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Abstract

A set S ⊆ V of vertices in a graph G = (V,E) without isolated vertices is a total
dominating set if every vertex of V is adjacent to some vertex in S. The total domination
number γt(G) is the minimum cardinality of a total dominating set of G. The total
domination subdivision number sdγt(G) is the minimum number of edges that must be
subdivided (each edge in G can be subdivided at most once) in order to increase the
total domination number. In this paper we prove that sdγt(G) ≤ α′(G) + 1 for some
classes of graphs where α′(G) is the maximum cardinality of a matching of G.
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1 Introduction

Let G = (V,E) = (V (G), E(G)) be a simple graph of order n = |V |. The (open) neighbor-
hood of a vertex u is the set NG(u) = {v|uv ∈ E} and the closed neighborhood of u is the set
N [u] = N(u)∪{u}. The degree of u is dG(u) = |N(u)|. The minimum degree of a vertex in
V is denoted δ(G) (d(u), δ for short when no confusion on G is possible); in this paper we
assume that for all graphs considered, δ(G) ≥ 1. For a set S ⊆ V , the open neighborhood is
the set N(S) = ∪x∈SN(x) and the closed neighborhood is the set N [S] = N(S) ∪ S.

A vertex y is an S-private neighbor of a vertex x ∈ S if y ∈ N [x] \N [S \ {x}], and is an
S-external private neighbor if y ∈ N(x)\N [S \{x}]. Let d(u, v) denote the minimum length
of a path from vertex u to vertex v and let d2(u) = |{v|d(u, v) = 2}|, δ2(G) =min{d2(u)|u ∈
V (G)}. The eccentricity of a vertex u equals ecc(u) = max{d(u, v)|v ∈ V }.

A matching is a set M ⊆ E of edges no two of which have a vertex in common. The set
of vertices covered by, or contained in an edge of a matching M is denoted V (M). A perfect
matching is a matching M for which V (M) = V (G). If n is odd, a near perfect matching
leaves exactly one vertex uncovered, i.e., |V (M)| = n − 1. A graph is factor-critical if the
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deletion of any vertex leaves a graph with a perfect matching. Note that every non-trivial
factor-critical graph has odd order and minimum degree at least 2. The maximum number
of edges of a matching in G is denoted by α′(G) (α′ for short). A cycle of order n is denoted
by Cn. We use [19] for terminology and notation which are not defined here.

A set S of vertices of a graph G with minimum degree δ(G) > 0 is a total dominating
set if N(S) = V (G). The minimum cardinality of a total dominating set, denoted by γt(G)
(γt for short), is called the total domination number of G. A γt(G)-set is a total dominating
set of G of cardinality γt(G). Total domination was introduced by Cockayne, Dawes, and
Hedetniemi [2] and is now well studied in graph theory. A survey of total domination
in graphs can be found in [11]. The concept of total {k}-domination number has been
introduced by Ning Li and Xinmin Hou [14] as a generalization of total domination number
and has been studied by several authors (see for example [1, 17]).

The total domination subdivision number sdγt(G) is the minimum number of edges of G
that must be subdivided once in order to increase the total domination number. This kind
of concept was first introduced for the domination number by Velammal in his Ph.D. thesis
[18]. The total domination subdivision number was considered by Haynes et al. in [8] and
since then has been studied by several authors (see for example [3, 4, 5, 6, 7, 9, 10, 13, 16]).
Since the total domination number of the graph K2 does not change when its unique edge
is subdivided, in the study of total domination subdivision number we must assume that
the graph has maximum degree at least two.

In some classes of graphs, sdγt(G) is bounded above by a constant c. For instance, c = 3
for cycles, trees and 2-trees or maximal outerplanar graphs, c = 4 for r× s-grids, c = 2k−1
for k-regular graphs [8]. But this is not always the case and it is known that the parameter
sdγt can take arbitrarily large values [9]. An interesting problem is to find good bounds on
sdγt(G) in terms of other parameters ofG. For instance it has been proved that for any graph
G of order n, sdγt(G) ≤ n−γt(G)+1 [6], sdγt(G) ≤ b2n/3c [7], sdγt(G) ≤ n− δ+2 [13] and
sdγt(G) ≤ 2α′(G) when δ(G) ≥ 2 [16]. The first bound is only sharp for P3, C3,K4, P6, C6,
the second bound is sharp only for P3, C3,K1,3,K1,3 + e,K4 − e,K5 or Kc

2 ∨ K3 where ∨
denotes the join operation, the third bound is only sharp for Kn (n ≥ 4) and the last bound
is sharp for C3.

