ON THE TOTAL CURVATURE OF NONCOMPACT RIEMANNIAN MANIFOLDS

By Masao Maeda

Let M be a 2-dimensional complete connected noncompact Riemannian manifold with positive Gaussian curvature K. Then Cohn-Vossen proved in [2] that M is diffeomorphic to a 2-dimensional Euclidean space E^2 and its total curvature satisfies

$$\iint_{M} K \, dv \leq 2\pi \,,$$

where dv is the area element of M. The purpose of this paper is to show the inequality (*) is still true for manifolds of nonnegative Gaussian curvature. That is,

THEOREM. Let M be a 2-dimensional complete connected noncompact Riemannian manifold with nonnegative Gaussian curvature K. Then

$$\iint_{M} K \, dv \leq 2\pi .$$

The auther dose not know whether this Theorem had been proved by anyone or not.

Throughout this paper, let M be a complete connected Riemannian manifold and every geodesic parametrized with respect to arc length. A geodesic $c: [0, \infty) \to M$ (or $(-\infty, \infty)$) is called a ray (or a line) if each segment of c is minimal. d denotes the metric distance of M. A subset A of M will be called totally convex if for any p, $q \in A$ and any geodesic $c: [0, s] \to M$ from p to q, we have $c([0, s]) \subset A$. Let C be a non-empty closed totally convex subset of M. Then C is an imbedded topological submanifold of M with totally geodesic interior and possibly nonsmooth boundary ∂C , which might be empty, see [1]. Let M be a noncompact manifold of nonnegative sectional curvature. Then the following facts were also proved in [1]. Let C be a closed totally convex subset of M. If $\partial C \neq \phi$, we set

$$C^a$$
:={ $p \in C$: $d(p, \partial C) \ge a$ }, $C^{\max} = \bigcap_{C^a \ne \phi} C^a$.

Received May 10, 1973.

Then for any $a \ge 0$, C^a is totally convex and therefore C^{\max} is totally convex and $\dim C^{\max} < \dim C$. For any $p \in M$, there exists a family of compact totally convex subsets C_t , $t \ge 0$ of M such that

- 1) $t_1 \leq t_2$ implies $C_{t_1} \subset C_{t_2}$ and $C_{t_1} = \{q \in C_{t_2}; d(q, \partial C_{t_2}) \geq t_2 t_1\}$, in particular, $\partial C_{t_1} = \{q \in C_{t_2}: d(q, \partial C_{t_2}) = t_2 t_1\}$,
- 2) $\bigcup_{t\geq 0} C_t = M$,
- 3) $p \in C_0$ and if $\partial C_0 \neq \phi$, then $p \in \partial C_0$.

We set $C_0 = : C(0)$ and if $\partial C(0) \neq \phi$, we set $C(1) : = C(0)^{\max}$. Inductively we set $C(i+1) : = C(i)^{\max}$ if $\partial C(i) \neq \phi$. Then there exists an integer $k \geq 0$ such that $\partial C(k) = \phi$. C(k) will be called a soul of M and denoted by S.

LEMMA 1. Let M be a noncompact Riemannian manifold with nonnegative sectional curvature and S be a soul of M. Then for any point $q_0 \in S$, there exist at least two rays starting from q_0 .

Proof. Since M is noncompact there exists a ray $\sigma: [0, \infty) \to M$ starting from q_0 . We set $v: = -\dot{\sigma}(0)$. Let $\{C_t\}_{t0 \ge 0}$ be the family of compact totally convex sets from which S was constructed as above. Choose an $s_0 > 0$. Let $c: [0, L] \to M$ be the geodesic such that $L < s_0$ i.e. $c([0, L]) \subset \operatorname{int} C_{s_0}$ and $\dot{c}(0) = v$. Let $\{t_i\}$ be a sequence such that $t_i \in (0, L]$ and $t_i \to 0$ and $\{s_i\}$ be a sequence such that $s_i \to \infty$ and $s_i \ge s_0$. Let $q_i \in \partial C_{s_i}$ be a point such that $d(c(t_i), q_i) = d(c(t_i), \partial C_{s_i})$ and $c_i: [0, d(c(t_i), q_i)] \to M$ be a minimal geodesic from $c(t_i)$ to q_i . Then for all i

$$\langle\!\langle (\dot{c}(t_i),\,\dot{c}_i(0)) \leq \frac{\pi}{2}$$
,

where $\langle (\dot{c}(t_i), \dot{c}_i(0)) \rangle$ is the angle between $\dot{c}(t_i)$ and $\dot{c}_i(0)$. To see this, we use the fact that the function $\psi : [0, L] \to R$ defined by $\psi(s) : = d(c(s), \partial C_{s_i})$ is concave i.e.

