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Abstract—In this work we study the capacity of multi-user emerging cellular systems, such as the IEEE worldwide inter
multiple-input multiple-output (MU-MIMO) downlink channels  gperability for microwave access (WiMAX) [5] or the 3GPP

with codebook-based limited feedback using real measurement ; ; ;
data. Several aspects of MU-MIMO channels are evaluated. long term evoll_Jtlon (LTE) [4]. The downlink channel is also
the focus of this paper.

Firstly, we compare the sum rate of different MU-MIMO . .
precoding schemes in various channel conditions. Secondly, we BY regarding the set of antennas of the users as one virtual
study the effect of different codebooks on the performance of antenna array, results from conventional MIMO can be rgadil
limited feedback MU-MIMO. Thirdly, we relate the required  applied to the MU-MIMO case. However, since the users
feedback rate with the achievable rate on the downlink channel. cannot cooperate, all the space-time processing has to be

Real multi-user channel measurement data acquired with the . . . .
Eurecom MIMO OpenAir Sounder (EMOS) is used. done at the transmitter side in the form of precoding. The

To the best of our knowledge, these are the first measurement Performance of MU-MIMO depends on a variety of factors
results giving evidence of how MU-MIMO precoding schemes such as 4) the precoding scheme used;)(the quality of
depend on the precoding scheme, channel characteristics, userthe channel state information at the transmitter, aiit) (he
separation, and codebook. For example, we show that having channel characteristics and the user separation.

a large user separation as well as codebooks adapted to the . . .
second order statistics of the channel gives a sum rate close toet Information theory reveals that if there is full channeltsta

theoretical limit. A small user separation due to bad scheduling information at the transmitter (CSIT) and the receiver (R!
or a poorly adapted codebook on the other hand can impair the the optimum transmit strategy for the MU-MIMO broadcast
gain brought by MU-MIMO. The tools and the analysis presented channel involves a theoretical pre-interference cantietia
in this paper allow the system designer to trade-off downlink rate technique known as dirty paper coding (DPC) combined with
with feedback rate by carefully choosing the codebook. an implicit user scheduling and power loading algorithm [6,
Index Terms—Multi-user MIMO systems, Limited Feedback, 7]. Since DPC is computationally expensive and hard to
Information rates, Radio propagation, Channel sounding implement also simpler, sub-optimal transmit strategiased
on user scheduling together with linear precoding have been
proposed [8, 9].
CSIT can be achieved either by exploiting channel reci-
Multiple-input multiple-output (MIMO) wireless commu- procity in a time division duplex (TDD) system or by means
nication systems can substantially improve the spectifal efof a limited feedback channel in a frequency division duplex
ciency in wireless point-to-point links. Early theoreficesults (FDD) system. In the latter case, which is also the focusisf th
[1, 2] are beginning to be successfully implemented in syste paper, channel vector quantization (CVQ) based on predkfine
and standards [3, 4]. codebooks can be used to feed back a quantized version of
Recently there has also been a great deal of interest on H&® channel [10]. The codebook has to be designed in a way
to carry these performance gains over to the system levisl. minimize the quantization error of the channel matrices
Multi-user MIMO (MU-MIMO) refers to a system where aas well as the feedback overhead. However, minimizing the
transmitter equipped with multiple antennas is communicaquantization error requires large codebooks which regaire
ing with several users simultaneously on the same physidaige amount of feedback [11]. In a real system, the besetrad
resources. The users can have multiple antennas too, busthioff between these two design criteria has to be found.
not a necessity. Especially the downlink (or broadcasthoeh ~ Most of the current literature studies MU-MIMO sys-
of such systems has received a lot of attention in the coofexttems in ideal simulation environments using independent
and identically distributed (i.i.d.) Rayleigh fading chmeh
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User 1

matrix.

However it was shown in that neither the i.i.d. assumption e =
nor the assumption of a common transmit correlation MatriX gase station (M antennas)
for one user holds true in real measured MU-MIMO channels User k
[14, 15]. From a system level perspective it is interrestiog _
see the performance of MU-MIMO with limited feedback in V. e
realistic conditions with a small number of users.

Thus, in this paper we use real channel measurements to User K
study MU-MIMO systems withK' = M users. We compare v
the performance of different linear MU-MIMO precoding
schemes, such as zero-forcing (ZF) and regularized channel
inversion (also called Minimum Mean Square Error (MMSE) Feedback link
precoder) [8] with the achievable capacity in such channglg, 1 \yiti-user MIMO System Model.

