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Abstract— This paper develops a theoretical framework for
quantifying the trade-off between communication cost and con-
trol performance in event-triggered control over lossy networks.
We consider a system where the communication between the
controller and actuator is dictated by a threshold-based event-
triggering algorithm, and develop a Markov-chain model that
describes the attempted and successful transmissions of control
messages over the lossy communication channel. A feature of
our model is that it considers retransmissions of unsuccessful
messages and that it accounts for the delay associated with
such retransmissions. A systematic framework for analyzing
the trade-off between the communication rate and control
performance and for optimal tuning of the event threshold
emanates by combining this model with an analytical model of
the closed-loop performance. Numerical examples demonstrate
the effectiveness of the proposed framework.

I. INTRODUCTION

EVENT-triggered algorithms have emerged as an alterna-
tive approach to the traditional periodic implementation

of estimators and controllers, and are often able to achieve
good performance using significantly reduced communica-
tion rates. A reduced communication rate decreases the en-
ergy at the transmitter side and could also reduce congestion
when the communication takes place over a shared medium.
For this reason, there are several potential applications of
event-triggered algorithms, e.g., control over communication
networks [1], [2], multi-agent systems [3], distributed opti-
mization [4], and embedded control systems [5].

The literature on stability and performance of basic
event-triggered control algorithms is by now extensive. The
works [4]–[8] proposed triggering algorithms which compute
control actions whenever it is necessary to ensure a certain
decrease in a Lyapunov function. Otanez et al. [9] investi-
gated adjustable deadbands for reducing the communication
rate while accounting for the system response and also
derived stability conditions for this controller. Model-based
event-triggered state-feedback control was considered in [1].
There are also many event-triggering approaches which only
consider scalar stochastic control systems, see e.g., [10]–[12]
and references therein.

Another line of research has focused on obtaining optimal
or sub-optimal event-triggering mechanisms for predefined
performance [13]–[17]. Xu and Hespanha [14] proposed
an event-triggered estimation framework which attempts
to minimize the communication rate while guaranteeing a
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certain bound on the estimation error covariance matrix.
Molin and Hirche [15] worked on a joint optimal scheduling
and control problem and established the existence of certain
equivalences under communication constraints. Cogill et
al. [16] aimed at scheduling transmissions so as to balance
a trade-off between the communication rate and estimation
error. Similarly, Xia et al. [17] demonstrated the trade-
off between the communication rate and estimation error
covariance when the information from the sensor to the
controller is transmitted over a shared communication link.
Distinctively, Antunes et al. [18] considered the co-design of
transmission schedules and control inputs for event-triggered
control systems while providing a better discounted control
performance than periodic control strategies.

In this paper, we consider a threshold-based scheme for
triggering transmissions from the controller to the actuator
over a lossy network. A feature of our model is that we
allow packets to be retransmitted (up to a maximum number
of times) to mitigate the detrimental effect of packet loss, and
these packets are dropped only if all retransmission attempts
fail. Communication happens on a faster time scale than
sampling, and our model accounts for the randomly varying
delay introduced by the retransmission mechanism. Together
with an analytical model of the closed-loop performance,
this allows us to quantify the trade-off between control
performance and the number of attempted and successful
transmissions over the communication link.

Outline of the Paper. In Section II, we introduce the model,
the controller and the event-triggering algorithms, along with
measures of control performance and communication cost.
Sections III and IV present our main results. Numerical
examples are provided in Section V while Section VI sum-
marizes the paper.

Notation. In this paper, Rn denotes the n–dimensional
Euclidean space, R≥0 (R>0) is the set of non-negative
(positive) real numbers, Z≥0 (Z>0) is the set of all non-
negative (positive) integer numbers, and Z[a,b] is the set of
all integer numbers between a and b; i.e., Z[a,b] , {x ∈
Z≥0 : a ≤ x ≤ b}. Here, Sn≥0 (Sn>0) is the set of all real
symmetric positive (semi-) definite matrices of dimension n.
We write the vector of all zeros as 0, and the vector of all
ones as 1. The Q function is defined as

Q(µ,Σ, ε) =
1

(2π)
n
2 |Σ| 12

×
∫ ∞
ε

· · ·
∫ ∞
ε

e−
1
2 (x−µ)ᵀΣ−1(x−µ)dx1 · · · dxn . (1)

For an n–dimensional multivariate Gaussian random vari-
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able X with mean vector µ ∈ Rn and covariance Σ ∈ Sn>0,
we denote the generalization of the Q function as Pr(X ≥
x) , Q(µ,Σ, x), where the inequality is interpreted element-
wise.

