On the total domination subdivision number in graphs

O. Favaron ${ }^{1}$, H. Karami ${ }^{2}$, R. Khoeilar ${ }^{2}$ and S.M. Sheikholeslami ${ }^{2}$, ${ }^{*}$
${ }^{1}$ LRI, UMR 8623, University Paris Sud and CNRS
Orsay, F-91405 France.
Odile.Favaron@lri.fr
${ }^{2}$ Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
s.m.sheikholeslami@azaruniv.edu

Abstract

A set $S \subseteq V$ of vertices in a graph $G=(V, E)$ without isolated vertices is a total dominating set if every vertex of V is adjacent to some vertex in S. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of G. The total domination subdivision number $\operatorname{sd}_{\gamma_{t}}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that $\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1$ for some classes of graphs where $\alpha^{\prime}(G)$ is the maximum cardinality of a matching of G.

Keywords: matching, barrier, total domination number, total domination subdivision number
MSC 2000: 05C69

1 Introduction

Let $G=(V, E)=(V(G), E(G))$ be a simple graph of order $n=|V|$. The (open) neighborhood of a vertex u is the set $N_{G}(u)=\{v \mid u v \in E\}$ and the closed neighborhood of u is the set $N[u]=N(u) \cup\{u\}$. The degree of u is $d_{G}(u)=|N(u)|$. The minimum degree of a vertex in V is denoted $\delta(G)(d(u), \delta$ for short when no confusion on G is possible); in this paper we assume that for all graphs considered, $\delta(G) \geq 1$. For a set $S \subseteq V$, the open neighborhood is the set $N(S)=\cup_{x \in S} N(x)$ and the closed neighborhood is the set $N[S]=N(S) \cup S$.

A vertex y is an S-private neighbor of a vertex $x \in S$ if $y \in N[x] \backslash N[S \backslash\{x\}]$, and is an S-external private neighbor if $y \in N(x) \backslash N[S \backslash\{x\}]$. Let $d(u, v)$ denote the minimum length of a path from vertex u to vertex v and let $d_{2}(u)=|\{v \mid d(u, v)=2\}|, \delta_{2}(G)=\min \left\{d_{2}(u) \mid u \in\right.$ $V(G)\}$. The eccentricity of a vertex u equals $e c c(u)=\max \{d(u, v) \mid v \in V\}$.

A matching is a set $M \subseteq E$ of edges no two of which have a vertex in common. The set of vertices covered by, or contained in an edge of a matching M is denoted $V(M)$. A perfect matching is a matching M for which $V(M)=V(G)$. If n is odd, a near perfect matching leaves exactly one vertex uncovered, i.e., $|V(M)|=n-1$. A graph is factor-critical if the

[^0]deletion of any vertex leaves a graph with a perfect matching. Note that every non-trivial factor-critical graph has odd order and minimum degree at least 2 . The maximum number of edges of a matching in G is denoted by $\alpha^{\prime}(G)$ (α^{\prime} for short). A cycle of order n is denoted by C_{n}. We use [19] for terminology and notation which are not defined here.

A set S of vertices of a graph G with minimum degree $\delta(G)>0$ is a total dominating set if $N(S)=V(G)$. The minimum cardinality of a total dominating set, denoted by $\gamma_{t}(G)$ (γ_{t} for short), is called the total domination number of G. A $\gamma_{t}(G)$-set is a total dominating set of G of cardinality $\gamma_{t}(G)$. Total domination was introduced by Cockayne, Dawes, and Hedetniemi [2] and is now well studied in graph theory. A survey of total domination in graphs can be found in [11]. The concept of total $\{k\}$-domination number has been introduced by Ning Li and Xinmin Hou [14] as a generalization of total domination number and has been studied by several authors (see for example [1, 17]).

The total domination subdivision number $\operatorname{sd}_{\gamma_{t}}(G)$ is the minimum number of edges of G that must be subdivided once in order to increase the total domination number. This kind of concept was first introduced for the domination number by Velammal in his Ph.D. thesis [18]. The total domination subdivision number was considered by Haynes et al. in [8] and since then has been studied by several authors (see for example $[3,4,5,6,7,9,10,13,16]$). Since the total domination number of the graph K_{2} does not change when its unique edge is subdivided, in the study of total domination subdivision number we must assume that the graph has maximum degree at least two.