(the DPC region) [16]. We also study the impact of lim-

ited feedback based on CVQ using a Fourier codebook, a

Grassmannian codebook, a random codebook, and a random tg evaluate different codebooks.
codebook exploiting the second order statistics of thesen  , We present the EMOS platform and show how the
Last but not least we evaluate the information rate on the challenge of performing MU-MIMO measurements syn-
feedback channel using a first order Markov chain model for Chronous|y over mu|tip|e users can be addressed.

the temporal evolution of the feedback [17]. Relating thighe paper is organized as follows. In Section Il we desctiie t
feedback rate to the achievable rate on the broadcast dharmg_MNo system model. Section IIl reviews results on the
provides a mean to evaluate different codebooks. capacity of MU-MIMO channels and describes the different
~ MU-MIMO channel measurements have been obtained Ygie s precoding schemes studied in this paper. In Section |
ing the Eurecom MIMO OpenAir Sounder (EMOS) [18]\ye describe how to obtain partial CSIT by means of limited
The EMOS can perform real-time channel measurements,ghack. The measurements and their results are discimssed
synchronously over multiple users moving at vehicular 8peegection v, Finally conclusions are drawn in Section VI. The
The measured channels are stored to disk for offline analysi§,recom MIMO OpenAir Sounder (EMOS) is described in
For this paper, we have used four transmit antennas and feuig Appendix.

users with one antenna each. _ _ Notation: Column vectors and matrices are denotedaby
Related Work: Many measurement campaigns for pointanq A respectively.I,, is the identity matrix of sizeV/ and

to-point MIMO channels have been carried out to date, bHSu is an M-dimensional vector of zeros. The Euclidean)(

MU-MIMO me.asu.rements are still rare in the literature. Aorm of a vector is denoted byla|| and the Frobenius norm
common practice is to conduct SU-MIMO measurements ala(fi a matrix A is denoted by||A||z. E denotes expectation,

later combine them into a MU-MIMO channel. Such an,qc(m, C) denotes a multivariate proper complex normal
approach has for example been reported in [19-22]. ReCenfiiy i tion with mean vectom and covariance matric.
[23] has claimed that under certain conditions this mettsod |

feasible. However, this is definitely not the case for rapidl
changing environments and the high-mobility measurements
as considered in this paper. To the best of the authors knowl\We consider a multi-user, multi-antenna wideband downlink
edge, real synchronized MU-MIMO channel measuremerggannel in which a base station (BS) equipped with

have only been described in [24]. The measurements w@@iennas communicates withi < M user equipments (UESs),
conducted using a MEDAV-LUND channel sounder with it¢ach equipped with one antenna (see Fig. 1). Such a channel is
corresponding receiver as well as the receiver of an Elektroalso called a broadcast channel (BC) in the informationheo
channel sounder. The measurements of the two receivers li§gsature. We use orthogonal frequency division multite
synchronized in a post-processing step using a dummy chan(§FDM) and thus the sampled received sigpal,, , € C of

that was inserted between snapshots. The authors predBatk-th user at timem and subcarrier; is mathematically
capacity results for the uplink channel, as well as patk-logescribed as

and delay spreads for the measured scenarios. However, the T _
measurements in [24] are limited to a two-user case while als Yemg = Wm,gXmg +Momg TOr k=1,....K (1)

Il. SYSTEM MODEL

being very costly and time-consuming. wherehy, ., 4 € CM represents thé-th user channel response
Contributions and Outline: The contributions of the andny ., € CN(0,0?) represents the circularly symmetric
paper are as follows additive white Gaussian noise with zero mean and variance

« We assess the performance of different MU-MIMGr2. The vector of transmit symbols,, , € CM is a function
schemes in using several different channel measuremeumisthe multiple users’ transmit symbais; ,,, , with covariance

« We study the effect of limited feedback using differenmatrix 3y . o = E{Xx m ¢X},, ,}. The sub-indicesn andq
codebooks in real world conditions. always refer to the time and subcarrier indices, respdgtive

o We introduce a novel way how to relate feedback rate to The transmitter is subject to a power constraint per sub-
capacity of MU-MIMO channels thus providing a meartarrier, i.e.,xﬁ{ﬂxm,q < P. The total transmit power is not



dependent on the number of transmit antennas. Note that wét has been shown [7] that the sum rate capacity given in

always assume that we transmit to exaclly = M users Equation (4) is actually achieved by using DPC. However,

and we do not study the impact of user scheduling or powBIPC is complex to implement in practical systems and thus

control. Further we assume that the noise power= 1. we also study linear precoding schemes in the next section.
Equation (1) can also be written in matrix notation by

defining H,,, ; = M1, - ..hKﬂn’q}T and the vectorsy,, , B. Linear Precoding

andn,, , accordingly: Let s, € C denote thek-th user data symbol. Under linear

precoding, the transmitter multiplies the data symbglsby

the precoding vectorsv, € C* and combines them to the
We assume that each of the receivers has perfect and instaansmit symbok, i.e.,x = Eszl wy.sk. In order to fulfill the

