ON THE TOTAL GRAPH OF A COMMUTATIVE RING WITHOUT THE ZERO ELEMENT

DAVID F. ANDERSON
Department of Mathematics
University of Tennessee
Knoxville, TN 37996-1320, USA
anderson@math.utk.edu
AYMAN BADAWI
Department of Mathematics and Statistics
American University of Sharjah
P. O. Box 26666, Sharjah, United Arab Emirates
abadawi@aus.edu

Received 21 April 2011
Accepted 19 September 2011
Published 30 July 2012
Communicated by S. R. Lopez-Permouth

Abstract

Let R be a commutative ring with nonzero identity, and let $Z(R)$ be its set of zerodivisors. The total graph of R is the (undirected) graph $T(\Gamma(R))$ with vertices all elements of R, and two distinct vertices x and y are adjacent if and only if $x+y \in Z(R)$. In this paper, we study the two (induced) subgraphs $Z_{0}(\Gamma(R))$ and $T_{0}(\Gamma(R))$ of $T(\Gamma(R))$, with vertices $Z(R) \backslash\{0\}$ and $R \backslash\{0\}$, respectively. We determine when $Z_{0}(\Gamma(R))$ and $T_{0}(\Gamma(R))$ are connected and compute their diameter and girth. We also investigate zerodivisor paths and regular paths in $T_{0}(\Gamma(R))$.

Keywords: Total graph; zero-divisor graph; total graph without zero.
Mathematics Subject Classification: 13A15, 05C99

1. Introduction

Let R be a commutative ring with nonzero identity, and let $Z(R)$ be its set of zerodivisors. In [5], we defined the total graph of R to be the (undirected) graph $T(\Gamma(R))$ with all elements of R as vertices, and two distinct vertices x and y are adjacent if and only if $x+y \in Z(R)$. Let $Z(\Gamma(R))$ be the (induced) subgraph of $T(\Gamma(R))$ with $Z(R)$ as its set of vertices. Then $Z(\Gamma(R))$ is connected with $\operatorname{diam}(Z(\Gamma(R))) \leq 2$ since $x-0-y$ is a path between any two vertices x and y in $Z(\Gamma(R))$. In this paper, we consider the (induced) subgraphs $Z_{0}(\Gamma(R))$ of $Z(\Gamma(R))$ and $T_{0}(\Gamma(R))$ of $T(\Gamma(R))$ obtained by deleting 0 as a vertex. Specifically, $Z_{0}(\Gamma(R))$ (respectively,
$T_{0}(\Gamma(R))$) has vertices $Z(R)^{*}=Z(R) \backslash\{0\}$ (respectively, $R^{*}=R \backslash\{0\}$), and two distinct vertices x and y are adjacent if and only if $x+y \in Z(R)$. Note that $Z_{0}(\Gamma(R))$ is a finite nonempty graph if and only if R is a finite ring that is not a field (cf. [6, Theorem 2.2]). In addition to $Z(\Gamma(R))$, the (induced) subgraphs $\operatorname{Reg}(\Gamma(R))$ and $\operatorname{Nil}(\Gamma(R))$ of $T(\Gamma(R))$, with vertices $\operatorname{Reg}(R)$ and $\operatorname{Nil}(R)$, respectively, were studied in [5]. The total graph has also been investigated in [1, 2, 14].

Recently, there has been considerable attention in the literature to associating graphs with algebraic structures (see [13]). Probably the most attention has been to the zero-divisor graph $\Gamma(R)$ for a commutative ring R. The set of vertices of $\Gamma(R)$ is $Z(R)^{*}$, and two distinct vertices x and y are adjacent if and only if $x y=0$. So, in some sense, $Z_{0}(\Gamma(R))$ is the additive analog of $\Gamma(R)$. The concept of a zerodivisor graph goes back to Beck [7], who let all elements of R be vertices and was mainly interested in colorings. Our definition was introduced by Anderson and Livingston in [6], where it was shown, among other things, that $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \in\{0,1,2,3\}$ and $\operatorname{gr}(\Gamma(R)) \in\{3,4, \infty\}$. For a recent survey article on zero-divisor graphs, see [4].

In the second section, we determine when $Z_{0}(\Gamma(R))$ is connected and show that $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \in\{0,1,2, \infty\}$. In the third section, we show that $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right) \in$ $\{3, \infty\}$ and explicitly calculate $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)$. In both cases, our answers depend on whether or not R is reduced and on the number of minimal prime ideals of R. In the fourth section, we consider the graph $T_{0}(\Gamma(R))$, show that $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=$ $\operatorname{diam}(T(\Gamma(R)))$ when $|R| \geq 4$, and determine its girth. In the final section, we define and investigate zero-divisor paths and regular paths in $T_{0}(\Gamma(R))$.

Let Γ be a graph. For vertices x and y of Γ, we define $\mathrm{d}(x, y)$ to be the length of a shortest path from x to $y(\mathrm{~d}(x, x)=0$ and $\mathrm{d}(x, y)=\infty$ if there is no path). Then the diameter of Γ is $\operatorname{diam}(\Gamma)=\sup \{d(x, y) \mid x$ and y are vertices of $\Gamma\}$. The girth of Γ, denoted by $\operatorname{gr}(\Gamma)$, is the length of a shortest cycle in $\Gamma(\operatorname{gr}(\Gamma)=\infty$ if Γ contains no cycles).

Throughout, R will be a commutative ring with nonzero identity, $Z(R)$ its set of zero-divisors, $\operatorname{Reg}(R)=R \backslash Z(R)$ its set of regular elements, $\operatorname{Idem}(R)$ its set of idempotent elements, $\operatorname{Nil}(R)$ its ideal of nilpotent elements, $U(R)$ its group of units, and total quotient ring $T(R)=R_{\operatorname{Reg}(R)}$. For any $A \subseteq R$, let $A^{*}=A \backslash\{0\}$. We say that R is reduced if $\operatorname{Nil}(R)=\{0\}$ and that R is quasilocal if R has a unique maximal ideal. Let $\operatorname{Spec}(R)$ denote the set of prime ideals of $R, \operatorname{Max}(R)$ the set of maximal ideals of R, and $\operatorname{Min}(R)$ the set of minimal prime ideals of R. Any undefined notation or terminology is standard, as in $[10,11]$, or $[8]$.

We would like to thank the referee for a careful reading of the paper and several helpful suggestions.

2. The Diameter of $Z_{0}(\Gamma(R))$

In this section, we show that $Z_{0}(\Gamma(R))$ is connected unless R is a reduced ring with exactly two minimal prime ideals. Moreover, if $Z_{0}(\Gamma(R))$ is connected, then
$\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 2$. The case for $Z(\Gamma(R))$ is much simpler since every nonzero vertex in $Z(\Gamma(R))$ is adjacent to 0 . If $Z(R)$ is an ideal of R, then $Z(\Gamma(R))$ is a complete graph [5, Theorem 2.1]; and if $Z(R)$ is not an ideal of R, then $Z(\Gamma(R))$ is connected with $\operatorname{diam}(Z(\Gamma(R)))=2$ [5, Theorem 3.1].

We begin with a lemma containing several results which we will use throughout this paper.

Lemma 2.1. Let R be a commutative ring.
(1) $Z(R)$ is a union of prime ideals of R.
(2) $P \subseteq Z(R)$ for every $P \in \operatorname{Min}(R)$.
(3) $Z(R)=\cup\{P \mid P \in \operatorname{Min}(R)\}$ if R is reduced.
(4) Let $x \in Z(R)$ and $y \in \operatorname{Nil}(R)$. Then $x+y \in Z(R)$.
(5) If P_{1}, P_{2}, P_{3} are distinct minimal prime ideals of R, then $P_{1} \cap P_{2} \cap P_{3} \subsetneq P_{1} \cap P_{2}$.

Proof. For (1), see [11, Theorem 2 and Remarks]. Parts (2) and (3) may be found in [10, Theorem 2.1; 10, Corollary 2.4], respectively.
(4) By (1) above, $x \in P \subseteq Z(R)$ for some $P \in \operatorname{Spec}(R)$. Since $y \in \operatorname{Nil}(R) \subseteq P$, it follows that $x+y \in P \subseteq Z(R)$.
(5) If $P_{1} \cap P_{2}=P_{1} \cap P_{2} \cap P_{3}$, then $P_{1} P_{2} \subseteq P_{1} \cap P_{2} \subseteq P_{3}$. Thus either $P_{1} \subseteq P_{3}$ or $P_{2} \subseteq P_{3}$, a contradiction.

We first study the case when R is not reduced.
Theorem 2.2. Let R be a non-reduced commutative ring. Then $Z_{0}(\Gamma(R))$ is connected with $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \in\{0,1,2\}$.

Proof. Assume that R is not reduced, and let $x, y \in Z(R)^{*}$ be distinct vertices of $Z_{0}(\Gamma(R))$. If either $x \in \operatorname{Nil}(R)$ or $y \in \operatorname{Nil}(R)$, then $x+y \in Z(R)$ by Lemma 2.1(4); so $x-y$ is an edge in $Z_{0}(\Gamma(R))$. Thus we may assume that $x \notin \operatorname{Nil}(R), y \notin \operatorname{Nil}(R)$, and $x+y \notin Z(R)$. Let $0 \neq w \in \operatorname{Nil}(R)$. Then $x-w-y$ is a path in $Z_{0}(\Gamma(R))$ by Lemma 2.1(4), and hence $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 2$.

