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1. Introduction. Let K, L be algebraic number fields with K ⊆ L,
and OK , OL their respective rings of integers. We consider the trace map

T = TL/K : L→ K

and the OK-ideal T (OL) ⊆ OK . By I(L/K) we denote the group index of
T (OL) in OK (i.e., the norm of T (OL) over Q). It seems to be difficult to
determine I(L/K) in the general case. If K and L are absolutely abelian
number fields, however, we obtain a fairly explicit description of the number
I(L/K). This is a consequence of our description of the Galois module
structure of T (OL) (Theorem 1). The case of equal conductors fK = fL

of the fields K, L is of particular interest. Here we show that I(L/K) is a
certain power of 2 (Theorems 2, 3, 4).

2. Basic notions. Let d ∈ N and ξd = e2πi/d. Then Qd = Q(ξd) is
the dth cyclotomic field. If K is an absolutely abelian number field, we put
Kd = K ∩Qd. By

ξd,K = TQd/Kd
(ξd)

we denote the trace of the root of unity ξd over Kd. Let GK = Gal(K/Q)
be the Galois group of K over Q and ZGK its integral group ring. For a
number m ∈ N write

m∗ =
∏

{p ; p |m} ,
i.e., m∗ is the maximal square-free divisor of m. Let, in particular, m = fK

be the conductor of K. Then OK has a uniquely determined decomposition
into indecomposable ZGK-modules, viz.

(1) OK =
⊕

m∗ | d |m

ZGKξd,K

(see [3], [4]).
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For simplicity we write Om = OQm and Gm = GQm . If k is an integer
prime to m, we define σk ∈ Gm by

σk(ξm) = ξk
m .

Then Gm = {σk ; 1 ≤ k ≤ m, (k,m) = 1}.
Suppose now that both fields K, L, K ⊆ L, are abelian. Let XK , XL

be the character groups of GK , GL, resp. The restriction map

( )K : GL → GK : σ 7→ σK = σ|K
is surjective, and it defines an injection

XK → XL : χ 7→ χ ◦ ( )K .

Hence we consider XK as a subgroup of XL. For a character χ ∈ XK let
fχ be the conductor of χ. Then fχ divides m = fK . Moreover, if d ∈ N, we
write

[d] = {c ∈ N ; c | d , d/c square-free, (c, d/c) = 1} .
There is a decomposition of XK that corresponds to (1) in a canonical way
(see [1]). Indeed,

XK =
.⋃

m∗ | d |m

{χ ∈ XK ; fχ ∈ [d]} ,

and

(2) rankZ(ZGKξd,K) = |{χ ∈ XK ; fχ ∈ [d]}|
for each d, m∗ | d |m.

3. Description of TL/K(OL) and I(L/K). Let the above notations
hold, in particular, let K ⊆ L be abelian number fields with conductors
fK = m, fL = n. If d is a divisor of m, write

d̂ = d
∏

{p ; p prime, p |n, p -m} .

Theorem 1. In the above situation the following assertions hold :

(i) TL/K(OL) =
⊕

m∗ | d |m

ZGKhdξd,K ,

with hd = [L : K]/[Ld̂ : Kd]; hd is an integer whenever ξd,K 6= 0.

(ii) I(L/K) =
∏

m∗ | d |m

hrd

d ,

with rd = rankZ(ZGKξd,K) = |{χ ∈ XK ; fχ ∈ [d]}|.
Corollary. Let m |n. For K = Qm, L = Qn,

(i) T (On) = n/m̂ · Om;
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(ii) I(Qn/Qm) = (n/m̂)ϕ(m) ,

ϕ denoting Euler’s function.

We turn to the special case of equal conductors, so K ⊆ L and fK =
fL = n. Write

H = Gal(L/K) , Hd = Gal(L/Ld) , d |n .

Suppose, moreover, that q is a prime number and [L : K] a power of q.
Put e = max{k ; 2k |n} (i.e., the 2-exponent of n). If e ≥ 1, define j, l ∈
{1, . . . , n} by the congruences

j ≡ − 1 mod 2e , l ≡ −1 + 2e−1 mod2e ,

j ≡ l ≡ 1 modn/2e .

Theorem 2. In this situation the following assertions are equivalent :

(i) I(L/K) > 1;
(ii) q = 2, e ≥ 3, and either H ∩ Hn∗ = 〈σj,L〉 6= {id} or H ∩ Hn∗ =

〈σl,L〉 6= {id}.

R e m a r k. Let (K,Ln∗) be the composite of the subfields K, Ln∗ of L.
Then assertion (ii) can be restated as

(iii) q = 2, e ≥ 3, [L : (K,Ln∗)] = 2, and either Gal(L/(K,Ln∗)) = 〈σj,L〉
or Gal(L/(K,Ln∗)) = 〈σl,L〉.

This is clear by Galois theory.

