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Abstract In this paper a comparison is made between two decomposition techniques to

solve a staff scheduling problem with column generation. In the first approach, decomposi-

tion takes place on the staff members, whereas in the second approach decomposition takes

place on the activities that have to be performed by the staff members. The resulting master

LP is respectively a set partitioning problem and a capacitated multi-commodity flow prob-

lem. Both approaches have been implemented in a branch-and-price algorithm. We show a

trade-off between modeling power and computation times of both techniques.

Keywords Decomposition · Staff scheduling · Set partitioning · Multi-commodity flow ·

Branch-and-price

When dealing with staff scheduling problems a common approach is to formulate the prob-

lem as an integer linear program (ILP) and solve it with a general-purpose ILP solver (see,

e.g., Billionnet 1999). It is however well known that computation times can be dramati-

cally reduced if the problem is decomposed. Decomposition of linear programs, known as

Dantzig-Wolfe decomposition, was originally introduced by Dantzig and Wolfe (1960). De-

composition involves the division of the problem into several subproblems that are smaller

than the original problem, that contain none (or less) so-called ‘complicating constraints’

and hence can be solved more efficiently and independently of each other. The question is

how to decompose a particular problem in order to efficiently solve the problem. To the best

of our knowledge, all decomposition approaches for staff scheduling problems decompose

on staff members, i.e., generate columns per staff member (see, e.g., Mehrotra et al. 2000;
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Mason and Smith 1998; Jaumard et al. 1998). For certain problems, however, a decompo-

sition scheme on the tasks (further referred to as activities) instead of decomposing on the

employees, could also be applied.

The objective of this paper is to compare an activity-based and a staff-based decompo-

sition approach for a particular staff scheduling problem encountered in many hospitals.

The problem involves scheduling trainees (graduated students) to perform a number of ac-

tivities over a time horizon. This problem distinguishes from the classic nurse scheduling

problem (NSP) in the fact that the NSP usually deals with detailed shift scheduling, e.g.,

determining the exact hours nurses have to work during the next month, whereas trainees

are scheduled over a much longer time horizon (usually one year). Moreover, in contrast to

nurses, trainees still have to complete an education. This education requires that they have

to perform a number of widely divergent activities and the capacity of the trainee posts is

often limited. Consequently, the set covering constraints in NSP are replaced by set parti-

tioning constraints. A second important difference is the undesirability of a situation where

a trainee alternates too much between the activities. Each activity (re)start represents a dis-

continuity in his/her education and involves a considerable mastering time for the trainee.

Hence, when a trainee has a week-off, (s)he cannot simply be replaced by another trainee,

due to the difference in qualification and due to the mastering time. Nurses, however, can

usually exchange weeks-off rather easily by mutual agreement.

The paper is organized as follows. In Sect. 1 we define the problem and state it mathe-

matically. Section 2 proposes the two different decomposition techniques and discusses their

properties. Section 3 compares the resulting pricing problems. Section 4 proposes a branch-

ing scheme that could be applied in both approaches. Section 5 provides computational

results, while Sect. 6 discusses some modeling issues. Finally, Sect. 7 draws conclusions

and lists some topics for further research.

1 Problem statement

The problem addressed in this paper involves the construction of trainee schedules at a hos-

pital department. Trainees are graduate medical science students who wish to specialize

further in a specific field of health care. Trainees are a unique type of human resources, for

they have an important contribution to the provision of services but at the same time are still

in education. This makes the scheduling of the trainees a challenging practice. On the one

hand the hospital service level has to be assured, on the other hand the education progress

of the trainees has to be monitored. The considered problem deals with the following con-

straints. First of all, there are a number of coverage constraints that ensure that each activity

has to be performed at each period by exactly one trainee out of a given set. These trainee

sets are basically composed by trainees having the same experience level. Second, in order

to meet formation objectives each trainee has to perform each activity between a minimum

and maximum number of periods. Third, trainees are not always available to be scheduled;

it is known for each time period which trainees are available to be scheduled and which are

not. On beforehand, the trainees have to quantify their preferences for having weeks-off. To

this aim, they divide a number of points over the scheduling horizon. The higher the number

of points a certain period receives, the stronger the trainee feels about not being scheduled

during that period. Finally, there is some setup cost when a trainee starts a new activity.

Indeed, each new activity start of a trainee takes some time to master the skills required

for the activity. Therefore, in order to maximize the efficiency of the service provided, we

cannot spit activities up per trainee. This restriction also improves the quality of service, as
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the patients have a larger chance to be treated by one and the same trainee. Hence, in the

ideal case each trainee starts each activity only once and performs it for a minimum number

of consecutive periods. The last two constraints are soft constraints meaning that they can

be violated at a certain ‘cost’. Since a split-up in activities is considered to be worse than

the violation of a non-availability constraint, we will concentrate on the problem solution in

which we only relax the non-availability constraints.