Note that $Z_{0}(\Gamma(R))$ is a complete graph if and only if $Z(R)$ is an ideal of R, and in this case, $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 1$. Also, $Z(R)$ is a union of prime ideals of R by Lemma 2.1(1); so $Z(R)$ is an ideal of R if and only if it is a prime ideal of R. Thus a non-reduced ring R has $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=0$ if and only if $\left|Z(R)^{*}\right|=1$, if and only if $R \cong \mathbb{Z}_{4}$ or $R \cong \mathbb{Z}_{2}[X] /\left(X^{2}\right)$. Examples of non-reduced rings R with either $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=1$ or $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$ are given in Example 2.9 (also see Theorem 2.8).

We next consider the case when R is reduced. In this case, R is an integral domain if and only if $|\operatorname{Min}(R)|=1$. If R is an integral domain, then $Z_{0}(\Gamma(R))$ is the empty graph; so we assume that $|\operatorname{Min}(R)| \geq 2$.

Theorem 2.3. Let R be a reduced commutative ring with $|\operatorname{Min}(R)|=2$. Then $Z_{0}(\Gamma(R))$ is not connected.

Proof. Suppose that R is reduced and $|\operatorname{Min}(R)|=2$. Let P and Q be the minimal prime ideals of R. Then $\operatorname{Nil}(R)=P \cap Q=\{0\}$, and $Z(R)=P \cup Q$ by Lemma 2.1(3) since R is reduced. Let $0 \neq x \in P$ and $0 \neq y \in Q$. Then $x+y \notin Z(R)$; so there can be no path in $Z_{0}(\Gamma(R))$ from any $a \in P^{*}$ to any $b \in Q^{*}$. Thus, $Z_{0}(\Gamma(R))$ is not connected.

Note that the P^{*} and Q^{*} in the proof of Theorem 2.3 are the connected components of $Z_{0}(\Gamma(R))$, and each component is a complete subgraph of $Z_{0}(\Gamma(R))$. However, in this case, $Z(R)$ is not an ideal of R; so $Z(\Gamma(R))$ is connected with $\operatorname{diam}(Z(\Gamma(R)))=2$ when R is reduced and $|\operatorname{Min}(R)|=2$.

Theorem 2.4. Let R be a reduced commutative ring that is not an integral domain. Then $Z_{0}(\Gamma(R))$ is connected if and only if $|\operatorname{Min}(R)| \geq 3$. Moreover, if $Z_{0}(\Gamma(R))$ is connected, then $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \in\{1,2\}$.

Proof. Suppose that $Z_{0}(\Gamma(R))$ is connected and R is reduced, but not an integral domain. Then $|\operatorname{Min}(R)| \geq 3$ by Theorem 2.3. Conversely, suppose that R is reduced and $|\operatorname{Min}(R)| \geq 3$. Let $x, y \in Z(R)^{*}$ such that $x+y \notin Z(R)$ (thus $x \neq y$). Then there are minimal prime ideals P_{1} and P_{2} of R with $x \in P_{1}$ and $y \in P_{2}$ by Lemma 2.1(3), and $P_{1} \neq P_{2}$ since $x+y \notin Z(R)$. Since $|\operatorname{Min}(R)| \geq 3$, there is a $Q \in \operatorname{Min}(R) \backslash\left\{P_{1}, P_{2}\right\}$; so $P_{1} \cap P_{2} \neq\{0\}$ by Lemma 2.1(5). Pick $0 \neq z \in P_{1} \cap P_{2}$. Then $x-z-y$ is a path in $Z_{0}(\Gamma(R))$ from x to y. Thus $Z_{0}(\Gamma(R))$ is connected with $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 2$, and $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \neq 0$ since $\left|Z(R)^{*}\right| \geq 2$. Hence $1 \leq \operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 2$.

Corollary 2.5. Let R be a reduced commutative ring with $3 \leq|\operatorname{Min}(R)|<\infty$. Then $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$. In particular, $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$ when R is a reduced Noetherian ring with $|\operatorname{Min}(R)| \geq 3$.

Proof. We have $1 \leq \operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 2$ by Theorem 2.4. Also, $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 1$ if and only if $Z(R)$ is a prime ideal of R. If R is reduced with $\operatorname{Min}(R)$ finite, then $Z(R)$ is a prime ideal of R if and only if $\operatorname{Min}(R)=\{Z(R)\}$ by Lemma 2.1(3) and the Prime Avoidance Lemma [11, Theorem 81]. But $|\operatorname{Min}(R)| \geq$ 3; so $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$. The "in particular" statement is clear since $\operatorname{Min}(R)$ is finite when R is Noetherian [11, Theorem 88].

Corollary 2.6. The following statements are equivalent for a commutative ring R.
(1) $Z_{0}(\Gamma(R))$ is not connected.
(2) $T(R)$ is a von Neumann regular ring with exactly two maximal ideals.
(3) $T(R)$ is isomorphic to $K_{1} \times K_{2}$ for fields K_{1} and K_{2}.

In particular, if R is a finite ring, then $Z_{0}(\Gamma(R))$ is connected unless $R \cong$ $K_{1} \times K_{2}$ for finite fields K_{1} and K_{2}.

Proof. This follows directly from Theorems 2.3 and 2.4. The "in particular" statement is clear.

Let R be a reduced commutative ring with $|\operatorname{Min}(R)| \geq 3$. By Corollary 2.5, $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$ if $\operatorname{Min}(R)$ is finite. Note that $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=1$ if and only if $Z(R)$ is an (prime) ideal of R; so if R is reduced with $|\operatorname{Min}(R)| \geq 3$ and $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=1$, then both $\operatorname{Min}(R)$ and $Z(R)$ must be infinite. An example of a reduced quasilocal commutative ring R with nonzero maximal ideal $Z(R)$ is given in [3, Example 3.13] (cf. [12, Example 5.1]). For this ring R, both $\operatorname{Min}(R)$ and $Z(R)$ are infinite, and $Z_{0}(\Gamma(R))$ is connected with $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=1$.

The next two theorems summarize results about $\operatorname{diam}(Z(\Gamma(R)))$ (mentioned earlier from [5]) and $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)$ when R is a finite commutative ring. Note that $\operatorname{Max}(R)=\operatorname{Min}(R)$ when R is a finite commutative ring.

Theorem 2.7. Let R be a finite commutative ring. Then $\operatorname{diam}(Z(\Gamma(R))) \in$ $\{0,1,2\}$. Moreover,
(1) $\operatorname{diam}(Z(\Gamma(R)))=0$ if and only if R is a field,
(2) $\operatorname{diam}(Z(\Gamma(R)))=1$ if and only if R is local and not a field, and
(3) $\operatorname{diam}(Z(\Gamma(R)))=2$ if and only if R is not local.

Theorem 2.8. Let R be a finite commutative ring. Then $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \in$ $\{0,1,2, \infty\}$. Moreover,
(1) $Z_{0}(\Gamma(R))$ is the empty graph if and only if R is a field,
(2) $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=0$ if and only if R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$,
(3) $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=1$ if and only if R is a local ring with maximal ideal M and $|M| \geq 3$,
(4) $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$ if and only if either $|\operatorname{Max}(R)| \geq 3$ or R is not reduced with $|\operatorname{Max}(R)|=2$, and
(5) $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if R is reduced with $|\operatorname{Max}(R)|=2$.

We next illustrate the above results by computing $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)$ for $R=\mathbb{Z}_{n}$ and $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$. The details are left to the reader; they follow directly from Theorem 2.8.

Example 2.9. (a) $\left(\operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)\right.$ Let $R=\mathbb{Z}_{n}$ with $n \geq 2$ and n not prime (note that $Z_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)$ is the empty graph if n is prime). Then $\operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{4}\right)\right)\right)=0 ; \operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{p^{m}}\right)\right)\right)=1$ if either $p=2$ and $m \geq 3$, or $p \geq 3$ is prime and $m \geq 2 ; \operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{p q}\right)\right)\right)=\infty$ for distinct primes p and q; and $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$ otherwise.
(b) $\left(\operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}\right)\right)\right)\right)$ Let $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ with $2 \leq n_{1} \leq \cdots \leq n_{k}$ and $k \geq 2$. Then $\operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{q}\right)\right)\right)=\infty$ for primes $p \leq q$; otherwise $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)=2$.

3. The Girth of $Z_{0}(\Gamma(R))$

In this section, we show that $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right) \in\{3, \infty\}$. If $Z(R)$ is an ideal of R, then it is clear that $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if $|Z(R)| \leq 3$ and $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ if
$|Z(R)| \geq 4$. Just as for the diameter in Sec. 2, our answer depends on the number of minimal prime ideals of R. If $Z(R)$ is an ideal of R, then, $\operatorname{gr}(Z(\Gamma(R)))=\infty$ if $|Z(R)| \leq 2$ and $\operatorname{gr}(Z(\Gamma(R)))=3$ if $|Z(R)| \geq 3$. If $Z(R)$ is not an ideal of R, then $\operatorname{gr}\left(Z\left(\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)\right)=\infty$ and $\operatorname{gr}(Z(\Gamma(R)))=3$ if $R \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ [5, Theorem 3.14(1)] (also, see Theorem 3.3(1)).

We first handle the case when R is not reduced.
Theorem 3.1. Let R be a non-reduced commutative ring. Then $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if R has a unique nonzero minimal prime ideal P with $P=\operatorname{Nil}(R)=$ $Z(R)$ and $|P| \leq 3$ (i.e. $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if $\operatorname{Nil}(R)=Z(R)$ and $|\operatorname{Nil}(R)| \leq 3)$. Otherwise, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$. Moreover, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if $|Z(R)| \leq 3$ and $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ if $|Z(R)| \geq 4$.