In some classes of graphs, $\operatorname{sd}_{\gamma_{t}}(G)$ is bounded above by a constant c. For instance, $c=3$ for cycles, trees and 2-trees or maximal outerplanar graphs, $c=4$ for $r \times s$-grids, $c=2 k-1$ for k-regular graphs [8]. But this is not always the case and it is known that the parameter $\operatorname{sd}_{\gamma_{t}}$ can take arbitrarily large values [9]. An interesting problem is to find good bounds on $\operatorname{sd}_{\gamma_{t}}(G)$ in terms of other parameters of G. For instance it has been proved that for any graph G of order $n, \operatorname{sd}_{\gamma_{t}}(G) \leq n-\gamma_{t}(G)+1[6], \operatorname{sd}_{\gamma_{t}}(G) \leq\lfloor 2 n / 3\rfloor[7], \operatorname{sd}_{\gamma_{t}}(G) \leq n-\delta+2$ [13] and $\operatorname{sd}_{\gamma_{t}}(G) \leq 2 \alpha^{\prime}(G)$ when $\delta(G) \geq 2[16]$. The first bound is only sharp for $P_{3}, C_{3}, K_{4}, P_{6}, C_{6}$, the second bound is sharp only for $P_{3}, C_{3}, K_{1,3}, K_{1,3}+e, K_{4}-e, K_{5}$ or $K_{2}^{c} \vee K_{3}$ where \vee denotes the join operation, the third bound is only sharp for $K_{n}(n \geq 4)$ and the last bound is sharp for C_{3}.

As mentioned in Conjectures 1 and 2 at the end of the paper, we think that every connected graph G of order $n \geq 3$ satisfies $\operatorname{sd}_{\gamma_{t}}(G) \leq \gamma_{t}(G)+1$ and $\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1$. These inequalities are true when $\gamma_{t}(G) \leq \alpha^{\prime}(G)$ by Theorem B below. Hence we are interested in proving them when $\gamma_{t}(G)>\alpha^{\prime}(G)$. In Section 2, we show that $\operatorname{sd}_{\gamma_{t}}(G) \leq$ $\alpha^{\prime}(G)+1$ if G belongs to some particular classes of graphs, in particular if G is in the class \mathcal{C} of graphs such that no vertex belongs to three induced C_{4} nor to two induced C_{4} and one induced C_{6}. Theorem 2 can be compared to the main result of [5] which says that $\operatorname{sd}_{\gamma_{t}}(G) \leq \gamma_{t}(G)+1$ if G belongs to the larger class \mathcal{C}^{\prime} of graphs such that no vertex belongs to four induced C_{4}. None of the two results implies the other one when $\gamma_{t}(G)>\alpha^{\prime}(G)$.

We will use the following results on $\alpha^{\prime}(G), \gamma_{t}(G)$ and $\operatorname{sd}_{\gamma_{t}}(G)$.
Theorem A. [3] Let G be a simple connected graph. If $v \in V(G)$ is a support vertex contained in a triangle, then $\operatorname{sd}_{\gamma_{t}}(G) \leq 2$.

Theorem B. [4] For any connected graph G with order $n \geq 3$ and $\gamma_{t}(G) \leq \alpha^{\prime}(G)$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \gamma_{t}(G)+1
$$

Theorem C. [4] If G is a connected graph such that $\delta(G) \geq 3, \gamma_{t}(G)=\delta(G)+1$ and G contains a vertex v with $d(v)=\delta(G)$ and $e c c(v)=2$, then $\gamma_{t}(G) \leq \alpha^{\prime}(G)$.

Theorem D. [8] For any graph G having a vertex of degree two which is contained in a triangle, $1 \leq \operatorname{sd}_{\gamma_{t}}(G) \leq 3$.

Theorem E. [9] For any connected graph G with adjacent vertices u and v, each of degree at least two,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq d(u)+d(v)-|N(u) \cap N(v)|-1=|N(u) \cup N(v)|-1
$$

Theorem F. [3] Let G be a connected graph of minimum degree at least 2. Then $\operatorname{sd}_{\gamma_{t}}(G) \leq$ $\delta_{2}(G)+3$.

Theorem G. [12] For any claw-free graph G with $\delta(G) \geq 3, \gamma_{t}(G) \leq \alpha^{\prime}(G)$.
Theorem H. [12] For every k-regular graph G with $k \geq 3, \gamma_{t}(G) \leq \alpha^{\prime}(G)$.
Theorem I. [16] For any connected graph G of order $n \geq 3$ with $\alpha^{\prime}(G)=1$ or $2, \operatorname{sd}_{\gamma_{t}}(G) \leq$ $\alpha^{\prime}(G)+1$.

In the proof of Theorem 2 below, we use the concept of barrier. If S is a separator of a connected graph $G, o(G-S)$ denotes the number of odd components of $G-S$, i.e., components of odd order. Tutte's Theorem says that a connected graph admits a matching covering all its vertices if and only if $o(G-S) \leq|S|$ for every $S \subseteq V(G)$. A barrier of G is a separator S such that $o(G-S)=|S|+t$ where $t=n-2 \alpha^{\prime}(G)$ is the number of vertices of G which are not covered by a maximum matching. By Berge's Formula, every connected graph admits barriers. Moreover (see for example exercise 3.3.18 in [15]) if S is an inclusion-wise maximal barrier, then $G-S$ admits $|S|+t$ components G_{i} which are all factor-critical (hence odd), and every maximum matching of G is formed by a matching pairing S with $|S|$ different components of $G-S$ and a near perfect matching in each component. Therefore, with the notation $|S|+t=\ell$ and $\left|V\left(G_{i}\right)\right|=n_{i}$,

$$
\begin{equation*}
\alpha^{\prime}(G)=|S|+\sum_{i=1}^{\ell} \frac{n_{i}-1}{2} \tag{1}
\end{equation*}
$$

The reader can find more details on factor-critical graphs, Berge's Formula and barriers in Sections 3.1 and 3.3 of [15].