Due to all these constraints, the development of trainee schedules is an extremely compli-

cated task. In order to provide more insight into the problem, we will shortly describe how

this task was carried out up till now. In a first step, the responsible scheduler collects the

required data. Coverage constraints and formation requirements are provided by the head of

the department. Non-availability constraints are collected in a hierarchical way. A list cir-

culates in which the trainees successively indicate during which weeks they will be absent

and during which weeks they would like to take vacation. To ensure that vacation periods

are sufficiently spread, the number of trainees having vacation at the same time is limited.

Next, using pencil and paper, the scheduler tries to find a schedule that satisfies as many con-

straints as possible. She mainly concentrates on the satisfaction of the coverage constraints.

At certain moment, typically when 75% of the schedule is completed, she fails to satisfy the

next coverage constraints without violating one or more of the formation, non-availability

or setup constraints. At that moment, she tries to solve the schedule conflict by making a

number of assignments undone or performing a number of switches. If she fails to solve the

conflict in a limited number of tries, she accepts the violation of one (or more) constraints

and continues construction. Upon completion, the schedule is communicated to all the peo-

ple involved (trainees and surgeons). Since this task essentially involves the solution of a

complex combinatorial puzzle and PC’s are typically more suitable to solve such problems

than humans, we believe that a well-thought-out algorithm could save construction time as

well as generate qualitatively better schedules. The nature of the problem makes it suitable

to be solved by a decomposition approach that decomposes on the trainees as well as an ap-

proach that decomposes on the activities. But first, we state the problem as an integer linear

program. Consider the following binary decision variables:

xijk =

{

1, if during period i trainee j is scheduled to perform activity k;

0, otherwise.

yijk =

{

1, if trainee j starts activity k during period i;

0, otherwise.

Let pij denote the penalty cost charged for assigning trainee j to period i. Let ljk and

ujk be the respective minimum and maximum number of periods assistant j has to perform

activity k. It is assumed that ujk > 0 implies ljk > 0 although this assumption is not neces-

sary for the algorithms developed hereafter. Finally, let Sk represent the set of trainees that

will perform activity k in the given time horizon (i.e., all trainees j for which ljk > 0) and

Aj represent the set of all activities that have to be performed by trainee j , i.e., all activities

k for which ljk > 0). The integer linear programming model (ILP) is as follows:

Minimize

n
∑

i=1

p
∑

k=1

∑

j∈Sk

pijxijk (1)
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subject to:

∑

k∈Aj

xijk ≤ 1 ∀i = 1, . . . , n and ∀j = 1, . . . ,m, (2)

∑

j∈Sk

xijk = 1 ∀i = 1, . . . , n and ∀k = 1, . . . , p, (3)

n
∑

i=1

xijk ≥ ljk ∀k = 1, . . . , p and ∀j ∈ Sk, (4)

n
∑

i=1

xijk ≤ ujk ∀k = 1, . . . , p and ∀j ∈ Sk, (5)

y1jk = x1jk ∀k = 1, . . . , p and ∀j ∈ Sk, (6)

yijk ≥ xijk − x(i−1)jk ∀i = 2, . . . , n and ∀k = 1, . . . , p and ∀j ∈ Sk, (7)

n
∑

i=1

yijk ≤ 1 ∀k = 1, . . . , p and ∀j ∈ Sk, (8)

yijk, xijk ∈ {0,1} ∀i = 1, . . . , n and ∀k = 1, . . . , p and ∀j ∈ Sk. (9)

The objective function (1) minimizes the total schedule cost. Constraint set (2) ensures

that each trainee can perform at most one activity at each period. Constraint set (3) guar-

antees that every activity is performed by exactly one trainee during each time period. The

fact that each trainee performs each activity between a minimum and a maximum number of

periods is reflected in constraint sets (4) and (5). Constraint sets (6), (7) and (8) ensure that

each trainee starts each activity only once. Finally, (9) defines x and y as binary variables.

Table 1 displays a simple example of this problem. This example involves four trainees,

three activities and ten periods. All trainees are assumed to have the same level of experience

and each trainee has to perform each activity between a minimum of two and a maximum

of three consecutive periods. In Table 1, the columns correspond to the trainees and the

rows represent the periods. The numbers indicate the non-availability costs for each trainee.