II. PROBLEM FORMULATION

This section summarizes the process model (including its
discrete-time equivalence), the control architecture, and the
event-triggering rule. Moreover, it introduces the assump-
tions under which we will develop a performance analysis
for the event-triggered control over lossy channels.

A. Process model and discrete-time equivalent

Consider the continuous-time linear stochastic system

dxt = axtdt+ butdt+ dwt , x(0) = x0 , (2)

where a and b are scalars, xt is the state, ut is controlled
input, and {wt, t ∈ R≥0} is a Wiener process with zero
mean and incremental covariance Rwdt. Similarly, the initial
state x0 is modeled as a random variable having a normal
distribution with zero mean and variance Π0. The process
{wt} is independent of the initial condition x0. Noise-free
samples of the process state are taken every h seconds and
are made available immediately to the controller node. The
control signal is computed using an event-triggered control
strategy (defined below) and transmitted to the actuator
over an unreliable communication link that drops packets
according to a Bernoulli process with probability p` as
illustrated in Figure 1. A successful packet transmission
between the controller and actuator takes τ seconds. In
case of transmission failure, we retransmit the packet until
success, or until we have reached a maximum limit of R
retransmission attempts. In the absence of new information,
the actuator applies zero control; cf. [19]. When a new
control command arrives, the actuator applies it immediately
and holds it until the next sampling instance. The timing
diagram of various signals is shown in Figure 2. It is natural
to discretize the system over time intervals of length equal
to the slot-time τ of the communication medium. We let nk
denote the number of transmissions required until successful
transmission in sampling interval k. Using the techniques
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Fig. 1: A block diagram of the event-triggered control system
with a (linear) plant G, a dead-beat controller C, a sensor
S, an actuator A, a comparator with event-triggering rule
|x[kh]| > ε, and an unreliable communication link.
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Fig. 2: Timing diagram of signals in the event-triggered
control system. The first diagram illustrates the process state
and the sampling instants; the second diagram illustrates the
signal into the controller node; the third diagram illustrates
the signal into the actuator node, and the fourth diagram
illustrates the process input. Furthermore, the third diagram
shows that if the packet is not delivered at most in R number
of retransmissions, then it is dropped. As a consequence, no
control signal is applied to the process input.
in [20], we find that the state evolution of (2), for the first nk
time slot intervals following sampling instance k, is given by

x[kh+ (k̃ + 1)τ ] = Φ(τ)x[kh+ k̃τ ] + w[kh+ k̃τ ] , (3)

for all k̃ ∈ Z[0,nk−1] and k ∈ Z≥0 where Φ(τ) , eaτ (since
the actuator applies zero control action during this time).
During the remaining time slots until sampling instance k+1,
the state evolves as

x[kh+ h] = Φ(h− nkτ)x[kh+ nkτ ]

+ Γ(h− nkτ)ua[kh+ nkτ ] + w[kh+ nkτ ] , (4)

where Φ(t) , eat, Γ(t) ,
∫ t

0
easds b = b

a

(
eat − 1

)
and

ua[kh + nkτ ] is the control applied by the actuator at time
kh+ nkτ , and computed based on the process state at time
kh. The discrete-time equivalent noise processes {ω[kτ ], k ∈
Z≥0} and {ω[k(h−nkτ)], k ∈ Z≥0} are Gaussian and white
with zero means and covariances

Πw(h− nkτ) = Πh−nkτ
w ,

∫ h−nkτ

0

e2asRwds ,∀nk ≤ R ,

and

Πw(τ) = Πτ
w ,

∫ τ

0

e2asRwds ,

respectively.

B. Controller and event-triggering rule

We use a deadbeat control strategy, which would transfer
the process state at the next sampling instance to the origin
in the absence of process noise. Since packet losses and

1169



· · ·

· · ·

· · ·

...
...

...
...