2 Main results

In this section, we determine some classes of graphs such that $\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1$. The first two corollaries are immediate consequences of Theorems B and H .
Corollary A. 1 For any connected graph G with order $n \geq 3$ and $\gamma_{t}(G) \leq \alpha^{\prime}(G)$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1
$$

The bound is sharp for K_{4} and K_{5}.
Corollary G. 1 For every k-regular graph G with $k \geq 3$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1
$$

The bound is sharp for K_{4} and K_{5}.
The beginning of the proof of the following theorem is nearly the same as the proof of Theorem 2 in [4] where it is shown that $n \geq 3$ and $\delta=1$ imply $\operatorname{sd}_{\gamma_{t}}(G) \leq \gamma_{t}(G)$.

Theorem 1. Every connected graph G of order $n \geq 3$ with $\delta=1$ satisfies

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1
$$

This bound is sharp.
Proof. Let $v \in V$ be a vertex of degree one, $u v \in E(G)$ and $N(u) \backslash\{v\}=\left\{u_{1}, \ldots, u_{k}\right\}$. If $u_{i} u_{j} \in E(G)$ for some i and j, then u is a support vertex contained in a triangle and $\operatorname{sd}_{\gamma_{t}}(G) \leq 2$ by Theorem A. Now let $N(u) \backslash\{v\}$ be an independent set. If $N\left(u_{i}\right) \backslash\{u\}=$ \emptyset for every $1 \leq i \leq k$, then G is a star, $\operatorname{sd}_{\gamma_{t}}(G)=2$ and the result follows. Assume $N\left(u_{1}\right) \backslash\{u\}=\left\{w_{1}, \ldots, w_{r}\right\}$. We claim that subdividing the edges $u v, u u_{1}$ and $u_{1} w_{i}$ for $1 \leq i \leq r$ increases $\gamma_{t}(G)$. Let G^{\prime} be obtained from G by subdividing the edge $u v$ with a vertex x_{1}, the edge $u u_{1}$ with a vertex x_{2}, and the edge $u_{1} w_{i}$ with a vertex z_{i} for $1 \leq i \leq r$. Let Z be the set of the $r+2$ subdividing vertices and let D be a $\gamma_{t}\left(G^{\prime}\right)$-set. Without loss of generality we may assume $u, x_{1} \in D$. If $u_{1} \in D$, then obviously $D \backslash Z$ is a TDS of G smaller than D. Let $u_{1} \notin D$. In order to dominate u_{1}, we must have $D \cap\left(Z \backslash\left\{x_{1}\right\}\right) \neq \emptyset$. Then $(D \backslash Z) \cup\left\{u_{1}\right\}$ is a TDS of G smaller than D and this proves the claim. Let T be a smallest set of edges of $\left\{u_{1} w_{i} \mid 1 \leq i \leq r\right\}$ such that subdividing the edges $u v, u u_{1}$ and $u_{1} w$ for each $u_{1} w \in T$ increases the total domination number of G. Without loss of generality, we assume $T=\left\{u_{1} w_{i} \mid 1 \leq i \leq s\right\}$. By the definition of T, $\operatorname{sd}_{\gamma_{t}}(G) \leq s+2$. We may assume $s \geq 2$ for otherwise $\operatorname{sd}_{\gamma_{t}}(G) \leq 3 \leq \alpha^{\prime}(G)+1$. Let G_{1} be the graph obtained from G by subdividing the edge $u v$ with vertex x, the edge $u u_{1}$ with vertex y and the edge $u_{1} w_{i}$ with vertex z_{i} for $i=1, \ldots, s-1$. By the definition of $T, \gamma_{t}\left(G_{1}\right)=\gamma_{t}(G)$. Let S be a $\gamma_{t}\left(G_{1}\right)$-set. We may assume $u, x \in S$. Since $\gamma_{t}\left(G_{1}\right)=\gamma_{t}(G)$, we have $u_{1} \notin S$ and $y \notin S$ for otherwise $\left(S \backslash\left\{x, y, z_{1}, \ldots, z_{s-1}\right\}\right) \cup\left\{u_{1}\right\}$ is a total dominating set of order at most $|S|-1$ of G. If $S \cap\left\{z_{1}, \ldots, z_{s-1}\right\} \neq \emptyset$, then $\left(S \backslash\left\{z_{1}, \ldots, z_{s-1}, x\right\}\right) \cup\left\{u_{1}\right\}$ is a total dominating set of G of order at most $|S|-1$, a contradiction. Suppose that $S \cap\left\{z_{1}, \ldots, z_{s-1}\right\}=\emptyset$. Thus $w_{i} \in S$ for $1 \leq i \leq s-1$ to dominate z_{i} and $S \cap\left\{w_{s}, \ldots, w_{r}\right\} \neq \emptyset$ to dominate u_{1}. Without loss of generality, $w_{s} \in S$. The set $S^{\prime}=(S \backslash\{x\}) \cup\left\{u_{1}\right\}$ is a $\gamma_{t}(G)$-set and for $1 \leq i \leq s$, the vertex w_{i}, which is not isolated in S^{\prime}, admits an external S^{\prime}-private neighbor t_{i}. Now $M=\left\{u v, w_{i} t_{i} \mid 1 \leq i \leq s\right\}$ is a matching of G. Hence $\alpha^{\prime} \geq s+1$ and $\operatorname{sd}_{\gamma_{t}}(G) \leq s+2 \leq \alpha^{\prime}(G)+1$. Stars show that the bound is attained.