As mentioned in Conjectures 1 and 2 at the end of the paper, we think that every
connected graph G of order n ≥ 3 satisfies sdγt(G) ≤ γt(G) + 1 and sdγt(G) ≤ α′(G) + 1.
These inequalities are true when γt(G) ≤ α′(G) by Theorem B below. Hence we are
interested in proving them when γt(G) > α′(G). In Section 2, we show that sdγt(G) ≤
α′(G) + 1 if G belongs to some particular classes of graphs, in particular if G is in the class
C of graphs such that no vertex belongs to three induced C4 nor to two induced C4 and
one induced C6. Theorem 2 can be compared to the main result of [5] which says that
sdγt(G) ≤ γt(G)+1 if G belongs to the larger class C′ of graphs such that no vertex belongs
to four induced C4. None of the two results implies the other one when γt(G) > α′(G).

We will use the following results on α′(G), γt(G) and sdγt(G).

Theorem A. [3] Let G be a simple connected graph. If v ∈ V (G) is a support vertex
contained in a triangle, then sdγt(G) ≤ 2.

Theorem B. [4] For any connected graph G with order n ≥ 3 and γt(G) ≤ α′(G),

sdγt(G) ≤ γt(G) + 1.

Theorem C. [4] If G is a connected graph such that δ(G) ≥ 3, γt(G) = δ(G) + 1 and G
contains a vertex v with d(v) = δ(G) and ecc(v) = 2, then γt(G) ≤ α′(G).
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Theorem D. [8] For any graph G having a vertex of degree two which is contained in a
triangle, 1 ≤ sdγt(G) ≤ 3.

Theorem E. [9] For any connected graph G with adjacent vertices u and v, each of degree
at least two,

sdγt(G) ≤ d(u) + d(v)− |N(u) ∩N(v)| − 1 = |N(u) ∪N(v)| − 1.

Theorem F. [3] Let G be a connected graph of minimum degree at least 2. Then sdγt(G) ≤
δ2(G) + 3.

Theorem G. [12] For any claw-free graph G with δ(G) ≥ 3, γt(G) ≤ α′(G).

Theorem H. [12] For every k-regular graph G with k ≥ 3, γt(G) ≤ α′(G).

Theorem I. [16] For any connected graph G of order n ≥ 3 with α′(G) = 1 or 2, sdγt(G) ≤
α′(G) + 1.

In the proof of Theorem 2 below, we use the concept of barrier. If S is a separator
of a connected graph G, o(G − S) denotes the number of odd components of G − S, i.e.,
components of odd order. Tutte’s Theorem says that a connected graph admits a matching
covering all its vertices if and only if o(G − S) ≤ |S| for every S ⊆ V (G). A barrier of
G is a separator S such that o(G − S) = |S| + t where t = n − 2α′(G) is the number of
vertices of G which are not covered by a maximum matching. By Berge’s Formula, every
connected graph admits barriers. Moreover (see for example exercise 3.3.18 in [15]) if S is
an inclusion-wise maximal barrier, then G− S admits |S|+ t components Gi which are all
factor-critical (hence odd), and every maximum matching of G is formed by a matching
pairing S with |S| different components of G − S and a near perfect matching in each
component. Therefore, with the notation |S|+ t = ` and |V (Gi)| = ni,

α′(G) = |S|+
∑̀
i=1

ni − 1

2
. (1)

The reader can find more details on factor-critical graphs, Berge’s Formula and barriers in
Sections 3.1 and 3.3 of [15].

2 Main results

In this section, we determine some classes of graphs such that sdγt(G) ≤ α′(G) + 1. The
first two corollaries are immediate consequences of Theorems B and H.

Corollary A.1 For any connected graph G with order n ≥ 3 and γt(G) ≤ α′(G),

sdγt(G) ≤ α′(G) + 1.

The bound is sharp for K4 and K5.

Corollary G.1 For every k-regular graph G with k ≥ 3,

sdγt(G) ≤ α′(G) + 1.

The bound is sharp for K4 and K5.
The beginning of the proof of the following theorem is nearly the same as the proof of

Theorem 2 in [4] where it is shown that n ≥ 3 and δ = 1 imply sdγt(G) ≤ γt(G).
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Theorem 1. Every connected graph G of order n ≥ 3 with δ = 1 satisfies

sdγt(G) ≤ α′(G) + 1.

