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On the Total (Non Absolute) Curvature of a
Even Dimensional Submanifold x»

Immersed in r»+

A.M. NAVEIRA

ABSTRACT. The total curvatures of the submanifolds immersed in the
euclidean space have been studied mainly by Santalé and Chern-Kuiper. In
this paper we give geometrical and topological interpretation of the total (non
absolute) curvatures of the even dimensional submanifolds immersed in R"12,
This gives a generalization of two results obtained by Santalé.

0. INTRODUCTION

The total curvatures of compact manifolds X", (without boundary),
immersed in the euclidean space R™**" have been widely studied in the
literature. In [CHL. 1,2] the “absolute” total curvatures of X™ were
studied. This work of Chern has been followed by the works of several
other authors. In this direction L.A. Santald, [SA. 1}, gives the definition
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of some “absolute” total curvatures. He, [SA. 2], later analyses a lot of
properties of these curvatures. He gives the local representation for the
total, (absolute and non absolute), curvatures and studies this kind of
curvatures in some cases; in particular, for the non absolute curvatures
whenn=N=2,r=1and forn =4, N =2, r =2, where r is the
order of the total curvature. In this note we generalize these two results
tothecasesn =4, N =2, r=2tandn = 4t+2, N = 2, r = 2t+1. For
n =41, N =2 r=2t, we obtain that this absolute curvature has also
a topological meaning, generalizing also the topological interpretation
given by L.A. Santalé in {SA. 2] forn=4, N =2, r=2.

1. SOME GENERAIL RESULTS.

Let X™ be a compact differentiable manifold without boundary.
Following the notations that L.A. Santalé had used in [SA. 2] we recall
several notations and general properties about the Integral Geometry of
a submanifold X" immersed in the euclidean space R"+V.

Let (z,e1,...,e44nN) be a local field of orthonormal frames, such
that, when it is restricted to X7, the vectors ¢;,...,¢e, are tangent to
X" and the remaining vectors €,41,...,€en4 N are normal to X". We
use the following range of indices 1 < 4,3, k,h,... <n < a,8,7,... <

n+N; 1< A B,C,... <n+ N and the summation convention will be
used throughout.

The following eqzations for the moving frames in R"*V are well
known

dr = wqey; dey = wfeg; wh +wf = 0
Wa = 0, Wia = Agijw’; Aayij = Agjii dwij = wip Awnj + Qi
where Q,‘j = Wig Awq; With Rijes = AqikAajr — Aa,ihAa,jk-
We have also dwap = way A whg + (lag where 2,5 = wai A wip

with Ropn; = AainApij — AaijApin- We recall that A.,.) are the
coefficients of the second fundamental form of the submanifold.

Let L, denote a h-dimensional linear subspace in R"V. Let L)
denote a h-plane in R™N through a fixed point 0. We shall represent
the element of volume in the corresponding Grassmann manifold by
dLpjg), which expression can be found in [SA. 2] or [CH]. So we have
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dLpjo) = dLy_ppo) = /\wau
a,u
1<ab,... <h<uv,...<n+N.

Also, the density for sets of A-planes, not through 0, in RV js
given by, [SA.2).

dL, = dtho] Awpp1 A AWeyN

where wpy1 A ... A wnyn is the volume element of the (n + N — h)-
plane spanned by the vectors ep41,...,eq4n5 orthogonal to L, at the
intersection point.

The volume of the Grassmann manifold

G B O(n+ N)
hnt+N-h = O(h) 95 ”‘_ h)
is given by
_ _ OpOpyy X -+ X OpynN-1
‘U(Gh,n-{-N—h) = / dLye = OO X O (1.1)

Gh.naN=-h

where O; represents the area of the i:-dimensional unit sphere.

With the same notations used previously we have the following.

Definition. [SA. 1] Assuming 1 < 7 < n+ N — 1, the r-th total
absolute curvature of X™ can be defined as follows:

Let O be the fized point in R™*" and consider a (n + N — r)-
plane through 0,1 < 7 < n, (n £ r < n+ N-1). Let T, be the
set of all r-planes L, in R**YN which are contained in (contain) some
T(z), = € X", pass through x and are perpendicular to L.yn_(0]-
The intersection I' N Loy N_;[o0] i5 @ compact variety in L, n_ri0) of
dimension éy =n—rN, (6 =n(r+1—-n—-N).
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Let ps; (T N Ly n-rjo]) denote the measure of this variety as a
subvariety of L,y n_r(0]. Then the r-th total absolute curvature of X™
immersed in Lyin 18

O1 %X+ X OpgNer-1

KenX™) = S =comen T

/ Fe; (F* N Lﬂ+N-r[Ol)dLn+N-r[01.

Gr,a+N—r

Here we are interested only in the case §; = 0; that is, n = rN.
Then u, means the number of intersection points of T, and L4 N-+{O]-
In this case, L.A. Santalé had obtained the local representation of the
curvatures K7 x(X™) and it is given by

KinX™) = [ Qia@io.

where
* n O XX On _r—
QX" = 5 S [ IG(, Le(e)]dLra
with
G(, Ljzy)don = Awia. (1.2)

[

1<4,7,...<mn+1<a,8,...<n+ N.

The expression for (7 is rather complicated depending on the coef-
ficients of the second fundamental form. As L.A. Santalé pointed out,
the integration of this fonction over the Grassmann manifold is very dif-
ficult. If we consider the “total (non absolute)” curvatures K, n(X"),
then this integration was made in several cases for low dimensions, [SA.
2].
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2. TOTAL (NON ABSOLUTE) CURVATURE OF A EVEN
DIMENSIONAL SUBMANIFOLD X" IMMERSED IN R"*2
If X, n = 2/ is a submanifold immersed in R2*+2 we consider
separately the cases:
Ayn=4, N=2,r=2L.
Byn=4t+2 N=2, r=2t+ 1.