taneous knowledge of its own channel. Further we assumeransmit power constraint, the transmitter further norizes

zero-delay error-free feedback channel and denote thenehan, such thatx”x = P. From (1) the resulting received signal

matrix fed back at the transmitter witHl. We consider two vector for userk is then given by

cases for the feedbacki) (full feedback, i.e., the bandwidth T T

is large enough to feed back the full channel estimate &id ( Y = h Wisp, + Z by wisj 4+, ()

limited feedback with a resolution @ bits for each subcarrier ik

¢ and timem. For notation convenience, we drop the timavhere the first term is the desired signal, the second term

and subcarrier indices: and ¢ when their dependence is notrepresents the multi-user interference, and the last téen t

needed. noise. The signal to noise plus interference ratio (SINR) at

each usefk is thus given by

Ym,qg = Him,gXm,q + g 2

IIl. SuMm RATES OFMULTI-USERMIMO CHANNELS |h{wk\2
. . . . . SINR, = 5 .
In this section we review the capacity of multi-user MIMO >k |hfwj] + o2

channels (Subsection IlI-A) as well as the sum rate of line
precoding schemes (Subsection I11-B). For comparison vile

also review the sum rate of a multiuser system employiﬂ
single-user multiple-input single-output (SU-MISO) TDMwA K

(6)

r
a} the user codes are drawn from an i.i.d. Gaussian distribu-
E)n, the sum rate of linear precoding is thus given by

Subsection I1I-C. Rpc(H, P) = ZIOgg (14 SINRg) . (7)
k=1
A. Capacity In this paper we use a regularized channel inversion with

equal power allocation based on the feedback channel to

From the results in [6, 25], the sum capacity of the MUdesign the precoding vectows;, [8]. The regularized channel
MIMO downlink channel can be expressed by the followinghyerse is given by

maximization:

W =" HH" +51) 7, ®)
Cac(H, P) = whereH = [hy, ..., hg]7 is the fed back channel matrix and
K 1+ hH (ZK > ) hy, B is the regularization factor. The precoding vectevs are
k j= J X .
max > log, ., (3) finally given by the columns oW.
Be20,500, tr(Sk) <P 1+ th (Z#k Ej) hy, The above scheme is often referred to as MMSE precoding

S N ~with equal power allocation due to the analogy with MMSE
where the maximization is over the set of all positive serfideneamforming weight design criterion if the noise is spatial
inite transmit covariance matriceEy,k = 1,...,K. The \hite If g = 0, Equation (8) reduces to the ZF precoder.
objective function of the maximization in (3) is @ non-CoxVe qyever, when the channel matrix is ill-conditioned, atstea
function of the covariance matrices, making it very diffictd 6 of the singular values ¢EIFI7 )~ is very large, resulting
deal with. Fortunately, due to the duality of the BC and thg, 4 very low signal to noise ratio (SNR) at the receivers.
multiple access channel (MAC) [16], the sum rate capacity of o non-zerog value on the other hand allows for a certain
the MIMO BC is equal to the sum rate capacity of the dugnount of multi-user interference. The amount of interfere
MAC with power constraint” is determined by3 > 0 and an optimal tradeoff between the

condition of the channel matrix inverse and the amount of
Coc(H, P) = Cuac(H, P) = crosstalk ought to be found. In practice, the regularizatio
K factor is commonly chosen a8 = Mo?/P motivated by
10g2 < ) ’ (4)

max

1+ hZQ.hy i ; : .
Q05K | t(Qu)<P Z k the results in [8] that show that it approximately maximizes

k=1 the SINR at each receiver, and leads to linear capacity growt
where each of the matrice®, is a positive semidefinite with M. The performance of MMSE is certainly significantly

covariance matrix. Since (4) involves the maximization of better at low SNR and converges to that of ZF precoding
convex function, efficient numerical algorithms exist. hist at high SNR. However, MMSE does not provide parallel
paper, we use the specialized algorithm developed in [26] &nd orthogonal channels and thus power allocation tecksiqu
calculateCgc(H, P). cannot be performed in a straightforward manner.



