfrak{g}}$ corresponding to \mathbf{Q}. In [AMN06a] we called the pair $(\mathfrak{g}, \mathfrak{q})$, consisting of the real Lie algebra \mathfrak{g} and of the parabolic complex Lie subalgebra \mathfrak{q} of its complexification $\hat{\mathfrak{g}}$, a parabolic minimal CR algebra. This is a special instance of the notion of CR algebra that was introduced in [MN05] (for the general orbits and their corresponding parabolic CR algebras, we refer the reader to [AMN06b]).

We recall that $(\mathfrak{g}, \mathfrak{q})$ is effective if \mathfrak{g}_{+}does not contain any ideal of \mathfrak{g}. We remark that this means that the action of \mathbf{G} on M is almost effective.

Moreover, we have (see [AMN06a, p. 490]) the following
Proposition 3.3. Let M be the minimal orbit associated to the pair $(\mathfrak{g}, \mathfrak{q})$. If $\mathfrak{g}=$ $\bigoplus_{i=1}^{m} \mathfrak{g}_{i}$ is the decomposition of \mathfrak{g} into the direct sum of its simple ideals, then
(1) $\mathfrak{q}_{i}=\mathfrak{q} \cap \hat{\mathfrak{g}}_{i}$ is parabolic in $\hat{\mathfrak{g}}_{i}$,
(2) $\mathfrak{q}=\bigoplus_{i=1}^{m} \mathfrak{q}_{i}$,
(3) $M=M_{1} \times \cdots \times M_{m}$, where M_{i} is a minimal orbit associated to the pair $\left(\mathfrak{g}_{i}, \mathfrak{q}_{i}\right)$,
(4) $(\mathfrak{g}, \mathfrak{q})$ is effective if and only if all $\left(\mathfrak{g}_{i}, \mathfrak{q}_{i}\right)$ are effective, i.e., if $\mathfrak{q}_{i} \neq \hat{\mathfrak{g}}_{i}$ for all $i=1, \ldots, m$.

We showed in [AMN06a, Proposition 5.5] that $\mathfrak{g}_{+}=\mathfrak{g} \cap \mathfrak{q}$ contains a maximally noncompact Cartan subalgebra \mathfrak{h} of \mathfrak{g}. Fix such a maximally noncompact Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}_{+}$of \mathfrak{g}, and, accordingly, a Cartan involution ϑ and a decomposition (3.1) as in Proposition 3.1.

Let

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} \tag{3.5}
\end{equation*}
$$

be the Cartan decomposition defined by ϑ. Then $\mathfrak{h}=\mathfrak{h}^{+} \oplus \mathfrak{h}^{-}$, with $\mathfrak{h}^{+}=\mathfrak{h} \cap \mathfrak{k}$ and $\mathfrak{h}^{-}=\mathfrak{h} \cap \mathfrak{p}$. Moreover, \mathfrak{k} is the Lie algebra of a maximal compact subgroup \mathbf{K} of \mathbf{G}. The group \mathbf{K} is connected and semi-algebraic. Hence the isotropy subgroup $\mathbf{K}_{+}=\mathbf{K} \cap \mathbf{Q}$ has finitely many connected components and thus, since, by [Mon50], \mathbf{K} acts transitively on the minimal orbit M,

$$
\begin{equation*}
M=\mathbf{K} / \mathbf{K}_{+} \tag{3.6}
\end{equation*}
$$

Let \mathcal{R} be the root system of $\hat{\mathfrak{g}}$ with respect to $\hat{\mathfrak{h}}$. By duality, the conjugation in $\hat{\mathfrak{g}}$ defined by the real form \mathfrak{g} defines an involution $\alpha \rightarrow \bar{\alpha}$ in the root system \mathcal{R}. A root α is real when $\bar{\alpha}=\alpha$, imaginary when $\bar{\alpha}=-\alpha$, and complex when $\bar{\alpha} \neq \pm \alpha$. The condition that \mathfrak{h} is maximally noncompact is equivalent to the fact that all imaginary roots α are compact, i.e., that $\hat{\mathfrak{g}}^{\alpha} \subset \hat{\mathfrak{k}}=\boldsymbol{C} \otimes \mathfrak{k}$. We indicate by \mathcal{R} 。 the set of imaginary roots.

We also showed (see [AMN06a, Proposition 6.2]) that, by choosing a suitable lexicographic order in \mathcal{R}, we have, with the notation in $\S 2$:
(1) $\mathcal{R}^{+}=\{\alpha \succ 0\} \subset \mathcal{Q}$,
(2) $\bar{\alpha} \succ 0$ for all complex α in \mathcal{R}^{+}.

Let \mathcal{B} be the system of simple roots in \mathcal{R}^{+}. The involution $\alpha \rightarrow \bar{\alpha}$ defines an involution $\alpha \rightarrow \varepsilon(\alpha)$ on $\mathcal{B} \backslash \mathcal{R}$ 。, with the property that $\bar{\alpha}=\varepsilon(\alpha)+\sum_{\beta \in \mathcal{B} \cap \mathcal{R}_{\bullet}} t_{\alpha}^{\beta} \beta$. It is described on the corresponding Satake diagrams (cf. [Ara62]) by joining by a curved arrow all pairs of distinct simple roots $(\alpha, \varepsilon(\alpha))$.

Let $\Phi \subset \mathcal{B}$ and $\mathfrak{q}=\mathfrak{q}_{\Phi}$ be as in $\S 2$. Then the Satake diagram \mathcal{S} of \mathfrak{g}, with cross-marks corresponding to the roots in Φ, yields a complete graphic description of the minimal orbit M (see [AMN06a, §6]). We call the pair (\mathcal{S}, Φ) the cross-marked Satake diagram associated to M, or equivalently, to the pair $(\mathfrak{g}, \mathfrak{q})$.

An inclusion $\mathbf{Q}_{\Phi} \subset \mathbf{Q}_{\Phi^{\prime}}$ of parabolic subgroups of $\hat{\mathbf{G}}$ defines a natural $\hat{\mathbf{G}}$-equivariant fibration $\left(\hat{\mathbf{G}} / \mathbf{Q}_{\Phi}\right) \rightarrow\left(\hat{\mathbf{G}} / \mathbf{Q}_{\Phi^{\prime}}\right)$, yielding by restriction a \mathbf{G}-equivariant fibration $M \rightarrow M^{\prime}$ of the corresponding minimal orbits. In the following proposition we describe these \mathbf{G} equivariant fibrations in terms of the associated cross-marked Satake diagrams.

Proposition 3.4. Let M and M^{\prime} be minimal orbits for the same \mathbf{G}, associated to the pairs $\left(\mathfrak{g}, \mathfrak{q}_{\Phi}\right)$ and $\left(\mathfrak{g}, \mathfrak{q}_{\Phi^{\prime}}\right)$, respectively, with $\Phi^{\prime} \subset \Phi$. Let \mathcal{E} be the set of all roots $\alpha \in \mathcal{B}$ with $\left(\{\alpha\} \cup \operatorname{supp}_{\mathcal{B}}(\bar{\alpha})\right) \cap \Phi^{\prime} \neq \emptyset$. Consider the Satake diagram $\mathcal{S}^{\prime \prime}$ obtained from the Satake diagram \mathcal{S} of \mathfrak{g} by erasing all nodes corresponding to the set \mathcal{E} and all lines and arrows issued from them.

Then the \mathbf{G}-equivariant fibration $M \rightarrow M^{\prime}$ has connected fibers that are minimal orbits $M^{\prime \prime}$, corresponding to the cross-marked Satake diagram $\left(\mathcal{S}^{\prime \prime}, \Phi^{\prime \prime}\right)$, where $\Phi^{\prime \prime}=\Phi \backslash \mathcal{E}$.

Proof. Let $\mathbf{H}=\mathbf{Z}_{\mathbf{G}}(\mathfrak{h})=\left\{h \in \mathbf{G} \mid \operatorname{Ad}_{\mathfrak{g}}(h)(H)=H\right.$, for all $\left.H \in \mathfrak{h}\right\}$ be the Cartan subgroup of \mathbf{G} corresponding to \mathfrak{h}. We have $\operatorname{Ad}_{\hat{\mathfrak{g}}}(h)\left(\mathfrak{q}_{\Phi}\right)=\mathfrak{q}_{\Phi}$ and $\operatorname{Ad}_{\hat{\mathfrak{g}}}(h)\left(\mathfrak{q}_{\Phi^{\prime}}\right)=\mathfrak{q}_{\Phi^{\prime}}$ for
all $h \in \mathbf{H}$. Hence $\mathbf{H} \subset \mathbf{G}_{+} \subset \mathbf{G}_{+}^{\prime}$, where $\mathbf{G}_{+}=\mathbf{G} \cap \mathbf{Q}_{\Phi}$ and $\mathbf{G}_{+}^{\prime}=\mathbf{G} \cap \mathbf{Q}_{\Phi^{\prime}}$. We decompose $\mathbf{G}_{+}^{\prime}=\mathbf{W}^{\prime} \rtimes \mathbf{N}^{\prime}$ according to (3.3), with a \mathbf{W}^{\prime} that satisfies (3.4). Then $\mathbf{H} \subset \mathbf{W}^{\prime}$ and, since \mathfrak{h} is maximally noncompact in $\mathfrak{g}_{+}^{\prime}$, it is also maximally noncompact in $\mathfrak{w}^{\prime}=\operatorname{Lie}\left(\mathbf{W}^{\prime}\right)$. Thus, by [Kna02, Proposition 7.90], all connected components of \mathbf{W}^{\prime}, and hence also of \mathbf{G}_{+}^{\prime}, intersect \mathbf{H} and, a fortiori, \mathbf{G}_{+}. Therefore the fiber $\mathbf{G}_{+}^{\prime} / \mathbf{G}_{+}$is connected.