0, 0, h − τ

0, 0, h − Rτ

0, 0, h

Loss

1, 0, h T, 0, h

T, 1, τ1, 1, τ0, 1, τ

0, R, τ 1, R, τ T, R, τ

1 − pij p�pij (1 − p�)pij p� 1 − p�

Fig. 3: A multi-dimensional Markov chain which illustrates
the packet loss in the network.

retransmissions affect when the control signal is applied at
the actuator, such a control law will depend of the number
of attempted transmissions and be on the form

uc[kh+ nkτ ] = L(nk)x[kh] , (5)

where L(nk) , Γ(h− nkτ)−1Φ(h).
A threshold-based event-triggering algorithm determines

whether or not the computed control signal will be sent to
the actuator. Specifically, the information transmission be-
tween the controller and actuator will be attempted whenever
|x[kh]| > ε. In addition, we assume that the controller node
transmits at least once every T time steps to guard against
the practical concern of no transmissions due to component
failure. Considering the unreliable communication channel,
there are three possibilities: (a) we choose not to transmit any
information at time kh, (b) we choose to transmit a packet
but do not succeed in transmission or (c) we choose to and
succeed in transmitting the control action to the actuator.

As discussed above, if a transmission attempt fails, the
packet is retransmitted until a successful attempt, or a
maximum of R attempts have been carried out. After R
unsuccessful trials, the packet is dropped. The behavior of
the event-triggered communication with packet losses and
retransmissions can be described by the Markov chain M`

shown in Figure 3. This discrete-time discrete-state multi-
dimensional Markov chain has (T + 2) × (R + 1) modes.
Each mode is represented by three digits: the first digit
represents when the last transmission took place; the second
one represents the number of retransmissions that have been
attempted; and the third one describes the amount of time
the system spends in each state.

C. Control Performance

Throughout this paper, for a given set of controllers, we
quantify the associated closed-loop performance in terms of

its linear quadratic control loss

J = E

{∫ Nh

0

[
x(t)
u(t)

]ᵀ [
Qcxx Qcxu

(Qcxu)ᵀ Qcuu

] [
x(t)
u(t)

]
dt

+ xᵀ(Nh)Qc0x(Nh)

}
, (6)

where Qcxx and Qc0 are symmetric and positive semi-definite
matrices, and Qcuu is positive definite. Here, the expectation
is taken over the process noise {w[kh], k ∈ Z≥0} and
the initial state x0. When the continuous-time control loss
function is discretized over intervals of length h, it has to
be modified to account for the number of retransmissions
required at each sampling time. The equivalent discrete-time
loss function becomes

J = E

{
N−1∑
k=0

[
x[kh]
u[kh]

]ᵀ [
Qdxx Qdxu

(Qdxu)ᵀ Qduu

] [
x[kh]
u[kh]

]

+ xᵀ[Nh]Qc0x[Nh]

}
,

where

Qdxx , Qxx(nkτ) + Φᵀ(nkτ)Qxx(h− nkτ)Φ(nkτ) ,

Qdxu , Φᵀ(nkτ)Qxu(h− nkτ) ,

Qduu , Quu(h− nkτ) ,

with

Qxx(t) =

∫ t

0

Φᵀ(s)QcxxΦ(s)ds ,

Qxu(t) =

∫ t

0

Φᵀ(s)(QcxxΓ(s) +Qcxu)ds ,

Quu(t) =

∫ t

0

(Γᵀ(s)QcxxΓ(s) + 2Γᵀ(s)Qcxu +Qcuu)ds .

III. PROPOSED METHOD AND MAIN RESULTS

In this section, we will develop an event-triggered control
framework to analyze the expected communication rate when
there is a reliable or an unreliable channel between the con-
troller and actuator. For both cases, we will provide analytical
expressions for communication attempt (resp. success) rates.

0 1 2 · · · T

1− p00 1− p10 1− p20 1− pT−1,0

pT0

p20

p10

p00

Fig. 4: The transition graph of Markov chain for no packet-
loss.
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A. Event-triggered channel without packet loss

We first focus on the event-triggered control problem
defined in Section II when there is no packet loss. In this
case, the Markov chain can be reduced to the chain M
shown in Figure 4. Obviously, we have no modes related
to losses or retransmissions; the modes simply describe the
number of sample times between two consecutive threshold
crossings (bounded by the time-out interval T). Specifically,
this Markov chain has T + 1 modes and state {r[kh]}k≥0

where r[kh] = j implies that at time kh, the last transmission
occurred at time (k − j)h. The transition probabilities are

pij = Pr(r[kh+ h] = j | r[kh] = i) .