C. Time Division Multiple Access we use the channel vector norfiy, ,,, .|| as CQI. Note that

In a TDMA system, the BS only serves one user at a timthis choice of CQI is not suitable for multi-user scheduling
We analyze the case when full CSIT and with no CSIT. In theince it does not take the multi-user interference and the

case of full CSIT, the capacity of a particular udeis given quantization error into account. However, in this paper we
by are only interested in the precoder design and do not canside

P ) scheduling. Moreover, we assume that the channel vectar nor
Csu-csi(hy, P) = logy { 1+ ﬁ”hk” : (9) s not quantized, since we are only interested in the ability
o . _ ) _ _the codebook to capture the spatial properties of the channe
The capacity is achieved by transmit maximum ratio combin- The transmitter, which also knows the codebook, can then

ing [27]. _ _ reconstruct the channel by a simple lookup tabiig;,, , =
If full CSIT is available the sum rate of the system can, [ hy.m.qll. The codebookC is designed off-line and
be optimized by transmitting to the user with the largesfore’are se

. . " X . ere are several well-known possibilities. In this paper w
single-user capacity only, exploiting multi-user diveyS28].  ¢onsider a Grassmannian codebook, a Fourier codebook, a

However, with multiple transmit antennas and a small ””mbf%[ndom codebook and a correlated random codebook.

of users (which is the case considered in this paper) thesgain 1) Grassmannian Codebook: The Grassmannian codebook
of multi-user diversity are reduced. Therefore, we assm“derives its name from the Grassmannian line packing prob-

all users are allocated an equal amount of time (round roQify,, \vhich is defined as follows [29]: how shoufd one-

scheduling). This also allows a more fair comparison to thé ansional subspaces of thé-dimensional (complex) Eu-
linear precoding schemes cqnsidereq in the previous $ectiQjijean space be arranged so that they are as far apart as
The sum rate of the system is thus given by possible? This problem is equivalent to finding the optimal
K guantization vectors of a source with uniform distribution
Croma-csit(H, P) = Z ?Csu.csn(hk,P). (10) on the (complex)M -dimensional unit sphere. Therefore the
k=1 resulting codebook is optimal if the elements of the channel

When no CSIT is available, the capacity of a particular us¥gctorshy, are i.i.d. complex Gaussian distributed [30]. In

k is given by this work we use the Grassmannian codebook available for
P download at [31].
Csu-nocsit(hx, P) = log, (1 + QMHth) ) (11) 2) qurier Codebook: The Fourier codebook is obtained
g by definingc; as the topM rows of thei-th column of the

Again, we assume that multiple users are served using a rofigcrete Fourier transform (DFT) matrix of sizg, i.e.,
robin scheduler and thus the sum r&@ma-nocsit(H, P) can 1

—27ji/C —27ji -1)/C
be defined similar to (10). Ci = W[Le e eI M=/OT, (13)

Each entry of the codebook can be interpreted as a beam-
forming vector of a linear antenna array with one fixed beam.
The linear precoding schemes described in the last sectiphis codebook is therefore well suited for line of sight ()OS
require CSIT in the form of the matrit. When a feedback channels with linear antenna arrays.
channel with a limited bandwidth (as described in Sectiprsll  The Fourier codebook index calculation (12) can be imple-
available, channel vector quantization can be used to fael bmented efficiently (in terms of memory and computation) by
a quantized version of the channel, providing partial CSIfaeans of an inverse fast Fourier transform (IFFT). Also, the
Such a scheme has also been proposed for LTE [4] andcisdebook does not need to be stored at the transmitter, as it
outlined in Section IV-A. can be easily reconstructed [32].
By exploiting time-correlation in the channel, the actual 3) Random Codebook: The quantization vectors of the ran-
feedback rate can be reduced. Recently, it has been poingefh codebook are constructed by drawitigrandomly from

out in [17] that the actual required feedback rate is given kah i.i.d. complex Gaussian distribution on thé&-dimensional
the CSl source rate. This measure is introduced in Subsectiopnit sphere, i.e.¢; € CN(04,15) and subsequent normal-

IV. OBTAINING CSIT THROUGHLIMITED FEEDBACK

IV-B. ization, i.e.,|/c;|| = 1.
4) Correlated Random Codebook: The quantization vectors
A. Channel Vector Quantization of the correlated random codebook are drawn from com-

E plex Gaussian distribution on the -dimensional unit sphere,
whose covariance matrix matches the transmit correlation
matrix of the channel, i.ec; € CN (0, R@) and|c;|| = 1.

The transmit correlation matrix is defined as

For each subcarriey and every time indexn, the U
k selects a quantization vector with indéy ,,, from a
codebookC = {ci,...,cc} of size C = 25, such that the
angle between the actual chandsl,, , and the codeword
cr,.., is minimized. This is equivalent to writing R = E{h:hf}. (14)

Iy m,q = argmax |C7;Hhk,m,q|- (12) The application scenario of correlated codebooks consther
=1,...¢ in this paper is that different BSs or even different sectufrs
For every subcarrier, the UE then feeds back the infiex , a BS employ codebooks that are adapted to their environment.
along with a channel quality information (CQI). In this papeThe transmit correlation matrix should thus be estimategt ov



Parameter Meas. 1-3 Meas. 4 B
Center Frequency 1917.6 MHz | 1917.6 MHz
Useful Bandwidth 48MHz | 4.0625MHz
BS Transmit Power 30dBm 30dBm _ Measurement 4 b
Number of Antennas at BSW) 4 2
Number of UE K) 4 2 63
Number of Antennas at UEN) 1 1
Number of Subcarrierscf) 40 80 69