The fact that $M^{\prime \prime}$ is the minimal orbit associated to $\left(\mathcal{S}^{\prime \prime}, \Phi^{\prime \prime}\right)$ is the contents of [AMN06a, Proposition 7.3].

In the following two lemmata we give sufficient conditions, in terms of cross-marked Satake diagrams, in order that two minimal orbits be diffeomorphic.

Lemma 3.5. We keep the notation introduced above. Let

$$
\begin{equation*}
\Pi=\Phi \cup\left\{\alpha \in \mathcal{B} \backslash \mathcal{R}_{\bullet} \mid \operatorname{supp}(\bar{\alpha}) \cap \Phi \neq \emptyset\right\}, \tag{3.7}
\end{equation*}
$$

and M^{*} the minimal orbit corresponding to $\left(\mathfrak{g}, \mathfrak{q}_{\Pi}\right)$. Then the canonical \mathbf{G}-equivariant map $M^{*} \rightarrow M$ is a diffeomorphism.

Proof. By Proposition 3.4, $M^{*} \rightarrow M$ is a G-equivariant fibration whose fiber reduces to a point, and hence a diffeomorphism.

From Lemma 3.5 we obtain
Lemma 3.6. We keep the notation introduced above. Let M_{1}, M_{2} be minimal orbits associated to pairs $\left(\mathfrak{g}, \mathfrak{q}_{\Phi_{1}}\right),\left(\mathfrak{g}, \mathfrak{q}_{\Phi_{2}}\right)$, respectively, for the same semisimple real Lie algebra \mathfrak{g}, and with suitable $\Phi_{1}, \Phi_{2} \subset \mathcal{B}$. Let

$$
\begin{aligned}
& \Pi_{1}=\Phi_{1} \cup\left\{\alpha \in \mathcal{B} \mid \operatorname{supp}(\bar{\alpha}) \cap \Phi_{1} \neq \emptyset\right\} \\
& \Pi_{2}=\Phi_{2} \cup\left\{\alpha \in \mathcal{B} \mid \operatorname{supp}(\bar{\alpha}) \cap \Phi_{2} \neq \emptyset\right\}
\end{aligned}
$$

If $\Pi_{1}=\Pi_{2}$, then there is a \mathbf{G}-equivariant diffeomorphism $M_{1} \rightarrow M_{2}$.
Proof. Indeed, by Lemma 3.5, we have a chain of G-equivariant diffeomorphisms $M_{1} \underset{\sim}{\leftarrow} M_{1}^{*}=M_{2}^{*} \xrightarrow{\sim} M_{2}$.

We also have the following
Proposition 3.7. We keep the notation introduced above. By erasing all nodes corresponding to roots in Π and all lines and arrows issuing from them, we obtain a new Satake diagram $\mathcal{S}_{\phi}^{\prime \prime}$, that is the Satake diagram of a Levi subalgebra \mathfrak{l} of $\mathfrak{g}_{+}=\mathfrak{q} \cap \mathfrak{g}$. Then $\mathcal{R}_{\Phi}^{\prime \prime}=\mathcal{Q}_{\Phi}^{r} \cap \overline{\mathcal{Q}}_{\Phi}^{r}$ is the root system of the complexification $\hat{\mathfrak{l}}$ of \mathfrak{l} with respect to its Cartan subalgebra $\hat{\mathfrak{h}} \cap \hat{\mathfrak{l}}$, that is, the complexification of the maximally noncompact Cartan subalgebra $\mathfrak{h} \cap \mathfrak{l}$ of \mathfrak{l}.

PRoof. Since $\mathfrak{q}_{\Pi} \cap \mathfrak{g}=\mathfrak{q}_{\Phi} \cap \mathfrak{g}=\mathfrak{g}_{+}$, we can as well assume that $\Phi=\Pi$. The intersection $\mathfrak{w}=\mathfrak{q}^{r} \cap \overline{\mathfrak{q}}^{r} \cap \mathfrak{g}$ is a reductive complement of the nilradical of \mathfrak{g}_{+}and its semisimple ideal $\mathfrak{l}=[\mathfrak{w}, \mathfrak{w}]$ is a Levi subalgebra of \mathfrak{g}_{+}. The associated root system of $\mathfrak{q}^{r} \cap \overline{\mathfrak{q}}^{r}$, with respect to $\hat{\mathfrak{h}}$, and of $\hat{\mathfrak{l}}$ with respect to its Cartan subalgebra $\hat{\mathfrak{h}} \cap \hat{\mathfrak{l}}$, is $\mathcal{Q}_{\Pi}^{r} \cap \overline{\mathcal{Q}}_{\Pi}^{r}$. We observe that $\bar{\alpha} \in \mathcal{Q}_{\Pi}^{r}$ for all simple $\alpha \in \mathcal{B} \backslash \Pi$. Hence, for $\alpha \in \mathcal{Q}_{\Pi}^{r}$, also $\bar{\alpha} \in \mathcal{Q}_{\Pi}^{r}$,
because $\operatorname{supp}_{\mathcal{B}}(\bar{\alpha}) \subset \bigcup_{\beta \in \operatorname{supp}_{\mathcal{B}}(\alpha)} \operatorname{supp}_{\mathcal{B}}(\bar{\beta})$ and hence, when $\operatorname{supp}_{\mathcal{B}}(\alpha) \cap \Pi=\emptyset$, also $\operatorname{supp}_{\mathcal{B}}(\bar{\alpha}) \cap \Pi=\emptyset$. This shows that $\mathcal{Q}_{\Pi}^{r}=\overline{\mathcal{Q}}_{\Pi}^{r}$ and that $\operatorname{supp}_{\mathcal{B}}(\alpha) \subset \mathcal{B} \backslash \Pi$ for all $\alpha \in \mathcal{Q}_{\Pi}^{r}$. Since $\mathcal{B} \backslash \Pi \subset \mathcal{Q}_{\Pi}^{r}$, we proved that $\mathcal{B} \backslash \Pi$ is a system of simple roots for $\mathcal{R}_{\phi}^{\prime \prime}=\mathcal{Q}_{\Pi}^{r}=\mathcal{Q}_{\Pi}^{r} \cap \overline{\mathcal{Q}}_{\Pi}^{r}$. Since the nodes of $\mathcal{S}_{\Phi}^{\prime \prime}$ are exactly those corresponding to the simple roots in $\mathcal{B} \backslash \Pi$, this proves our contention.

From Lemma 3.6, we obtain in particular the following
PROPOSITION 3.8. If \mathfrak{g} is a simple Lie algebra of the complex type, then every minimal orbit M of \mathbf{G} is diffeomorphic to a complex flag manifold.

Proof. The Satake diagram of \mathfrak{g} consists of two disjoint connected graphs, whose nodes correspond to two sets of simple roots, each root of one set being strongly orthogonal to all roots of the other, $\mathcal{B}^{\prime}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{l}^{\prime}\right\}$ and $\mathcal{B}^{\prime \prime}=\left\{\alpha_{1}^{\prime \prime}, \ldots, \alpha_{l}^{\prime \prime}\right\}$, with curved arrows joining α_{j}^{\prime} to $\alpha_{j}^{\prime \prime}$. Let $J \subset\{1, \ldots, l\}$ be the set of indices for which either α_{j}^{\prime} or $\alpha_{j}^{\prime \prime}$ are crossmarked, i.e., belongs to $\Phi \subset \mathcal{B}=\mathcal{B}^{\prime} \cup \mathcal{B}^{\prime \prime}$. By Lemma 3.6, our M is diffeomorphic to the M^{\prime} corresponding to the parabolic $\mathfrak{q}_{\Phi^{\prime}}$ with $\Phi^{\prime}=\left\{\alpha_{j}^{\prime} \mid j \in J\right\}$. By [AMN06a, Theorem 10.2], M^{\prime} is complex and, hence, a complex flag manifold.
4. Euler characteristic of minimal orbits. Let $M=\mathbf{K} / \mathbf{K}_{+}$be a homogeneous space for the transitive action of a compact connected Lie group \mathbf{K}. It is known (see, e.g., [GHV73, p. 182]) that its Euler characteristic $\chi(M)$ is nonnegative. Moreover, it is positive exactly when the rank of the isotropy subgroup \mathbf{K}_{+}equals the rank of \mathbf{K}. In this case the identity component \mathbf{K}_{+}^{0} of the isotropy \mathbf{K}_{+}contains the center of \mathbf{K} and hence $\tilde{M}=\mathbf{K} / \mathbf{K}_{+}^{0}$ is the universal covering of M. Indeed, we can reduce to the case of a semisimple \mathbf{K} and thus assume that \mathbf{K} is simply connected. The number of sheets of $\tilde{M} \rightarrow M$ equals then the order $\left|\pi_{1}(M)\right|$ of the fundamental group of M. By using [MT91, Ch. VII, Theorem 3.13] for instance, we obtain

$$
\begin{gather*}
\chi(\tilde{M})=\frac{|\mathbf{W}(\mathbf{K})|}{\left|\mathbf{W}\left(\mathbf{K}_{+}^{0}\right)\right|}, \tag{4.1}\\
\chi(M)=\frac{|\mathbf{W}(\mathbf{K})|}{\left|\mathbf{W}\left(\mathbf{K}_{+}^{0}\right)\right| \cdot\left|\pi_{1}(M)\right|} . \tag{4.2}
\end{gather*}
$$