Theorem 3. Let K ⊆ L, fK = fL = n, e ≥ 3, and let [L : K] be a
power of 2. Suppose that the equivalent conditions (i), (ii) of Theorem 2 are
satisfied. If H ∩ Hn∗ = 〈σj,L〉 put k = j, otherwise put k = l. Then the
numbers hd of Theorem 1 take the following values:

hd =
{ 2 if σk,Ld

= id,
1 else.

In particular , hd = 2 for all d with n∗ | d |n/2e−1, and

2[Kn/2e :Q ] | I(L/K) | 2[K:Q ] .

Corollary. In the situation of Theorem 3 let L = Qn. Then

TQn/K(On) = 2 · OKn/2e ⊕
⊕

{ZGKξd,K ;n∗ | d |n , 4 | d}

and I(L/K) = 2[Kn/2e :Q].

Theorems 2 and 3 also yield a description of T (OL) and I(L/K) for
arbitrary abelian number fields K ⊆ L of equal conductor n. As above, let
H = Gal(L/K) and H(p) be the p-Sylow group of H (p prime). Let L(2) be
the fixed field of

∏
{H(p) ; p 6= 2} (thus Gal(L(2)/K) is isomorphic to H(2)).
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Theorem 4. In the above situation,

TL/K(OL) = TL(2)/K(OL(2)) .

Hence the structure of TL/K(OL) and the value of I(L/K) are given by
Theorems 2 and 3 applied to K ⊆ L(2).

4. Proofs

P r o o f o f T h e o r e m 1 . First we show

(3) T (OL) =
⊕

n∗ | c |n

ZGKhcξc,K ,

with hc = [L :K]/[Lc :Kc]. Indeed, if n∗ | c |n, then

TL/Kc
(ξc,L) = TK/Kc

(TL/K(ξc,L)) = [K :Kc]TL/K(ξc,L) ,

and
TL/Kc

(ξc,L) = TLc/Kc
(TL/Lc

(ξc,L)) = [L :Lc]ξc,K .

This yields

TL/K(ξc,L) = ([L : Lc]/[K : Kc])ξc,K = hcξc,K .

Hence T (ZGLξc,L) = ZGLT (ξc,L) = ZGLhcξc,K = ZGKhcξc,K . We obtain

T (OL) =
∑

n∗ | c |n

ZGKhcξc,K .

This sum, however, is direct, due to ZGKhcξc,K ⊆ ZGLξc,L and formula (1).
Therefore (3) holds. For the time being, fix c with n∗ | c |n, and put
d = (c,m). Then Kd = Kc and

(4) ξc,K = TQd/Kd
(TQc/Qd

(ξc)) .

Moreover, formula (34) in [1] yields

(5) TQc/Qd
(ξc) =

{
±σk(ξd) if d ∈ [c],
0 otherwise,

k being a certain number prime to d. From (4), (5) we conclude that ξc,K 6=
0 only if d ∈ [c], i.e., c = d̂. In this case hc = hd, and (4), (5) imply
ZGKξc,K = ZGKξd,K . We obtain from (3)

T (OL) =
⊕

m∗ | d |m

ZGKhdξd,K .

Observe that ZGKhdξd,K ⊆ OK , m∗ | d |m. Hence (1) implies hdZGKξd,K ⊆
ZGKξd,K . If ξd,K 6= 0, ZGKξd,K is a free Z-module of Z-rank ≥ 1, and hd

must be an integer. This concludes the proof of (i). Assertion (ii) follows
from (i), (1), and (2).
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P r o o f o f t h e C o r o l l a r y (of Theorem 1). For each d with m∗ | d |m
the number hd equals ϕ(n)ϕ(d)/(ϕ(m)ϕ(d̂ )) = ϕ(n)/ϕ(m̂) = n/m̂. Since
hd does not depend on the choice of d, the assertions follow from (1).

P r o o f o f T h e o r e m 2. Let n∗ | d |n. By Galois theory, Gal(L/Kd) =
Gal(L/K ∩ Ld) = 〈H,Hd〉 = HHd. Moreover, |HHd| = |H| |Hd|/|H ∩Hd|.
After a short calculation this yields

(6) hd = |H ∩Hd| .
Suppose that (ii) holds. Then hn∗ = 2, by (6). Formula (1) shows that

OKn∗ = ZGKξn∗, K ,

which yields rn∗ = rankZ OKn∗ ≥ 1. From Theorem 1(ii), we infer that
I(L/K) > 1.

Conversely, assume (i). We shall show in the subsequent steps (a)–(d)
that (ii) holds.

(a) There is a number d, n∗ | d |n, such that H ∩Hd 6= {id}. Because of
Hd ⊆ Hn∗ , H ∩ Hn∗ 6= {id}, too. Since |H| is a power of q, H ∩ Hn∗ is a
non-trivial subgroup of the q-Sylow group Hn∗,q of Hn∗ .

