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On the Trade-off Between Feedback and Capacity
in Measured MU-MIMO Channels
Florian Kaltenberger, Marios Kountouris, David Gesbert, Raymond Knopp

Abstract—In this work we study the capacity of multi-user
multiple-input multiple-output (MU-MIMO) downlink channels
with codebook-based limited feedback using real measurement
data. Several aspects of MU-MIMO channels are evaluated.
Firstly, we compare the sum rate of different MU-MIMO
precoding schemes in various channel conditions. Secondly, we
study the effect of different codebooks on the performance of
limited feedback MU-MIMO. Thirdly, we relate the required
feedback rate with the achievable rate on the downlink channel.
Real multi-user channel measurement data acquired with the
Eurecom MIMO OpenAir Sounder (EMOS) is used.

To the best of our knowledge, these are the first measurement
results giving evidence of how MU-MIMO precoding schemes
depend on the precoding scheme, channel characteristics, user
separation, and codebook. For example, we show that having
a large user separation as well as codebooks adapted to the
second order statistics of the channel gives a sum rate close to the
theoretical limit. A small user separation due to bad scheduling
or a poorly adapted codebook on the other hand can impair the
gain brought by MU-MIMO. The tools and the analysis presented
in this paper allow the system designer to trade-off downlink rate
with feedback rate by carefully choosing the codebook.

Index Terms—Multi-user MIMO systems, Limited Feedback,
Information rates, Radio propagation, Channel sounding

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) wireless commu-
nication systems can substantially improve the spectral effi-
ciency in wireless point-to-point links. Early theoretical results
[1, 2] are beginning to be successfully implemented in systems
and standards [3, 4].

Recently there has also been a great deal of interest on how
to carry these performance gains over to the system level.
Multi-user MIMO (MU-MIMO) refers to a system where a
transmitter equipped with multiple antennas is communicat-
ing with several users simultaneously on the same physical
resources. The users can have multiple antennas too, but this is
not a necessity. Especially the downlink (or broadcast) channel
of such systems has received a lot of attention in the contextof
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emerging cellular systems, such as the IEEE worldwide inter-
operability for microwave access (WiMAX) [5] or the 3GPP
long term evolution (LTE) [4]. The downlink channel is also
the focus of this paper.

By regarding the set of antennas of the users as one virtual
antenna array, results from conventional MIMO can be readily
applied to the MU-MIMO case. However, since the users
cannot cooperate, all the space-time processing has to be
done at the transmitter side in the form of precoding. The
performance of MU-MIMO depends on a variety of factors
such as (i) the precoding scheme used, (ii) the quality of
the channel state information at the transmitter, and (iii) the
channel characteristics and the user separation.

Information theory reveals that if there is full channel state
information at the transmitter (CSIT) and the receiver (CSIR),
the optimum transmit strategy for the MU-MIMO broadcast
channel involves a theoretical pre-interference cancellation
technique known as dirty paper coding (DPC) combined with
an implicit user scheduling and power loading algorithm [6,
7]. Since DPC is computationally expensive and hard to
implement also simpler, sub-optimal transmit strategies based
on user scheduling together with linear precoding have been
proposed [8, 9].

CSIT can be achieved either by exploiting channel reci-
procity in a time division duplex (TDD) system or by means
of a limited feedback channel in a frequency division duplex
(FDD) system. In the latter case, which is also the focus of this
paper, channel vector quantization (CVQ) based on predefined
codebooks can be used to feed back a quantized version of
the channel [10]. The codebook has to be designed in a way
to minimize the quantization error of the channel matrices
as well as the feedback overhead. However, minimizing the
quantization error requires large codebooks which requirea
large amount of feedback [11]. In a real system, the best trade-
off between these two design criteria has to be found.

Most of the current literature studies MU-MIMO sys-
tems in ideal simulation environments using independent
and identically distributed (i.i.d.) Rayleigh fading channel
models. Compared to a single-user MIMO (SU-MIMO) time
division multiple access (TDMA) system, DPC with perfect
CSIT can bring a theoretical performance gain of up to
max(min(M/N,K), 1) in an i.i.d. Rayleigh fading channel,
where M and N is the number of transmit antennas and
receive antennas respectively andK is the number of users
[12]. If all users experience the same transmit correlation
matrix and the number of users is large, [13] showed that the
rate loss due to correlation isM log c, where c depends on
the scheduling scheme and the eigenvalues of the covariance
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matrix.
However it was shown in that neither the i.i.d. assumption

nor the assumption of a common transmit correlation matrix
for one user holds true in real measured MU-MIMO channels
[14, 15]. From a system level perspective it is interrestingto
see the performance of MU-MIMO with limited feedback in
realistic conditions with a small number of users.

Thus, in this paper we use real channel measurements to
study MU-MIMO systems withK = M users. We compare
the performance of different linear MU-MIMO precoding
schemes, such as zero-forcing (ZF) and regularized channel
inversion (also called Minimum Mean Square Error (MMSE)
precoder) [8] with the achievable capacity in such channels
(the DPC region) [16]. We also study the impact of lim-
ited feedback based on CVQ using a Fourier codebook, a
Grassmannian codebook, a random codebook, and a random
codebook exploiting the second order statistics of the channel.
Last but not least we evaluate the information rate on the
feedback channel using a first order Markov chain model for
the temporal evolution of the feedback [17]. Relating this
feedback rate to the achievable rate on the broadcast channel
provides a mean to evaluate different codebooks.