Table 1 A problem instance
Period Non-availability costs

Trainee 1 Trainee 2 Trainee 3 Trainee 4

1

2 7

3 3 5

4

5

6 9

7 5

8

9 6

10 4 1
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Table 2 A solution for the
problem instance Period Trainee schedule

Trainee 1 Trainee 2 Trainee 3 Trainee 4

1 act 1 act 3 act 2

2 act 1 act 3 act 2

3 act 3 act 1 act 2

4 act 3 act 2 act 1

5 act 3 act 2 act 1

6 act 2 act 3 act 1

7 act 2 act 3 act 1

8 act 2 act 3 act 1

9 act 1 act 2 act 3

10 act 1 act 2 act 3

Observe that each trainee has divided in total ten points over the ten periods. In real-life,

often these points are concentrated in a small number of periods.

A possible solution for this problem is represented in Table 2. In this solution, trainees

1 and 4 are both scheduled during a period in which they actually prefer not to be sched-

uled, respectively period 3 and period 10 (indicated in bold), making up for a total cost of

3 + 1 = 4. In practice, this means that either the trainee has to give up his/her preference

for having a period off or the trainee has to be replaced by someone else in this period. The

first results in an unsatisfied trainee, the latter causes a discontinuation in the educational

program, which at its turn leads to a decrease in the quality of care. In Table 2, there are

in total 10 periods in which no activity is scheduled (2 periods for trainee 1, 2 periods for

trainee 2, 3 periods for trainee 3 and 3 periods for trainee 4). However, during 6 of these

10 periods, trainees have requested weeks-off (see Table 1). Hence, only 4 periods remain

in which neither an activity is scheduled nor a week-off has been requested. During these

periods, the trainees will perform activities for which no specific skills are required and for

which the experience level as well as the minimal formation requirements are less impor-

tant. An example of such an activity is consultation. The schedule is thus constructed using a

two-phase approach. In the first phase, the difficult activities, i.e., the activities that certainly

have to be performed, are scheduled. In the second phase, the partially constructed schedule

is completed with the easy activities. This last task is straightforward and can easily be done

manually. Therefore, we will only concentrate on the scheduling of the difficult activities in

this paper.

2 Decomposition of the problem

In the two excellent bibliographic surveys on medical staff rostering problems that recently

appeared (Cheang et al. 2003; Burke et al. 2004), a distinction is made between constraint-

or period-based models on the one hand and column- or shift-oriented models on the other

hand. In this section the constraint-based model of ILP (1–9) is converted to a column-

oriented formulation, which entails a decomposition of the problem. Decomposition in-

volves the division of the problem into several subproblems. Another way of seeing this is

to introduce new decision variables, each one representing a subset of the old decision vari-

ables, that implicitly satisfy a number of constraints. Solving a subproblem is then analogous

to finding a new decision variable or column for the ILP. The constraints that remain in the
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ILP can be seen as the linking constraints. The advantage of such an approach is that the LP

bound of the new formulation is usually much stronger than that of the original formulation

and consequently the branch-and-bound tree remains smaller. The drawback is however that

the new formulation can have far more variables than can be reasonably attacked directly.

Fortunately, column generation can help to overcome this difficulty. Column generation is

based on the observation that it is not necessary to enumerate all possible columns in order

to solve the LP to optimality. The LP can be solved by using only a subset of the columns

and can generate more columns as needed. Hence, column generation alternates LP solving

with subproblem solving. The LP containing only a subset of all columns is often called the

restricted linear program (RLP) or master problem. Each time the RLP is solved it provides

the information (via the dual prices of the constraints) needed to determine whether the LP is

solved to optimality and, if not, to provide information in order to determine which columns

could further improve the LP objective value. The first use of column generation to solve the

master linear program arising from an integer programming problem is probably the work

on the cutting stock problem by Gilmore and Gomory (1961). A branch-and-bound algo-

rithm in which the lower bound is calculated by LP relaxation and the LP is solved through

column generation, is called a branch-and-price algorithm (Barnhart et al. 1998).

2.1 Decomposition on the activities

Observe that constraint (2) is the only constraint in ILP (1–9) that links the different activ-

ities. All other constraints apply on the individual activity level and hence can be satisfied

without taking the other activities into account. As a matter of fact, without constraint (2),

ILP (1–9) could be divided into p subproblems, that could be solved separately. Each sub-

problem corresponds to the scheduling of a particular activity so that (3–9) is satisfied. Such

an activity schedule is referred to as an activity pattern. An activity pattern includes the

scheduling of all trainees having to perform the activity. An example of such an activity

pattern for activity 1 can be found in Table 3.