TABLE |
PARAMETERS OF THEEURECOMMIMO OPENAIR SOUNDER FOR THE
FOUR MEASUREMENT CAMPAIGNS

a wide frequency range and several locations. In this paper
q y 9 P pFelg. 2. Map of the measurement scenario. In measurement 1 the wees

. (k) .
we estimateR..; from the measurements by taking the meagtiving in cars along the indicated routes (the colors shiovreceived signal
of hkhf over all frequencies; and all framesm in one strength in dBm along the routes). Measurements 2—4 areaiteticon the

measurement. map.
For both the random and the correlated random codebook

we assume that.ea(.:h user has a d|fferent and mdependegt%ap of the environment. The BS is located at the roof
generated quantization codebook as in [11].

of Eurecom’s southmost building. The antenna is directed
towards Garbejaire, a small nearby village. The colorsdatd
B. Feedback Rate the received signal strength along the measurement routes.
In order to evaluate the intrinsic rate of information brbtig The measurement parameters are summarized in Table |. A
by the measured channel, we follow [17] and model the tintaore detailed description of the EMOS can be found in the
variation of I, , as a finite-state Markov chain of orderAppendix.
1 with C states (see Fig. 8 for an example). LBt*) In the first three measurements, we use all four transmit
be the transition probability matrix with elemenl%,f';’q) = antennas (arranged in 2 cross-polarized pairs) and foususe
Pr(Im.q = UIx.m—1,4 = n). Also define the stationary prob-with one antenna each. In the first measurement, the UEs
ability vector (%9 with elementsm(k"” = Pr(ljm, = 1). Wwere placed inside standard passenger cars which were being
P*:9) and %9 are estimated from the measurements.  driven along the routes shown in Fig. 2. The cars had no fixed
We now use Proposition 1 of [17] to calculate the normaroutes and thus the distance between them was changing. In
ized CSI source bit rate per user and per subcarrier the second measurement, the users were indoors in the same
c room, walking around slowly. In the third measurement, the
o (k) 1 plk,a) users were parked close together in a parking lot.
Resilk,q) = ngl (=5 (15) In the fourth measurement we use only two co-polarized

Wh luating th ¢ take th antennas at the transmitter and two users with one antenna
en evaluating the measurements we taxe the mean oxgty, rne first user is always at position and the second
all frequenciesq like we do for the capacity evaluations.

Further. in th i it ted in th user is at position:;,7 = 1,...,5. Positionse, x5, andxs; are
urther, in the multi-user case we are interested n the Sy |\ hije positionsrs and x4 are behind an office building.
rate and thus sum over all usets

During the measurements the users were moving only within a
1 e few wavelengths in order to get a sufficient number of samples
Rest = Q Z ZRCSI(ka)- (16)  for the evaluation of the statistics of the small scale fgdin
k=1 q=1

V. MEASUREMENTS ANDRESULTS B. Normalization
In this section we present results using real channel mealn order to control the average SNR at the UEs, we have
surement data. We first describe the measurement scenario®ire-normalize the recorded MIMO channel matrices. One
Subsection V-A and the normalization of the recorded chiinri@easurement results in the set of MIMO channel matrices
matrices in V-B. Finally, in Subsection V-C we apply the Ny
metrics for the MU-MIMO sum rate from Section Il and the {Himq €C k=0, K1,
feedback rate from Section IV directly to the recorded and m=0,...,Np—1,¢=0,...,Q — 1},

normalized channel matrices. where k denotes the user indexy the snapshot index, and

o q the frequency (or subcarrier) indeX, M, and K are the
A. Measurement Description number of receive antennas, number of transmit antennas
The measurements were conducted using the Eurecamd number of users respectivelyr is the total number of
MIMO OpenAir Sounder (EMOS) [14,18, 33] in the vicin-snapshots per measurement after removing erroneous frames
ity of the Eurecom institute in Sophia-Antipolis, France(on averageNg ~ 18.000, corresponding to approx. 50 sec).
The scenario is characterized by a semi-urban hilly teyraifhe total number of channel estimates in the frequency domai
composed by short buildings and vegetation. Fig. 2 shougs given by Q@ = 160/M, since there are 160 subcarriers



Multiuser Capacity for M=4, K=4, N=1, and SNR=10dB
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Fig. 3. CDF of the sum rate of SU-MISO TDMA compared to MU-MIMO Fig. 5.
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user.
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Fig. 4. CDF of the sum rate of MU-MIMO with ZF and MMSE precogin
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in total and the pilots are multiplexed over thd transmit
antennas. The MIMO matrices are normalized by

NNrQ
;c,m,q = Hk’,m,q\/Z

q ||Hk,m,q||%“
such thatE{||H}||%} = N. Since the noise varianee® = 1,
the average SNR at each UEis thus 5.