MU-MIMO channel measurements have been obtained us-
ing the Eurecom MIMO OpenAir Sounder (EMOS) [18].
The EMOS can perform real-time channel measurements
synchronously over multiple users moving at vehicular speed.
The measured channels are stored to disk for offline analysis.
For this paper, we have used four transmit antennas and four
users with one antenna each.

Related Work: Many measurement campaigns for point-
to-point MIMO channels have been carried out to date, but
MU-MIMO measurements are still rare in the literature. A
common practice is to conduct SU-MIMO measurements and
later combine them into a MU-MIMO channel. Such an
approach has for example been reported in [19–22]. Recently,
[23] has claimed that under certain conditions this method is
feasible. However, this is definitely not the case for rapidly
changing environments and the high-mobility measurements
as considered in this paper. To the best of the authors knowl-
edge, real synchronized MU-MIMO channel measurements
have only been described in [24]. The measurements were
conducted using a MEDAV-LUND channel sounder with its
corresponding receiver as well as the receiver of an Elektrobit
channel sounder. The measurements of the two receivers are
synchronized in a post-processing step using a dummy channel
that was inserted between snapshots. The authors present
capacity results for the uplink channel, as well as path-loss
and delay spreads for the measured scenarios. However, the
measurements in [24] are limited to a two-user case while also
being very costly and time-consuming.

Contributions and Outline: The contributions of the
paper are as follows

• We assess the performance of different MU-MIMO
schemes in using several different channel measurements.

• We study the effect of limited feedback using different
codebooks in real world conditions.

• We introduce a novel way how to relate feedback rate to
capacity of MU-MIMO channels thus providing a mean
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Fig. 1. Multi-user MIMO System Model.

to evaluate different codebooks.
• We present the EMOS platform and show how the

challenge of performing MU-MIMO measurements syn-
chronously over multiple users can be addressed.

The paper is organized as follows. In Section II we describe the
MU-MIMO system model. Section III reviews results on the
capacity of MU-MIMO channels and describes the different
linear precoding schemes studied in this paper. In Section IV
we describe how to obtain partial CSIT by means of limited
feedback. The measurements and their results are discussedin
Section V. Finally conclusions are drawn in Section VI. The
Eurecom MIMO OpenAir Sounder (EMOS) is described in
the Appendix.

Notation: Column vectors and matrices are denoted bya

andA respectively.IM is the identity matrix of sizeM and
0M is anM -dimensional vector of zeros. The Euclidean (ℓ2)
norm of a vectora is denoted by‖a‖ and the Frobenius norm
of a matrix A is denoted by‖A‖F . E denotes expectation,
andCN (m,C) denotes a multivariate proper complex normal
distribution with mean vectorm and covariance matrixC.

II. SYSTEM MODEL

We consider a multi-user, multi-antenna wideband downlink
channel in which a base station (BS) equipped withM
antennas communicates withK ≤ M user equipments (UEs),
each equipped with one antenna (see Fig. 1). Such a channel is
also called a broadcast channel (BC) in the information theory
literature. We use orthogonal frequency division multiplexing
(OFDM) and thus the sampled received signalyk,m,q ∈ C of
the k-th user at timem and subcarrierq is mathematically
described as

yk,m,q = hT
k,m,qxm,q + nk,m,q for k = 1, . . . ,K (1)

wherehk,m,q ∈ C
M represents thek-th user channel response

and nk,m,q ∈ CN (0, σ2) represents the circularly symmetric
additive white Gaussian noise with zero mean and variance
σ2. The vector of transmit symbolsxm,q ∈ C

M is a function
of the multiple users’ transmit symbolsxk,m,q with covariance
matrix Σk,m,q = E{xk,m,qx

H
k,m,q}. The sub-indicesm andq

always refer to the time and subcarrier indices, respectively.
The transmitter is subject to a power constraint per sub-

carrier, i. e.,xH
m,qxm,q ≤ P . The total transmit power is not
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dependent on the number of transmit antennas. Note that we
always assume that we transmit to exactlyK = M users
and we do not study the impact of user scheduling or power
control. Further we assume that the noise powerσ2 = 1.

Equation (1) can also be written in matrix notation by
defining Hm,q = [h1,m,q . . .hK,m,q]

T and the vectorsym,q

andnm,q accordingly:

ym,q = Hm,qxm,q + nm,q. (2)

We assume that each of the receivers has perfect and instan-
taneous knowledge of its own channel. Further we assume a
zero-delay error-free feedback channel and denote the channel
matrix fed back at the transmitter witĥH. We consider two
cases for the feedback: (i) full feedback, i.e., the bandwidth
is large enough to feed back the full channel estimate and (ii)
limited feedback with a resolution ofB bits for each subcarrier
q and timem. For notation convenience, we drop the time
and subcarrier indicesm andq when their dependence is not
needed.