$$\phi(at_1+bt_2) \ge a\phi(t_1)+b\phi(t_2)$$

where $a, b \ge 0$, a+b=1, see Theorem 1.10 in [1]. Since $q=c(0) \in S$, ϕ takes a maximum at 0 and hence ϕ is monotone decreasing. But if $\langle c(t_i), \dot{c}_i(0) \rangle > \frac{\pi}{2}$, then we can find $t_i' < t_i$ such that $d(c(t_i'), q_i) < d(c(t_i), q_i)$. Hence $\phi(t_i') \le d(c(t_i'), q_i) < d(c(t_i), q_i)$. Since $\phi(t_i') \le \phi(t_i')$, where $\phi(t_i') \le \phi(t_i')$ is a contradiction. We choose a convergent subsequence $\phi(t_i') \le \phi(t_i')$ such that $\phi(t_i') \ge \phi(t_i')$. By the construction, the geodesic $\phi(t_i') \ge \phi(t_i')$ is a ray which satisfies

$$\langle (v, \dot{\tau}(0)) \leq \frac{\pi}{2}$$
. q. e. d.

Proof of Theorem. By the Classification Theorem in [1], M must be isometric to a cylinder or a Möbius band or a P_2 which is diffeomorphic to E^2 . So we may assume that M is diffeomorphic to E^2 and not flat. Let S be a soul of M and $\{C_t\}_{t\geq 0}$ the family of compact totally convex subsets of M which

determines S. For a fixed point $q_0 \in S$, by Lemma 1, there exist two rays σ , $\tau : [0, \infty) \to M$ starting from q_0 and $\dot{\sigma}(0) = \dot{\tau}(0)$. Since M is diffeomorphic to E^2 , by the broken geodesic $\tau^{-1} \circ \sigma : (-\infty, \infty) \to M$ defined by

$$\tau^{-1} \circ \sigma(t) := \begin{cases} \tau(-t) & \text{if } t \leq 0 \\ \sigma(t) & \text{if } t \geq 0, \end{cases}$$

M is decomposed into two domains D_1 , D_2 such that $D_1 \cap D_2 = \phi$, $\overline{D}_1 \cup \overline{D}_2 = M$ and $\partial \overline{D}_1 = \partial \overline{D}_2 = \tau^{-1} \circ \sigma$. For each t > 0, ∂C_t is homeomorphic to a circle and σ (or τ) meets ∂C_t uniquely at σ_t (or τ_t). For each t > 0 and $\iota = 1$, 2, we set

$$D_t^i := D_i \cap C_t$$
, $E_t^i := D_i \cap \partial C_t$,

and

$$B_t^i := \begin{cases} \tilde{q} \in E_t^i \colon \text{there exist minimal geodesics from } \sigma_t \text{ to } \tilde{q} \text{ and} \\ \text{from } \tau_t \text{ to } \tilde{q} \text{ which are contained in } \bar{D}_t^i \end{cases}$$

 B_t^i is nonempty subset of E_t^i . We show this for i=1. We set

$$N_{\sigma} \colon = \!\! \left\{ \! \begin{array}{c} \tilde{q} \! \in \! E_t^1 \colon \text{there exists a minimal geodesic from } \sigma_t \text{ to } \tilde{q} \\ \text{which is contained in } \overline{D}_t^1 \end{array} \right\}$$

$$N_{ au} := egin{cases} ilde{q} \in E_t^1 \colon ext{there exists a minimal geodesic from $ au_t$ to $ ilde{q}$} \ ext{which is contained in \overline{D}_t^1} \end{cases}$$