We have the following
Proposition 4.1. Let $M=\mathbf{G} / \mathbf{G}_{+}=\mathbf{K} / \mathbf{K}_{+}$, as in (3.6), be a minimal orbit. Then $\mathbf{K}_{+}=\mathbf{K} \cap \mathbf{G}_{+}$is a maximal compact subgroup of \mathbf{G}_{+}, contained in the maximal compact subgroup \mathbf{K} of \mathbf{G}. Also, the following are equivalent:
(1) $\chi(M)>0$.
(2) $\operatorname{rk}(\mathbf{K})=\operatorname{rk}\left(\mathbf{K}_{+}\right)$, i.e., \mathbf{K}_{+}contains a maximal torus of \mathbf{K}.
(3) \mathfrak{g}_{+}contains a maximally compact Cartan subalgebra of \mathfrak{g}.

Proof. The proof of the equivalence (1) $\Leftrightarrow(2)$ is contained in [Wan49]. Thus we need only to prove that (2) $\Leftrightarrow(3)$. We also observe that \mathbf{K}_{+}is a maximal compact subgroup of \mathbf{G}_{+}because of (3.6).

Let \mathfrak{k} and \mathfrak{k}_{+}be the Lie algebras of \mathbf{K} and \mathbf{K}_{+}, respectively. Assume that \mathfrak{k}_{+}contains a maximal torus \mathfrak{t} of \mathfrak{k}. Take a maximal Abelian subalgebra \mathfrak{a} of \mathfrak{g}_{+}, consisting of $\operatorname{ad}_{\mathfrak{g}}{ }^{-}$ semisimple elements, and with $\mathfrak{a} \supset \mathfrak{t}$. We claim that \mathfrak{a} is a Cartan subalgebra of \mathfrak{g}_{+}and therefore also of \mathfrak{g}, and clearly it will also be maximally compact in \mathfrak{g}. Indeed, since \mathfrak{g}_{+}contains a Cartan subalgebra of \mathfrak{g}, all Cartan subalgebras of \mathfrak{g}_{+}are also Cartan subalgebras of \mathfrak{g}. Since \mathfrak{g}_{+}is ad $_{\mathfrak{g}}$-splittable (see [AMN06a, Proposition 5.4]), its Cartan subalgebras are its maximal Abelian Lie subalgebras consisting of $\mathrm{ad}_{\mathfrak{g}}$-semisimple elements (cf., e.g., [Bou75, Chap. VII, §5, Prop. 6]).

Vice versa, if \mathfrak{a} is a maximally compact Cartan subalgebra of \mathfrak{g} contained in \mathfrak{g}_{+}, then $\mathfrak{a} \cap \mathfrak{k}=\mathfrak{a} \cap \mathfrak{k}_{+}$is a maximal torus of \mathfrak{k} and \mathfrak{k}_{+}. Thus \mathbf{K} and \mathbf{K}_{+}have the same rank.

In the following we shall keep the notation in §3. In particular, we fix a maximally noncompact Cartan subalgebra \mathfrak{h} of \mathfrak{g} contained in \mathfrak{g}_{+}, standard with respect to the Cartan decomposition (3.5) associated to the Cartan involution ϑ of Proposition 3.1. To express the equivalent conditions (1), (2) and (3) of Proposition 4.1 in terms of the description in $\S 3$, we need to rehearse first the construction of the Cartan subalgebras of a real semisimple Lie algebra from [Kos55, Sug59, Kna02].

LEMMA 4.2. With the notation above, every Cartan subalgebra of \mathfrak{g} is equivalent, modulo an inner automorphism, to a Cartan subalgebra \mathfrak{a} which is standard with respect to the triple ($\mathfrak{k}, \mathfrak{p}, \mathfrak{h}^{-}$). This means that \mathfrak{a} has noncompact part $\mathfrak{a}^{-} \subset \mathfrak{h}^{-}$and compact part $\mathfrak{a}^{+} \subset \mathfrak{k}$.

All standard Cartan subalgebras \mathfrak{a} are obtained in the following way:
(1) fix a system $\alpha_{1}, \ldots, \alpha_{r}$ of strongly orthogonal real roots in \mathcal{R};
(2) fix $X_{ \pm \alpha_{i}} \in \hat{\mathfrak{g}}^{ \pm \alpha_{i}} \cap \mathfrak{g}$ with $\left[X_{-\alpha_{i}}, X_{\alpha_{i}}\right]=H_{\alpha_{i}},\left[H_{\alpha_{i}}, X_{ \pm \alpha_{i}}\right]= \pm 2 X_{ \pm \alpha_{i}}$, for $i=$ $1, \ldots, r$;
(3) let $\mathbf{d}=\mathbf{d}_{\alpha_{1}} \circ \cdots \circ \mathbf{d}_{\alpha_{r}}$, where $\mathbf{d}_{\alpha_{i}}=\operatorname{Ad}_{\hat{\mathfrak{g}}}\left(\exp \left(i \pi\left(X_{-\alpha_{i}}-X_{\alpha_{i}}\right) / 4\right)\right)$, for $i=$ $1, \ldots, r\left(\mathbf{d}\right.$ is the Cayley transform with respect to $\left.\alpha_{1}, \ldots, \alpha_{r}\right) ;$
(4) set $\mathfrak{a}=\mathbf{d}(\hat{\mathfrak{h}}) \cap \mathfrak{g}$.

Notation. For a real semisimple Lie algebra \mathfrak{g}, with associated Satake's diagram \mathcal{S}, we shall denote by $v=\nu(\mathfrak{g})=\nu(\mathcal{S})$ the maximum number of strongly orthogonal real roots in \mathcal{R}.

From Lemma 4.2 we deduce the criterion:
Proposition 4.3. Let M be the minimal orbit corresponding to the pair $\left(\mathfrak{g}, \mathfrak{q}_{\Phi}\right)$. Let \mathfrak{l} be a Levi subalgebra of \mathfrak{g}_{+}. Then $\chi(M)>0$ if and only if one of the following equivalent conditions is satisfied:

$$
\begin{align*}
& \mathcal{Q}_{\Phi}^{r} \text { contains a maximal system of strongly orthogonal real roots of } \mathcal{R} . \tag{4.3}\\
& \nu(\mathfrak{l})=\nu(\mathfrak{g}) . \tag{4.4}
\end{align*}
$$

Proof. The Cartan subalgebras of \mathfrak{g} contained in \mathfrak{g}_{+}are conjugated, modulo inner automorphisms of \mathfrak{g}_{+}, to standard Cartan subalgebras that are contained in $\mathfrak{w}=\mathfrak{q}^{r} \cap \mathfrak{g}$. Decompose the reductive real Lie algebra \mathfrak{w} as $\mathfrak{w}=\mathfrak{l} \oplus \mathfrak{z}$, where \mathfrak{z} is the center of \mathfrak{w} and $\mathfrak{l}=[\mathfrak{w}, \mathfrak{w}]$ its semisimple ideal, that is a Levi subalgebra of \mathfrak{g}_{+}. We have $\mathfrak{z} \subset \mathfrak{h}$ and $\mathfrak{h}=$ $\mathfrak{z} \oplus(\mathfrak{h} \cap \mathfrak{l})$. Thus a maximally compact Cartan subalgebra of \mathfrak{g}_{+}will be conjugate to one of the form $\mathfrak{z} \oplus \mathfrak{e}$, with \mathfrak{e} a maximally compact Cartan subalgebra of \mathfrak{l}. By Lemma 4.2, these are obtained via a Cayley transform $\mathbf{d}=\mathbf{d}_{\alpha_{1}} \circ \cdots \circ \mathbf{d}_{\alpha_{r}}$ for a system of strongly orthogonal real roots $\alpha_{1}, \ldots, \alpha_{r}$ in \mathcal{Q}^{r}. Hence the statement follows.
5. Classification of the minimal orbits with $\chi(M)>0$. Throughout this section, we shall consistently employ the notation of the previous sections. In particular, \mathfrak{l} will always denote a Levi subalgebra of $\mathfrak{g}_{+}, \mathfrak{k}$ the compact Lie subalgebra in the decomposition (3.5). We set \mathfrak{k}_{+}^{s} for the maximal compact subalgebra $\mathfrak{k} \cap \mathfrak{l}$ of \mathfrak{l}.

By using the result of Proposition 3.4, the computation of $\chi(M)$ for a minimal orbit M can be reduced to the the case where, for the associated CR algebra $(\mathfrak{g}, \mathfrak{q})$, the real Lie algebra \mathfrak{g} is simple and the parabolic \mathfrak{q} is maximal, i.e., $\Phi=\{\alpha\}$ for some $\alpha \in \mathcal{B}$. Thus we begin by considering this special case:

THEOREM 5.1. Let M be the minimal orbit associated to the effective pair $\left(\mathfrak{g}, \mathfrak{q}_{\{\alpha\}}\right)$, with \mathfrak{g} simple and a maximal parabolic $\mathfrak{q}_{\{\alpha\}} \subset \hat{\mathfrak{g}}$ for $\alpha \in \mathcal{B}$.