Proof. Suppose that $|\operatorname{Min}(R)| \geq 2$. Let P and Q be distinct minimal prime ideals of R. Then $\{0\} \subsetneq P \cap Q \subsetneq P$; so $|P \cap Q| \geq 2$, and thus $|P| \geq 4$. Let $x, y, z \in P^{*}$ be distinct. Then $x-y-z-x$ is a triangle in $Z_{0}(\Gamma(R))$; so $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$. Now suppose that $\operatorname{Min}(R)=\{P\}$, and thus $\operatorname{Nil}(R)=P$. $\operatorname{If} \operatorname{Nil}(R) \subsetneq Z(R)$, then there is a prime ideal Q of R with $\{0\} \neq \operatorname{Nil}(R)=P \subsetneq Q \subseteq Z(R)$ by Lemma 2.1(1). As above, $|Q| \geq 4$; so again $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$. If $\operatorname{Nil}(R)=Z(R)$, then $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ if $|\operatorname{Nil}(R)| \geq 4$ and $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if $|\operatorname{Nil}(R)| \leq 3$. The "moreover" statement follows directly from the above arguments.

We next consider the case when R is reduced.
Theorem 3.2. Let R be a reduced commutative ring that is not an integral domain. Then $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if $\operatorname{Min}(R)=\{P, Q\}$ with $\max \{|P|,|Q|\} \leq 3$. Otherwise, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$. In particular, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ when $|\operatorname{Min}(R)| \geq 3$.

Proof. Suppose that P_{1}, P_{2}, P_{3} are distinct minimal prime ideals of R. Then $\{0\} \subseteq$ $P_{1} \cap P_{2} \cap P_{3} \subsetneq P_{1} \cap P_{2} \subsetneq P_{1}$ by Lemma 2.1(5); so $\left|P_{1} \cap P_{2}\right| \geq 2$, and thus $\left|P_{1}\right| \geq 4$. Let $x, y, z \in P_{1}^{*}$ be distinct. Then $x-y-z-x$ is a triangle in $Z_{0}(\Gamma(R))$; so $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ if $|\operatorname{Min}(R)| \geq 3$. Thus we may assume that $|\operatorname{Min}(R)|=2$; say $\operatorname{Min}(R)=\{P, Q\}$. As in the proof of Theorem 2.3, $P \cap Q=\{0\}$ and $Z(R)=P \cup Q$, and hence no $x \in P^{*}$ and $y \in Q^{*}$ are adjacent in $Z_{0}(\Gamma(R))$. Thus $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ if and only if either $|P| \geq 4$ or $|Q| \geq 4$. Otherwise, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$. The "in particular" statement is clear.

Using earlier mentioned results from [5] and Theorems 3.1 and 3.2, we can give explicit calculations for $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)$ and $\operatorname{gr}(Z(\Gamma(R)))$.

Theorem 3.3. Let R be a commutative ring. Then $\operatorname{gr}(Z(\Gamma(R))) \in\{3, \infty\}$ and $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right) \in\{3, \infty\}$.
(1) $\operatorname{gr}(Z(\Gamma(R)))=\infty$ if and only if either R is an integral domain or R is isomorphic to $\mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right)$, or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Otherwise, $\operatorname{gr}(Z(\Gamma(R)))=3$.
(2) $Z_{0}(\Gamma(R))$ is the empty graph if and only if R is an integral domain. For R not an integral domain, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if R is isomorphic to $\mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right), \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{6}, \mathbb{Z}_{9}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, or $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$. Otherwise, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$.

Proof. (1) First, suppose that $Z(R)$ is an ideal of R. If $|Z(R)|=1$, then R is an integral domain; so $|Z(\Gamma(R))|=1$, and thus $\operatorname{gr}(Z(\Gamma(R)))=\infty$. If $|Z(R)|=2$, then R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$; so $|Z(\Gamma(R))|=2$, and hence $\operatorname{gr}(Z(\Gamma(R)))=\infty$. If $|Z(R)| \geq 3$, then $\operatorname{gr}(Z(\Gamma(R)))=3$ since $x-0-y-x$ is a triangle in $Z(\Gamma(R))$ for distinct $x, y \in Z(R)^{*}$. If $Z(R)$ is not an ideal of R, then $\operatorname{gr}\left(Z\left(\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)\right)=\infty$ and $\operatorname{gr}(Z(\Gamma(R)))=3$ if $R \not \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ [5, Theorem 3.14(1)]. Part (1) now follows directly from the above two cases.
(2) First, suppose that R is not reduced. Then by Theorem 3.1, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if $\{0\} \neq \operatorname{Nil}(R)=Z(R)$ and $|Z(R)| \leq 3$, and $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ otherwise. So in this case, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if R is isomorphic to $\mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right), \mathbb{Z}_{9}$, or $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$.

Next, suppose that R is reduced and not an integral domain. Then by Theorem 3.2, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if $\operatorname{Min}(R)=\{P, Q\}$ with $\max \{|P|,|Q|\} \leq 3$, and $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$ otherwise. In the first case, we have $Z(R)=P \cup Q$ and $P \cap Q=\{0\}$ with $\max \{|P|,|Q|\} \leq 3$. In this case, R is a reduced finite ring with two maximal ideals, each with two or three elements. Thus $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if and only if R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{6}$, or $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Part (2) now follows directly from the above two cases.

We end this section with the analog of Example 2.9 for $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)$ when $R=\mathbb{Z}_{n}$ or $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$. The details are left to the reader; they follow directly from Theorem 3.3(2).

Example 3.4. (a) $\left(\operatorname{gr}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)\right)$ Let $R=\mathbb{Z}_{n}$ with $n \geq 2$ and n not prime (note that $Z_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)$ is the empty graph if n is prime). Then $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if either $n=4, n=6$, or $n=9$. Otherwise, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$.
(b) $\left(\operatorname{gr}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}\right)\right)\right)\right)$ Let $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ with $2 \leq n_{1} \leq \cdots \leq n_{k}$ and $k \geq 2$. Then $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=\infty$ if either $n_{1}=n_{2}=2, n_{1}=2$ and $n_{2}=3$, or $n_{1}=n_{2}=3$. Otherwise, $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)=3$.

4. $T_{0}(\Gamma(R))$

In this section, we study the graph $T_{0}(\Gamma(R))$. We show that $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=$ $\operatorname{diam}(T(\Gamma(R)))$ if and only if $|R| \geq 4$. (Note that $|R| \leq 3$ if and only if R is isomorphic to \mathbb{Z}_{2} or \mathbb{Z}_{3}.) We then explicitly compute $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)$. For $x, y \in R^{*}$, let $\mathrm{d}_{T}(x, y)$ (respectively, $\mathrm{d}_{T_{0}}(x, y)$) denote the distance from x to y in $T(\Gamma(R))$ (respectively, $\left.T_{0}(\Gamma(R))\right)$. We first show that these two distances are always equal.

Lemma 4.1. Let R be a commutative ring and $x, y \in R^{*}$. Then x, y are connected by a path in $T_{0}(\Gamma(R))$ if and only if x, y are connected by a path in $T(\Gamma(R))$. Moreover, $d_{T_{0}}(x, y)=d_{T}(x, y)$ and $\operatorname{diam}\left(T_{0}(\Gamma(R))\right) \leq \operatorname{diam}(T(\Gamma(R)))$.

Proof. If x, y are connected by a path in $T_{0}(\Gamma(R))$, then clearly x, y are connected by a path in $T(\Gamma(R))$. Conversely, assume that $x-a_{1}-\cdots-a_{n}-y$ is a shortest path from x to y in $T(\Gamma(R))$, and assume that $a_{i}=0$ for some i with $1 \leq i \leq n$. Then $a_{i-1}, a_{i+1} \in Z(R)^{*}$ and $a_{i-1}+a_{i+1} \in \operatorname{Reg}(R)$ (let $a_{0}=x$ and $a_{n+1}=y$). Let $z_{i}=-\left(a_{i-1}+a_{i+1}\right)$. Then $x-a_{1}-\cdots-a_{i-1}-z_{i}-a_{i+1}-\cdots-a_{n}-y$ is a shortest path from x to y in $T_{0}(\Gamma(R))$, and hence x, y are connected by a path in $T_{0}(\Gamma(R))$. The "moreover" statement is clear.

Recall that $T(\Gamma(R))$ is not connected if $Z(R)$ is an ideal of R [5, Theorem 2.1]. If $Z(R)$ is not an ideal of R, then $T(\Gamma(R))$ is connected if and only if $(Z(R))=R$ (i.e. R is generated by $Z(R)$ as an ideal) [5, Theorem 3.3]. Moreover, in this case, $\operatorname{diam}(T(\Gamma(R)))=n$, where $n \geq 2$ is the least positive integer such that $R=$ $\left(z_{1}, \ldots, z_{n}\right)$ for some $z_{1}, \ldots, z_{n} \in Z(R)[5$, Theorem 3.4]. Also, $\operatorname{diam}(T(\Gamma(R)))=$ $\mathrm{d}_{T}(0,1) \quad[5$, Corollary 3.5(1)]. Thus $T(\Gamma(R))$ is connected if and only if $\operatorname{diam}(T(\Gamma(R)))<\infty$.