This bound is sharp.

Proof. Let v ∈ V be a vertex of degree one, uv ∈ E(G) and N(u) \ {v} = {u1, . . . , uk}.
If uiuj ∈ E(G) for some i and j, then u is a support vertex contained in a triangle and
sdγt(G) ≤ 2 by Theorem A. Now let N(u) \ {v} be an independent set. If N(ui) \ {u} =
∅ for every 1 ≤ i ≤ k, then G is a star, sdγt(G) = 2 and the result follows. Assume
N(u1) \ {u} = {w1, . . . , wr}. We claim that subdividing the edges uv, uu1 and u1wi for
1 ≤ i ≤ r increases γt(G). Let G′ be obtained from G by subdividing the edge uv with a
vertex x1, the edge uu1 with a vertex x2, and the edge u1wi with a vertex zi for 1 ≤ i ≤ r.
Let Z be the set of the r + 2 subdividing vertices and let D be a γt(G

′)-set. Without loss
of generality we may assume u, x1 ∈ D. If u1 ∈ D, then obviously D \ Z is a TDS of G
smaller than D. Let u1 6∈ D. In order to dominate u1, we must have D ∩ (Z \ {x1}) 6= ∅.
Then (D \ Z) ∪ {u1} is a TDS of G smaller than D and this proves the claim. Let T be a
smallest set of edges of {u1wi | 1 ≤ i ≤ r} such that subdividing the edges uv, uu1 and u1w
for each u1w ∈ T increases the total domination number of G. Without loss of generality,
we assume T = {u1wi | 1 ≤ i ≤ s}. By the definition of T , sdγt(G) ≤ s + 2. We may
assume s ≥ 2 for otherwise sdγt(G) ≤ 3 ≤ α′(G) + 1. Let G1 be the graph obtained from
G by subdividing the edge uv with vertex x, the edge uu1 with vertex y and the edge u1wi
with vertex zi for i = 1, . . . , s − 1. By the definition of T , γt(G1) = γt(G). Let S be a
γt(G1)-set. We may assume u, x ∈ S. Since γt(G1) = γt(G), we have u1 6∈ S and y 6∈ S for
otherwise (S \ {x, y, z1, . . . , zs−1}) ∪ {u1} is a total dominating set of order at most |S| − 1
of G. If S ∩ {z1, . . . , zs−1} 6= ∅, then (S \ {z1, . . . , zs−1, x}) ∪ {u1} is a total dominating
set of G of order at most |S| − 1, a contradiction. Suppose that S ∩ {z1, . . . , zs−1} = ∅.
Thus wi ∈ S for 1 ≤ i ≤ s − 1 to dominate zi and S ∩ {ws, ..., wr} 6= ∅ to dominate
u1. Without loss of generality, ws ∈ S. The set S′ = (S \ {x}) ∪ {u1} is a γt(G)-set and
for 1 ≤ i ≤ s, the vertex wi, which is not isolated in S′, admits an external S′-private
neighbor ti. Now M = {uv,witi | 1 ≤ i ≤ s} is a matching of G. Hence α′ ≥ s + 1 and
sdγt(G) ≤ s+ 2 ≤ α′(G) + 1. Stars show that the bound is attained.

By Theorems 1, E, F, I and Corollary A.1, the inequality sdγt(G) ≤ α′(G)+1 is satisfied
if δ(G) = 1, or if α′(G) ≤ 2, or if γt(G) ≤ α′(G), or if |N(u) ∪N(v)| ≤ α′(G) + 2 for some
edge uv of G joining two vertices of degree at least 2, or if δ(G) ≥ 2 and δ2(G) ≤ α′(G)− 2.
Hence we assume from now that δ(G) ≥ 2 and

3 ≤ α′(G) ≤ γt(G)− 1, (2)

|N(u) ∪N(v)| ≥ α′(G) + 3 for each edge uv of G, (3)

δ2(G) ≥ α′(G)− 1. (4)

Theorem 2. Every connected graph G of order n ≥ 3 such that no vertex belongs to three
induced C4 nor to two induced C4 and one induced C6 satisfies

sdγt(G) ≤ α′(G) + 1.

This bound is sharp.
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Proof. Let S be a maximal barrier of G and G1, G2, · · · , G` the components of G− S with
|V (Gi)| = ni and n1 ≥ n2 ≥ · · · ≥ n`. Let S1 be the set of the isolated vertices of G[S].