Then $\chi(M)>0$ if and only if either one of the following conditions holds:
(i) \mathfrak{g} is either of the complex type, or compact, or of the real non split types A II, D II, EIV and α is any root in \mathcal{B}.
(ii) \mathfrak{g} is of the real types A I, D I, EI, and $\alpha \in \mathcal{B}$ is chosen as in Table 1.

Here we list all pairs of real noncompact \mathfrak{g} and $\alpha \in \mathcal{B}$ for which $\chi(M)>0$, also computing $\chi(M)$ in the different cases.

Proof. When \mathfrak{g} is either of the complex type, or compact, or of the real types A II, D II, EIV, we have $v(\mathfrak{g})=\nu(\mathcal{S})=0$ and thus the necessary and sufficient condition of Proposition 4.3 to have $\chi(M)>0$ is trivially satisfied. Moreover, we know from [AMN06a, Theorem 8.6] that M is simply connected, and therefore $\tilde{M}=M$ and $\chi(\tilde{M})=\chi(M)$.

Before discussing the remaining cases, we note that a necessary condition for $\chi(M)>0$ is that $\operatorname{rk}(\mathbf{K})<\operatorname{rk}(\mathbf{G})$. Indeed, when $\operatorname{rk}(\mathbf{K})=\operatorname{rk}(\mathbf{G})$, Condition (2) of Proposition 4.1 implies that \mathfrak{g}_{+}contains a compact Cartan subalgebra. This in turn implies that the orbit M is complex and thus coincides with the complex flag manifold \hat{M}. But this may occur only if \mathfrak{g} is either of the complex type, or compact, or of real types A II, D II. The first two cases have already been considered, while in the remaing two cases $\operatorname{rk}(\mathbf{K})<\mathrm{rk}(\mathbf{G})$.

Thus, to complete the proof, we need only to consider the cases where we may have $\operatorname{rk}(\mathbf{K})<\operatorname{rk}(\mathbf{G})$, namely, [A I], [A II], [D I], [D II], [EI], [EIV]. We shall do this by comparing $\nu(\mathcal{S})$ with $\nu\left(\mathcal{S}_{\{\alpha\}}^{\prime \prime}\right)$ for the different types of \mathfrak{g}.
[A I] Here $\mathfrak{g}=\mathfrak{s l}(n, \boldsymbol{R})$ and $\alpha=\alpha_{i}$ with $1 \leq i<n$. Then $\mathfrak{l} \simeq \mathfrak{s l}(i, \boldsymbol{R}) \oplus \mathfrak{s l}(n-i, \boldsymbol{R})$. Hence $\nu\left(\mathcal{S}_{\left\{\alpha_{i}\right\}}^{\prime \prime}\right)=[i / 2]+[(n-i) / 2]$ and thus $[n / 2]=[i / 2]+[(n-i) / 2]$, i.e., $i(n-i) \in 2 Z$,

TABLE 1.

type	\mathfrak{g}	α	condition	$\chi(\tilde{M})$	$\chi(M)$
A I	$\mathfrak{s l}(n, \boldsymbol{R})$	α_{i}	$i \cdot(n-i) \in 2 Z$	$2\binom{[n / 2]}{[i / 2]}$	$\binom{[n / 2]}{[i / 2]}$
A II	$\mathfrak{s l}(n, \boldsymbol{H})$	$\alpha_{2 i-1}$	$1 \leq i \leq n$	$2 i\binom{n}{i}$	$2 i\binom{n}{i}$
		$\alpha_{2 i}$	$1 \leq i<n$	$\binom{n}{i}$	$\binom{n}{i}$
D I	$\begin{gathered} \mathfrak{s o}(p, 2 n-p) \\ n \geq 4 \\ 2 \leq p \leq n \end{gathered}$	α_{1}	$p+1 \in 2 \mathbf{Z}$	4	2
D II	$\begin{gathered} \mathfrak{s o}(1,2 n-1) \\ n \geq 4 \end{gathered}$	α_{1}		2	2
		α_{i}	$2 \leq i \leq n-2$	$2^{i}\binom{n-1}{i-1}$	$2^{i}\binom{n-1}{i-1}$
		α_{i}	$n-1 \leq i \leq n$	2^{n-1}	2^{n-1}
E I	$\mathfrak{e}_{\text {I }}$	α_{i}	$i \in\{1,6\}$	6	3
EIV	$\mathfrak{e}_{\text {IV }}$	α_{i}	$i \in\{1,6\}$	3	3
		α_{i}	$i=2,3,5$	192	192
		α_{4}		144	144

is the necessary and sufficient condition in order that $\nu(\mathcal{S})=\nu\left(\mathcal{S}_{\{\alpha\}}^{\prime \prime}\right)$. We have $\mathfrak{k} \simeq \mathfrak{s o}(n)$ and $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s o}(i) \oplus \mathfrak{s o}(n-i)$. Thus, when $\chi(M)>0$, we have

$$
\chi(\tilde{M})=\frac{2^{[(n+1) / 2]-1}[n / 2]!}{2^{[(i+1) / 2]-1}[i / 2]!\cdot 2^{[(n-i+1) / 2]-1}[(n-i) / 2]!}=2\binom{[n / 2]}{[i / 2]}
$$

We also have $\pi_{1}(M) \simeq Z_{2}$ (see, e.g., [Wig98]), and hence $\chi(M)=\binom{[n / 2]}{[i / 2]}$.
[A II] Here $\mathfrak{g}=\mathfrak{s l}(n, \boldsymbol{H})$, and $\nu(\mathcal{S})=0$ yields $\chi(M)>0$ for any choice of α. If $\alpha=\alpha_{2 i-1}$, for $1 \leq i \leq n$, then $\mathfrak{l} \simeq \mathfrak{s l}(i-1, \boldsymbol{H}) \oplus \mathfrak{s l}(n-i, \boldsymbol{H})$. Hence $\mathfrak{k} \simeq \mathfrak{s p}(n)$ and $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s p}(i-1) \oplus \mathfrak{s p}(n-i)$. Thus

$$
\chi(M)=\chi(\tilde{M})=\frac{2^{n} n!}{2^{i-1}(i-1)!\cdot 2^{n-i}(n-i)!}=2 i\binom{n}{i}
$$

If $\alpha=\alpha_{2 i}$ with $1 \leq i<n$, then $\mathfrak{l} \simeq \mathfrak{s l}(i, \boldsymbol{H}) \oplus \mathfrak{s l}(n-i, \boldsymbol{H})$. Thus $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s p}(i) \oplus \mathfrak{s p}(n-i)$ and

$$
\chi(M)=\chi(\tilde{M})=\frac{2^{n} n!}{\left(2^{i}(i)!\right)\left(2^{n-i}(n-i)!\right)}=\binom{n}{i}
$$

[DI] We have $\mathfrak{g} \simeq \mathfrak{s o}(p, 2 n-p)$ with $2 \leq p \leq n$ and $\nu(\mathcal{S})=2[p / 2]$. Because of the symmetry of \mathcal{S}, the minimal orbits corresponding to $\Phi=\left\{\alpha_{n-1}\right\}$ and to $\Phi=\left\{\alpha_{n}\right\}$ are diffeomorphic. Thus we can assume in the following that $i \neq n-1$. We obtain:

$$
\mathfrak{l} \simeq\left\{\begin{aligned}
\mathfrak{s l}(i, \boldsymbol{R}) \oplus \mathfrak{s o}(p-i, 2 n-p-i) & \text { if } 1 \leq i \leq p \\
\Longrightarrow & v\left(\mathcal{S}_{\alpha}^{\prime \prime}\right)=\left[\frac{i}{2}\right]+2\left[\frac{p-i}{2}\right] \\
\mathfrak{s l}(p, \boldsymbol{R}) \oplus \mathfrak{s u}(i-p) \oplus \mathfrak{s o}(2 n-2 i) & \text { if } p<i \leq n, i \neq n-1 \\
\Longrightarrow & v\left(\mathcal{S}_{\alpha}^{\prime \prime}\right)=\left[\frac{p}{2}\right]<2\left[\frac{p}{2}\right] .
\end{aligned}\right.
$$

The equation $[i / 2]+2[(p-i) / 2]=2[p / 2]$, for integral i with $1 \leq i \leq p$, is solvable if and only if p is odd, and in this case we also need to have $i=1$. Thus $\chi(M)>0$ if and only if $p=2 h+1$ is odd and $\alpha=\alpha_{1}$. Then $\mathfrak{k}=\mathfrak{s o}(2 h+1) \oplus \mathfrak{s o}(2 n-2 h-1)$ and $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s o}(2 h) \oplus \mathfrak{s o}(2 n-2 h-2)$. Hence in this case we have

$$
\chi(\tilde{M})=\frac{2^{h} h!\cdot 2^{n-h-1}(n-h-1)!}{2^{h-1} h!\cdot 2^{n-h-2}(n-h-1)!}=4 .
$$