Theorem 4.2. Let R be a commutative ring.
(1) If $|R| \leq 3$, then $T_{0}(\Gamma(R))$ is connected, but $T(\Gamma(R))$ is not connected.
(2) If $|R| \geq 4$, then $T_{0}(\Gamma(R))$ is connected if and only if $T(\Gamma(R))$ is connected.

Proof. (1) If $|R| \leq 3$, then $R \cong \mathbb{Z}_{2}$ or $R \cong \mathbb{Z}_{3}$. It is easily verified that (1) holds for these two rings.
(2) If $T(\Gamma(R))$ is connected, then $T_{0}(\Gamma(R))$ is also connected by Lemma 4.1. Conversely, assume that $T_{0}(\Gamma(R))$ is connected and $|R| \geq 4$. Then R is not an integral domain; so there is an $x \in Z(R)^{*}$. Let $y \in R^{*}$. Then there is a path from x to y in $T_{0}(\Gamma(R))$. But x is adjacent to 0 in $T(\Gamma(R))$; so there is a path from 0 to y in $T(\Gamma(R))$. Thus $T(\Gamma(R))$ is also connected.

Corollary 4.3. Let R be a commutative ring. Then $T_{0}(\Gamma(R))$ is connected if and only if either $(Z(R))=R$ or R is isomorphic to \mathbb{Z}_{2} or \mathbb{Z}_{3}. Moreover, $T_{0}(\Gamma(R))$ is connected if and only if $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)<\infty$.

Proof. This follows directly from Theorem 4.2 and the discussion preceding Theorem 4.2.

In general, there is no relationship between $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)$ and $\operatorname{diam}\left(T_{0}\right.$ $(\Gamma(R)))$. By Examples 2.9 and 4.6, we have $\operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{8}\right)\right)\right)=1<\infty=$ $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{8}\right)\right)\right), \operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)\right)=2<\infty=\operatorname{diam}\left(Z_{0}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)\right)$, and $\operatorname{diam}\left(Z_{0}(\Gamma\right.$ $\left.\left.\left(\mathbb{Z}_{12}\right)\right)\right)=2=\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{12}\right)\right)\right)$.

Our next goal is to show that $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=\operatorname{diam}(T(\Gamma(R)))$ when $|R| \geq 4$. However, we will need the following lemma.

Lemma 4.4. Let R be a commutative ring with $\operatorname{diam}(T(\Gamma(R)))=n<\infty$, and let $s \in R^{*}$ and $u \in U(R)$ be distinct.
(1) If $s \in Z(R)^{*}$, then $d_{T_{0}}(u, s)=d_{T}(u, s) \in\{n-1, n\}$.
(2) If n is an even integer, then $d_{T_{0}}(u-s, s)=m=d_{T}(u-s, s)$ for some even integer $m \leq n$.
(3) If n is an odd integer and $u \neq-s$, then $d_{T_{0}}(u+s, s)=m=d_{T}(u+s, s)$ for some odd integer $m \leq n$.
(4) If n is an even integer, then $d_{T_{0}}(u-s, s)=n=d_{T}(u-s, s)$ for every $s \in Z(R)^{*}$.
(5) If n is an odd integer, then $d_{T_{0}}(u+s, s)=n=d_{T}(u+s, s)$ for every $s \in Z(R)^{*}$.

Proof. Observe that $n \geq 2$ by [5, Theorem 3.4].
(1) Let $s-a_{1}-\cdots-a_{m-1}-u$ be a shortest path from s to u in $T_{0}(\Gamma(R))$ of length m. Then $m=d_{T_{0}}(x, y)=d_{T}(x, y) \leq n$ by Lemma 4.1. Since $u \in$ $\left(s, s+a_{1}, a_{1}+a_{2}, \ldots, a_{m-1}+u\right)$, we have $R=\left(s, s+a_{1}, a_{1}+a_{2}, \ldots, a_{m-1}+u\right)$. Since R is generated by $m+1$ elements of $Z(R)$ and $\operatorname{diam}(T(\Gamma(R)))=n$, we have $n \leq m+1$ by [5, Theorem 3.4]. Thus $m \leq n \leq m+1$; so either $m=n-1$ or $m=n$.
(2) Let n be an even integer. If $u-s=s$, then $\mathrm{d}_{T_{0}}(u-s, s)=0$. Thus we may assume that $u-s \neq s$, and hence $\mathrm{d}_{T_{0}}(u-s, s) \geq 2$ since $(u-s)+s=u \notin Z(R)$. Let $m \geq 2$, and let $s-a_{1}-\cdots-a_{m-1}-(u-s)$ be a shortest path from s to $u-s$ in $T_{0}(\Gamma(R))$ of length m. Thus $m \leq n$. Suppose that m is an odd integer. Since $u=\left(s+a_{1}\right)-\left(a_{1}+a_{2}\right)+\cdots-\left(a_{m-2}+a_{m-1}\right)+\left(a_{m-1}+(u-s)\right)$, we have $R=\left(s+a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, \ldots, a_{m-1}+(u-s)\right)$ is generated by m elements of $Z(R)$. Hence $n \leq m$ by [5, Theorem 3.4]; so $m=n$, which is a contradiction since n is an even integer. Thus $d_{T_{0}}(u-s, s)=m=d_{T}(u-s, s)$ for some even integer $m \leq n$.
(3) Let n be an odd integer and $s \neq-u$; so $u \neq u+s \in R^{*}$. If $u+2 s \in Z(R)$, then $\mathrm{d}_{T_{0}}(u+s, s)=1$. Thus we may assume that $u+2 s \notin Z(R)$, and hence $\mathrm{d}_{T_{0}}(u+s, s) \geq 2$. Let $m \geq 2$, and let $s-a_{1}-\cdots-a_{m-1}-(u+s)$ be a shortest path from s to $u+s$ in $T_{0}(\Gamma(R))$ of length m. Thus $m \leq n$. Suppose that m is an even integer. Since $-u=\left(s+a_{1}\right)-\left(a_{1}+a_{2}\right)+\cdots+\left(a_{m-2}+a_{m-1}\right)-\left(a_{m-1}+\right.$ $(u+s))$, we have $R=\left(s+a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, \ldots, a_{m-1}+(u+s)\right)$ is generated by m elements of $Z(R)$. Hence $n \leq m$ by [5 , Theorem 3.4]; so $m=n$, which is a contradiction since n is an odd integer. Thus $\mathrm{d}_{T_{0}}(u+s, s)=m=d_{T}(u+s, s)$ for some odd integer $m \leq n$.
(4) Let n be an even integer and $s \in Z(R)^{*}$. Then $u-s, s \in R^{*}$ are distinct and $(u-s)+s=u \notin Z(R)$; so $m=d_{T_{0}}(u-s, s)$ is an even positive integer by part (2) above. Let $s-a_{1}-\cdots-a_{m-1}-(u-s)$ be a shortest path from s to $u-s$ in $T_{0}(\Gamma(R))$ of length m. If $m=n$, then we are done; so assume that $m<n$.

Since $u=2 s-\left(s+a_{1}\right)+\left(a_{1}+a_{2}\right)-\cdots-\left(a_{m-2}+a_{m-1}\right)+\left(a_{m-1}+(u-s)\right)$, we have $R=\left(s, s+a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, \ldots, a_{m-1}+(u-s)\right)$ is generated by $m+1$ elements of $Z(R)$. Hence $n \leq m+1$ by [5 , Theorem 3.4]. Thus $n=m+1$, which is a contradiction since n is an even integer and $m+1$ is an odd integer. Thus $\mathrm{d}_{T_{0}}(u-s, s)=n=d_{T}(u-s, s)$.
(5) Let n be an odd integer and $s \in Z(R)^{*}$. Thus $u+s, s \in R^{*}$ are distinct and $2 s+u \notin Z(R)$ (for if $2 s+u \in Z(R)$, then $R=(s, 2 s+u)$, and hence $\operatorname{diam}(T(\Gamma(R)))=2$ by [5, Theorem 3.4]); so $m=d_{T_{0}}(u+s, s) \geq 3$ is an odd integer by part (3) above. Let $s-a_{1}-\cdots-a_{m-1}-(u+s)$ be a shortest path from s to $u+s$ in $T_{0}(\Gamma(R))$ of length m. If $m=n$, then we are done; so assume that $m<n$. Since $-u=2 s-\left(s+a_{1}\right)+\left(a_{1}+a_{2}\right)-\cdots+\left(a_{m-2}+a_{m-1}\right)-\left(a_{m-1}+(u+s)\right)$, we have $R=\left(s, s+a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, \ldots, a_{m-1}+(u-s)\right)$ is generated by $m+1$ elements of $Z(R)$. Hence $n \leq m+1$ by [5 , Theorem 3.4]. Thus $n=m+1$, which is a contradiction since n is an odd integer and $m+1$ is an even integer. Hence $\mathrm{d}_{T_{0}}(u+s, s)=n=d_{T}(u+s, s)$.

Theorem 4.5. Let R be a commutative ring.
(1) $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{2}\right)\right)\right)=0<\infty=\operatorname{diam}\left(T\left(\Gamma\left(\mathbb{Z}_{2}\right)\right)\right)$.
(2) $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{3}\right)\right)\right)=1<\infty=\operatorname{diam}\left(T\left(\Gamma\left(\mathbb{Z}_{3}\right)\right)\right)$.
(3) If $|R| \geq 4$, then $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=\operatorname{diam}(T(\Gamma(R)))$.