Since we use the control signal ua[kh] = L(0)x[kh] and
ua[kh + jh] = 0, ∀j ∈ Z[1,T−1], the state trajectory of
system (2) is calculated as

x[h(k + i) + h] = Φ(h)i
(
Φ(h) + Γ(h)L(0)

)︸ ︷︷ ︸
= 0

x[kh]

+

i∑
j=0

Φ(h)jw[(k + i− j)h] . (7)

To describe how the transition probabilities depend on the
process and the event threshold, we introduce the random
variables

δi[kh] =

i∑
j=0

Φ(h)jw[(k + i− j)h], ∀i ∈ Z[0,T−1] . (8)

The probability density function of δi[kh] is time-invariant
since the noise w[kh] is independent and identically dis-
tributed random variable. Hence, we can drop the time
index to simplify notation, and observe that the vector-valued
random variable ∆i ,

[
δ0 δ1 · · · δi

]ᵀ
has a multi-variate

normal distribution with mean 0 and covariance matrix (9)
(see, next page).

For any i ∈ Z[1,T], we now define the events

Ni =

i−1⋂
j=0

(|δj | < ε) (10)

with the convention that N0 will eventually occur (i.e., sure
event). Then,

Pr(Ni) = Q(ni, 0,Ξi, ε1), (11)

with Pr(N0) = 1, and the transition probabilities are given
by the following Lemma.

Lemma 3.1: The transition probabilities pij of the Markov
chain M defined in Figure 4 are given by

pij =


1− Q(n(i+1),0,Ξi+1,ε1)

Q(ni,0,Ξi,ε1) if i ∈ Z[0,T−1], j = 0

1 if i = T, j = 0

1− pi0 if i ∈ Z[0,T−1], j = i+ 1

0 otherwise

which can be evaluated using (1) initiated from pT0 = 1.
Proof. We focus on the case when i ∈ Z[0,T−1], j = 0
because the other expressions are obvious from the structure

of the Markov chain in Figure 4. Let us consider the
transition probability p00. Since r[kh] = 0 is equivalent to
ua[kh] = uc[kh], we have

p00 = Pr
(
r[kh+ h] = 0 | r[kh] = 0

)
= Pr

(
| w[kh] | > ε | ua[kh] = uc[kh]

)
(a)
= Pr

(
| w[kh] | > ε

)
= Pr

(
| δ0 | > ε

)
,

where (a) holds because ua[kh] is independent of the process
noise at time step kh. Similarly, for any i ∈ Z[1,T−1]

pi0 = Pr
(
r[kh+ h] = 0

∣∣ r[kh] = i
)

= Pr
(
r[kh+ h] = 0

∣∣ r[kh] = i, r[kh− h] = i− 1,

· · · , r[(k − i)h] = 0
)

= Pr
(
| δi | > ε

∣∣ | δi−1 | < ε, · · · , | δ0 | < ε,

ua[(k − i)h] = uc[kh]
)

= Pr
(
| δi | > ε

∣∣ | δi−1 | < ε, · · · , | δ0 | < ε
)

=
Pr
(
| δi | > ε,Ni

)
Pr
(
Ni
) = 1− Pr

(
Ni+1

)
Pr
(
Ni
) .

Finally, combining this expression with (11) yields the de-
sired result. �

Theorem 3.2: In the absence of packet loss, the expected
communication rate between the controller and the actuator
for the event-triggered algorithm described above is

π∞0 =
1

1 +
∑T
n=1

∏n−1
m=0(1− pm0)

. (12)

Proof. The Markov chain M is irreducible, finite, and
aperiodic, so it has a stationary distribution π∞i for all i.
We use π∞j =

∑T
j=0 π

∞
j pji to write

π∞0 =

T∑
j=0

π∞j pj,0, (13)

π∞i =
(
1− pi−1,0

)
π∞i−1, i ∈ Z[1,T ]. (14)