Let $\tilde{q} \in E_t^1$. We will show if $\tilde{q} \in N_{\tau}$, then $\tilde{q} \in N_{\sigma}$. By the assumption there exists no minimal geodesic from τ_t to \tilde{q} which is contained in \bar{D}_t^1 . First of all, we note that any minimal geodesics from au_t to $ilde{q}$ and σ_t to $ilde{q}$ are contained completely ∂C_t or do not interset ∂C_t except the end points. So we may assume that any minimal geodesic from τ_t to \tilde{q} is not contained in ∂C_t . Let $a_t : [0, d(\tau_t, \tilde{q})]$ $\to M$ be a minimal geodesic from τ_t to \tilde{q} . Then a_t dose not meet $\tau \mid [0, d(\tau(0), \tau_t))$. For, if it dose not so, then $a_t([0, d(\tau(0), \tau_t)]) = \tau([0, d(\tau(0), \tau_t)])$, because τ is a minimal geodesic. From the assumption $a_t \in \bar{D}_t^1$, $a_t([0, d(\tau_t, \tilde{q})]) \cap D_t^2 \neq \phi$. Hence a_t must meet σ at $\sigma(s_0)$, $s_0 > 0$. So $a_t([d(\tau(0), \tau_t), d(\tau_t, \tilde{q})]) \subset \sigma([0, \infty))$, because σ is a minimal geodesic. This contradicts $\tilde{q} \in \sigma([0, \infty))$. Let $\delta := \min \{d(q_0, \tau_t),$ $d(\tilde{q}, \tau_t)$. Then $a_t([0, \delta]) \subset D_t^1$ or $a_t([0, \delta]) \subset D_t^2$. In the first case, we get the same contradiction by the analogous argument above. It $a_t([0, \delta]) \subset D_t^2$, then $a_t([0, \delta])$ $d(\tau_t, \tilde{q})$]) \cup {restriction of E_t^1 from τ_t to \tilde{q} } is a Jordan curve and contains q_0 in its interior, because τ and σ are rays. If $\tilde{q} \in N_{\sigma}$, then by the same argument above, we see that if $b_t:[0,d(\sigma_t,\tilde{q})]\to M$ be a minimal geodesic from σ_t to \tilde{q} , then $b_t([0, d(\sigma_t, \tilde{q})]) \cup \{\text{restriction of } E_t^1 \text{ from } \sigma_t \text{ to } \tilde{q}\}$ is a Jordan curve and contains q_0 in its interior. Then by the topological consideration, we see that a_t must intersect b_t at $a_t(s')$, s'>0. So $a_t=b_t$ because a_t and b_t are minimal geodesics. This is a contradiction. So $\tilde{q} \in N_{\sigma}$. Similarly if $\tilde{q} \in N_{\sigma}$, then $\tilde{q} \in N_{\tau}$.

That is, every point of E_t^1 is contained in N_σ or N_τ . If $\tilde{q} \in E_t^1$ is contained in a convex neighborhood of σ_t (or τ_t), then $\tilde{q} \in N_\sigma$ (or N_τ). So N_σ and N_τ are non-empty. By considering limits of geodesics, we see N_σ and N_τ are closed subsets of E_t^1 . Thus, if $N_\sigma \cap N_\tau = \phi$, then N_σ and N_τ are non-empty open and closed subsets of E_t^1 . This is a contradiction. So there exists a point $q \in N_\sigma \cap N_\tau \subset B_t^1$.

We choose $q_t^i \in B_t^i$ and let $a_t^i : [0, m_t^i] \to M$ and $b_t^i : [0, n_t^i] \to M$ are minimal geodesics from τ_t to q_t^i and from σ_t to q_t^i such that $a_t^i([0, m_t^i])$, $b_t^i([0, n_t^i]) \subset \overline{D}_t^i$, i = 1, 2. We denote by Q_t the closed bounded domain with the boundary consisting of four geodesic segments a_t^i , b_t^i , b_t^i and a_t^i .