Proof. Parts (1) and (2) are easily verified; so we may assume that $|R| \geq 4$. Then $T(\Gamma(R))$ is connected if and only if $T_{0}(\Gamma(R))$ is connected by Theorem 4.2, and $\operatorname{diam}\left(T_{0}(\Gamma(R))\right) \leq \operatorname{diam}(T(\Gamma(R)))$ by Lemma 4.1. Thus $\operatorname{diam}(T(\Gamma(R)))=$ ∞ if and only if $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=\infty$ by Corollary 4.3 and the remarks before Theorem 4.2. Hence we may assume that $\operatorname{diam}(T(\Gamma(R)))=n<\infty$, and thus R is not an integral domain. Let $z \in Z(R)^{*}$. If n is an odd integer, then $\mathrm{d}_{T}(1+z, z)=$ $n=\mathrm{d}_{T_{0}}(1+z, z)$ by Lemma 4.4(5), and hence $\operatorname{diam}(T(\Gamma(R)))=\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=$ n by Lemma 4.1. If n is an even integer, then $\mathrm{d}_{T}(1-z, z)=\mathrm{d}_{T_{0}}(1-z, z)=n$ by Lemma 4.4(4), and thus $\operatorname{diam}(T(\Gamma(R)))=\operatorname{diam}\left(T_{0}(\Gamma((R)))=n\right.$ by Lemma 4.1. Hence $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=\operatorname{diam}(T(\Gamma(R)))$ for all rings R with $|R| \geq 4$.

The next example follows directly from Theorem 4.5 and the discussion preceding Theorem 4.2.

Example 4.6. (a) $\left(\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)\right)$ We have observed that $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{2}\right)\right)\right)=$ $0, \operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{3}\right)\right)\right)=1$, and $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{p}\right)\right)\right)=\infty$ when $p \geq 5$ is prime. Let $n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ for distinct primes p_{i} and $m_{i} \geq 1$. If $k=1$ and $m_{1} \geq 2$, then $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=\infty$. If $k \geq 2$, then $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=2$.
(b) $\left(\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}\right)\right)\right)\right)$ Let $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ with $2 \leq n_{1} \leq \cdots \leq n_{k}$ and $k \geq 2$. Then $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=2$.

The girth of $T_{0}(\Gamma(R))$ is also easily determined. Recall from [5, Theorem 2.6(3)] that if $Z(R)$ is an ideal of R, then $\operatorname{gr}(T(\Gamma(R)))=3$ if and only if $|Z(R)| \geq 3$,
$\operatorname{gr}(T(\Gamma(R)))=4$ if and only if $2 \notin Z(R)$ and $|Z(R)|=2$, and $\operatorname{gr}(T(\Gamma(R)))=\infty$ otherwise. (Note that if $|Z(R)|=2$, then R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$, and $2 \in Z(R)$ in either case. So, "the $\operatorname{gr}(T(\Gamma(R)))=4$ case" cannot actually happen when $Z(R)$ is an ideal of R.) If $Z(R)$ is not an ideal of R, then $\operatorname{gr}(T(\Gamma(R)))=4$ if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and $\operatorname{gr}(T(\Gamma(R)))=3$ otherwise [5, Theorem 3.14]. Thus $\operatorname{gr}(T(\Gamma(R))) \in\{3,4, \infty\}$. Note that $\operatorname{gr}(T(\Gamma(R))) \leq \operatorname{gr}\left(T_{0}(\Gamma(R))\right)$ since $T_{0}(\Gamma(R))$ is a (induced) subgraph of $T(\Gamma(R))$.

We next give explicit calculations for $\operatorname{gr}(T(\Gamma(R)))$ and $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)$. These calculations show that $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=\operatorname{gr}(T(\Gamma(R)))$ unless R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, \mathbb{Z}_{9}, or $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$.

Theorem 4.7. Let R be a commutative ring. Then $\operatorname{gr}(T(\Gamma(R))) \in\{3,4, \infty\}$. Moreover,
(1) $\operatorname{gr}(T(\Gamma(R)))=\infty$ if and only if either R is an integral domain or R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$,
(2) $\operatorname{gr}(T(\Gamma(R)))=4$ if and only if R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and
(3) $\operatorname{gr}(T(\Gamma(R)))=3$ otherwise.

Proof. By [5, Theorem 2.6(3); 5, Theorem 3.14], $\operatorname{gr}(T(\Gamma(R)))=3$ unless $R \cong$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $|Z(R)| \leq 2$. If $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then $\operatorname{gr}(T(\Gamma(R)))=4$. If $|Z(R)| \leq 2$, then R is either an integral domain or isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$. In each of these cases, $\operatorname{gr}(T(\Gamma(R)))=\infty$. The result now follows.

Theorem 4.8. Let R be a commutative ring. Then $\operatorname{gr}\left(T_{0}(\Gamma(R))\right) \in\{3,4, \infty\}$. Moreover,
(1) $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=\infty$ if and only if either R is an integral domain or R is isomorphic to $\mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right)$, or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
(2) $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=4$ if and only if R is isomorphic to \mathbb{Z}_{9} or $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$, and
(3) $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=3$ otherwise.

Proof. Note that $\operatorname{gr}\left(T_{0}(\Gamma(R))\right) \leq \operatorname{gr}\left(Z_{0}(\Gamma(R))\right)$ since $Z_{0}(\Gamma(R))$ is a (induced) subgraph of $T_{0}(\Gamma(R))$. Thus Theorem 4.8 follows directly from Theorem 3.3(2) since one can easily verify that the rings $\mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right), \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{6}, \mathbb{Z}_{9}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$ have $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)$ equal to $\infty, \infty, \infty, 3,4,3$, and 4 , respectively.

We close this section with the analog of Example 2.9 for $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)$. It follows directly from Theorem 4.8.

Example 4.9. (a) $\left(\operatorname{gr}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)\right)$ Let $R=\mathbb{Z}_{n}$ with $n \geq 2$. Then $\operatorname{gr}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)=$ ∞ if n is prime, $\operatorname{gr}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{4}\right)\right)\right)=\infty, \operatorname{gr}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{9}\right)\right)\right)=4$, and $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=3$ otherwise.
(b) $\left(\operatorname{gr}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}\right)\right)\right)\right.$ Let $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ with $2 \leq n_{1} \leq \cdots \leq n_{k}$ and $k \geq 2$. Then $\operatorname{gr}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)\right)=\infty$, and $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=3$ otherwise.

5. Zero-Divisor Paths and Regular Paths in $T_{0}(\Gamma(R))$

Let R be a commutative ring and $x, y \in R^{*}$ be distinct. We say that $x-a_{1}-\cdots-a_{n}-$ y is a zero-divisor path from x to y if $a_{1}, \ldots, a_{n} \in Z(R)^{*}$ and $a_{i}+a_{i+1} \in Z(R)$ for every $0 \leq i \leq n$ (let $a_{0}=x$ and $a_{n+1}=y$). We define $\mathrm{d}_{Z}(x, y)$ to be the length of a shortest zero-divisor path from x to $y\left(\mathrm{~d}_{Z}(x, x)=0\right.$ and $\mathrm{d}_{Z}(x, y)=\infty$ if there is no such path) and $\operatorname{diam}_{Z}(R)=\sup \left\{\mathrm{d}_{Z}(x, y) \mid x, y \in R^{*}\right\}$. Thus $\mathrm{d}_{T}(x, y)=\mathrm{d}_{T_{0}}(x, y) \leq$ $\mathrm{d}_{Z}(x, y)$, for every $x, y \in R^{*}$. In particular, if $x, y \in R^{*}$ are distinct and $x+y \in Z(R)$, then $x-y$ is a zero-divisor path from x to y with $\mathrm{d}_{Z}(x, y)=1$. For any commutative ring R, we have $\max \left\{\operatorname{diam}\left(Z_{0}(\Gamma(R))\right)\right.$, $\left.\operatorname{diam}\left(T_{0}(\Gamma(R))\right)\right\} \leq \operatorname{diam}_{Z}(R)$. However, if R is a quasilocal reduced ring with $|\operatorname{Min}(R)| \geq 3$, then $\operatorname{diam}\left(Z_{0}(\Gamma(R))\right) \leq 2$ by Theorem 2.4, but $\operatorname{diam}_{Z}(R)=\infty$ since there is no zero-divisor path from 1 to any $x \in Z(R)^{*}\left(\right.$ cf. Theorem 5.1(1)). Also, $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{1225}\right)\right)\right)=2<3=$ $\operatorname{diam}_{Z}\left(\mathbb{Z}_{1225}\right)$ by Examples 4.6 and 5.5. Note that $\operatorname{diam}_{Z}\left(\mathbb{Z}_{2}\right)=0, \operatorname{diam}_{Z}\left(\mathbb{Z}_{3}\right)=1$, and $\operatorname{diam}_{Z}(R)=\infty$ for any other integral domain R.

We first determine when there is a zero-divisor path between every two distinct elements of R^{*}.

Theorem 5.1. Let R be a commutative ring that is not an integral domain. Then there is a zero-divisor path from x to y for every $x, y \in R^{*}$ if and only if one of the following two statements holds.
(1) R is reduced, $|\operatorname{Min}(R)| \geq 3$, and $R=\left(z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in Z(R)^{*}$.
(2) R is not reduced and $R=\left(z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in Z(R)^{*}$.

Moreover, if there is a zero-divisor path from x to y for every $x, y \in R^{*}$, then R is not quasilocal and $\operatorname{diam}_{Z}(R) \in\{2,3\}$.