17)

C. Results

K=2 and SNR=10dB
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Comparison of mean MU-MIMO sum rate for DPC and SU-MISO
TDMA, as well as ZF and MMSE precoding with respect to inteetudistance
for measurement 4. The average SNR is fixed to 10dB for each user.

respect to the inter-user distance. The results are plaotted
Fig. 5 for measurement 4.

It can be seen from Fig. 3 that MU-MIMO DPC as well as
SU-MISO TDMA do not show a very high variability with
respect to the different measurements. However, the linear
MU-MIMO precoding schemes (see Fig. 4) are very sensitive
to the channel conditions. Especially the performance ef th
ZF precoder drops significantly in the outdoor scenario wher
the users are close together. In the indoor scenario and the
other outdoor scenario where all users are well separdated, t
performance of the linear MU-MIMO schemes is comparable.

The effect of the inter-user distance on the capacity of the
different schemes can be observed more closely in Fig. 5.
It can be seen that there is a clear relationship between the
distance and the capacity of linear precoding schemes: the
further apart the users are, the higher the capacity. In fact
inter-user distances up to 55m, the SU-MISO TDMA scheme
always performs better than the linear MU-MIMO schemes.
Only in the last measurement at 75m, the MMSE precoder
shows a slightly better performance than the TDMA scheme.

The poor performance of linear precoders in scenarios with
a small inter-user distance can be explained by looking at
the channel correlation matrix of the different scenarids, [
34]. When the channel is strongly correlated it means that
the channel matrix is ill-conditioned. Thus at least onehsf t
singular values of HH )~ is very large, resulting in a very
low SNR at the receivers, when ZF precoding is used. The
MMSE precoder can alleviate this problem, but still suffers

1) Comparing different scenarios. Firstly, we compare the from the high correlation at the transmitter.
performance of MU-MIMO using DPC, ZF precoding, and 2) Comparing Different Codebooks: Fig. 6 and 7 compare
MMSE precoding as well as SU-MISO TDMA based on théhe CDF of the MU-MIMO sum rate using MMSE precoding
empirical cumulative density function (CDF) of the sum ratbased on quantized feedback using different codebookgef si
(Equations (4), (7), and (10)). We assume an average SR (6 bit) and size 4096 (12 bit) respectively. We also plet th
at the users of 10 dB, which corresponds to the average SN&ses with perfect feedback (cf. Equation (7)) and no fegdba
at the cell edge. The results are plotted in Figures 3 and(&f. Equation (11)) as lower and upper bounds for comparison
for measurements 1-3. Secondly, we compare the mean Measurement 1 are used for both plots.
MIMO sum rate for all the above mentioned schemes with It can be seen that the performance of MU-MIMO with
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Fig. 6. CDF of the sum rate of MU-MIMO with MMSE precoding with Fig. 8.  Calculated codebook indic€s 4 Using a 4 bit Grassmannian

different feedback schemes for measurement 1. The average Sfifed to codebook on measurement 1. The different shades of gray pomdsto

10dB for each user. We compare the performance under sevetabooks different codebook indices. It can be seen that for some stibca the

of size 64 (6 bit) with the perfect feedback case as well ahéocase with volatility of the codebook indices is quite high (resultiimga higher feedback

no feedback, which is equivalent to SU-MISO TDMA. rate) while for other subcarriers it is rather low (resultim a low feedback
rate).
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Fig. 9. CSI source rate of the output of the channel quanfkeg; vs. MU-
MIMO sum rateRy\vse- Each point in the graph represents the result for
Fig. 7. CDF of the sum rate of MU-MIMO with MMSE precoding with one measurement, one codebook and one codebook size. This dituws
different feedback schemes for measurement 1. The average Sfiled to  us to compare different codebooks with respect to their tgbib capture
10dB for each user. We compare the performance under sevetabooks of the spatial and temporal properties of the channel. The usedurements,
size 4096 (12 bit) with the perfect feedback case as well abeaase with codebooks and codebook sizes are given in the legend asmweileifigure
no feedback, which is equivalent to SU-MISO TDMA. next to the data point.

MMSE precoding depends strongly on the chosen codebod®MA system is 2.9 bits/sec/Hz (at 50% outage rate).