We also have $\pi_{1}(M) \simeq \boldsymbol{Z}_{2}$ (see, e.g., [Wig98]), and hence $\chi(M)=2$.
[D II] We have $\mathfrak{g} \simeq \mathfrak{s o}(1,2 n-1)$, with $n \geq 4$, and \mathcal{R} does not contain any real root, so that Condition (4.4) is trivially fulfilled. We have $\mathfrak{k} \simeq \mathfrak{s o}(2 n-1)$. When $\alpha=\alpha_{1}$, we have $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s o}(2 n-2)$. Thus

$$
\chi(M)=\chi(\tilde{M})=\frac{2^{n-1}(n-1)!}{2^{n-2}(n-1)!}=2 .
$$

If $\alpha=\alpha_{i}$ with $2 \leq i \leq n-2$, we obtain $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s u}(i-1) \oplus \mathfrak{s o}(2 n-2 i)$ and

$$
\chi(M)=\chi(\tilde{M})=\frac{2^{n-1}(n-1)!}{(i-1)!2^{n-i-1}(n-i)!}=2^{i}\binom{n-1}{i-1} .
$$

When $\alpha \in\left\{\alpha_{n-1}, \alpha_{n}\right\}$, we obtain $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s u}(n-1)$ and therefore

$$
\chi(M)=\chi(\tilde{M})=\frac{2^{n-1}(n-1)!}{(n-1)!}=2^{n-1} .
$$

The exceptional Lie algebras. We shall discuss the case of the noncompact real forms of the exceptional Lie algebras of type EI and EIV by comparing $\nu=\nu(\mathfrak{g})=\nu(\mathcal{S})$ with $v^{\prime \prime}=v(\mathfrak{l})=v\left(\mathcal{S}_{\{\alpha\}}^{\prime \prime}\right)$. Since the proceeding is straightforward, we limit ourselves to list the Levi subalgebra \mathfrak{l} of \mathfrak{g}_{+}and the corresponding value of $\nu^{\prime \prime}$, for each different choice of $\alpha \in \mathcal{B}$ (see Table 2).

Looking up to the list, we see that $v=v^{\prime \prime}$ if, and only if, either:
(i) \mathfrak{g} is of type EI and $\alpha \in\left\{\alpha_{1}, \alpha_{6}\right\}$, or
(ii) \mathfrak{g} is of type EIV and α is any element of \mathcal{B}.

TABLE 2.

type	\mathfrak{g}	v	α	\mathfrak{l}	$v^{\prime \prime}$
EI	$\mathfrak{e}_{\text {I }}$	4	α_{1}, α_{6}	$\mathfrak{s o}(5,5)$	4
			α_{2}	$\mathfrak{s l}(6, \boldsymbol{R})$	3
			α_{3}, α_{5}	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \mathfrak{s l}(5, \boldsymbol{R})$	3
			α_{4}	$\mathfrak{s l}(3, \boldsymbol{R}) \oplus \mathfrak{s l}(2, \boldsymbol{R}) \oplus \mathfrak{s l}(3, \boldsymbol{R})$	3
EIV	$\mathfrak{e}_{\text {IV }}$	0	α_{1}, α_{6}	$\mathfrak{s o}$ (8)	0
			$\alpha_{2}, \alpha_{3}, \alpha_{5}$	$\mathfrak{s u}(4)$	0
			α_{4}	$\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$	0

In case $(\mathrm{i}), \mathfrak{k}_{+}^{s} \simeq \mathfrak{s o}(5) \oplus \mathfrak{s o}(5)$ and hence $\left|\mathbf{W}\left(\mathbf{K}_{+}\right)\right|=64=2^{6}$. We have $\mathfrak{k}=\mathfrak{s p}$ (4) and hence $|\mathbf{W}(\mathbf{K})|=384=2^{4} 4$!. Thus $\chi(\tilde{M})=384 / 64=6$. Finally, since $\pi_{1}(M) \simeq \boldsymbol{Z}_{2}$ (see, e.g., [Wig98]), the manifold \tilde{M} is a two-fold covering of M, and we obtain that $\chi(M)=3$.

In the case (ii), we have $\mathfrak{k}=f_{\text {III }}$ (the compact form of the complex simple Lie algebra of type F_{4}), so that $|\mathbf{W}(\mathbf{K})|=1,152=2^{7} 3^{2}$. We need to distinguish the different cases:
(1) If $\alpha=\alpha_{1}, \alpha_{6}$, then $\mathfrak{k}_{+}^{s} \simeq \mathfrak{s o (9)}$, so that $\left|\mathbf{W}\left(\mathbf{K}_{+}\right)\right|=384=2^{4} 4$! and $\chi(M)=$ $\chi(\tilde{M})=1,152 / 384=3$.
(2) If $\alpha=\alpha_{2}, \alpha_{3}, \alpha_{5}$, then $\mathfrak{k}_{+}^{s}=\mathfrak{l}=\mathfrak{s u}(3)$. Hence $\left|\mathbf{W}\left(\mathbf{K}_{+}\right)\right|=6=3$! and $\chi(M)=$ $\chi(\tilde{M})=1,152 / 6=192$.
(3) If $\alpha=\alpha_{4}$, then $\mathfrak{k}_{+}^{s}=\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$. Hence $\left|\mathbf{W}\left(\mathbf{K}_{+}\right)\right|=8=2^{3}$ and $\chi(M)=\chi(\tilde{M})=1,152 / 8=144$.

The computation of the Euler characteristic in the general case reduces to the previous theorem and to the well-known formula $\chi(M)=\chi\left(M^{\prime}\right) \cdot \chi\left(M^{\prime \prime}\right)$, that is valid for a smooth fiber bundle $M \rightarrow M^{\prime}$ with typical fiber $M^{\prime \prime}$.

In particular, we obtain the following
THEOREM 5.2. Let M be the minimal orbit associated to the effective pair $(\mathfrak{g}, \mathfrak{q})$ of the real semisimple Lie algebra \mathfrak{g} and the complex parabolic subalgebra \mathfrak{q} of its complexification $\hat{\mathfrak{g}}$. Let $\mathfrak{g}=\bigoplus_{i=1}^{m} \mathfrak{g}_{i}$ be the decomposition of \mathfrak{g} into the direct sum of its simple ideals. For each $i=1, \ldots, m$, consider the pair $\left(\mathfrak{g}_{i}, \mathfrak{q}_{i}\right)$ for $\mathfrak{q}_{i}=\mathfrak{q} \cap \hat{\mathfrak{g}}_{i}$. Then the Euler characteristic $\chi(M)$ of M is always nonnegative and is positive if and only if each \mathfrak{g}_{i} is one of the following:
(1) of the complex type;
(2) compact;
(3) of the real types A II, D II, E IV;
(4) of the real type AI, with $\mathfrak{g}_{i} \simeq \mathfrak{s l}(n, \boldsymbol{R})$ and $\Phi_{i}=\left\{\alpha_{j_{1}}, \ldots, \alpha_{j_{r}}\right\}$ for a sequence of integers $\left\{j_{h}\right\}_{0 \leq h \leq r+1}$ with

$$
0=j_{0}<j_{1}<\cdots<j_{r}<j_{r+1}=n \quad \text { and } \quad \sum_{h=0}^{r}\left[\left(j_{h+1}-j_{h}\right) / 2\right]=[n / 2]
$$

(5) of the real type D I, with $\mathfrak{g}_{i} \simeq \mathfrak{s o}(p, 2 n-p)$ with p odd, $3 \leq p \leq n$ and $\Phi_{i}=\left\{\alpha_{1}\right\}$;
(6) of the real type EI, with $\Phi_{i} \subset\left\{\alpha_{1}, \alpha_{6}\right\}$.

Proof. We recall that $\chi(M) \geq 0$ by [Wan49], because M is the homogeneous space of a compact group.

With the notation of Proposition 3.3, $\chi(M)=\chi\left(M_{1}\right) \cdots \chi\left(M_{m}\right)$, where M_{i} is a minimal orbit associated to the pair $\left(\mathfrak{g}_{i}, \mathfrak{q}_{i}\right)$. Therefore it suffices to prove the theorem under the additional assumption that \mathfrak{g} is simple.

Let $\mathfrak{q}=\mathfrak{q}_{\Phi}$ for a set Φ of simple roots contained in a basis \mathcal{B}, that corresponds to the nodes of the Satake diagram \mathcal{S} of \mathfrak{g}.

If $\alpha \in \Phi$ and M^{\prime} is the minimal orbit associated to $\left(\mathfrak{g}, \mathfrak{q}_{\{\alpha\}}\right)$, then we have a \mathbf{G}-equivariant fibration $M \rightarrow M^{\prime}$, say with fiber $M^{\prime \prime}$, and $\chi(M)=\chi\left(M^{\prime}\right) \cdot \chi\left(M^{\prime \prime}\right)$. The condition $\chi\left(M^{\prime}\right)>$ 0 is then necessary in order that $\chi(M) \neq 0$.

Thus, by Theorem 5.1, the conditions of the theorem are necessary.
Since $v(\mathcal{S})=0$ when \mathfrak{g} is either of the complex type, or compact, or of one of the real types A II, D II, E IV, all $\emptyset \neq \Phi \subset \mathcal{B}$ lead in these cases to $\chi(M)>0$. Also, the case (5) is clear, because, by Theorem 5.1, in that case we may have $\chi(M)>0$ only with $\Phi=\left\{\alpha_{1}\right\}$.