First, we analyse the CASE A). According to (1.2), if we consider
:he 2t-plane Ly,(z) contained in Ly and spanned by ey, ..., ez, we have

Gz, [er, ..., e2:])dogs = W1 4041 AW1 g2 A e AW g4 Awsg atgz. (2.1)

It is possible also to give the corresponding expression for the 2t-
plane Ly, spanned by the vectors el = Yinen, but it is not useful.

Instead of evaluating the integral at the right of (2.1) over Gas 94 is
easier to observe that for any frame (ey,...,ey;) the sum

§= Z Wiy 4t41 A Wiy aep2 Ao AW, 4041 A Wig, at42 (2.2)

(ilv'"|i21)

is invariant under the orthogonal group O(2¢). In consequence, S is
equal to its mean value over Gy 3, and according to (1.1) we have

O1 X+ x0gt1 1
— S 2.3
Oatyz X <+ X Ogeg1 V3 (23)

Q2t,2t[x] doy =

where V;1! represents the variations of 4t elements taken 2t each time.

Although it is possible to give expressions for Q3 2¢(z) depending
on the coefficients of the second fundamental form and depending on
the Riemannian curvature operator of the submanifold, these are rather
complicated; however we can prove the following:

Proposition 1. With the same conditions as before, the 4t-dif-
ferential form § represents the t-th Ponirjagin class of X1%,
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Proof. We know, ((KN] p.313) that
1 1---J2
pe(2) = )RRy S EIRQ A A Qg (2.4)

represent the k-th Pontrjagin class of X%, where the summation runs
over all ordered subsets (71,...,43;) of 2k elements of (1,...,4%k) and
all permutations (f1,...,724) of (41,...,024). If 4 = j, for all @ =
1,...,2k, €, = 0. So, i, must be always different of j,.

There are several posibilities for the partition (%y,...,%3%); in any
case, this set remains separated in two or more subsets and each one
with their own permutation. Each subset is of the form

D iy A ARy, =

(41,...58221)

= Z(Wi1,4t+l A Wit 41,0 F @in at42 A Watr2,ip0, ) A e A
(i)

AWisy dt+1 A Wat41ipesn, T Wigy at+2 A Wat42,i,00,) (2.5)

where p belongs to the group of permutations of order 2A and we have
used (2.7) for the expression of the curvature form.

Now, in (25) all products are zero except in the case we have
exactly the index 4t 4+ 1 A times and similarly for the index 4t + 2. Then
remembering the properties of w;;, all terms are of the form

wa1,4t+1 Awipatyr Ao AWy, aeg1 Awig, deq2- (2.6)
(is)

Taking the product of all subsets of the form (2.6) which appear in
(2.5) see that (2.2) and (2.4) represent the same cohomology class.

CASE B)
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4142
Now, L2t+l[:|:]

to (1.2), we have

is the 2¢-+ 1 plane spanned by ey,...,e3;41. According

G(z,[e1,...,e2e41]}d04r42 = W1 4043 AW g4y A< A

Awati1,4t43 A Watp1 a(e41)- (2.7)

For the general (2¢ + 1) -space spanned by the vectors e} = y;pen,
(1 < 4,h,... £ 2t+ 1), we have also a general formula for G(z,
[€},...,€h41]} but it is not manageable. Now, we proceed as in the
case a). So, we construct the following orthogonal invariant:

5= Z Wiy 4t43 A Wip q(e42) N oo AWig g 4643 A Wig g 4(t4+2) -
(31,0 pt2e41)=(4)

(2.8)

In this case we have also the following

Proposition 2. The local representation of the eurvature
Qae41,2(2) is

Qat41,2(x) = L 91 % X O
+1, I/’zﬁz-@zgw-@qu.a

R4t +3,4t+4; 1,2,...,4t + 1,4t + 2} (2.9)
where

R(4t+3,4t+4; 1,2,...,4t+ 1,4t +2) =

> e(p)R(4t + 3,4t + 4,p(1),p(2)) X ...
i

oo X R(4t + 3,4t + 4, p(4t + 1), p(4t + 2))
is a kind of generalized mized curvature tensor, which generalizes the

classical Ricct equation.

Proof. With the same considerations as in the case a), we have

1 Oy %o %X O

Q21+1,2($)d04t+2 =
Ve Ozeqa X -+ X Ogegs

s. (2.10)
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In the following, by simplicity, we identify the index 4¢ + 3 with a
and 4(f + 1) with 3. Since w;s = A4 4;w7, we have

S = Ewgm Awjph. . Awp a AW 08 =
(9

= E(Aa,iljwj) A (Aﬁ,l'lkwk) A A (Acx.izc-i-lfw‘) A (Aﬂ.izwlmwm) =
(%)

Z E(P)A“’il p(l)AB,il o(2) - Aa,imﬂ P(“-H)Aﬂ"'ztﬂP(4f+2)dg4f+2 =
P

> P Aaiio1) A irn(2) — Aaira(z)Aiam)] -
p/o(21-1)<p(20)

[A""'QHIP(“‘*'I)Aﬁs‘-?HIP(‘“"'z) - A0,521+1p(41+2)Aﬁ.fzt+lﬂ(4t+1)]da4f+2 =

= Z S(P)Raﬁp(l}p(Z) tee Raﬂp(4t+1)p(4t+z')d04t+2 =

Rop. (at41)(at+2)90 0142 (2.11)

From (2.10) and (2.11) we obtain (2.9).
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