For the evaluated outdoor channel, the Fourier codebookThe poor performance of the Fourier codebook can be
exhibits the worst performance, being only slightly bette#Xplained by the fact that)( the BS does not use a linear
than a SU-MISO TDMA scheme with no feedback at algntenna array andi the investigated channel does not have
Further, its performance does not increase with the numiel-OS component. Further, the fact that the performance of
of feedback bits. The correlated random codebook perforrﬂg—z Fourier codebook does not increase with the codeboek siz
better than the Fourier codebook. The random codebook @b be explained by looking at the maximum cross-correfatio
the Grassmannian codebook perform best. However, forbgtween codebook entrief(C) = maxe, c,cc,ixj [cf ¢ . In

bits of feedback the gap to the perfect feedback casetfi¢ case of a Fourier codebook(C) will converge to one
still significant (3 bits/sec/Hz at 50% outage rate). Dongpli @s the codebook size increases (just choose two neighboring
the number of feedback bits to 12 reduces the gap to xgdebook entries; andc;,). For the random codebook on
bits/sec/Hz (at 50% outage rate), which is comparable to tHte other handf(C) will converge to zero, since any two
theoretical results achieved in [11]. The gain to the SU-BIIScodewords are uncorrelated with probability one [35].



3) Feedback Rate vs Capacity: For illustration purposes we [}
plot the quantized channel indicés,, , (12) for measurement ' |
1 for userk = 1 in Fig. 8. It can be seen that for some
frequencies; the channel remains quite constant whereas fd=*
other frequencies it varies more. ,

In Fig. 9 we plot the CSI source ratRcsr (16) vs. the g
MU-MIMO sum rateRamvuse (7) for measurements 1-3, threel§
different codebooks and two codebook sizes. This figuresgivi
an indication of how well the codebook is able to exploit thég
temporal correlation in the channel (low feedback ratehwit
respect to the gain in capacity it brings. Points furtherhe t
top left of the figure are the best (low feedback rate while
having high capacity).

It can be seen that the results are quite different for difier
codebooks and for the different measurements. Lookingeat th
Fourier codebook (black markers), it can be seen that this
codebook requires the largest feedback rate while progidin
the lowest sum rate. Increasing the number of feedback it ju
increases the feedback rate and not the capacity. Consideri
the Grassmannian codebook (blue markers) on the other hand,
it can be seen that this codebook requires much less feedback :
than the Fourier codebook for the same codebook size while ( S ol N
having a larger capacity. Further, increasing the codelsizk (c) UE with CardBus MIMO  (d) Panorama antennas
increases the capacity significantly. board

The random codebook has similar properties as the Gragg; 10. EMOS base station and user terminals [18].
mannian codebook. A 4 bit random codebook offers a lower
capacity than a 4 bit Grassmannian codebook, whereas a Frame (319F0 Symbots)

6 bit random codebook offers higher capacity than a 6 bit
Grassmannian codebook. Also interesting to note is that the PRt "
higher mobility measurements require more feedback than th 48 Plot Symbos

low mobility measurements, but at the same time have a higher

capacity. Fig. 11. Frame structure of the OFDM Sounding Sequence. Tamer
consists of a synchronization channel, (SCH), a broaddaastrel (BCH),
and several pilot symbols used for channel estimation.

(b) Power amplifiers
and Powerwave antenna

VI. CONCLUSIONS

We have presented an extensive evaluation of different Midf feedback bits. Also, these codebooks allow for a feedback
MIMO schemes with perfect and limited feedback in variougduction in time-correlated channels. Thus, these camebo
channel conditions. The data was acquired using Eurecorgi able to represent the channel more appropriately.
MU-MIMO channel sounder EMOS. It can be concluded that the codebook design for MU-

From the results we can derive two important criteria thafllIMO systems remains a hot topic. The tools and the analysis
need to be considered when designing MU-MIMO schemgsresented in this paper allow to carefully evaluate différe
Firstly, spatial separation of users has a very strong impac codebooks and to choose the codebook that provides a good
the performance of linear precoding schemes. In partictiier trade-off between feedback and downlink rate.
performance of a ZF precoder drops significantly in outdoor

scenarios, when the users are close together. Therefose it i APPENDIX
necessary to design proper scheduling algorithms thattsele THE EURECOMMIMO OPENAIR SOUNDER
users with different spatial signatures. This Appendix describes the Eurecom MIMO OpenAir

Secondly, the performance of limited feedback MU-MIMQsounder (EMOS). We start by giving an overview of the hard-
schemes crucially depends on the codebook. It was seen thate architecture, followed by a description of the sougdin
the performance of the Fourier codebook is hardly betten thaignal and the synchronization procedure. Last, but naitlea

that of a SU-MISO TDMA scheme with no feedback at alwe explain how we perform high-accuracy MIMO channel
even for a high number of feedback bits. Further this codkbogstimates. [14,34,35].