Case 1 G1 and G2 are not trivial. Then by (1), α′ ≥ |S|+ n1 − 1

2
+
n2 − 1

2
. Let uv be an

edge of G2. Then

|N(u) ∪N(v)| ≤ n2 + |S| ≤ n1 + n2
2

+ |S| ≤ α′ + 1,

contrary to (3). Therefore Case 1 is impossible.

Case 2 All the components Gi are trivial. Then α′ = |S|.
Let V (Gi) = {yi} for 1 ≤ i ≤ ` and Y = {y1, · · · , y`}. If S1 = ∅, then S is a total

dominating set of order α′ of G. If S1 = {x}, let w be a neighbor of x. Since δ ≥ 2, every
vertex of Y has a neighbor in S \ {x}. Thus (S \ {x}) ∪ {w} is a total dominating set of
order α′ of G. If S1 = {x, z}, then every vertex of N(x) \N(z) and of N(z) \N(x) has a
neighbor in S \S1. If y ∈ N(x)∩N(z), then (S \{z})∪{y} is a total dominating set of order
α′ of G. If N(x) ∩N(z) = ∅, then (S \ {x, z}) ∪ {x′, z′}, where x′ ∈ N(x) and z′ ∈ N(z) is
a total dominating set of order α′ of G. All cases contradict (2). Therefore |S1| ≥ 3.

Let x ∈ S1, N(x) = {w1, w2, · · · , wr} ⊆ Y with d(wi0) ≤ d(wi) for 1 ≤ i ≤ r, and
Wi = N(wi)\{x}. Note that wi0 is a vertex of N(x) with least degree. Since x is contained in
at most two induced C4, Wi∩Wj∩Wk = ∅ for each triple i, j, k and |Wi∩Wj | ≤ 1 for each pair
i, j. Moreover |Wi∩Wj | = 1 for at most two pairs of indices. Hence

∑
1≤i<j≤r |Wi∩Wj | ≤ 2.

Therefore, by the inclusion-exclusion principle and since |Wi0 | ≥ δ − 1 ≥ 1, we have

r ≤ r|Wi0 | ≤
r∑
i=1

|Wi| = |
⋃

1≤i≤r
Wi|+

∑
1≤i<j≤r

|Wi ∩Wj | ≤ |S|+ 1. (5)

Hence |S| ≥ r − 1 and

|Wi0 | ≤ b
|S|+ 1

r
c.

(i) If |S| ≥ r + 1 then, since r = d(x) ≥ 2,

|N(x) ∪N(wi0)| = d(x) + d(wi0) = r + |Wi0 |+ 1 ≤ r +
|S|+ 1

r
+ 1 ≤ |S|+ 2 = α′ + 2

contrary to (3).

(ii) If |S| = r then b |S|+ 1

r
c = 1 and d(x) +d(wi0) = r+ |Wi0 |+ 1 = r+ 2 = α′+ 2 contrary

to (3).

(iii) If |S| = r − 1, then all inequalities in (5) become equalities and |Wi| = 1 for all i. Let
y, z be two other vertices of S1. By (4), every vertex of S1 is at distance two from each
other vertex of S and the three vertices x, y, z are mutually at distance two. Therefore there
exist three internally disjoint paths of length two, say xay, ybz, zcx, joining them. Hence x
belongs to the induced C6 xaybzcx. Equalities in (5) also imply that either |Wi ∩Wj | = 1
for two pairs of indices or |Wi ∩ Wj | = 2 for one pair. Therefore x also belongs to two
induced C4, which contradicts the hypothesis. Whence Case 2 is impossible.

Case 3 G1 is the unique non-trivial component of G− S. Then α′ = |S|+ n1−1
2 .

The proof of Case 3 is quite similar to the proof of Theorem 1 in [5]. We repeat the
main arguments for the sake of self-containedness. Let V (Gi) = {yi} for 2 ≤ i ≤ ` and
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Y = {y2, · · · , y`}. The component G1 has order at least 5 for otherwise n1 = 3 and each
edge uv of G1 satisfies

|N(u) ∪N(v)| ≤ |S|+ n1 = |S|+ n1 − 1

2
+ 2 = α′ + 2

contrary to (3). It is proved in [5] that G1 admits a total dominating set X of order n1−1
2

(Claim in the proof of Theorem 1). If some isolated vertex x of G[S] has no neighbor in
G1, then δ2(G) ≤ |S| − 1 < α′ − 1 contrary to (4). Hence every vertex of S1 has a neighbor
in G1.