Proof. Suppose that there is a zero-divisor path from x to y for every $x, y \in R^{*}$. First, assume that R is reduced and not an integral domain. Since $Z_{0}(\Gamma(R))$ is connected if and only if $|\operatorname{Min}(R)| \geq 3$ by Theorem 2.4, we have $|\operatorname{Min}(R)| \geq 3$. Let $y \in Z(R)^{*}$. Then there is a zero-divisor path $1-a_{1}-\cdots-a_{n}-y$ from 1 to y for some $a_{1}, \ldots, a_{n} \in Z(R)^{*}$. Thus $z=1+a_{1} \in Z(R)^{*}$, and hence $R=\left(a_{1}, z\right)$. If R is not reduced, then a similar argument, as in the reduced case, shows that $R=\left(z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in Z(R)^{*}$.

Conversely, assume that (1) holds. Thus $1=w+z$ for some $w, z \in Z(R)^{*}$. Let $x, y \in R^{*}$ be distinct. Then $x=x w+x z$ and $y=y w+y z$. We consider two cases. Case one: assume that $x, y \in Z(R)^{*}$. Then we are done by Theorem 2.4. Case two: assume that $x \notin Z(R)$. Hence $x w, x z \in Z(R)^{*}$. Suppose that $x+y \notin Z(R)$. Then assume that either $x w=y w$ or $y= \pm y w$. Then $x-(-x w)-y$ is the desired zerodivisor path of length two from x to y. Next, assume that $x w \neq y w, y w \neq 0$ and $y \neq \pm y w$. Then $x-(-x w)-(-y w)-y$ is the desired zero-divisor path of length three from x to y. Finally, assume that $y w=0$. Since $y \neq 0$ and $y=y w+y z$, we have $y z=y \neq 0$. Thus $x-(-x z)-y$ is the desired zero-divisor path of length two from
x to y. Now assume that (2) holds. Since $Z_{0}(\Gamma(R))$ is connected by Theorem 2.2, an argument similar to that in case two of the reduced case completes the proof.

Assume that there is a zero-divisor path from x to y for every $x, y \in R^{*}$ and that R is not an integral domain. Then R cannot be quasilocal since $R=\left(z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in Z(R)^{*}$ by (1) and (2) above. Clearly $\operatorname{diam}_{Z}(R) \neq 0$. Let $z \in Z(R)^{*}$.
 "moreover" statement now follows from the above proof.

Corollary 5.2. Let R be a commutative ring. Then $\operatorname{diam}_{Z}(R) \in\{0,1,2,3, \infty\}$. Moreover, $\operatorname{diam}_{Z}(R) \in\{2,3, \infty\}$ except for $\operatorname{diam}_{Z}\left(\mathbb{Z}_{2}\right)=0$ and $\operatorname{diam}_{Z}\left(\mathbb{Z}_{3}\right)=1$.

Corollary 5.3. Let R be a commutative ring such that $Z(R)$ is not an ideal of R. Then there is a zero-divisor path from x to y for every $x, y \in T(R)^{*}$ if and only if either R is reduced with $|\operatorname{Min}(R)| \geq 3$ or R is not reduced.

Proof. Since $Z(R)$ is not an ideal of R, there are $z_{1}, z_{2} \in Z(R)^{*}$ such that $z_{1}+z_{2} \in \operatorname{Reg}(R)$. Thus $T(R)=\left(z_{1}, z_{2}\right)$; so the corollary follows directly from Theorem 5.1.

Theorem 5.4. (1) Let $R=R_{1} \times R_{2}$ for commutative quasilocal rings R_{1}, R_{2} with maximal ideals M_{1}, M_{2}, respectively. If there are $a_{1} \in U\left(R_{1}\right)$ and $a_{2} \in$ $U\left(R_{2}\right)$ with $\left(2 a_{1}, 2 a_{2}\right) \in U(R)$ and $\left(3 a_{1}, 3 a_{2}\right) \notin Z(R)$, then $\operatorname{diam}_{Z}(R) \in\{3, \infty\}$. Moreover, $\operatorname{diam}_{Z}(R)=3$ if either R_{1} or R_{2} is not reduced.
(2) Let $R=R_{1} \times \cdots \times R_{n}$ for commutative rings R_{1}, \ldots, R_{n} with $n \geq 3$. Then $\operatorname{diam}_{Z}(R)=2$.

Proof. (1) Let $a=\left(a_{1}, a_{2}\right), b=\left(2 a_{1}, 2 a_{2}\right) \in U(R)$. Then $a \neq b$ and $\mathrm{d}_{Z}(a, b) \neq 1$ since $a+b=\left(3 a_{1}, 3 a_{2}\right) \notin Z(R)$. Assume that there is an $f=\left(m_{1}, m_{2}\right) \in R^{*}$ such that $a-f-b$ is a zero-divisor path from a to b. Thus $f \in Z(R)^{*}$; so either $m_{1} \in M_{1}$ or $m_{2} \in M_{2}$. If $m_{1} \in M_{1}$, then $m_{1}+a_{1}, m_{1}+2 a_{1} \in U\left(R_{1}\right)$. Hence $m_{2}+a_{2}, m_{2}+2 a_{2} \in M_{2}$, since $a+f, b+f \in Z(R)$. But then $a_{2}=\left(m_{2}+2 a_{2}\right)-$ $\left(m_{2}+a_{2}\right) \in M_{2}$, a contradiction. In a similar manner, $m_{2} \in M_{2}$ also leads to a contradiction; so no such f exists. Thus $\mathrm{d}_{Z}(a, b) \geq 3$; so $\operatorname{diam}_{Z}(R) \in\{3, \infty\}$. The "moreover" statement now follows from Theorem 5.1.
(2) We have $\operatorname{diam}_{Z}(R) \in\{2,3\}$ by Theorem 5.1 since $|\operatorname{Min}(R)| \geq n \geq 3$. Let $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in R^{*}$ with $x+y \notin Z(R)$. We may assume that $x_{1} \neq 0$. Let $z=\left(-x_{1},-y_{2}, 1, \ldots, 1,0\right) \in Z(R)^{*}$. Then $x+z, y+z \in Z(R)$; so $x-z-y$ is the desired zero-divisor path from x to y of length 2. Hence $\operatorname{diam}_{Z}(R)=2$.

The following example shows that all possible values for $\operatorname{diam}_{Z}(R)$ given in Corollary 5.2 and Theorem 5.4 may be realized. The details are left to the reader.

Example 5.5. (a) $\left(\operatorname{diam}_{Z}\left(\mathbb{Z}_{n}\right)\right)$ We have already observed that $\operatorname{diam}_{Z}\left(\mathbb{Z}_{2}\right)=0$, $\operatorname{diam}_{Z}\left(\mathbb{Z}_{3}\right)=1$, and $\operatorname{diam}_{Z}\left(\mathbb{Z}_{p}\right)=\infty$ when $p \geq 5$ is prime. Let $R=\mathbb{Z}_{n}$ with
$n \geq 2$ and n not prime. Let $n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ for distinct primes p_{i} and $m_{i} \geq 1$. If either $k=1$, or $k=2$ and $m_{1}=m_{2}=1$, then $\operatorname{diam}_{Z}(R)=\infty$. If $k=$ $2, p_{1}, p_{2} \geq 5$, and $m_{1}+m_{2} \geq 3$, then $\operatorname{diam}_{Z}(R)=3$. Otherwise, $\operatorname{diam}_{Z}(R)=2$. (b) $\left(\operatorname{diam}_{Z}\left(\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}\right)\right)$ Let $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ with $2 \leq n_{1} \leq \cdots \leq n_{k}$ and $k \geq 2$. If $k=2$ and n_{1}, n_{2} are prime, then $\operatorname{diam}_{Z}(R)=\infty$. If $k=2$ and $n_{1}=p_{1}^{m_{1}}, n_{2}=p_{2}^{m_{2}}$ for primes $p_{1}, p_{2} \geq 5$ and $m_{1}+m_{2} \geq 3$, then $\operatorname{diam}_{Z}(R)=3$. Otherwise, $\operatorname{diam}_{Z}(R)=2$.

Let $x, y \in R^{*}$ be distinct. We say that $x-a_{1}-\cdots-a_{n}-y$ is a regular path from x to y if $a_{1}, \ldots, a_{n} \in \operatorname{Reg}(R)$ and $a_{i}+a_{i+1} \in Z(R)$ for every $0 \leq i \leq n$ (let $a_{0}=x$ and $\left.a_{n+1}=y\right)$. We define $\mathrm{d}_{\text {reg }}(x, y)$ to be the length of a shortest regular path from x to $y\left(\mathrm{~d}_{\text {reg }}(x, x)=0\right.$ and $\mathrm{d}_{\text {reg }}(x, y)=\infty$ if there is no such path $)$, and $\operatorname{diam}_{\mathrm{reg}}(R)=\sup \left\{\mathrm{d}_{\mathrm{reg}}(x, y) \mid x, y \in R^{*}\right\}$. Thus $\mathrm{d}_{T}(x, y)=\mathrm{d}_{T_{0}}(x, y) \leq \mathrm{d}_{\mathrm{reg}}(x, y)$ for every $x, y \in R^{*}$. In particular, if $x, y \in R^{*}$ are distinct and $x+y \in Z(R)$, then $x-y$ is a regular path from x to y with $\mathrm{d}_{\mathrm{reg}}(x, y)=1$. For any commutative ring R, we have max $\left\{\operatorname{diam}\left(T_{0}(\Gamma(R))\right), \operatorname{diam}(\operatorname{Reg}(\Gamma(R)))\right\} \leq \operatorname{diam}_{\text {reg }}(R)$. Note that $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{60}\right)\right)\right)=2<\infty=\operatorname{diam}_{\mathrm{reg}}\left(\mathbb{Z}_{60}\right)$ and $\operatorname{diam}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{6}\right)\right)\right)=1<2=$ $\operatorname{diam} \mathrm{reg}\left(\mathbb{Z}_{6}\right)$. However, if R is an integral domain, then $T_{0}(\Gamma(R))=\operatorname{Reg}(\Gamma(R))$; so all three diameters are equal. Moreover, $\operatorname{diam}_{\mathrm{reg}}\left(\mathbb{Z}_{2}\right)=0, \operatorname{diam}_{\mathrm{reg}}\left(\mathbb{Z}_{3}\right)=1$ and $\operatorname{diam}_{\mathrm{reg}}(R)=\infty$ for any other integral domain R. Hence $\operatorname{diam}_{Z}(R)=\operatorname{diam}_{\mathrm{reg}}(R)$ for any integral domain R.