III. SUM RATES OFMULTI -USERMIMO CHANNELS

In this section we review the capacity of multi-user MIMO
channels (Subsection III-A) as well as the sum rate of linear
precoding schemes (Subsection III-B). For comparison we will
also review the sum rate of a multiuser system employing
single-user multiple-input single-output (SU-MISO) TDMAin
Subsection III-C.

A. Capacity

From the results in [6, 25], the sum capacity of the MU-
MIMO downlink channel can be expressed by the following
maximization:

CBC(H, P ) =

max
Σk≥0,

P

K
k=1

tr(Σk)≤P

K
∑

k=1

log2

1 + hH
k

(

∑K
j=1 Σj

)

hk

1 + hH
k

(

∑

j 6=k Σj

)

hk

, (3)

where the maximization is over the set of all positive semidef-
inite transmit covariance matricesΣk, k = 1, . . . ,K. The
objective function of the maximization in (3) is a non-convex
function of the covariance matrices, making it very difficult to
deal with. Fortunately, due to the duality of the BC and the
multiple access channel (MAC) [16], the sum rate capacity of
the MIMO BC is equal to the sum rate capacity of the dual
MAC with power constraintP

CBC(H, P ) = CMAC(H, P ) =

max
Qk≥0,

P

K
k=1

tr(Qk)≤P
log2

(

1 +

K
∑

k=1

hH
k Qkhk

)

, (4)

where each of the matricesQi is a positive semidefinite
covariance matrix. Since (4) involves the maximization of a
convex function, efficient numerical algorithms exist. In this
paper, we use the specialized algorithm developed in [26] to
calculateCBC(H, P ).

It has been shown [7] that the sum rate capacity given in
Equation (4) is actually achieved by using DPC. However,
DPC is complex to implement in practical systems and thus
we also study linear precoding schemes in the next section.

B. Linear Precoding

Let sk ∈ C denote thek-th user data symbol. Under linear
precoding, the transmitter multiplies the data symbolssk by
the precoding vectorswk ∈ C

M and combines them to the
transmit symbolx, i. e.,x =

∑K
k=1 wksk. In order to fulfill the

transmit power constraint, the transmitter further normalizes
x, such thatxHx = P . From (1) the resulting received signal
vector for userk is then given by

yk = hT
k wksk +

∑

j 6=k

hT
k wjsj + nk, (5)

where the first term is the desired signal, the second term
represents the multi-user interference, and the last term the
noise. The signal to noise plus interference ratio (SINR) at
each userk is thus given by

SINRk =

∣

∣hT
k wk

∣

∣

2

∑

j 6=k

∣

∣hT
k wj

∣

∣

2
+ σ2

. (6)

If the user codes are drawn from an i. i. d. Gaussian distribu-
tion, the sum rate of linear precoding is thus given by

RBC(H, P ) =

K
∑

k=1

log2 (1 + SINRk) . (7)

In this paper we use a regularized channel inversion with
equal power allocation based on the feedback channel to
design the precoding vectorswk [8]. The regularized channel
inverse is given by

W = ĤH(ĤĤH + βI)−1, (8)

whereĤ = [ĥ1, . . . , ĥK ]T is the fed back channel matrix and
β is the regularization factor. The precoding vectorswk are
finally given by the columns ofW.

The above scheme is often referred to as MMSE precoding
with equal power allocation due to the analogy with MMSE
beamforming weight design criterion if the noise is spatially
white. If β = 0, Equation (8) reduces to the ZF precoder.
However, when the channel matrix is ill-conditioned, at least
one of the singular values of(ĤĤH)−1 is very large, resulting
in a very low signal to noise ratio (SNR) at the receivers.

A non-zeroβ value on the other hand allows for a certain
amount of multi-user interference. The amount of interference
is determined byβ > 0 and an optimal tradeoff between the
condition of the channel matrix inverse and the amount of
crosstalk ought to be found. In practice, the regularization
factor is commonly chosen asβ = Mσ2/P motivated by
the results in [8] that show that it approximately maximizes
the SINR at each receiver, and leads to linear capacity growth
with M . The performance of MMSE is certainly significantly
better at low SNR and converges to that of ZF precoding
at high SNR. However, MMSE does not provide parallel
and orthogonal channels and thus power allocation techniques
cannot be performed in a straightforward manner.
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C. Time Division Multiple Access

In a TDMA system, the BS only serves one user at a time.
We analyze the case when full CSIT and with no CSIT. In the
case of full CSIT, the capacity of a particular userk is given
by

CSU-CSIT(hk, P ) = log2

(

1 +
P

σ2
‖hk‖2

)

. (9)

The capacity is achieved by transmit maximum ratio combin-
ing [27].

If full CSIT is available the sum rate of the system can
be optimized by transmitting to the user with the largest
single-user capacity only, exploiting multi-user diversity [28].
However, with multiple transmit antennas and a small number
of users (which is the case considered in this paper) the gains
of multi-user diversity are reduced. Therefore, we assume that
all users are allocated an equal amount of time (round robin
scheduling). This also allows a more fair comparison to the
linear precoding schemes considered in the previous section.
The sum rate of the system is thus given by

CTDMA-CSIT(H, P ) =
K
∑

k=1

1

K
CSU-CSIT(hk, P ). (10)

When no CSIT is available, the capacity of a particular user
k is given by

CSU-noCSIT(hk, P ) = log2

(

1 +
P

σ2M
‖hk‖2

)

. (11)

Again, we assume that multiple users are served using a round
robin scheduler and thus the sum rateCTDMA-noCSIT(H, P ) can
be defined similar to (10).