Thus we only need to consider the cases (4) and (6).
(4) When $\mathfrak{g} \simeq \mathfrak{s l}(n, \boldsymbol{R})$ and $\Phi=\left\{\alpha_{j_{1}}, \ldots, \alpha_{j_{r}}\right\}$, the Levi subalgebra of \mathfrak{g}_{+}is $\mathfrak{l} \simeq$ $\bigoplus_{h=0}^{r} \mathfrak{s l}\left(j_{h+1}-j_{h}, \boldsymbol{R}\right)$. Hence $\nu^{\prime \prime}=\sum_{h=0}^{r}\left[\left(j_{h+1}-j_{h}\right) / 2\right]$ and the condition $\nu^{\prime \prime}=v=$ [$n / 2$] is necessary and sufficient for having $\chi(M)>0$.

Since $\mathfrak{k}_{+}^{s} \simeq \bigoplus_{h=0}^{r} \mathfrak{s o}\left(j_{h+1}-j_{h}\right)$, we obtain $\chi(M)=[n / 2]!/ \prod_{h=0}^{r}\left[\left(j_{h+1}-j_{h}\right) / 2\right]!$.
(6) By Theorem 5.1, it only remains to consider the case where $\Phi=\left\{\alpha_{1}, \alpha_{6}\right\}$. Let M^{\prime} be the minimal orbit corresponding to $\left(\mathfrak{e}_{\mathrm{I}}, \mathfrak{q}_{\left\{\alpha_{6}\right\}}\right)$ and $M^{\prime \prime}$ the fiber of the fibration $M \rightarrow M^{\prime}$. By Proposition 3.4, $M^{\prime \prime}$ is the minimal orbit associated to $\left(\mathfrak{s o}(5,5), \mathfrak{q}_{\left\{\alpha_{1}\right\}}\right)$. We know from Theorem 5.1 that $\chi\left(M^{\prime}\right)=3$ and $\chi\left(M^{\prime \prime}\right)=2$. Thus $\chi(M)=\chi\left(M^{\prime}\right) \cdot \chi\left(M^{\prime \prime}\right)=6$.

6. Some examples.

EXAMPLE 6.1. The method outlined above can also be applied in the classical cases. Let for instance $\mathfrak{g}=\mathfrak{s o}(2 n)$, with $n \geq 3$. We can assume that $\mathfrak{q}=\mathfrak{q}_{\Phi}$ with $\Phi=\left\{\alpha_{j_{1}}, \ldots, \alpha_{j_{r}}\right\}$, for a sequence of integers $0=j_{0}<j_{1}<\cdots<j_{r} \leq j_{r+1}=n$ with $j_{r} \neq n-1$. Then we obtain: $\mathfrak{l}=\mathfrak{k}_{+}^{s}=\mathfrak{s o}\left(2\left(n-j_{r}\right)\right) \oplus \bigoplus_{h=0}^{r-1} \mathfrak{s u}\left(j_{h+1}-j_{h}\right)$. Hence, for the corresponding $M=M_{j_{1}, \ldots, j_{r}}^{\mathrm{D}_{n}}$ we obtain

$$
\chi\left(M_{j_{1}, \ldots, j_{r}}^{\mathrm{D}_{n}}\right)= \begin{cases}\frac{2^{j_{r}} n!}{\prod_{h=0}^{r}\left(j_{h+1}-j_{h}\right)!} & \text { if } j_{r} \leq n-2 \\ \frac{2^{n-1} n!}{\prod_{h=0}^{r-1}\left(j_{h+1}-j_{h}\right)!} & \text { if } j_{r}=n\end{cases}
$$

Example 6.2. Let us turn now to the case D II. Let $\mathfrak{g} \simeq \mathfrak{s o}(1,2 n-1)$, with $n \geq 4$ and $\mathfrak{q}=\mathfrak{q}_{\Phi}$ with $\Phi=\left\{\alpha_{j_{1}}, \ldots, \alpha_{j_{r}}\right\}$, where again we assume that $0=j_{0}<j_{1}<\cdots<j_{r} \leq$ $j_{r+1}=n$, and $j_{r} \neq n-1$. We note that, by Lemma 3.6, $M=M_{j_{1}, \ldots, j_{r}}^{[\mathrm{DII}]_{n}}$ is diffeomorphic to the minimal orbit associated to $\left(\mathfrak{g}, \mathfrak{q}_{\Phi^{\prime}}\right)$, where $\Phi^{\prime}=\Phi \cup\left\{\alpha_{1}\right\}$. Thus we can as well assume that $\alpha_{1} \in \Phi$, i.e., that $j_{1}=1$. Since for the minimal orbit M^{\prime} associated to $\left(\mathfrak{g}, \mathfrak{q}_{\left\{\alpha_{1}\right\}}\right)$ we have $\chi\left(M^{\prime}\right)=2$, we can apply Proposition 3.4 to the \mathbf{G} equivariant fibration $M \rightarrow M^{\prime}$. Since the fiber $M^{\prime \prime}$ is the complex flag manifold $M_{j_{2}-1, \ldots, j_{r}-1}^{\mathrm{D}_{n-1}}$, we conclude that

$$
\chi\left(M_{1, j_{2}, \ldots, j_{r}}^{[\mathrm{DII}]_{n}}\right)=2 \cdot \chi\left(M_{j_{2}-1, \ldots, j_{r}-1}^{\mathrm{D}_{n-1}}\right) .
$$

Example 6.3. Assume that $\mathfrak{g} \simeq \mathfrak{s l}(n, \boldsymbol{H})$ is of the real type [AII] $]_{2 n-1}$ and that $\mathfrak{q}=\mathfrak{q}_{\Phi}$ with $\Phi=\left\{\alpha_{2 j_{1}-1}, \ldots, \alpha_{2 j_{r}-1}\right\}$ for a sequence of integers satisfying $0=j_{0}<$ $j_{1}<\cdots<j_{r}<j_{r+1}=n+1$. Consider the minimal orbit $M_{2 j_{1}-1, \ldots, 2 j_{r}-1}^{[\mathrm{AII}]_{2 n-1}}$. Since $\bar{\alpha}_{2 h}=\alpha_{2 h-1}+\alpha_{2 h}+\alpha_{2 h+1}$ for $1 \leq h \leq n-1$, we obtain that the Levi subalgebra of \mathfrak{g}_{+}is $\mathfrak{l}=\bigoplus_{h=0}^{r} \mathfrak{s l}\left(j_{h+1}-j_{h}-1, \boldsymbol{H}\right)$. Hence we obtain

$$
\begin{aligned}
\chi\left(M_{2 j_{1}-1, \ldots, 2 j_{r}-1}^{[\mathrm{AII}]_{2 n-1}}\right) & =\frac{2^{n} n!}{\prod_{h=0}^{r}\left(2^{j_{h+1}-j_{h}-1}\left(j_{h+1}-j_{h}-1\right)!\right)} \\
& =\frac{2^{r} n!}{\prod_{h=0}^{r}\left(j_{h+1}-j_{h}-1\right)!}
\end{aligned}
$$

Example 6.4. Consider the case where $\mathfrak{g}=\mathfrak{e}_{\mathrm{IV}}$. We have already discussed the case where $\Phi \subset\left\{\alpha_{1}, \alpha_{6}\right\}$. Assume therefore that $\Phi \cap\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\} \neq \emptyset$. We observe that, by Lemma 3.6, the minimal orbit associated to $\left(\mathfrak{e}_{\mathrm{IV}}, \mathfrak{q}_{\Phi}\right)$ is diffeomorphic to the minimal orbit associated to ($\mathfrak{e}_{\text {IV }}, \mathfrak{q}_{\Phi \cup\left\{\alpha_{1}, \alpha_{6}\right\}}$). Thus we can proceed as in the discussion of the case [DII]. Indeed, we can assume that $\Phi=\left\{\alpha_{1}, \alpha_{j_{1}}, \ldots, \alpha_{j_{r}}, \alpha_{6}\right\}$ with $r \geq 1$. By considering the Gequivariant fibration over $M^{\prime}=M_{1,6}^{\mathrm{EIV}}$ associated to ($\mathfrak{e}_{\text {IV }}, \mathfrak{q}_{\left\{\alpha_{1}, \alpha_{6}\right\}}$), we obtain by Proposition 3.4 that the fiber is $M^{\prime \prime}=M_{j_{1}-1, \ldots, j_{r}-1}^{\mathrm{D}_{4}}$. Hence, since

$$
\chi\left(M_{1,6}^{\mathrm{EIV}}\right)=\chi\left(M_{6}^{\mathrm{EIV}}\right) \cdot \chi\left(M_{1}^{[\mathrm{DII}]_{5}}\right)=3 \cdot 2=6,
$$

we obtain

$$
\chi\left(M_{1, j_{1}, \ldots, j_{r}, 6}^{\mathrm{EIV}}\right)=6 \cdot \chi\left(M_{j_{1}-1, \ldots, j_{r}-1}^{\mathrm{D}_{4}}\right) .
$$

7. Appendix. In Table 3 we give, for each noncompact simple Lie algebra of the real type, a linear representation \mathfrak{g}, its maximal compact subalgebra \mathfrak{k}, the order of the Weyl group

Table 3.