By Theorems 1, E, F, I and Corollary A.1, the inequality $\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1$ is satisfied if $\delta(G)=1$, or if $\alpha^{\prime}(G) \leq 2$, or if $\gamma_{t}(G) \leq \alpha^{\prime}(G)$, or if $|N(u) \cup N(v)| \leq \alpha^{\prime}(G)+2$ for some edge $u v$ of G joining two vertices of degree at least 2 , or if $\delta(G) \geq 2$ and $\delta_{2}(G) \leq \alpha^{\prime}(G)-2$. Hence we assume from now that $\delta(G) \geq 2$ and

$$
\begin{gather*}
3 \leq \alpha^{\prime}(G) \leq \gamma_{t}(G)-1 \tag{2}\\
|N(u) \cup N(v)| \geq \alpha^{\prime}(G)+3 \text { for each edge } u v \text { of } G, \tag{3}\\
\delta_{2}(G) \geq \alpha^{\prime}(G)-1 . \tag{4}
\end{gather*}
$$

Theorem 2. Every connected graph G of order $n \geq 3$ such that no vertex belongs to three induced C_{4} nor to two induced C_{4} and one induced C_{6} satisfies

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1
$$

This bound is sharp.

Proof. Let S be a maximal barrier of G and $G_{1}, G_{2}, \cdots, G_{\ell}$ the components of $G-S$ with $\left|V\left(G_{i}\right)\right|=n_{i}$ and $n_{1} \geq n_{2} \geq \cdots \geq n_{\ell}$. Let S_{1} be the set of the isolated vertices of $G[S]$.
Case $1 G_{1}$ and G_{2} are not trivial. Then by (1), $\alpha^{\prime} \geq|S|+\frac{n_{1}-1}{2}+\frac{n_{2}-1}{2}$. Let $u v$ be an edge of G_{2}. Then

$$
|N(u) \cup N(v)| \leq n_{2}+|S| \leq \frac{n_{1}+n_{2}}{2}+|S| \leq \alpha^{\prime}+1,
$$

contrary to (3). Therefore Case 1 is impossible.
Case 2 All the components G_{i} are trivial. Then $\alpha^{\prime}=|S|$.
Let $V\left(G_{i}\right)=\left\{y_{i}\right\}$ for $1 \leq i \leq \ell$ and $Y=\left\{y_{1}, \cdots, y_{\ell}\right\}$. If $S_{1}=\emptyset$, then S is a total dominating set of order α^{\prime} of G. If $S_{1}=\{x\}$, let w be a neighbor of x. Since $\delta \geq 2$, every vertex of Y has a neighbor in $S \backslash\{x\}$. Thus $(S \backslash\{x\}) \cup\{w\}$ is a total dominating set of order α^{\prime} of G. If $S_{1}=\{x, z\}$, then every vertex of $N(x) \backslash N(z)$ and of $N(z) \backslash N(x)$ has a neighbor in $S \backslash S_{1}$. If $y \in N(x) \cap N(z)$, then $(S \backslash\{z\}) \cup\{y\}$ is a total dominating set of order α^{\prime} of G. If $N(x) \cap N(z)=\emptyset$, then $(S \backslash\{x, z\}) \cup\left\{x^{\prime}, z^{\prime}\right\}$, where $x^{\prime} \in N(x)$ and $z^{\prime} \in N(z)$ is a total dominating set of order α^{\prime} of G. All cases contradict (2). Therefore $\left|S_{1}\right| \geq 3$.