IV. OBTAINING CSIT THROUGH L IMITED FEEDBACK

The linear precoding schemes described in the last section
require CSIT in the form of the matrix̂H. When a feedback
channel with a limited bandwidth (as described in Section II) is
available, channel vector quantization can be used to feed back
a quantized version of the channel, providing partial CSIT.
Such a scheme has also been proposed for LTE [4] and is
outlined in Section IV-A.

By exploiting time-correlation in the channel, the actual
feedback rate can be reduced. Recently, it has been pointed
out in [17] that the actual required feedback rate is given by
the CSI source rate. This measure is introduced in Subsection
IV-B.

A. Channel Vector Quantization

For each subcarrierq and every time indexm, the UE
k selects a quantization vector with indexIk,m,q from a
codebookC = {c1, . . . , cC} of size C = 2B , such that the
angle between the actual channelhk,m,q and the codeword
cIk,m,q

is minimized. This is equivalent to writing

Ik,m,q = argmax
i=1,...,C

|cH
i hk,m,q|. (12)

For every subcarrier, the UE then feeds back the indexIk,m,q

along with a channel quality information (CQI). In this paper

we use the channel vector norm‖hk,m,q‖ as CQI. Note that
this choice of CQI is not suitable for multi-user scheduling,
since it does not take the multi-user interference and the
quantization error into account. However, in this paper we
are only interested in the precoder design and do not consider
scheduling. Moreover, we assume that the channel vector norm
is not quantized, since we are only interested in the abilityof
the codebook to capture the spatial properties of the channel.

The transmitter, which also knows the codebook, can then
reconstruct the channel by a simple lookup table:ĥk,m,q =
cIk,m,q

‖hk,m,q‖. The codebookC is designed off-line and
there are several well-known possibilities. In this paper we
consider a Grassmannian codebook, a Fourier codebook, a
random codebook and a correlated random codebook.

1) Grassmannian Codebook: The Grassmannian codebook
derives its name from the Grassmannian line packing prob-
lem, which is defined as follows [29]: how shouldC one-
dimensional subspaces of theM -dimensional (complex) Eu-
clidean space be arranged so that they are as far apart as
possible? This problem is equivalent to finding the optimal
quantization vectors of a source with uniform distribution
on the (complex)M -dimensional unit sphere. Therefore the
resulting codebook is optimal if the elements of the channel
vectors hk are i.i.d. complex Gaussian distributed [30]. In
this work we use the Grassmannian codebook available for
download at [31].

2) Fourier Codebook: The Fourier codebook is obtained
by definingci as the topM rows of thei-th column of the
discrete Fourier transform (DFT) matrix of sizeC, i. e.,

ci =
1√
M

[1, e−2πji/C , . . . , e−2πji(M−1)/C ]T . (13)

Each entry of the codebook can be interpreted as a beam-
forming vector of a linear antenna array with one fixed beam.
This codebook is therefore well suited for line of sight (LOS)
channels with linear antenna arrays.

The Fourier codebook index calculation (12) can be imple-
mented efficiently (in terms of memory and computation) by
means of an inverse fast Fourier transform (IFFT). Also, the
codebook does not need to be stored at the transmitter, as it
can be easily reconstructed [32].

3) Random Codebook: The quantization vectors of the ran-
dom codebook are constructed by drawingci randomly from
an i.i.d. complex Gaussian distribution on theM -dimensional
unit sphere, i. e.,ci ∈ CN (0M , IM ) and subsequent normal-
ization, i. e.,‖ci‖ = 1.

4) Correlated Random Codebook: The quantization vectors
of the correlated random codebook are drawn from com-
plex Gaussian distribution on theM -dimensional unit sphere,
whose covariance matrix matches the transmit correlation
matrix of the channel, i. e.,ci ∈ CN (0M ,R

(k)
Tx ) and‖ci‖ = 1.

The transmit correlation matrix is defined as

R
(k)
Tx = E{hkh

H
k }. (14)

The application scenario of correlated codebooks considered
in this paper is that different BSs or even different sectorsof
a BS employ codebooks that are adapted to their environment.
The transmit correlation matrix should thus be estimated over
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Parameter Meas. 1–3 Meas. 4
Center Frequency 1917.6 MHz 1917.6 MHz
Useful Bandwidth 4.8 MHz 4.0625 MHz

BS Transmit Power 30 dBm 30 dBm
Number of Antennas at BS (M ) 4 2

Number of UE (K) 4 2
Number of Antennas at UE (N ) 1 1

Number of Subcarriers (Q) 40 80

TABLE I
PARAMETERS OF THEEURECOM MIMO OPENA IR SOUNDER FOR THE

FOUR MEASUREMENT CAMPAIGNS.

a wide frequency range and several locations. In this paper
we estimateR(k)

Tx from the measurements by taking the mean
of hkh

H
k over all frequenciesq and all framesm in one

measurement.
For both the random and the correlated random codebook

we assume that each user has a different and independently
generated quantization codebook as in [11].