Theorem 5.6. Let R be a commutative ring with $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=n<\infty$.
(1) Let $u \in U(R), s \in R^{*}$, and P be a shortest path from s to u of length $n-1$ in $T_{0}(\Gamma(R))$. Then P is a regular path from s to u.
(2) Let $u \in U(R), s \in R^{*}$, and $P: s-a_{1}-\cdots-a_{n}=u$ be a shortest path from s to u of length n in $T_{0}(\Gamma(R))$. Then either P is a regular path from s to u, or $a_{1} \in Z(R)^{*}$ and $a_{1}-\cdots-a_{n}=u$ is a regular path from a_{1} to u of length $n-1=\mathrm{d}_{T_{0}}\left(a_{1}, u\right)$.

Proof. (1) If $n=2$, then P is a regular path from s to u by definition. Thus we may assume that $n>2$. Since $\mathrm{d}_{T_{0}}(z, u)$ is either $n-1$ or n for every $z \in Z(R)^{*}$ by Lemma $4.4(1)$ and $\mathrm{d}_{T_{0}}(s, u)=n-1$, we conclude that P must be a regular path.
(2) Suppose that P is not a regular path; so $a_{i} \in Z(R)^{*}$ for some $1 \leq i \leq n-1$. Since $\mathrm{d}_{T_{0}}(z, u)$ is either $n-1$ or n for every $z \in Z(R)^{*}$ by Lemma $4.4(1)$ and $\mathrm{d}_{T_{0}}(s, u)=n$, we must have $a_{1} \in Z(R)^{*}$ and $a_{i} \in \operatorname{Reg}(R)$ for every $2 \leq i \leq n-1$. Thus $a_{1}-\cdots-a_{n}-u$ is a regular path of length $n-1=$ $\mathrm{d}_{T_{0}}\left(a_{1}, u\right)$.

We next determine when there is a regular path between every two distinct elements of R^{*}.

Theorem 5.7. Let R be a commutative ring.
(1) If $s \in \operatorname{Reg}(R)$ and $w \in \operatorname{Nil}(R)^{*}$, then there is no regular path from sto w.
(2) If R is reduced and quasilocal, then there is no regular path from any unit to any nonzero nonunit in R.

In particular, if there is a regular path from x to y for every $x, y \in R^{*}$, then either R is reduced and not quasilocal or R is isomorphic to \mathbb{Z}_{2} or \mathbb{Z}_{3}.

Proof. (1) Let $s \in \operatorname{Reg}(R)$ and $w \in \operatorname{Nil}(R)^{*}$. Since $a+w \in \operatorname{Reg}(R)$ for every $a \in \operatorname{Reg}(R)$ by Lemma 2.1(4), there is no regular path from s to w.
(2) Let M be the maximal ideal of $R, x \in U(R)$, and $0 \neq y \in M$. Suppose that there is a regular path $x-x_{1}-\cdots-x_{n}-y$. Then $x+x_{1}=z_{1} \in Z(R) \subseteq M$; so $x_{1}=-x+z_{1} \in U(R)$. In a similar manner, each $x_{i} \in U(R)$. But then $x_{n}+y \in U(R)$, a contradiction.

The "in particular" statement is clear by parts (1) and (2) above and the remarks preceding Theorem 5.6.

Theorem 5.8. Let R be a commutative ring. Then there is a regular path from x to y for every $x, y \in R^{*}$ if and only if R is reduced, $\operatorname{Reg}(\Gamma(R))$ is connected, and for every $z \in Z(R)^{*}$ there is a $w \in Z(R)^{*}$ such that $d_{Z}(z, w)>1$ (possibly with $\left.d_{Z}(z, w)=\infty\right)$.

Proof. Suppose that there is a regular path from x to y for every $x, y \in R^{*}$. Then R is reduced by Theorem 5.7, and it is clear that $\operatorname{Reg}(\Gamma(R))$ is connected. Let $z \in Z(R)^{*}$, and let $z-a_{1}-\cdots-1$ be a regular path from z to 1 . Then $a_{1} \in \operatorname{Reg}(R)$ and $w=-\left(z+a_{1}\right) \in Z(R)^{*}$. Thus $z \neq w$ and $z+w \notin Z(R)$; so $\mathrm{d}_{Z}(z, w)>1$.

Conversely, suppose that R is reduced, $\operatorname{Reg}(\Gamma(R))$ is connected, and for every $z \in Z(R)^{*}$ there is a $w \in Z(R)^{*}$ such that $\mathrm{d}_{Z}(z, w)>1$ (possibly with $\mathrm{d}_{Z}(z, w)=$ $\infty)$. Let $x, y \in R^{*}$. If $x, y \in \operatorname{Reg}(R)$, then there is nothing to prove. First, assume that $x \in Z(R)^{*}$ and $y \in \operatorname{Reg}(R)$. Since $x \in Z(R)^{*}$, there is a $w \in Z(R)^{*}$ such that $\mathrm{d}_{Z}(x, w)>1$. Then $x+w \notin Z(R)$; so $x+u=-w \in Z(R)$ for some $u \in \operatorname{Reg}(R)$. Since $\operatorname{Reg}(\Gamma(R))$ is connected, let $u-u_{1}-\cdots-y$ be a regular path from u to y. Then $x-u-u_{1}-\cdots-y$ is a regular path from x to y. Next, assume that $x, y \in Z(R)^{*}$. Then again as above, there are $u, v \in \operatorname{Reg}(R)$ such that $x+u \in Z(R)$ and $y+v \in Z(R)$. If $u=v$, then $x-u-y$ is a regular path from x to y. So assume that $u \neq v$. Since $\operatorname{Reg}(\Gamma(R))$ is connected, let $u-\cdots-v$ be a regular path from u to v. Then $x-u-\cdots-v-y$ is a regular path from x to y.

In view of Theorems 2.3 and 5.8, we have the following result.
Corollary 5.9. Let R be a reduced commutative ring with $|\operatorname{Min}(R)|=2$. Then there is a regular path from x to y for every $x, y \in R^{*}$ if and only if $\operatorname{Reg}(\Gamma(R))$ is connected.

Recall from [9] that a commutative ring R is a p.p. ring if every principal ideal of R is projective. For example, a commutative von Neumann regular ring is a p.p. ring, and $\mathbb{Z} \times \mathbb{Z}$ is a p.p. ring that is not von Neumann regular. It was shown in [15, Proposition 15] that a commutative ring R is a p.p. ring if and only if every element of R is the product of an idempotent element and a regular element of R (thus a commutative p.p. ring that is not an integral domain has non-trivial idempotents). We show that a commutative p.p. ring R that is not an integral domain has $\operatorname{diam}_{\mathrm{reg}}(R)=2$, but first a lemma.

Lemma 5.10. Let R be commutative ring, $u, v \in \operatorname{Reg}(R)$, and $e \in \operatorname{Idem}(R)$. Then $e u+(1-e) v \in \operatorname{Reg}(R)$.

Proof. Let $e u+(1-e) v=w \in R$, and suppose that $c w=0$ for some $c \in R$. Then $e w=e[e u+(1-e) v]=e u$ and $(1-e) w=(1-e)[e u+(1-e) v]=(1-e) v$. Thus ceu $=c e w=0$ and $c(1-e) v=c(1-e) w=0$, and hence $c e=c(1-e)=0$ since $u, v \in \operatorname{Reg}(R)$. Thus $c=c e+c(1-e)=0 ;$ so $e u+(1-e) v=w \in \operatorname{Reg}(R)$.

Theorem 5.11. Let R be a commutative p.p. ring that is not an integral domain. Then there is a regular path from x to y for every $x, y \in R^{*}$. Moreover, $\operatorname{diam}_{\mathrm{reg}}(R)=$ $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=\operatorname{diam}(T(\Gamma(R)))=2$.