Let $x \in S_{1}, N(x)=\left\{w_{1}, w_{2}, \cdots, w_{r}\right\} \subseteq Y$ with $d\left(w_{i_{0}}\right) \leq d\left(w_{i}\right)$ for $1 \leq i \leq r$, and $W_{i}=N\left(w_{i}\right) \backslash\{x\}$. Note that $w_{i_{0}}$ is a vertex of $N(x)$ with least degree. Since x is contained in at most two induced $C_{4}, W_{i} \cap W_{j} \cap W_{k}=\emptyset$ for each triple i, j, k and $\left|W_{i} \cap W_{j}\right| \leq 1$ for each pair i, j. Moreover $\left|W_{i} \cap W_{j}\right|=1$ for at most two pairs of indices. Hence $\sum_{1 \leq i<j \leq r}\left|W_{i} \cap W_{j}\right| \leq 2$. Therefore, by the inclusion-exclusion principle and since $\left|W_{i_{0}}\right| \geq \delta-1 \geq 1$, we have

$$
\begin{equation*}
r \leq r\left|W_{i_{0}}\right| \leq \sum_{i=1}^{r}\left|W_{i}\right|=\left|\bigcup_{1 \leq i \leq r} W_{i}\right|+\sum_{1 \leq i<j \leq r}\left|W_{i} \cap W_{j}\right| \leq|S|+1 \tag{5}
\end{equation*}
$$

Hence $|S| \geq r-1$ and

$$
\left|W_{i_{0}}\right| \leq\left\lfloor\frac{|S|+1}{r}\right\rfloor .
$$

(i) If $|S| \geq r+1$ then, since $r=d(x) \geq 2$,

$$
\left|N(x) \cup N\left(w_{i_{0}}\right)\right|=d(x)+d\left(w_{i_{0}}\right)=r+\left|W_{i_{0}}\right|+1 \leq r+\frac{|S|+1}{r}+1 \leq|S|+2=\alpha^{\prime}+2
$$

contrary to (3).
(ii) If $|S|=r$ then $\left\lfloor\frac{\lfloor S \mid+1}{r}\right\rfloor=1$ and $d(x)+d\left(w_{i_{0}}\right)=r+\left|W_{i_{0}}\right|+1=r+2=\alpha^{\prime}+2$ contrary to (3).
(iii) If $|S|=r-1$, then all inequalities in (5) become equalities and $\left|W_{i}\right|=1$ for all i. Let y, z be two other vertices of S_{1}. By (4), every vertex of S_{1} is at distance two from each other vertex of S and the three vertices x, y, z are mutually at distance two. Therefore there exist three internally disjoint paths of length two, say $x a y, y b z, z c x$, joining them. Hence x belongs to the induced C_{6} xaybzcx. Equalities in (5) also imply that either $\left|W_{i} \cap W_{j}\right|=1$ for two pairs of indices or $\left|W_{i} \cap W_{j}\right|=2$ for one pair. Therefore x also belongs to two induced C_{4}, which contradicts the hypothesis. Whence Case 2 is impossible.
Case $3 G_{1}$ is the unique non-trivial component of $G-S$. Then $\alpha^{\prime}=|S|+\frac{n_{1}-1}{2}$. The proof of Case 3 is quite similar to the proof of Theorem 1 in [5]. We repeat the main arguments for the sake of self-containedness. Let $V\left(G_{i}\right)=\left\{y_{i}\right\}$ for $2 \leq i \leq \ell$ and
$Y=\left\{y_{2}, \cdots, y_{\ell}\right\}$. The component G_{1} has order at least 5 for otherwise $n_{1}=3$ and each edge $u v$ of G_{1} satisfies

$$
|N(u) \cup N(v)| \leq|S|+n_{1}=|S|+\frac{n_{1}-1}{2}+2=\alpha^{\prime}+2
$$

contrary to (3). It is proved in [5] that G_{1} admits a total dominating set X of order $\frac{n_{1}-1}{2}$ (Claim in the proof of Theorem 1). If some isolated vertex x of $G[S]$ has no neighbor in G_{1}, then $\delta_{2}(G) \leq|S|-1<\alpha^{\prime}-1$ contrary to (4). Hence every vertex of S_{1} has a neighbor in G_{1}.

If $S_{1}=\emptyset$ or if every vertex of S_{1} has a neighbor in X, then $S \cup X$ is a total dominating set of G and thus $\gamma_{t}(G) \leq|S|+|X|=\alpha^{\prime}(G)$, contrary to (2). Hence the set S_{2} of the isolated vertices of $G[S]$ with no neighbor in X is not empty.