Using the balance equation
∑T
j=0 π

∞
j = 1 and the afore-

mentioned equalities, we immediately find

π∞0 =
1

1 +
∑T
n=1

∏n−1
m=0(1− pm,0)

. (15)

This concludes our proof. �

B. Event-triggered channel with packet loss

With the basic intuition from analyzing the simpler
Markov chain that models the loss-free scenario, we are
ready to tackle the more complex case of packet losses and
retransmissions. We first investigate whether or not we are
able to obtain the similar random variable that we compute
in (7). To this end, by applying the control actions ua

[
kh+

nkτ
]

= L(nk)x
[
kh
]

and ua[(k + j)h] = 0,∀j ∈ Z[1,T−1],
the state trajectory of (2) satisfies (16) (see next page).

Note that the variance of (b) equals that of w[kh], i.e.,
Cov

{
Φ(h − nkτ)

∑nk−1
j=0 Φj(τ)w

[
kh + (nk − 1 − j)τ

]
+

w
[
kh + nkτ

]}
= Πh

w. Hence, this expression coincides
with (7) and we can use Lemma 3.1 to also calculate the
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Ξi =


Πh
w Πh

wΦ(h) . . . Πh
wΦ(h)i−1 Πh

wΦ(h)i

?
∑1
j=0 Πh

wΦ(h)2j . . .
∑1
j=0 Πh

wΦ(h)2j+i−2 ∑1
j=0 Πh

wΦ(h)2j+i−1

...
...

. . .
...

...
? ? . . .

∑i−1
j=0 Πh

wΦ(h)2j ∑i−1
j=0 Πh

wΦ(h)2j+1

? ? . . . ?
∑i
j=0 Πh

wΦ(h)2j

 (9)

x
[
(k + i)h+ h

]
= Φ(h)i Φ(h− nkτ)Φ(τ)nk︸ ︷︷ ︸

= eh−nkτ enkτ= Φ(h)

x
[
kh
]

+ Φ(h)iΓ(h− nkτ)ua
[
kh+ nkτ

]
+

i−1∑
j=0

Φ(h)jΓ(h)ua
[
(k + i− j)h

]

+

i−1∑
j=0

Φ(h)jw
[
(k + i− j)h

]
+ Φ(h)i

(
Φ(h− nkτ)

nk−1∑
j=0

Φ(τ)jw
[
kh+ (nk − 1− j)τ

]
+ w

[
kh+ nkτ

])
= Φ(h)i

(
Φ(h) + Γ(h− nkτ)L(nk)

)︸ ︷︷ ︸
= 0

x
[
kh
]

+

i−1∑
j=0

Φ(h)jw
[
(k + i− j)h

]

+ Φ(h)i
(

Φ(h− nkτ)

nk−1∑
j=0

Φ(τ)jw
[
kh+ (nk − 1− j)τ

]
+ w

[
kh+ nkτ

])
︸ ︷︷ ︸

(b)

(16)

transition probabilities for the Markov chainM` in Figure 3.
Since the only additional parameter is the loss probability
p`, we now have all information necessary to derive the
expected rate of attempted and successful transmissions from
the Markov chain. We have the following result.

Theorem 3.3: The expected rate of successful reception
of control packets at the actuator node π̄∞SR under the event-
triggered algorithm described in Section II-B is

π̄∞SR =
1− τ

h

(
R + 1

1−p` −
R+1

1−pR+1
`

)
1 +

∑T
n=1

∏n−1
m=0(1− pm0) +

pR+1
`

1−pR+1
`

. (17)

Proof. The Markov chain M` is irreducible, finite, and
aperiodic, therefore it has a stationary distribution π∞i,j,t for
all i, j ∈ Z≥0, t ∈ T = {h, h − τ, · · · , h − Rτ, τ}. We
use π∞i′,j′,t′ =

∑T
i=0

∑R
j=0

∑
t∈T Pr

(
i, j, t | i′, j′, t′

)
π∞i,j,t

to write

π∞0,0,h = (1− p`)p00

∑R
k=0 π

∞
0,0,h−kτ

+
∑T
l=1(1− p`)pl0π∞l,0,h
+(1− p`)π∞loss,

π∞i,0,h =
∏i−1
k=0(1− pk0)

∑R
l=0 π

∞
0,0,h−lτ , ∀i ∈ Z≥1,

π∞0,0,h−jτ = (1− p`)
∑T
k=0 π

∞
k,j,τ , ∀j ∈ Z≥1,

π∞0,j,τ = pj` p00

∑R
k=0 π

∞
0,0,h−kτ + pj`π

∞
loss, ∀j ∈ Z≥1,

π∞i,j,τ = pj` pi0 π
∞
i,0,h, ∀i, j ∈ Z≥1.