B. Feedback Rate

In order to evaluate the intrinsic rate of information brought
by the measured channel, we follow [17] and model the time
variation of Ik,m,q as a finite-state Markov chain of order
1 with C states (see Fig. 8 for an example). LetP(k,q)

be the transition probability matrix with elementsP (k,q)
l,n =

Pr(Ik,m,q = l|Ik,m−1,q = n). Also define the stationary prob-
ability vector π(k,q) with elementsπ(k,q)

l = Pr(Ik,m,q = l).
P(k,q) andπ(k,q) are estimated from the measurements.

We now use Proposition 1 of [17] to calculate the normal-
ized CSI source bit rate per user and per subcarrier

RCSI(k, q) = B

C
∑

l=1

π
(k,q)
l (1 − P

(k,q)
l,l ). (15)

When evaluating the measurements we take the mean over
all frequenciesq like we do for the capacity evaluations.
Further, in the multi-user case we are interested in the sum
rate and thus sum over all usersk

RCSI =
1

Q

K
∑

k=1

Q
∑

q=1

RCSI(k, q). (16)

V. M EASUREMENTS ANDRESULTS

In this section we present results using real channel mea-
surement data. We first describe the measurement scenarios in
Subsection V-A and the normalization of the recorded channel
matrices in V-B. Finally, in Subsection V-C we apply the
metrics for the MU-MIMO sum rate from Section III and the
feedback rate from Section IV directly to the recorded and
normalized channel matrices.

A. Measurement Description

The measurements were conducted using the Eurecom
MIMO OpenAir Sounder (EMOS) [14, 18, 33] in the vicin-
ity of the Eurecom institute in Sophia-Antipolis, France.
The scenario is characterized by a semi-urban hilly terrain,
composed by short buildings and vegetation. Fig. 2 shows

Fig. 2. Map of the measurement scenario. In measurement 1 the users were
driving in cars along the indicated routes (the colors show the received signal
strength in dBm along the routes). Measurements 2–4 are indicated on the
map.

a map of the environment. The BS is located at the roof
of Eurecom’s southmost building. The antenna is directed
towards Garbejaire, a small nearby village. The colors indicate
the received signal strength along the measurement routes.
The measurement parameters are summarized in Table I. A
more detailed description of the EMOS can be found in the
Appendix.

In the first three measurements, we use all four transmit
antennas (arranged in 2 cross-polarized pairs) and four users
with one antenna each. In the first measurement, the UEs
were placed inside standard passenger cars which were being
driven along the routes shown in Fig. 2. The cars had no fixed
routes and thus the distance between them was changing. In
the second measurement, the users were indoors in the same
room, walking around slowly. In the third measurement, the
users were parked close together in a parking lot.

In the fourth measurement we use only two co-polarized
antennas at the transmitter and two users with one antenna
each. The first user is always at positionx1 and the second
user is at positionxi, i = 1, . . . , 5. Positionsx1, x2, andx5 are
LOS while positionsx3 andx4 are behind an office building.
During the measurements the users were moving only within a
few wavelengths in order to get a sufficient number of samples
for the evaluation of the statistics of the small scale fading.

B. Normalization

In order to control the average SNR at the UEs, we have
to re-normalize the recorded MIMO channel matrices. One
measurement results in the set of MIMO channel matrices

{Hk,m,q ∈ C
N×M , k = 0, . . . ,K − 1,

m = 0, . . . , NF − 1, q = 0, . . . , Q − 1},
where k denotes the user index,m the snapshot index, and
q the frequency (or subcarrier) index.N,M, and K are the
number of receive antennas, number of transmit antennas
and number of users respectively.NF is the total number of
snapshots per measurement after removing erroneous frames
(on averageNF ≈ 18.000, corresponding to approx. 50 sec).
The total number of channel estimates in the frequency domain
is given by Q = 160/M , since there are 160 subcarriers
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Fig. 3. CDF of the sum rate of SU-MISO TDMA compared to MU-MIMO
with DPC for measurements 1-3. The average SNR is fixed to 10dB for each
user.
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Fig. 4. CDF of the sum rate of MU-MIMO with ZF and MMSE precoding
for measurements 1-3. The average SNR is fixed to 10dB for each user.

in total and the pilots are multiplexed over theM transmit
antennas. The MIMO matrices are normalized by

H′
k,m,q = Hk,m,q

√

NNFQ
∑

m,q ‖Hk,m,q‖2
F

(17)

such thatE{‖H′
k‖2

F } = N . Since the noise varianceσ2 = 1,
the average SNR at each UEk is thus NP

K .

C. Results

1) Comparing different scenarios: Firstly, we compare the
performance of MU-MIMO using DPC, ZF precoding, and
MMSE precoding as well as SU-MISO TDMA based on the
empirical cumulative density function (CDF) of the sum rate
(Equations (4), (7), and (10)). We assume an average SNR
at the users of 10 dB, which corresponds to the average SNR
at the cell edge. The results are plotted in Figures 3 and 4
for measurements 1-3. Secondly, we compare the mean MU-
MIMO sum rate for all the above mentioned schemes with
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Fig. 5. Comparison of mean MU-MIMO sum rate for DPC and SU-MISO
TDMA, as well as ZF and MMSE precoding with respect to inter-user distance
for measurement 4. The average SNR is fixed to 10dB for each user.

respect to the inter-user distance. The results are plottedin
Fig. 5 for measurement 4.