Proof. Let $x, y \in R^{*}$ be distinct, and suppose that $x+y \notin Z(R)$. We consider three cases. Case one: assume that $x, y \in Z(R)^{*}$. Since $x+y \notin Z(R)$, necessarily $x+$ $y \in \operatorname{Reg}(R)$, and thus $x-(-(x+y))-y$ is the desired regular path of length two from x to y. Case two: assume that $x, y \in \operatorname{Reg}(R)$. Since R is a p.p. ring and not an integral domain, there is an $e \in \operatorname{Idem}(R) \backslash\{0,1\}$. Hence $w=-[(1-e) x+e y] \in \operatorname{Reg}(R)$ by Lemma 5.10. Since $e(1-e)=0$ and $e \notin\{0,1\}$, we have $x+w=e x-e y=e(x-y) \in$ $Z(R)$ and $y+w=(e-1) x-(e-1) y=(e-1)(x-y) \in Z(R)$. Thus $x-w-y$ is the desired regular path of length 2 from x to y. Case three: assume that $x \in \operatorname{Reg}(R)$ and $y \in Z(R)^{*}$. Hence $y=f u$ for some $f \in \operatorname{Idem}(R) \backslash\{0,1\}$ and $u \in \operatorname{Reg}(R)$. Then $h=-[(1-f) x+f u] \in \operatorname{Reg}(R)$ by Lemma 5.10. Since $f(1-f)=0$ and $f \notin\{0,1\}$, we have $x+h=f x-f u=f(x-u) \in Z(R)$ and $y+h=(f-1) x \in Z(R)$. Thus $x-h-y$ is the desired regular path of length two from x to y; so $\operatorname{diam}_{\mathrm{reg}}(R) \leq 2$.

For the "moreover" statement, we first note that $T(\Gamma(R))$ is connected with $\operatorname{diam}(T(\Gamma(R)))=2$ by [5, Corollary 3.6] since R has a non-trivial idempotent. Thus $2=\operatorname{diam}(T(\Gamma(R)))=\operatorname{diam}\left(T_{0}(\Gamma(R))\right) \leq \operatorname{diam}_{\mathrm{reg}}(R) \leq 2$ by Theorem 4.7, since $|R| \geq 4$; so we have the desired equality.

Corollary 5.12. Let R be a commutative von Neumann regular ring that is not a field. Then there is a regular path from x to y for every $x, y \in R^{*}$. Moreover, $\operatorname{diam}_{\mathrm{reg}}(R)=2$.

Corollary 5.13. Let R be a commutative ring. If there is an $e \in \operatorname{Idem}(R) \backslash\{0,1\}$, then $\operatorname{Reg}(\Gamma(R))$ is connected with $\operatorname{diam}(\operatorname{Reg}(\Gamma(R))) \in\{0,1,2\}$.

Proof. Let $u, v \in \operatorname{Reg}(R)$ be distinct, $u+v \notin Z(R)$, and $e \in \operatorname{Idem}(R) \backslash\{0,1\}$. Then $w=-e u+(1-e) v \in \operatorname{Reg}(R)$ by Lemma 5.10; so $u-w-v$ is the desired path from u to v in $\operatorname{Reg}(\Gamma(R))$ of length two. Thus $\operatorname{Reg}(\Gamma(R))$ is connected and $\operatorname{diam}(\operatorname{Reg}(\Gamma(R))) \leq 2$.

One easily verifies that $\operatorname{diam}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)\right)=0, \operatorname{diam}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right)\right)=1$, and $\operatorname{diam}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)\right)\right)=2$. Thus all possible values for $\operatorname{diam}(\operatorname{Reg}(\Gamma(R)))$ in Corollary 5.13 may be realized.

We next determine $\operatorname{diam}_{\text {reg }}(R)$ for $R=\mathbb{Z}_{n}$ and $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$. The details are left to the reader; they follow directly from Theorem 5.7 and Corollary 5.12.

Example 5.14. (a) $\left(\operatorname{diam}_{\mathrm{reg}}\left(\mathbb{Z}_{n}\right)\right)$ We have already observed that $\operatorname{diam}_{\mathrm{reg}}\left(\mathbb{Z}_{2}\right)=0$, $\operatorname{diam} \mathrm{reg}\left(\mathbb{Z}_{3}\right)=1$, and $\operatorname{diam}_{\text {reg }}\left(\mathbb{Z}_{p}\right)=\infty$ when $p \geq 5$ is prime. Let $R=\mathbb{Z}_{n}$ with $n \geq 2$ and n not prime. Then $\operatorname{diam}_{\mathrm{reg}}(R)=2$ if n is the product of (at least 2) distinct primes. Otherwise, $\operatorname{diam}_{\text {reg }}(R)=\infty$.
(b) $\left(\operatorname{diam}_{\text {reg }}\left(\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}\right)\right)$ Let $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ with $2 \leq n_{1} \leq \cdots \leq n_{k}$ and $k \geq 2$. Then $\operatorname{diam}_{\mathrm{reg}}(R)=2$ if every n_{i} is prime. Otherwise, $\operatorname{diam}_{\mathrm{reg}}(R)=\infty$.

The rings in Theorem 5.11 and Corollary 5.12 are reduced and not quasilocal. We next give an example of a reduced non-quasilocal ring R that is not an integral domain such that there is no regular path from x to y for some $x, y \in R^{*}$.

Example 5.15. Let $I=2 X \mathbb{Z}[X]$ be an ideal of $\mathbb{Z}[X]$, and let $R=\mathbb{Z}[X] / I$. Then R is reduced, not quasilocal, and $Z(R)=X \mathbb{Z}[X] / I \cup 2 \mathbb{Z}[X] / I$. Note that $R \neq(Z(R))$; so $T_{0}(\Gamma(R))$ is not connected by Corollary 4.3. Thus there is no regular path from x to y for some $x, y \in R^{*}$. It may easily be shown that there is no regular path from $x=1+I$ to $y=X+I$.

We have $\operatorname{diam}\left(T_{0}(\Gamma(R))\right) \leq \min \left\{\operatorname{diam}_{Z}(R), \operatorname{diam}_{\text {reg }}(R)\right\}$ for any commutative ring R. Examples 4.6, 5.5 and 5.14 show that all three diameters may be different. For $n=5^{2} \cdot 7^{2}=1225$, we have $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)=2<3=\operatorname{diam}_{Z}\left(\mathbb{Z}_{n}\right)<\infty=$ $\operatorname{diam}_{\text {reg }}\left(\mathbb{Z}_{n}\right)$. For $n=2^{2} \cdot 3 \cdot 5=60$, we have $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)=\operatorname{diam}_{Z}\left(\mathbb{Z}_{n}\right)=$ $2<\infty=\operatorname{diam}_{\mathrm{reg}}\left(\mathbb{Z}_{n}\right)$. Also, $\operatorname{diam}\left(T_{0}\left(\Gamma\left(\mathbb{Z}_{35}\right)\right)\right)=\operatorname{diam}_{\mathrm{reg}}\left(\mathbb{Z}_{35}\right)=2<\infty=$ $\operatorname{diam}_{Z}\left(\mathbb{Z}_{35}\right)$.

We could also define $\operatorname{gr}_{Z}(R)$ and $\operatorname{gr}_{\mathrm{reg}}(R)$ by only using cycles in $Z(R)^{*}$ and $\operatorname{Reg}(R)$, respectively. However, this gives nothing new since $\operatorname{gr}_{Z}(R)=\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)$ and $\operatorname{gr}_{\text {reg }}(R)=\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))$. We have already determined $\operatorname{gr}\left(Z_{0}(\Gamma(R))\right)$ in Theorem 3.3(2), and $\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))$ has been studied in [5, Theorems 2.6 and 3.14]. We end this paper by giving $\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))$ for $R=\mathbb{Z}_{n}$ and $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$; details are left to the reader.

Example 5.16. (a) $\left(\operatorname{gr}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)\right)\right)$ Let $R=\mathbb{Z}_{n}$ with $n \geq 2$. Then $\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))=\infty$ if $n=4, n=6$, or n is prime; $\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))=4$ if $n=p^{m}$ with $p \geq 3$ prime and $m \geq 2$; and $\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))=3$ otherwise.
(b) $\left(\operatorname{gr}\left(\operatorname{Reg}\left(\Gamma\left(\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}\right)\right)\right)\right)$ Let $R=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$ with $2 \leq n_{1} \leq \cdots \leq n_{k}$ and $k \geq 2$. Then $\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))=\infty$ if $n_{k-1}=2$ and $n_{k}=2,3,4$, or 6 . Otherwise, $\operatorname{gr}(\operatorname{Reg}(\Gamma(R)))=3$.

References

[1] S. Akbari, M. Jamaali and S. A. Seged Fakhari, The clique numbers of regular graphs of matrix algebras are finite, Linear Algebra Appl. 431 (2009) 1715-1718.
[2] S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009) 2224-2228.
[3] D. F. Anderson, On the diameter and girth of a zero-divisor graph, II, Houston J. Math. 34 (2008) 361-371.
[4] D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives, eds. M. Fontana, S.-E. Kabbaj, B. Olberding and I. Swanson (Springer-Verlag, New York, 2011), pp. 23-45.
[5] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719.
[6] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[8] B. Bollaboás, Modern Graph Theory (Springer-Verlag, New York, 1998).
[9] S. Endo, Note on p.p. rings. (A supplement to Hattori's paper), Nagoya Math. J. 17 (1960) 167-170.
[10] J. A. Huckaba, Commutative Rings with Zero Divisors (Marcel Dekker, New York 1988).
[11] I. Kaplansky, Commutative Rings, rev. edn. (University of Chicago Press, Chicago, 1974).
[12] T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra 301 (2006) 3533-3558.
[13] H. R. Maimani, M. R. Pournaki, A. Tehranian and S. Yassemi, Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011) 997-1011.
[14] H. R. Maimani, C. Wickham and S. Yassemi, Rings whose total graphs have genus at most one, to appear in Rocky Mountain J. Math.
[15] W. W. McGovern, Clean semiprime f-rings with bounded inversion, Commun. Algebra 31 (2003) 3295-3304.