(b) Suppose that q 6= 2 or q = 2, e ≤ 2. We show that Hn∗,q is a cyclic
group. Put

J = Gal(Qn/L) , Jn∗ = Gal(Qn/Qn∗) .
Then JJn∗ = Gal(Qn/Ln∗). The restriction map

( )L : Gal(Qn/Ln∗) → Gal(L/Ln∗) = Hn∗ : σ 7→ σL

is surjective; because of (J)L = 1 we get Hn∗ = (JJn∗)L = (Jn∗)L. We
assert that the q-Sylow group Jn∗,q of Jn∗ is cyclic. Indeed, the Chinese
Remainder Theorem yields a canonical isomorphism

ψ : Gn →
∏
p |n

(Z/pepZ)× ,

ep = max{k ; pk |n} being the p-exponent of n. But ψ maps Jn∗ onto∏
p |n{k ; k ≡ 1 mod p}, whose q-Sylow group is

{k ; k ≡ 1 mod q} ×
∏
p6=q

{1} .

Since q ≥ 3 or q = 2, e ≤ 2, this group is cyclic.
(c) Again suppose q 6= 2 or q = 2, e ≤ 2. If eq = 1, |Jn∗ | = n/n∗ 6≡

0 mod q; thus |Hn∗ | 6≡ 0 mod q and |H∩Hn∗ | 6≡ 0 mod q, contrary to step (a).
Hence assume eq ≥ 2. Then Hn/q ⊆ Hn∗ . Furthermore, |Jn/q| = q, which
gives |Hn/q| | q and Hn/q ⊆ Hn∗,q. However, Hn∗,q is cyclic by step (b), and
H ∩Hn∗ is a non-trivial subgroup, by (a). This requires Hn/q ⊆ H ∩Hn∗

⊆ H. Therefore K ⊆ Ln/q, which is impossible, due to fK = n.
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(d) Step (c) has shown that q = 2 and e ≥ 3. Let σk,L ∈ H ∩ Hn∗ ,
σk,L 6= id. Since there is an epimorphism ( )L : Jn∗,2 → Hn∗,2, we can
assume that σk ∈ Jn∗,2, i.e., k ≡ 1 modn/2e. It is well-known that k satisfies
one of the congruences

k ≡ ±5b mod2e , 1 ≤ b ≤ 2e−2

(see, e.g., [2], p. 43). Suppose that b < 2e−2. Then there is a divisor c of
2e−3 such that

5bc ≡ 1 + 2e−1 mod2e

(loc. cit.). We get kc ≡ (±1)c(1 + 2e−1) mod 2e. If c > 1, this yields
σc

k ∈ Jn/2 \ {id}. But |Jn/2| = 2, thus Jn/2 = 〈σc
k〉 and Hn/2 = 〈σc

k,L〉 ⊆ H,
contrary to fK = n. Therefore c = 1, and k ≡ ±(1 + 2e−1) mod 2e. The
case k ≡ 1 + 2e−1 mod2e is impossible again. Altogether, we have shown
that b = 2e−2, k ≡ −1 mod 2e, or that k ≡ −1 − 2e−1 ≡ −1 + 2e−1 mod2e.
This implies H ∩Hn∗ = 〈σj,L〉 6= {id} or H ∩Hn∗ = 〈σl,L〉 6= {id}.

P r o o f o f T h e o r e m 3 a n d t h e C o r o l l a r y. Let k be as assumed
and H ∩ Hn∗ = 〈σk,L〉 6= id. Consider a number d with n∗ | d |n. Then
H ∩Hd ⊆ H ∩Hn∗ ; by (6) we get hd 6= 1 if and only if σk,L ∈ Hd, which
means σk,Ld

= id. Obviously this is the case if 4 - d. We have shown

2 · Ok ⊆ T (OL)

⊆
⊕

{ZGK2ξd,K ;n∗ | d |n/2e−1} ⊕
⊕

{ZGKξd,K ; 2n∗ | d |n}

= 2 · OKn/2e ⊕
⊕

{ZGKξd,K ; 2n∗ | d |n} .

This gives
2[Kn/2e :Q ] | I(L/K) | 2[K:Q ] .

In the case L = Qn, the last inclusion can be replaced by equality.

P r o o f o f T h e o r e m 4. We have [L : L(2)] = |H|/|H(2)|, which is an
odd number. For this reason there exists a chain of intermediate fields

L(2) ⊆ . . . ⊆ L′ ⊆ L′′ ⊆ . . . ⊆ L

such that [L′′ : L′] is an odd prime power. All of these fields have conduc-
tor n. So Theorem 2 implies TL′′/L′(OL′′) = OL′ , whence TL/L(2)(OL) =
OL(2) . Finally,

TL/K(OL) = TL(2)/K(TL/L(2)(OL)) = TL(2)/K(OL(2)) .
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