does not allow any feedback reduction in time-correlated
channels. We thus conclude that the Fourier codebook is mQt Hardware Description

able to capture the spatial properties of the measured Out-rp . EMOS is based on the OpenAirinterfadeardware/

door wideband channel appropriately. The performance @f tQ fiware development platform at Eurecom. The blatform
random codebook, the Grassmannian codebook and especia?lyW velop P . ' P

the correlated random codebook increases with the numbeéihttp:/iwww.openairinterface.org



consists of a BS that continuously sends a signaling franm, sestimate of the SCH in the time domain. To avoid jitter, the
one or more UEs that receive the frames to estimate the charak position is passed through a low-pass filter. If the peak
nel. The BS consists of a workstation with four baseband daiasition drifts from the target position by more than 5 saaspl
acquisition cards, which are connected to four radio-fesmpy the timing offset of the hardware is increased (decreasgd) b
(RF) boards (called PLATON, see Fig. 10(a)). The RF signatéie sample.
are amplified and transmitted by a Powerwave 3G broadbandlhe receiver also continues to decode the BCH. If the BCH
antenna composed of four elements which are arranged in teannot be detected successfully for 100 consecutive frames
cross-polarized pairs (part no. 7760.00, see Fig. 10(khe Tmore, the receiver declares itself out of sync and the Initia
UEs consist of a laptop computer with Eurecom’s dual-RF dasgnchronization procedure is stared again. For succedsful
acquisition card (called CardBus MIMO, see Fig. 10(c)) ancbding of the BCH, a SNR of approximately 10dB or more
two clip-on 3G Panorama Antennas (part no. TCLIP-DE3Gs required.
see Fig. 10(d)). Both equipments operate at 1.900-1.920 GH®) Multi-user Synchronization: In order to conduct multi-
with 5MHz channel& The platform is designed for a full user measurements, all the UEs need to be frame-syncheonize
software-radio implementation, in the sense that all molto to the BS. This is important fori synchronized start and
layers run on the host PCs under the control of the real-tinstop of the data acquisition and)( for the proper alignment
application interfaceé (RTAI), which is an extension to the of the measurement data from multiple users in the post
Linux operating system. processing. Multi-user synchronization is achieved byngsi
the frame number encoded in the BCH. This frame number is
B. Sounding Signal also stored a}long with the measured channel at the UEs for
post processing.

The EMOS is using an orthogonal frequency division mul-
tiplexing (OFDM) modulated sounding sequence with 25§ EMOS Channel Estimation Procedure
subcarriers (out of which 160 are non-zero) and a cyclic
prefix length of 64. One transmit frame is 64 OFDM symbol
(2.667 ms) long and consists of a synchronization symb
(SCH), a broadcast data channel (BCH) comprising 7 OFD
symbols, a guard interval, and 48 pilot symbols used f
channel estimation (see Fig. 11). The pilot symbols arerta;i
from a pseudo-random quadrature phase-shift keying (QP .
sequence defined in the frequency domain. The subcarrig oding of the BCH. N .
of the pilot symbols are multiplexed over the four transmit he E.MOS chan.nel estimation procedure CO.nS'StS of two
antennas to ensure orthogonality in the spatial domain. \I‘Z@F}S F|thIy, thebp:Iot sygwbolsharehderotart](?f? W'.th respzc
can therefore obtain one full MIMO channel estimate for on% e first pilot symbol to reduce the phase-shift noise gdadra

group of M subcarriers. The BCH uses QPSK modulatio y the Car(inBtus_ MIMO Ct?]rd' Seconaly, t?zl\ﬁ)gm_rﬁym?lo's |
and rate 1/2 convolutional code and contains (among otffgF averaged 1o Increase neé measuremen - [he channe

information) the frame number of the transmitted frame théﬁf then estimated in the frequency domain by multiplication
is used for synchronization among the UEs. of the derotated and averaged symbols with the complex

conjugate of the pilot symbol. The estimated MIMO channel
is finally stored to disk. For a more detailed descriptiontf t
C. Synchronization synchronization and channel estimation procedure se@8l18,

Transmitter and receiver must be synchronized in order to
conduct usefull measurements. Synchronization is takiagep ACKNOWLEDGMENTS
at three different levels, which are described below. The authors would like to thank their colleagues at Eurecom
1) Initial Synchronization: Initial synchronization is per- and G. Attard who helped to carry out the measurements for
formed using a sliding window correlator on the SCH symbdhis paper. The authors would also like to thank the anonygmou
in the frequency domain. After successfull detection of theviewers for their comments, which helped to improve the
SCH, a channel estimate is performed on the SCH. Thigper.
channel estimate is used for coherent detection of the BCH

Once the receiver is fully synchronized to the transmitter,
e EMOS channel estimation procedure is started. Note that
is procedure uses all the 48 pilot symbols of a frame (cf.
79 11) and thus provides a more accurate channel estimate
an the one based on the SCH symbol at the beginning of
frame, which is only used for synchronization and cofere
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