If S1 = ∅ or if every vertex of S1 has a neighbor in X, then S ∪X is a total dominating
set of G and thus γt(G) ≤ |S| + |X| = α′(G), contrary to (2). Hence the set S2 of the
isolated vertices of G[S] with no neighbor in X is not empty.

If N(yi) * S2 for each i with 2 ≤ i ≤ `, we associate to each vertex x of S2 one of its
neighbors f(x) in V (G1) \X (recall that each vertex of S1 has at least one neighbor in G1)
and we let S′2 = {f(x) | x ∈ S2}. Clearly |S′2| ≤ |S2|, S′2 dominates S2, and X ∪ S′2 is a
total dominating set of V (G1) ∪ S1. Therefore (S \ S2) ∪X ∪ S′2 is a total dominating set
of G and γt(G) ≤ |S|+ |X| = α′(G), contrary to (2).

Hence some vertex yi of Y , say y2, has all its neighbors in S2 and |S2| ≥ 2 since δ(G) ≥ 2.
If uv is an edge of G1[X], then N(u) and N(v) are contained in V (G1) ∪ (S \ S2). By (3)
we have

|S|+ n1 − 1

2
= α′ ≤ |N(u) ∪N(v)| − 3 ≤ n1 + |S| − |S2| − 3 ≤ n1 + |S| − 5.

Therefore n1 ≥ 9.
Let z1 and z2 be two neighbors of y2 with dG1(z1) ≤ dG1(z2). The neighborhoods NG1(z1)

and NG1(z2) are contained in V (G1) \X. Each vertex of NG1(z1) ∩NG1(z2) induces with
y2, z1, z2 an induced cycle C4. Therefore |NG1(z1) ∩NG1(z2)| ≤ 2. Then

|NG1(z1)| ≤ b
|NG1(z1)|+ |NG1(z2)|

2
c ≤ b1

2
(
n1 + 1

2
+ 2)c = bn1 + 5

4
c. (6)

Let A = NY (z1) \ {y2} and B = N(y2) \ {z1} (⊆ S2). For each a ∈ A, let a′ be one of its
neighbors in S \ {z1} (a′ exists since δ(G) ≥ 2) and let A′ = {a′ | a ∈ A}. Then |A′| ≤ |A|
and |A| − |A′| is at most the number of pairs ai, aj of vertices of A such that a′i = a′j . Note
that if a′i = a′j , then {a′i, ai, aj , z1} induces a C4 not containing y2. Since the set B ∪ A′ is
contained in S \ {z1}, |B ∪ A′| ≤ |S| − 1. Each vertex a′ of B ∩ A′ corresponds to at least
one induced C4 of the form z1y2a

′az1 (possibly more if a′ is associated to several vertices of
A). Since z1 belongs to at most two induced C4, |A| − |A′|+ |B ∩A′| ≤ 2. Therefore

|NY (z1)|+ |N(y2)| = |A|+ 1 + |B|+ 1
= |A| − |A′|+ |A′|+ |B|+ 2
= |A| − |A′|+ |A′ ∪B|+ |A′ ∩B|+ 2
≤ |A′ ∪B|+ 4
≤ |S|+ 3.

Since N(z1) ∩N(y2) = ∅ and n1 is odd ≥ 9, and by Theorem E and (6), we get

sdγt(G) ≤ |N(z1)|+ |N(y2)| − 1
≤ |NG1(z1)|+ |NY (z1)|+ |N(y2)| − 1

≤ bn1+5
4 c+ (|S|+ 3)− 1

≤ |S|+ n1−1
2 + 1

≤ α′(G) + 1.
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This completes the proof of Theorem 2. Stars show that the bound is attained.

The bound is also attained by stars in the following two corollaries.

Corollary 3. For any connected graph G of order n ≥ 3 with no induced C4, sdγt(G) ≤
α′(G) + 1.

Corollary 4. For any connected chordal graph G of order n ≥ 3, sdγt(G) ≤ α′(G) + 1.

Theorem 5. For any connected claw-free graph G of order n ≥ 3,

sdγt(G) ≤ α′(G) + 1.

Furthermore, this bound is sharp for K4 and K5.