If $N\left(y_{i}\right) \nsubseteq S_{2}$ for each i with $2 \leq i \leq \ell$, we associate to each vertex x of S_{2} one of its neighbors $f(x)$ in $V\left(G_{1}\right) \backslash X$ (recall that each vertex of S_{1} has at least one neighbor in G_{1}) and we let $S_{2}^{\prime}=\left\{f(x) \mid x \in S_{2}\right\}$. Clearly $\left|S_{2}^{\prime}\right| \leq\left|S_{2}\right|, S_{2}^{\prime}$ dominates S_{2}, and $X \cup S_{2}^{\prime}$ is a total dominating set of $V\left(G_{1}\right) \cup S_{1}$. Therefore $\left(S \backslash S_{2}\right) \cup X \cup S_{2}^{\prime}$ is a total dominating set of G and $\gamma_{t}(G) \leq|S|+|X|=\alpha^{\prime}(G)$, contrary to (2).

Hence some vertex y_{i} of Y, say y_{2}, has all its neighbors in S_{2} and $\left|S_{2}\right| \geq 2$ since $\delta(G) \geq 2$. If $u v$ is an edge of $G_{1}[X]$, then $N(u)$ and $N(v)$ are contained in $V\left(G_{1}\right) \cup\left(S \backslash S_{2}\right)$. By (3) we have

$$
|S|+\frac{n_{1}-1}{2}=\alpha^{\prime} \leq|N(u) \cup N(v)|-3 \leq n_{1}+|S|-\left|S_{2}\right|-3 \leq n_{1}+|S|-5
$$

Therefore $n_{1} \geq 9$.
Let z_{1} and z_{2} be two neighbors of y_{2} with $d_{G_{1}}\left(z_{1}\right) \leq d_{G_{1}}\left(z_{2}\right)$. The neighborhoods $N_{G_{1}}\left(z_{1}\right)$ and $N_{G_{1}}\left(z_{2}\right)$ are contained in $V\left(G_{1}\right) \backslash X$. Each vertex of $N_{G_{1}}\left(z_{1}\right) \cap N_{G_{1}}\left(z_{2}\right)$ induces with y_{2}, z_{1}, z_{2} an induced cycle C_{4}. Therefore $\left|N_{G_{1}}\left(z_{1}\right) \cap N_{G_{1}}\left(z_{2}\right)\right| \leq 2$. Then

$$
\begin{equation*}
\left|N_{G_{1}}\left(z_{1}\right)\right| \leq\left\lfloor\frac{\left|N_{G_{1}}\left(z_{1}\right)\right|+\left|N_{G_{1}}\left(z_{2}\right)\right|}{2}\right\rfloor \leq\left\lfloor\frac{1}{2}\left(\frac{n_{1}+1}{2}+2\right)\right\rfloor=\left\lfloor\frac{n_{1}+5}{4}\right\rfloor . \tag{6}
\end{equation*}
$$

Let $A=N_{Y}\left(z_{1}\right) \backslash\left\{y_{2}\right\}$ and $B=N\left(y_{2}\right) \backslash\left\{z_{1}\right\}\left(\subseteq S_{2}\right)$. For each $a \in A$, let a^{\prime} be one of its neighbors in $S \backslash\left\{z_{1}\right\}\left(a^{\prime}\right.$ exists since $\left.\delta(G) \geq 2\right)$ and let $A^{\prime}=\left\{a^{\prime} \mid a \in A\right\}$. Then $\left|A^{\prime}\right| \leq|A|$ and $|A|-\left|A^{\prime}\right|$ is at most the number of pairs a_{i}, a_{j} of vertices of A such that $a_{i}^{\prime}=a_{j}^{\prime}$. Note that if $a_{i}^{\prime}=a_{j}^{\prime}$, then $\left\{a_{i}^{\prime}, a_{i}, a_{j}, z_{1}\right\}$ induces a C_{4} not containing y_{2}. Since the set $B \cup A^{\prime}$ is contained in $S \backslash\left\{z_{1}\right\},\left|B \cup A^{\prime}\right| \leq|S|-1$. Each vertex a^{\prime} of $B \cap A^{\prime}$ corresponds to at least one induced C_{4} of the form $z_{1} y_{2} a^{\prime} a z_{1}$ (possibly more if a^{\prime} is associated to several vertices of A). Since z_{1} belongs to at most two induced $C_{4},|A|-\left|A^{\prime}\right|+\left|B \cap A^{\prime}\right| \leq 2$. Therefore

$$
\begin{aligned}
\left|N_{Y}\left(z_{1}\right)\right|+\left|N\left(y_{2}\right)\right| & =|A|+1+|B|+1 \\
& =|A|-\left|A^{\prime}\right|+\left|A^{\prime}\right|+|B|+2 \\
& =|A|-\left|A^{\prime}\right|+\left|A^{\prime} \cup B\right|+\left|A^{\prime} \cap B\right|+2 \\
& \leq\left|A^{\prime} \cup B\right|+4 \\
& \leq|S|+3 .
\end{aligned}
$$