LEMMA 2. For any point $q \in M$, there exists a positive number t(q) such that for all $t \ge t(q)$, $q \in Q_t$.

Proof. We may assume that $q \in D_1$. We assume Lemma 2 dose not hold. Then there exists a sequence $\{t_i\}$ such that $\lim t_i = \infty$ and $q \in Q_{t_i}$ for all i. Let $c : [0, b] \to M$ be a minimal geodesic from q_0 to q. Then $c((0, b]) \subset D_1$. Since every Q_t contains q_0 , $a_{t_i}^1$ or $b_{t_i}^1$ meets c([0, b]). Without loss of generality, we may assume $a_{t_i}^1$ meets c([0, b]) at $a_{t_i}^1(s_{t_i})$. By the triangle inequality,

$$\begin{split} d(a_{t_i}^1(s_{t_i}), \, q_{t_i}^1) & \geqq d(q_{t_i}^1, \, q_0) - d(q_0, \, a_{t_i}^1(s_{t_i})) \\ & \geqq d(q_{t_i}^1, \, q_0) - d(q_0, \, q) \\ & \geqq t_i - d(q_0, \, q) \, , \\ \\ d(a_{t_i}^1(s_{t_i}), \, \tau_{t_i}) & \geqq d(\tau_{t_i}, \, q_0) - d(q_0, \, a_{t_i}^1(s_{t_i})) \\ & \leqq d(\tau_{t_i}, \, q_0) - d(q_0, \, q) \\ & \leqq t_i - d(q_0, \, q) \, , \end{split}$$

since q_0 is a point of the soul S which is made from the family of totally convex sets $\{C_t\}_{t\geq 0}$. Hence $\lim_{t\to\infty}d(a^1_{t_i}(s_{t_i}),q^1_{t_i})=\infty$ and $\lim_{t\to\infty}d(a^1_{t_i}(s_{t_i}),\tau_{t_i})=\infty$. By the compactness of c([0,b]), we can choose a convergent subsequence of $\{d^1_{t_i}(s_{t_i})\}$. Let v be its limit vector. Then the geodesic $\gamma:(-\infty,\infty)\to M$ such that $\dot{\gamma}(0)=v$ is a line by the above fact. Then by the Toponogov's splitting Theorem (see [1]), M must be isometric to E^2 . This is a contradiction. q. e. d.

Taking a positive number r_1 , for $i=1, 2, \cdots$, we set $r_{i+1} := \max\{t(q^1_{r_i}), t(q^2_{r_i}), r_i\}$ +1. Then $Q_{r_i} \subset Q_{r_{i+1}}$, because $q^k_{r_i} \in Q_{r_{i+1}}$ by Lemma 2 and $a^k_{r_i}, b^k_{r_i}, a^k_{r_{i+1}}, b^k_{r_{i+1}}$ are minimal geodesics, for k=1, 2. Since $r_i \uparrow \infty$, for any point $q \in M$, by Lemma 2 there exists r_i such that $q \in Q_{r_i}$. Hence $\bigcup_i Q_{r_i} = M$. The vertical angles of Q_{r_i} are not larger than π , because C_{r_i} is totally convex. Hence applying the Gauss-Bonnet's Theorem to Q_{r_i} , we get

$$\iint_{Q_{ri}} K \, dv \leq 2\pi \; .$$

The sequence $\left\{ \int\!\!\int_{Q_{ri}}\!\!K\,dv\right\}$ are monotone increasing, so there exists the limit value and

$$\lim \iint_{Q_{ri}} K \, dv = \iint_{\mathcal{M}} K \, dv \leq 2\pi$$

q. e. d.

The auther thanks Professor T. Otsuki for his valuable suggestions.

REFERENCES

- [1] J. CHEEGER AND D. GROMOLL, On the structure of complete manifolds of non-negative curvature, Ann. of Math. 96 (1972), 413-443.
- [2] S. COHN-VOSSEN, Kürzeste Wege und Totalkrümmung auf Flächen, Comp. Math. 2 (1935), 69-133.
- [3] D. GROMOLL AND W. MEYER, On complete manifolds of positive curvature, Ann. of Math. 90 (1969), 75-90.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.