It can be seen from Fig. 3 that MU-MIMO DPC as well as
SU-MISO TDMA do not show a very high variability with
respect to the different measurements. However, the linear
MU-MIMO precoding schemes (see Fig. 4) are very sensitive
to the channel conditions. Especially the performance of the
ZF precoder drops significantly in the outdoor scenario where
the users are close together. In the indoor scenario and the
other outdoor scenario where all users are well separated, the
performance of the linear MU-MIMO schemes is comparable.

The effect of the inter-user distance on the capacity of the
different schemes can be observed more closely in Fig. 5.
It can be seen that there is a clear relationship between the
distance and the capacity of linear precoding schemes: the
further apart the users are, the higher the capacity. In fact, for
inter-user distances up to 55m, the SU-MISO TDMA scheme
always performs better than the linear MU-MIMO schemes.
Only in the last measurement at 75m, the MMSE precoder
shows a slightly better performance than the TDMA scheme.

The poor performance of linear precoders in scenarios with
a small inter-user distance can be explained by looking at
the channel correlation matrix of the different scenarios [15,
34]. When the channel is strongly correlated it means that
the channel matrix is ill-conditioned. Thus at least one of the
singular values of(HHH)−1 is very large, resulting in a very
low SNR at the receivers, when ZF precoding is used. The
MMSE precoder can alleviate this problem, but still suffers
from the high correlation at the transmitter.

2) Comparing Different Codebooks: Fig. 6 and 7 compare
the CDF of the MU-MIMO sum rate using MMSE precoding
based on quantized feedback using different codebooks of size
64 (6 bit) and size 4096 (12 bit) respectively. We also plot the
cases with perfect feedback (cf. Equation (7)) and no feedback
(cf. Equation (11)) as lower and upper bounds for comparison.
Measurement 1 are used for both plots.

It can be seen that the performance of MU-MIMO with
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MMSE precoding depends strongly on the chosen codebook.
For the evaluated outdoor channel, the Fourier codebook
exhibits the worst performance, being only slightly better
than a SU-MISO TDMA scheme with no feedback at all.
Further, its performance does not increase with the number
of feedback bits. The correlated random codebook performs
better than the Fourier codebook. The random codebook and
the Grassmannian codebook perform best. However, for 6
bits of feedback the gap to the perfect feedback case is
still significant (3 bits/sec/Hz at 50% outage rate). Doubling
the number of feedback bits to 12 reduces the gap to 1.2
bits/sec/Hz (at 50% outage rate), which is comparable to the
theoretical results achieved in [11]. The gain to the SU-MISO
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Fig. 9. CSI source rate of the output of the channel quantizerRCSI vs. MU-
MIMO sum rateRMMSE. Each point in the graph represents the result for
one measurement, one codebook and one codebook size. This figure allows
us to compare different codebooks with respect to their ability to capture
the spatial and temporal properties of the channel. The used measurements,
codebooks and codebook sizes are given in the legend as well in the figure
next to the data point.

TDMA system is 2.9 bits/sec/Hz (at 50% outage rate).
The poor performance of the Fourier codebook can be

explained by the fact that (i) the BS does not use a linear
antenna array and (ii) the investigated channel does not have
a LOS component. Further, the fact that the performance of
the Fourier codebook does not increase with the codebook size
can be explained by looking at the maximum cross-correlation
between codebook entries,f(C) = maxci,cj∈C,i6=j |cH

i cj |. In
the case of a Fourier codebook,f(C) will converge to one
as the codebook size increases (just choose two neighboring
codebook entriesci andci+1). For the random codebook on
the other handf(C) will converge to zero, since any two
codewords are uncorrelated with probability one [35].
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3) Feedback Rate vs Capacity: For illustration purposes we
plot the quantized channel indicesIk,m,q (12) for measurement
1 for user k = 1 in Fig. 8. It can be seen that for some
frequenciesq the channel remains quite constant whereas for
other frequencies it varies more.

In Fig. 9 we plot the CSI source rateRCSI (16) vs. the
MU-MIMO sum rateRMMSE (7) for measurements 1–3, three
different codebooks and two codebook sizes. This figure gives
an indication of how well the codebook is able to exploit the
temporal correlation in the channel (low feedback rate) with
respect to the gain in capacity it brings. Points further to the
top left of the figure are the best (low feedback rate while
having high capacity).

It can be seen that the results are quite different for different
codebooks and for the different measurements. Looking at the
Fourier codebook (black markers), it can be seen that this
codebook requires the largest feedback rate while providing
the lowest sum rate. Increasing the number of feedback bit just
increases the feedback rate and not the capacity. Considering
the Grassmannian codebook (blue markers) on the other hand,
it can be seen that this codebook requires much less feedback
than the Fourier codebook for the same codebook size while
having a larger capacity. Further, increasing the codebooksize
increases the capacity significantly.