Since $N\left(z_{1}\right) \cap N\left(y_{2}\right)=\emptyset$ and n_{1} is odd ≥ 9, and by Theorem E and (6), we get

$$
\begin{aligned}
\operatorname{sd}_{\gamma_{t}}(G) & \leq\left|N\left(z_{1}\right)\right|+\left|N\left(y_{2}\right)\right|-1 \\
& \leq\left|N_{G_{1}}\left(z_{1}\right)\right|+\left|N_{Y}\left(z_{1}\right)\right|+\left|N\left(y_{2}\right)\right|-1 \\
& \leq\left\lfloor\frac{n_{1}+5}{4}\right\rfloor+(|S|+3)-1 \\
& \leq|S|+\frac{n_{1}-1}{2}+1 \\
& \leq \alpha^{\prime}(G)+1 .
\end{aligned}
$$

This completes the proof of Theorem 2. Stars show that the bound is attained.
The bound is also attained by stars in the following two corollaries.
Corollary 3. For any connected graph G of order $n \geq 3$ with no induced $C_{4}, \operatorname{sd}_{\gamma_{t}}(G) \leq$ $\alpha^{\prime}(G)+1$.

Corollary 4. For any connected chordal graph G of order $n \geq 3, \operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1$.
Theorem 5. For any connected claw-free graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1
$$

Furthermore, this bound is sharp for K_{4} and K_{5}.
Proof. Since $\delta(G) \geq 2$ and by Theorem G and Corollary A.1, we can assume $\delta=2$. Let v be a vertex of degree 2 and $N(v)=\left\{v_{1}, v_{2}\right\}$. By Theorem D and since $\alpha^{\prime} \geq 3$ by (2), we can also assume $v_{1} v_{2} \notin E(G)$. From (3) applied to the edge $v v_{i}, 1 \leq i \leq 2$, we get $d\left(v_{1}\right) \geq 4$ and $d\left(v_{2}\right) \geq 4$. Since G is claw-free, $N\left(v_{1}\right) \backslash\{v\}$ and $N\left(v_{2}\right) \backslash\{v\}$ induce cliques of order at least 3 in G. Let y_{1}, y_{2} be two vertices in $N\left(v_{1}\right) \backslash\{v\}$ and z_{1}, z_{2} two vertices in $N\left(v_{2}\right) \backslash\{v\}$ such that the two edges $y_{1} y_{2}$ and $z_{1} z_{2}$ are distinct. Let G^{\prime} be the graph obtained from G by subdividing the four edges $v v_{1}, v v_{2}, y_{1} y_{2}$ and $z_{1} z_{2}$ respectively by vertices $w_{1}, w_{2}, t_{1}, t_{2}$, and let $G^{\prime \prime}$ be obtained from G by uniquely subdividing $y_{1} y_{2}$ and $z_{1} z_{2}$. Let S be a $\gamma_{t}\left(G^{\prime}\right)$-set. To dominate t_{1}, t_{2} and v, we have $S \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset, S \cap\left\{z_{1}, z_{2}\right\} \neq \emptyset$ and $S \cap\left\{w_{1}, w_{2}\right\} \neq \emptyset$. Suppose $\left\{y_{1}, z_{1}, w_{1}\right\} \subseteq S$ (the two vertices y_{1}, z_{1} are not necessarily distinct). If $\left\{v_{1}, v_{2}\right\} \subseteq S$ then $S \backslash\left\{w_{1}, w_{2}\right\}$ is a total dominating set of $G^{\prime \prime}$ smaller than S. If $v_{k} \notin S$ for some $k \in\{1,2\}$, then $v \in S$ and $\left(S \backslash\left\{v, w_{1}, w_{2}\right\}\right) \cup\left\{v_{k}\right\}$ is a total dominating set of $G^{\prime \prime}$ smaller than S. Therefore $\gamma_{t}(G) \leq \gamma_{t}\left(G^{\prime \prime}\right)<\gamma_{t}\left(G^{\prime}\right)$ and $\operatorname{sd}_{\gamma_{t}}(G) \leq 4 \leq \alpha^{\prime}(G)+1$. The proof is complete.

Theorem 6. If G is a connected graph with a vertex v of degree δ and eccentricity 2 , then $\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1$.

Proof. Let $N(v)=\left\{v_{1}, \ldots, v_{\delta}\right\}$. The set $N[v]$ is a total dominating set of G of order $\delta+1$. Hence by $(2), 4 \leq \alpha^{\prime}(G)+1 \leq \gamma_{t}(G) \leq \delta+1$ and $\delta \geq 3$. If $\gamma_{t}(G)=\delta+1$, then the result follows from Theorem C and Corollary A.1. Therefore we can suppose

$$
\begin{equation*}
4 \leq \alpha^{\prime}(G)+1 \leq \gamma_{t}(G) \leq \delta \tag{7}
\end{equation*}
$$