Proof. Since δ(G) ≥ 2 and by Theorem G and Corollary A.1, we can assume δ = 2. Let
v be a vertex of degree 2 and N(v) = {v1, v2}. By Theorem D and since α′ ≥ 3 by
(2), we can also assume v1v2 /∈ E(G). From (3) applied to the edge vvi, 1 ≤ i ≤ 2, we
get d(v1) ≥ 4 and d(v2) ≥ 4. Since G is claw-free, N(v1) \ {v} and N(v2) \ {v} induce
cliques of order at least 3 in G. Let y1, y2 be two vertices in N(v1) \ {v} and z1, z2 two
vertices in N(v2) \ {v} such that the two edges y1y2 and z1z2 are distinct. Let G′ be the
graph obtained from G by subdividing the four edges vv1, vv2, y1y2 and z1z2 respectively by
vertices w1, w2, t1, t2, and let G′′ be obtained from G by uniquely subdividing y1y2 and z1z2.
Let S be a γt(G

′)-set. To dominate t1, t2 and v, we have S ∩ {y1, y2} 6= ∅, S ∩ {z1, z2} 6= ∅
and S ∩ {w1, w2} 6= ∅. Suppose {y1, z1, w1} ⊆ S (the two vertices y1, z1 are not necessarily
distinct). If {v1, v2} ⊆ S then S \ {w1, w2} is a total dominating set of G′′ smaller than S.
If vk 6∈ S for some k ∈ {1, 2}, then v ∈ S and (S \ {v, w1, w2}) ∪ {vk} is a total dominating
set of G′′ smaller than S. Therefore γt(G) ≤ γt(G′′) < γt(G

′) and sdγt(G) ≤ 4 ≤ α′(G) + 1.
The proof is complete.

Theorem 6. If G is a connected graph with a vertex v of degree δ and eccentricity 2, then
sdγt(G) ≤ α′(G) + 1.

Proof. Let N(v) = {v1, . . . , vδ}. The set N [v] is a total dominating set of G of order δ + 1.
Hence by (2), 4 ≤ α′(G) + 1 ≤ γt(G) ≤ δ + 1 and δ ≥ 3. If γt(G) = δ + 1, then the result
follows from Theorem C and Corollary A.1. Therefore we can suppose

4 ≤ α′(G) + 1 ≤ γt(G) ≤ δ. (7)

Let D be a smallest subset of N [v] such that D is a total dominating set of G. If possible, we
choose D containing v. Let D \ {v} = {v1, . . . , vr}. If vi does not have a D-external private
neighbor for some i, then the set (D \ {vi}) ∪ {v} is a total dominating set contradicting
the choice of D. Thus we may assume vi has a D-external private neighbor wi for each
i with 1 ≤ i ≤ r. The edges v1w1, . . . , vrwr form a matching M of G of size at least
|D|−1 ≥ γt(G)−1. Hence α′(G) ≥ γt(G)−1. By (7), α′(G) = γt(G)−1, which shows that
M is a maximum matching. Therefore r = δ for otherwise M ∪{vvδ} is a matching greater
than M . Let Y = V (G) \ (D ∪ {w1, . . . , wδ}). Since M is a maximum matching, Y is an
independent set of G and there is no edge joining a vertex of Y to a vertex wi for 1 ≤ i ≤ δ.
Since deg(w1) ≥ δ and since w1 is adjacent to only v1 and possibly wi for 2 ≤ i ≤ δ, the
vertex w1 dominates {w1, · · · , wδ}. On the other hand, since deg(y) ≥ δ for each y ∈ Y ,
every vertex y of Y , if any, is adjacent to every vi. Hence {v, v1, w1} is a total dominating
set of G, which contradicts γt ≥ 4.
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We conclude this paper with the following conjectures.

Conjecture 1. For any connected graph G of order n ≥ 3,

sdγt(G) ≤ α′(G) + 1.

Conjecture 2. (Favaron et al. [4]) For any connected graph G of order n ≥ 3,

sdγt(G) ≤ γt(G) + 1.

Conjecture 3. (Favaron et al. [4]) For any connected graph G of order n ≥ 3,

sdγt(G) ≤ n+ 1

2
.

Conjecture 4. (Favaron et al. [4]) For any connected claw-free graph G of order n ≥ 3,

sdγt(G) ≤ γt(G)

2
+ 2.

It follows from Theorem B that Conjecture 1 implies Conjecture 2. Also note that for
any connected graph G of odd order n ≥ 3 we have α′(G) ≤ n−1

2 and hence Conjecture 1
implies Conjecture 3 for connected graphs of odd order.
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