The random codebook has similar properties as the Grass-
mannian codebook. A 4 bit random codebook offers a lower
capacity than a 4 bit Grassmannian codebook, whereas a
6 bit random codebook offers higher capacity than a 6 bit
Grassmannian codebook. Also interesting to note is that the
higher mobility measurements require more feedback than the
low mobility measurements, but at the same time have a higher
capacity.

VI. CONCLUSIONS

We have presented an extensive evaluation of different MU-
MIMO schemes with perfect and limited feedback in various
channel conditions. The data was acquired using Eurecom’s
MU-MIMO channel sounder EMOS.

From the results we can derive two important criteria that
need to be considered when designing MU-MIMO schemes.
Firstly, spatial separation of users has a very strong impact on
the performance of linear precoding schemes. In particular, the
performance of a ZF precoder drops significantly in outdoor
scenarios, when the users are close together. Therefore it is
necessary to design proper scheduling algorithms that select
users with different spatial signatures.

Secondly, the performance of limited feedback MU-MIMO
schemes crucially depends on the codebook. It was seen that
the performance of the Fourier codebook is hardly better than
that of a SU-MISO TDMA scheme with no feedback at all,
even for a high number of feedback bits. Further this codebook
does not allow any feedback reduction in time-correlated
channels. We thus conclude that the Fourier codebook is not
able to capture the spatial properties of the measured out-
door wideband channel appropriately. The performance of the
random codebook, the Grassmannian codebook and especially
the correlated random codebook increases with the number

(a) BS with PLATON boards (b) Power amplifiers
and Powerwave antenna

(c) UE with CardBus MIMO
board

(d) Panorama antennas

Fig. 10. EMOS base station and user terminals [18].

S
C

H

BCH Guard Interval
(8 OFDM Symbols)

...
48 Pilot Symbols

Frame (64 OFDM Symbols)

Fig. 11. Frame structure of the OFDM Sounding Sequence. The frame
consists of a synchronization channel, (SCH), a broadcast channel (BCH),
and several pilot symbols used for channel estimation.

of feedback bits. Also, these codebooks allow for a feedback
reduction in time-correlated channels. Thus, these codebooks
are able to represent the channel more appropriately.

It can be concluded that the codebook design for MU-
MIMO systems remains a hot topic. The tools and the analysis
presented in this paper allow to carefully evaluate different
codebooks and to choose the codebook that provides a good
trade-off between feedback and downlink rate.

APPENDIX

THE EURECOM MIMO OPENA IR SOUNDER

This Appendix describes the Eurecom MIMO OpenAir
Sounder (EMOS). We start by giving an overview of the hard-
ware architecture, followed by a description of the sounding
signal and the synchronization procedure. Last, but not least
we explain how we perform high-accuracy MIMO channel
estimates. [14, 34, 35].

A. Hardware Description

The EMOS is based on the OpenAirInterface1 hardware/
software development platform at Eurecom. The platform

1http://www.openairinterface.org
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consists of a BS that continuously sends a signaling frame, and
one or more UEs that receive the frames to estimate the chan-
nel. The BS consists of a workstation with four baseband data
acquisition cards, which are connected to four radio-frequency
(RF) boards (called PLATON, see Fig. 10(a)). The RF signals
are amplified and transmitted by a Powerwave 3G broadband
antenna composed of four elements which are arranged in two
cross-polarized pairs (part no. 7760.00, see Fig. 10(b)). The
UEs consist of a laptop computer with Eurecom’s dual-RF data
acquisition card (called CardBus MIMO, see Fig. 10(c)) and
two clip-on 3G Panorama Antennas (part no. TCLIP-DE3G,
see Fig. 10(d)). Both equipments operate at 1.900–1.920 GHz
with 5 MHz channels2. The platform is designed for a full
software-radio implementation, in the sense that all protocol
layers run on the host PCs under the control of the real-time
application interface3 (RTAI), which is an extension to the
Linux operating system.

B. Sounding Signal

The EMOS is using an orthogonal frequency division mul-
tiplexing (OFDM) modulated sounding sequence with 256
subcarriers (out of which 160 are non-zero) and a cyclic
prefix length of 64. One transmit frame is 64 OFDM symbols
(2.667 ms) long and consists of a synchronization symbol
(SCH), a broadcast data channel (BCH) comprising 7 OFDM
symbols, a guard interval, and 48 pilot symbols used for
channel estimation (see Fig. 11). The pilot symbols are taken
from a pseudo-random quadrature phase-shift keying (QPSK)
sequence defined in the frequency domain. The subcarriers
of the pilot symbols are multiplexed over the four transmit
antennas to ensure orthogonality in the spatial domain. We
can therefore obtain one full MIMO channel estimate for one
group of M subcarriers. The BCH uses QPSK modulation
and rate 1/2 convolutional code and contains (among other
information) the frame number of the transmitted frame that
is used for synchronization among the UEs.

C. Synchronization

Transmitter and receiver must be synchronized in order to
conduct usefull measurements. Synchronization is taking place
at three different levels, which are described below.