| type | \mathfrak{g} | \mathfrak{k} | \| W (K)| | v | l |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A I | $\mathfrak{s l}(n, \boldsymbol{R})$ | $\mathfrak{s o}(n)$ | $2^{\left[\frac{n+1}{2}\right]-1} \cdot\left[\frac{n}{2}\right]$! | $\left[\frac{n}{2}\right]$ | $n-1$ |
| A II | $\mathfrak{s l}(n, \boldsymbol{H})$ | $\mathfrak{s p}(n)$ | $2^{n} \cdot n!$ | 0 | $2 n-1$ |
| A III | $\begin{gathered} \mathfrak{s u}(p, q) \\ 2 \leq p \leq q \end{gathered}$ | $\mathfrak{s}(\mathfrak{u}(p) \oplus \mathfrak{u}(q))$ | $p!\cdot q!$ | p | $p+q-1$ |
| A IV | $\begin{gathered} \mathfrak{s u}(1, q) \\ q \geq 1 \end{gathered}$ | $\mathfrak{u}(q)$ | $q!$ | 1 | q |
| B I | $\begin{gathered} \mathfrak{s o}(p, 2 n+1-p) \\ 2 \leq p \leq n \end{gathered}$ | $\mathfrak{s o}(p) \oplus \mathfrak{s o}(2 n+1-p)$ | $2^{n-1}\left[\frac{p}{2}\right]!\left[\frac{2 n+1-p}{2}\right]!$ | p | n |
| B II | $\begin{gathered} \mathfrak{s o}(1,2 n) \\ n \geq 1 \end{gathered}$ | $\mathfrak{s o}(2 n)$ | $2^{n-1} n!$ | 1 | n |
| CI | $\mathfrak{s p}(2 n, \boldsymbol{R})$ | $\mathfrak{u}(n)$ | n ! | n | n |
| C II | $\begin{gathered} \mathfrak{s p}(p, q) \\ 0<p \leq q \end{gathered}$ | $\mathfrak{s p}(p) \oplus \mathfrak{s p}(q)$ | $2^{p+q} p!\cdot q!$ | p | $p+q$ |
| D I | $\begin{gathered} \mathfrak{s o}(p, 2 n-p) \\ n \geq 4 \\ 2 \leq p \leq n \end{gathered}$ | $\mathfrak{s o}(p) \oplus \mathfrak{s o}(2 n-p)$ | $\begin{aligned} & 2^{n-p+2\left[\frac{p-1}{2}\right]} \\ & \quad \times\left[\frac{p}{2}\right]!\left[\frac{2 n-p}{2}\right]! \end{aligned}$ | $2\left[\frac{p}{2}\right]$ | n |
| D II | $\begin{gathered} \mathfrak{s o}(1,2 n-1) \\ n \geq 4 \end{gathered}$ | $\mathfrak{s o}(2 n-1)$ | $2^{n-1}(n-1)!$ | 0 | n |
| D III | $\begin{gathered} \mathfrak{s o}^{*}(2 n) \\ n \geq 2 \end{gathered}$ | $\mathfrak{u}(n)$ | $n!$ | $\left[\frac{n}{2}\right]$ | n |
| EI | ${ }^{\text {e }}$ I | $\mathfrak{s p}(4)$ | 384 | 4 | 6 |
| E II | ${ }^{\text {e }}$ II | $\mathfrak{s u}(2) \oplus \mathfrak{s u}(6)$ | 1,440 | 4 | 6 |
| E III | ${ }^{\mathfrak{e}}$ III | $\mathfrak{s o}(10) \oplus \boldsymbol{R}$ | 1,920 | 2 | 6 |
| EIV | ${ }^{\text {e }}$ IV | f_{4} | 1,152 | 0 | 6 |
| EV | ${ }^{\text {e }} \mathrm{V}$ | $\mathfrak{s u}(8)$ | 40,320 | 7 | 7 |
| EVI | ${ }^{\text {e }}$ VI | $\mathfrak{s u}(2) \oplus \mathfrak{s o}(12)$ | 46,080 | 4 | 7 |
| E VII | ${ }^{\text {e }}$ VII | $\mathfrak{e}_{6} \oplus \boldsymbol{R}$ | 51,840 | 3 | 7 |
| E VIII | eVIII | $\mathfrak{s o}$ (16) | 5,160,960 | 8 | 8 |
| EIX | ${ }^{\text {e }}$ IX | $\mathfrak{s u}(2) \oplus \mathfrak{e} 7$ | 5,806,080 | 4 | 8 |
| FI | $f_{\text {I }}$ | $\mathfrak{s u}(2) \oplus \mathfrak{s p}(3)$ | 96 | 4 | 4 |
| FII | $\mathrm{f}_{\text {II }}$ | $\mathfrak{s o}$ (9) | 384 | 1 | 4 |
| GI | $\mathfrak{g}_{\text {I }}$ | $\mathfrak{s o}(3) \oplus \mathfrak{s o}(3)$ | 16 | 2 | 2 |

of the maximal compact subgroup \mathbf{K} of a connected Lie group with Lie algebra \mathfrak{g}, the number v of the elements of a maximal system of strongly orthogonal real roots of \mathcal{R}, the dimension l of a Cartan subalgebra of \mathfrak{g}. The numbers v are essentially computed in [Sug59]. However, since the computation is rather implicit there, we also give an explicit list of maximal systems of strongly orthogonal roots for each listed case.

We denote by Γ a maximal system of strongly orthogonal real roots in \mathcal{R}. For each case of the list we describe below an explicit Γ.
$\left[\mathrm{A}_{l}\right] . \quad \mathcal{R}=\left\{ \pm\left(e_{i}-e_{j}\right) \mid 1 \leq i<j \leq n\right\}$.

A I	ν	$=[n / 2]$	
A II	ν	$=0$	
A III	ν	$=p$	
A IV		$\left.=e_{n+1-i} \mid 1 \leq i \leq \nu\right\}$	
A	$=1$		$\Gamma=\left\{e_{i}-e_{n+1-i} \mid 1 \leq i \leq \nu\right\}$
	$\left.\nu e_{1}-e_{n}\right\}$		

$\left[\mathrm{B}_{l}\right] . \quad \mathcal{R}=\left\{ \pm e_{i} \mid 1 \leq i \leq l\right\} \cup\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq l\right\}$.
BI $\quad \nu=p$ even $\quad \Gamma=\left\{e_{2 j-1} \pm e_{2 j} \mid 1 \leq j \leq p / 2\right\}$
B I $\quad \nu=p$ odd $\quad \Gamma=\left\{e_{2 j-1} \pm e_{2 j} \mid 1 \leq j \leq(p-1) / 2\right\} \cup\left\{e_{p}\right\}$
B II $\quad v=1 \quad \Gamma=\left\{e_{1}\right\}$
$\left[\mathrm{C}_{l}\right] . \quad \mathcal{R}=\left\{ \pm 2 e_{i} \mid 1 \leq i \leq l\right\} \cup\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq l\right\}$.
$\mathrm{CI} \quad \nu=l \quad \Gamma=\left\{2 e_{i} \mid 1 \leq i \leq l\right\}$
CII $\quad \nu=p \quad \Gamma=\left\{e_{2 i-1}+e_{2 i} \mid 1 \leq i \leq p\right\}$
$\left[\mathrm{D}_{l}\right] . \quad \mathcal{R}=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq l\right\}$.
DI $\quad v=2[p / 2] \quad \Gamma=\left\{e_{2 h-1} \pm e_{2 h} \mid 2 h \leq p\right\}$
D II $\quad v=0 \quad \Gamma=\emptyset$
D III $\quad v=[l / 2] \quad \Gamma=\left\{e_{2 h-1}+e_{2 h} \mid 1 \leq h \leq[l / 2]\right\}$.
$\left[\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}\right]$ Following [Bou68], we set

$$
\begin{aligned}
& \left.\mathcal{R}\left(\mathfrak{e}_{8}\right)=\left\{ \pm e_{i} \pm e_{j}\right) \mid 1 \leq i<j \leq 8\right\} \cup\left\{\left.\frac{1}{2} \sum_{i=1}^{8}(-1)^{k_{i}} e_{i} \right\rvert\, k_{i} \in \boldsymbol{Z}, \sum_{i=1}^{8} k_{i} \in 2 \boldsymbol{Z}\right\}, \\
& \mathcal{R}\left(e_{7}\right)=\mathcal{R}\left(e_{8}\right) \cap\left\{e_{7}+e_{8}\right\}^{\perp}, \\
& \mathcal{R}\left(e_{6}\right)=\mathcal{R}\left(e_{8}\right) \cap\left\{e_{6}+e_{8}, e_{7}+e_{8}\right\}^{\perp},
\end{aligned}
$$

so that in particular $\mathcal{R}\left(\mathfrak{e}_{6}\right) \subset \mathcal{R}\left(\mathfrak{e}_{7}\right) \subset \mathcal{R}\left(\mathfrak{e}_{8}\right)$.
Likewise, the basis of simple roots can be considered as included one into the other: $\mathcal{B}\left(\mathfrak{e}_{6}\right)=\left\{\alpha_{1}, \ldots, \alpha_{6}\right\} \subset \mathcal{B}\left(\mathfrak{e}_{7}\right)=\left\{\alpha_{1}, \ldots, \alpha_{7}\right\} \subset \mathcal{B}\left(\mathfrak{e}_{8}\right)=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}$ for $\alpha_{1}=\frac{1}{2}\left(e_{1}-\right.$
$\left.e_{2}-e_{3}-e_{4}-e_{5}-e_{6}-e_{7}+e_{8}\right), \alpha_{2}=e_{1}+e_{2}, \alpha_{3}=e_{2}-e_{1}, \alpha_{4}=e_{3}-e_{2}, \alpha_{5}=e_{4}-e_{3}$, $\alpha_{6}=e_{5}-e_{4}, \alpha_{7}=e_{6}-e_{5}, \alpha_{8}=e_{7}-e_{6}$.