We also have a stationary distribution for packet-loss:

π∞loss = p`

T∑
k=0

π∞k,R,τ .

The balance equation
∑T
i=0

∑R
j=0

∑
t∈T π

∞
i,j,t + π∞loss = 1

and the aforementioned equalities imply that

π∞SR =
1

1 +
∑T
n=1

∏n−1
m=0(1− pm0) + p`

1−p`

, (18)

where π∞SR ,
∑R
k=0 π

∞
h−kτ . We now need to normalize

the invariant distribution for all Markov states corresponding
to no transmission, retransmission, successful transmission
without retransmission, successful transmission after n re-
transmission and unsuccessful transmission. The normaliza-
tion factor is readily found to be

π̄∞SR =
H1

H1 + H2 + H3 + H4
,

where

H1 ,
R∑
i=0

(h− iτ)π∞0,0,h−iτ , H2 , h

T∑
j=1

π∞j,0,h ,

H3 , τ
R∑
j=1

T∑
i=0

π∞i,j,τ , H4 , (h− Rτ)π∞loss ,

with π̄∞SR ,
∑R
k=0 π̄

∞
h−kτ . Hence, the normalized version

of (18) is

π̄∞SR =
1− τ

h

(
R + 1

1−p` −
R+1

1−pR+1
`

)
1 +

∑T
n=1

∏n−1
m=0(1− pm0) +

pR+1
`

1−pR+1
`

, (19)

which concludes our proof. �
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Proposition 3.4: The expected rate of attempted transmis-
sions from the controller node to the actuator under the event-
triggered algorithm described in Section II-B is

π̄∞CA =
1

1 +
∑T
n=1

∏n−1
m=0(1− pm0)

. (20)

Proof. The proof follows similar lines as the proof of
Theorem 3.3. �

IV. LINEAR QUADRATIC PERFORMANCE EVALUATION

The evolution of the system (2) with control action (5) can
be modeled as a Markovian Jump Linear System (MJLS).
Many techniques have been developed for analyzing MJLS
by reframing the LQ-control problem as the solution to a
set of coupled algebraic Riccati equations (see, e.g., [21]).
These techniques allow us to state the following result.

Theorem 4.1: Consider the problem formulation in Sec-
tion II with the event–triggering algorithm and the deadbeat
controller described in Section II-B. For a given event
threshold ε, the linear quadratic control loss is computed as

J∞ =

T∑
i=0

R∑
j=0

∑
t∈T

π̄∞i,j,t

(
E
{
xᵀ0S

∞
i,j,tx0

}
+ Tr

(
S∞i,j,tΠ

t
ω

))
+ π̄∞loss

(
E
{
xᵀ0S

∞
lossx0

}
+ Tr

(
S∞lossΠ

h−Rτ
ω

))
, (21)

where S∞i,j,t, ∀i, j ∈ Z≥0, ∀t ∈ T = {h, h − τ, · · · , h −
Rτ, τ} are positive definite solutions of the coupled Riccati
equations

S∞i,0,h = (1− pi0)Ei+1,0,h

(
S∞i+1,0,h

)
+ p`pi0Ei,1,τ

(
S∞i,1,τ

)
+(1− p`)pi0E0,0,h

(
S∞0,0,h

)
, i ∈ Z≥0,

S∞T,0,h = (1− p`)E0,0,h
(
S∞0,0,h

)
+ p`ET,1,τ

(
S∞T,1,τ

)
,

S∞0,0,h−jτ = (1− p00)E1,0,h
(
S∞1,0,h

)
+ p`p00E0,j,τ

(
S∞0,j,τ

)
+(1− p`)p00E0,0,h

(
S∞0,0,h

)
, j ∈ Z≥1,

S∞i,j,τ = (1− p`)E0,0,h−jτ
(
S∞0,0,h−jτ

)
+p`Ei,j+1,τ

(
S∞i,j+1,τ

)
, i ∈ Z≥0, j ∈ Z[1,R−1],

S∞i,R,τ = (1− p`)E0,0,h−Rτ (S∞0,0,h−Rτ )