Let D be a smallest subset of $N[v]$ such that D is a total dominating set of G. If possible, we choose D containing v. Let $D \backslash\{v\}=\left\{v_{1}, \ldots, v_{r}\right\}$. If v_{i} does not have a D-external private neighbor for some i, then the set $\left(D \backslash\left\{v_{i}\right\}\right) \cup\{v\}$ is a total dominating set contradicting the choice of D. Thus we may assume v_{i} has a D-external private neighbor w_{i} for each i with $1 \leq i \leq r$. The edges $v_{1} w_{1}, \ldots, v_{r} w_{r}$ form a matching M of G of size at least $|D|-1 \geq \gamma_{t}(G)-1$. Hence $\alpha^{\prime}(G) \geq \gamma_{t}(G)-1$. By $(7), \alpha^{\prime}(G)=\gamma_{t}(G)-1$, which shows that M is a maximum matching. Therefore $r=\delta$ for otherwise $M \cup\left\{v v_{\delta}\right\}$ is a matching greater than M. Let $Y=V(G) \backslash\left(D \cup\left\{w_{1}, \ldots, w_{\delta}\right\}\right)$. Since M is a maximum matching, Y is an independent set of G and there is no edge joining a vertex of Y to a vertex w_{i} for $1 \leq i \leq \delta$. Since $\operatorname{deg}\left(w_{1}\right) \geq \delta$ and since w_{1} is adjacent to only v_{1} and possibly w_{i} for $2 \leq i \leq \delta$, the vertex w_{1} dominates $\left\{w_{1}, \cdots, w_{\delta}\right\}$. On the other hand, since $\operatorname{deg}(y) \geq \delta$ for each $y \in Y$, every vertex y of Y, if any, is adjacent to every v_{i}. Hence $\left\{v, v_{1}, w_{1}\right\}$ is a total dominating set of G, which contradicts $\gamma_{t} \geq 4$.

We conclude this paper with the following conjectures.
Conjecture 1. For any connected graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \alpha^{\prime}(G)+1
$$

Conjecture 2. (Favaron et al. [4]) For any connected graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \gamma_{t}(G)+1
$$

Conjecture 3. (Favaron et al. [4]) For any connected graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \frac{n+1}{2}
$$

Conjecture 4. (Favaron et al. [4]) For any connected claw-free graph G of order $n \geq 3$,

$$
\operatorname{sd}_{\gamma_{t}}(G) \leq \frac{\gamma_{t}(G)}{2}+2
$$

It follows from Theorem B that Conjecture 1 implies Conjecture 2. Also note that for any connected graph G of odd order $n \geq 3$ we have $\alpha^{\prime}(G) \leq \frac{n-1}{2}$ and hence Conjecture 1 implies Conjecture 3 for connected graphs of odd order.

References

[1] H. Aram, S. M. Sheikholeslami and L. Volkmann, On the total $\{k\}$-domination and total $\{k\}$-domatic number of graphs, Bull. Malays. Math. Sci. Soc. (Accepted).
[2] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
[3] O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, A new upper bound for total domination subdivision numbers, Graphs Combin. 25 (2009), 41-47.
[4] O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the total domination subdivision number in some classes of graphs, J. Comb. Optim. 20 (2010), 76-84.
[5] O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, Matching and total domination subdivision number of graphs with few induced 4-cycles, Discuss. Math. Graph Theory 30 (2010), 611-618.
[6] O. Favaron, H. Karami and S.M. Sheikholeslami, Total domination and total domination subdivision numbers of graphs, Australas. J. Combin. 38 (2007), 229-235.
[7] O. Favaron, H. Karami and S.M. Sheikholeslami, Bounding the total domination subdivision number of a graph in terms of its order, J. Comb. Optim. 21 (2011), 209-218.
[8] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput. 44 (2003), 115-128.
[9] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2004), 457-467.
[10] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision numbers of trees, Discrete Math. 286 (2004), 195-202.
[11] M. A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009), 3263.
[12] M.A. Henning, L. Kang, E. Shan and A. Yeo, On matching and total domination in graphs, Discrete Math. 308 (2008), 2313-2318.
[13] H. Karami, A. Khodkar and S.M. Sheikholeslami, An upper bound for total domination subdivision numbers of graphs, Ars Combin. 102 (2011), 321-331.
[14] N. Li and X. Hou, On the total $\{k\}$-domination number of Cartesian products of graphs, J. Comb. Optim. 18 (2009), 173-178.
[15] L. Lovász and M.D. Plummer, Matching Theory, Annals of Discrete Math 29, North Holland 1986.
[16] S.M. Sheikholeslami, On the total domination subdivision numbers in graphs, Cent. Eur. J. Math. 8 (2010), 468-473.
[17] S.M. Sheikholeslami and L. Volkmann, The total $\{k\}$-domatic number of a graph, J. Comb. Optim. 23 (2012), 252-260.
[18] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).
[19] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

[^0]: *Coresponding author