1) Initial Synchronization: Initial synchronization is per-
formed using a sliding window correlator on the SCH symbol
in the frequency domain. After successfull detection of the
SCH, a channel estimate is performed on the SCH. This
channel estimate is used for coherent detection of the BCH
with a Viterbi decoder. Synchronization is declared only ifthe
BCH can be detected successfully, i.e., the cyclic redundancy
check (CRC) is positive.

2) Synchronization Tracking: Due to the drifts of the
sampling clocks of transmitter and receiver, as well as the
movement of the user, the synchronization needs to be adjusted
constantly. This is done by tracking the peak of the channel

2Eurecom has a frequency allocation for experimentation around its
premises.

3http://www.rtai.org

estimate of the SCH in the time domain. To avoid jitter, the
peak position is passed through a low-pass filter. If the peak
position drifts from the target position by more than 5 samples,
the timing offset of the hardware is increased (decreased) by
one sample.

The receiver also continues to decode the BCH. If the BCH
cannot be detected successfully for 100 consecutive framesor
more, the receiver declares itself out of sync and the initial
synchronization procedure is stared again. For successfulde-
coding of the BCH, a SNR of approximately 10 dB or more
is required.

3) Multi-user Synchronization: In order to conduct multi-
user measurements, all the UEs need to be frame-synchronized
to the BS. This is important for (i) synchronized start and
stop of the data acquisition and (ii) for the proper alignment
of the measurement data from multiple users in the post
processing. Multi-user synchronization is achieved by using
the frame number encoded in the BCH. This frame number is
also stored along with the measured channel at the UEs for
post processing.

D. EMOS Channel Estimation Procedure

Once the receiver is fully synchronized to the transmitter,
the EMOS channel estimation procedure is started. Note that
this procedure uses all the 48 pilot symbols of a frame (cf.
Fig. 11) and thus provides a more accurate channel estimate
than the one based on the SCH symbol at the beginning of
the frame, which is only used for synchronization and coherent
decoding of the BCH.

The EMOS channel estimation procedure consists of two
steps. Firstly, the pilot symbols are derotated with respect to
the first pilot symbol to reduce the phase-shift noise generated
by the CardBus MIMO card. Secondly, the pilot symbols
are averaged to increase the measurement SNR. The channel
is then estimated in the frequency domain by multiplication
of the derotated and averaged symbols with the complex
conjugate of the pilot symbol. The estimated MIMO channel
is finally stored to disk. For a more detailed description of the
synchronization and channel estimation procedure see [18,33].
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Ecole Nationale Suṕerieure des T́elécommunications, France, in 1997. From
1997 to 1999 he has been a research fellow at the Smart Antenna Research
Group of the Information Systems Laboratory, Stanford University. In 1999,
he was a founding engineer of Iospan Wireless Inc, San Jose, Ca., a startup
company pioneering MIMO-OFDM (now Intel).

D. Gesbert has published about 150 papers and several patents all in the
area of signal processing, communications, and wireless networks. D. Gesbert
is or was a co-editor of several special issues on wireless networks and
communications theory, for JSAC (2003, 2007), EURASIP Journal on Applied
Signal Processing (2004, 2007), Wireless Communications Magazine (2006).
He was an elected member of the IEEE Signal Processing for Communications
Technical Committee. He is a member of the French CNRS Expert Committee
for “Networks”. He’s an associate editor for IEEE Transactions on Wireless
Communications and the EURASIP Journal on Wireless Communications and
Networking. He authored or co-authored papers winning the 2004 IEEE Best
Tutorial Paper Award (Communications Society) for a 2003 JSACpaper on
MIMO systems, 2005 Best Paper (Young Author) Award for SignalProc.
Society journals, and the Best Paper Award for the 2004 ACM MSWiM
workshop.

Raymond Knopp was born in Montreal, Canada.
He received the B.Eng. (Honours) and the M.Eng.
degrees in electrical engineering from McGill Uni-
versity, Montreal, Canada, in 1992 and 1993, respec-
tively. In 1997, received the PhD degree in com-
munication systems from the Swiss Federal Institute
of Technology, Lausanne. During his PhD studies
(1993-1997), he was a Research and Teaching As-
sistant in the Mobile Communications Department
of Institut Eurecom, Sophia Antipolis, France. From
1997-2000 he was a research associate in the Mobile

Communications Laboratory (LCM-EPFL) of the Communication Systems
Department of the Swiss Federal Institute of Technology (EPFL), Lausanne. In
2000 he rejoined the Mobile Communications Department of Institut Eurecom
as a Professor.

His current research and teaching interests are in the area of digital
communications, software radio architectures, and implementation aspects of
signal processing systems. He has published numerous journaland conference
articles in these areas. He has participated in collaborative research projects
related to wireless communications in the FP5, FP6 and FP7 framework
programs as well as French National programs. He is currently Eurecom
team leader for the CHORIST FP6 project and workpackage leader in the
NEWCOM++ FP7 Network of Excellence. Raymond KNOPP is technical
coordinator of the OpenAirInterface.org wireless radio platform initiative.
These platforms are used in a variety of collaborative research projects and
one-to-one projects with both industrial and academic partners to highlight
innovative research ideas in wireless networks through experimentation.