+p`Eloss(S
∞
loss), i ∈ Z≥0,

S∞loss = (1− p`)E0,0,h(S∞0,0,h) + p`E0,1,τ (S∞0,1,τ ),

with

E0,0,h−iτ (X) =

[
1

L(i)

]ᵀ [
Qh−iτxx Qh−iτxu

(Qh−iτxu )ᵀ Qh−iτuu

][
1

L(i)

]
, i ∈ Z≥0,

Ei,0,h(X) = Φ(h)2X +Qhxx, i ∈ Z≥1,

Ei,j,τ (X) = Φ(τ)2X +Qτxx, i ∈ Z≥0, j ∈ Z≥1,

Eloss(X) = Φ(h− Rτ)2X +Qh−Rτ
xx .

V. NUMERICAL EXAMPLES

We will now demonstrate how the analysis techniques
developed in Sections III and IV allow us to study the
trade-off between communication attempt (resp. success) rate

and closed-loop control performance for the even-triggered
control scheme detailed in Section II.

To this end, we consider the scalar system (2) with the
parameters a = 1.2 and b = 0.8. The initial state x(0) = x0

has a normal distribution with zero mean and covariance
Π0 = 1. The process noise wt is independent of the initial
condition x0, and its incremental variance is Rw = 1. The
system (2) is periodically sampled with a sampling interval of
500ms. At each time step, the event condition is checked, and
if it is necessary, a control signal is generated and transmitted
over a lossy network whose packet loss probability is p`.
Additionally, we assume that we can retransmit a packet
at most five times in case of unsuccessful transmission
(i.e., R = 5). If the packet cannot be delivered after five
retransmission attempts, the packet is dropped. Furthermore,
the duration of each retransmission is τ = 20ms.
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Fig. 5: Control performance for different communication
attempt frequency and event thresholds (shown in gray scale).
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Fig. 6: A comparison of successful reception rate and control
performance for several packet loss probabilities.

Figure 5 evaluates the communication attempt rate and the
control loss for various event thresholds ε ranging from 0 to
4. The communication rate and control loss are calculated us-
ing Theorem 3.3 and Theorem 4.1, respectively. Note that the
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communication rate decreases dramatically with an increased
control loss as the threshold ε varies between 0 and 1.75
(dark colors). For ε > 1.75 (lighter color), both quantities
become less sensitive to changes in the threshold value. We
can also identify ε ∈ [0, 0.5] as a particularly attractive region
where a large decrease in the communication rate can be
obtained for a small loss in control performance.

In Figure 6, we examine the rate of successful reception
and the control loss for several different values of the packet
loss probability. When the packet loss probability is smaller
than 0.25, the control performance and rate of successful
reception are quite similar to the case of no packet loss. For
p` = 0.5 there is a clear performance loss compared to the
case of reliable transmission, and the control performance
deteriorates significantly when p` exceeds 0.65.
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Fig. 7: A comparison of successful reception rate and control
performance in the presence and the absence of retransmis-
sions while packet loss probability is 20%.

Finally, Figure 7 compares the closed-loop performance
with and without the retransmission mechanism. As shown
in Figure 7, the successful reception rate increases in the
presence of retransmissions. In the absence of retransmission
mechanism, the control loss J∞ dramatically increases when
the threshold ε varies between 1 and 4.

VI. CONCLUSIONS

In this paper, we developed a theoretical framework to
analyze the trade-off between the control performance and
the communication cost of the proposed event-triggering
algorithm for information transmission over an unreliable
network. We assumed that a threshold-based event-triggering
algorithm governs the channel used to transmit informa-
tion from the controller to the actuator. Furthermore, we
developed a multi-dimensional Markov chain model, which
characterizes the attempted and successful transmissions of
control signals over the lossy communication link. Our
model also considered retransmission of unsuccessful trials,
and it interpreted them as a delay associated with these

retransmissions. By combining this communication model
with an analytical model of the closed-loop performance, we
provided a systematic way to analyze the trade-off between
the communication cost and the control performance by
appropriately selecting an event-threshold.
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