Set

$$
\beta_{i}= \begin{cases}e_{i}-e_{i+1} & \text { for odd } i \\ e_{i-1}+e_{i} & \text { for even } i\end{cases}
$$

so that $\beta_{i} \in \mathcal{R}\left(\mathfrak{e}_{6}\right)$ for $i \leq 4, \beta_{i} \in \mathcal{R}\left(\mathfrak{e}_{7}\right)$ for $i \leq 7, \beta_{i} \in \mathcal{R}\left(\mathfrak{e}_{8}\right)$ for $i \leq 8$. Note that $\left\{\beta_{i} \mid 1 \leq i \leq 8\right\}$ is a system of eight strongly orthogonal roots in $\mathcal{R}\left(e_{8}\right)$.

Since the conjugation in the non-split forms are better expressed in terms of the simple roots α_{i}, to describe the maximal sets Γ, we also found it convenient to introduce other roots γ_{i}, defined as linear combinations of the simple roots α_{i} :

$$
\begin{aligned}
& \gamma_{1}=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}=123_{2}^{21} \in \mathcal{R}\left(\mathfrak{e}_{6}\right), \\
& \gamma_{2}=\alpha_{1}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}=1{ }_{0}^{1111} \in \mathcal{R}\left(\mathfrak{e}_{6}\right) \text {, } \\
& \gamma_{3}=\alpha_{3}+\alpha_{4}+\alpha_{5}=0{ }_{0}^{1}{ }_{0}^{10} \in \mathcal{R}\left(\mathfrak{e}_{6}\right) \text {, } \\
& \gamma_{4}=\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}=121_{1}^{100} \in \mathcal{R}\left(\mathfrak{e}_{7}\right) \text {, } \\
& \gamma_{5}=\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+\alpha_{7}={ }_{12}{ }_{1}^{2} 21 \in \mathcal{R}\left(\mathfrak{e}_{7}\right) \text {, } \\
& \gamma_{6}=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7}=122_{2}^{321} \in \mathcal{R}\left(\mathfrak{e}_{7}\right) \text {, } \\
& \gamma_{7}=\alpha_{2}+\alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}+\alpha_{7}=0121_{1}^{2} 1 \in \mathcal{R}\left(\mathfrak{e}_{7}\right) \text {, } \\
& \gamma_{8}=2 \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7}=23_{2}^{4} 321 \in \mathcal{R}\left(e_{7}\right) \text {, } \\
& \gamma_{9}=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+6 \alpha_{4}+5 \alpha_{5}+4 \alpha_{6}+3 \alpha_{7}+2 \alpha_{8}=2{ }_{3}^{2} 5432 \in \mathcal{R}\left(\mathfrak{e}_{8}\right) \text {. }
\end{aligned}
$$

We can describe a system Γ of strongly orthogonal roots for the real simple Lie algebra of the exceptional types $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}$ by

EI	$\nu=4$	$\Gamma=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$,
E II	$\nu=4$	$\Gamma=\left\{\alpha_{4}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$,
E III	$\nu=2$	$\Gamma=\left\{\gamma_{1}, \gamma_{2}\right\}$,
E IV	$\nu=0$	$\Gamma=\emptyset$,
E V	$\nu=7$	$\Gamma=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$,
E VI	$\nu=4$	$\Gamma=\left\{\alpha_{1}, \gamma_{4}, \gamma_{5}, \gamma_{6}\right\}$,
E VII	$\nu=3$	$\Gamma=\left\{\alpha_{7}, \gamma_{7}, \gamma_{8}\right\}$,
E VIII	$\nu=8$	$\Gamma=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$,
E IX	$\nu=4$	$\Gamma=\left\{\alpha_{7}, \gamma_{7}, \gamma_{8}, \gamma_{9}\right\}$.

[F_{4}]. We have

$$
\mathcal{R}=\left\{ \pm e_{i} \mid 1 \leq i \leq 4\right\} \cup\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq 4\right\} \cup\left\{\frac{ \pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}}{2}\right\}
$$

Then we have

$$
\begin{array}{lll}
\text { FI } & v=4 & \Gamma=\left\{e_{1} \pm e_{2}, e_{3} \pm e_{4}\right\}, \\
\text { FII } & v=1 & \Gamma=\left\{\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}\right\}=\left\{e_{1}\right\} .
\end{array}
$$

[G_{2}]. We have

$$
\begin{gathered}
\mathcal{R}=\left\{ \pm\left(e_{i}-e_{j}\right) \mid 1 \leq i<j \leq 3\right\} \cup\left\{ \pm\left(2 e_{i}-e_{j}-e_{k}\right) \mid\{i, j, k\}=\{1,2,3\}\right\} . \\
\text { GI } \quad \Gamma=2 \quad \Gamma=\left\{e_{1}-e_{2}, 2 e_{3}-e_{1}-e_{2}\right\} .
\end{gathered}
$$

References

[AMN06a] A. Altomani, C. Medori and M. NACinovich, The CR structure of minimal orbits in complex flag manifolds, J. Lie Theory 16 (2006), 483-530.
[AMN06b] A. Altomani, C. Medori and M. Nacinovich, Orbits of real forms in complex flag manifolds, preprint, arXiv:math/0611755, November 2006.
[Ara62] S. ARAKI, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ 13 (1962), 1-34.
[Bou68] N. Bourbaki, Éléments de mathématique, Fasc. XXXIV, Groupes et algèbres de Lie, Chapitres IVVI, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
[Bou75] N. Bourbaki, Éléments de mathématique, Fasc. XXXVIII, Groupes et algèbres de Lie, Chapitres VII-VIII, Actualités Scientifiques et Industrielles, No. 1364, Hermann, Paris, 1975.
[CS99] L. Casian and R. J. Stanton, Schubert cells and representation theory, Invent. Math. 137 (1999), 461-539.
[DKV83] J. J. Duistermaat, J. A. C. Kolk and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compositio Math. 49 (1983), 309-398.
[GHV73] W. Greub, S. Halperin and R. Vanstone, Connections, curvature, and cohomology, Vol. II: Lie groups, principal bundles, and characteristic classes, Pure and Applied Mathematics, Vol. 47-II, Academic Press, New York-London, 1973.
[Hel78] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, New York, 1978.
[Kna02] A. W. KNAPP, Lie groups beyond an introduction, second ed., Progress in Mathematics, vol. 140, Birkhäuser, Boston, 2002.
[Koc95] R. R. Kocherlakota, Integral homology of real flag manifolds and loop spaces of symmetric spaces, Adv. Math. 110 (1995), 1-46.
[Kos55] B. Kostant, On the conjugacy of real Cartan subalgebras. I, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 967-970.
[MN01] C. Medori and M. Nacinovich, The Euler characteristic of standard CR manifolds, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), 783-791.
[MN05] C. Medori and M. Nacinovich, Algebras of infinitesimal CR automorphisms, J. Algebra 287 (2005), 234-274.
[Mon50] D. Montgomery, Simply connected homogeneous spaces, Proc. Amer. Math. Soc. 1 (1950), 467469.
[MT91] M. Mimura and H. Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs, vol. 91, American Mathematical Society, Providence, RI, 1991.
[Sug59] M. Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan 11 (1959), 374-434.
[Wan49] H.-C. WANG, Homogeneous spaces with non-vanishing Euler characteristics, Ann. of Math. (2) 50 (1949), 925-953.
[Wig98] M. Wiggerman, The fundamental group of a real flag manifold, Indag. Matem. 9 (1998), 141-153.
[Wol69] J. A. WolF, The action of a real semisimple group on a complex flag manifold, I, Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121-1237.
A. Altomani and M. Nacinovich
Dipartimento di Matematica
II Università di Roma "Tor Vergata"
Via della Ricerca Scientifica
00133 Roma
ITALY
E-mail address: altomani@mat.uniroma2.it
E-mail address: nacinovi@mat.uniroma2.it
C. Medori

Dipartimento di Matematica
Università di Parma
Viale G.P. Usberti, 53/A
43100 Parma
ITALY
E-mail address: costantino.medori@unipr.it

[^0]: 2000 Mathematics Subject Classification. Primary 57T15; Secondary 14M15, 17B20, 32V40.
 Key words and phrases. Complex flag manifold, compact homogeneous manifold, minimal orbit of a real form, parabolic CR algebra, Euler-Poincaré characteristic.

[^1]: ${ }^{1}$ According to [Kna02] we call reductive a linear Lie group \mathbf{G}, having finitely many connected components, with a reductive Lie algebra \mathfrak{g}, and such that $\operatorname{Ad}_{\hat{\mathfrak{g}}}(\mathbf{G}) \subset \operatorname{Int}(\hat{\mathfrak{g}})$.