The task is now to find for each activity a pattern so that constraint (2) is not violated

and objective (1) is minimized. Hence, to decompose (1–9) on the activities, we introduce

decision variables that represent activity patterns. As we will use column generation, the

activity patterns are referred to as columns. Let binary decision variable zkt be defined as

Table 3 A column for activity 1
Period Activity schedule

Trainee 1 Trainee 2 Trainee 3 Trainee 4

1 act 1

2 act 1

3 act 1

4 act 1

5 act 1

6 act 1

7 act 1

8 act 1

9 act 1

10 act 1
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follows:

zkt =

{

1, if column t was chosen for activity k;

0, otherwise.

Let aijkt equal 1 if trainee j is scheduled during period i in column t for activity k. Let

ckt be the total cost of column t for activity k (i.e., ckt =
∑n

i=1

∑

j∈Sk aijktpij ) and NCk

the total number of different columns for activity k. The model can then be formulated as

follows:

Minimize

p
∑

k=1

NCk
∑

t=1

cktzkt (10)

subject to:

∑

k∈Aj

NCk
∑

t=1

aijktzkt ≤ 1 ∀i = 1, . . . , n and ∀j = 1, . . . ,m, (11)

NCk
∑

t=1

zkt = 1 ∀k = 1, . . . , p, (12)

zkt ∈ {0,1} ∀k = 1, . . . , p, and ∀t = 1, . . . ,NCk. (13)

The objective function (10) is again the minimization of costs, but now expressed in

terms of the new zkt variables. Constraint set (11) states that each trainee can perform no

more than one activity at the same time. Constraint set (12) ensures that exactly one column

has to be selected for each activity. Finally, (13) define zkt as a binary variable. The master

problem (10–13) is in fact a 0–1 capacitated multicommodity flow problem in which each

activity corresponds to a commodity and all arc capacities and commodity requirements are

equal to 1. Tests revealed that the LP relaxation of this formulation provides a much stronger

lower bound than that from the original formulation of (1–9) (see Sect. 5.1). The reason is

that in the new formulation (10–12) the optimization is performed over the convex hull of

feasible points of the subproblems, and not just over the relaxed feasible region of (1–8).

It can easily be shown that each feasible solution of the new formulation (10–12) is also

feasible in the original formulation (1–8). To see this, observe that each zkt solution can be

reformed to an xijk solution, which is feasible to (1–8). Therefore, simply set each xijk equal

to
∑NCk

t aijktzkt . The reverse is not true when the convex hull of the subproblem constraints

is not integral. The feasible solution space of (1–8) is much larger than that of (10–12).

Although a smaller feasible region is no guarantee to obtain a better bound, it is quite likely

that the optimal solution of (1–8) is not feasible in the new formulation (10–12).

The drawback of the new formulation is that it can have far more variables than can be

reasonably attacked directly. It is, however, not necessary to enumerate all possible columns

to solve the LP to optimality. The LP can be solved by using only a subset of the columns and

can generate more columns as needed. This way of LP optimizing is called column genera-

tion. We iteratively add new columns and solve the restricted model until no more columns

price out, i.e., no more columns with a negative reduced cost can be found. Let λij represent

the dual prices of restrictions (11) and let γk represent the dual prices of restrictions (12).

The reduced cost of a new column t for activity k is given by:

−γk + ckt +

n
∑

i=1

∑

j∈Sk

−λijaijkt = −γk +

n
∑

i=1

∑

j∈Sk

(pij − λij )aijkt . (14)
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In this expression −γk is non-positive and can be seen as the ‘discount’ for introducing

a new column for activity k. This reward has to outperform the ‘price’ of the new column

which is given by the remaining part in (14). This price consists of two non-negative parts:

the real price ckt and the price charged for ‘consuming’ timetable cells (i, j) expressed by the

dual prices −λij . Consequently, the LP is solved to optimality when no more columns can

be found with a negative reduced cost. The search is started by solving the master problem,

stated in (10–12) for a limited number of columns. The master returns an objective value

(which is an upper bound for the LP solution) and dual prices λij and γk . While λij serves

as a direct input for the objective function of the pricing problem (see Sect. 3), γk is needed

to check the negativity of the reduced cost of a newly found column for activity k. Then, to

check the optimality of the LP solution, a subproblem, called the pricing problem, is solved

for each activity k. The objective function of each pricing problem is the minimization of

the reduced cost (14) of the new column. Columns with a negative reduced cost are added to

the master problem and the master is re-optimized. This process continues until no columns

price out any more.

2.2 Decomposition on the staff members

In the literature, staff scheduling problems are usually decomposed on the staff members,

in this case the trainees (see, e.g., Caprara et al. 2003; Mason and Smith 1998; Jaumard et

al. 1998; Bard and Purnomo 2005; Mehrotra et al. 2000). An example of such a column for

trainee 2 can be found in Table 4.

To decompose (1–9) on the trainees, we introduce decision variables that represent indi-

vidual trainee schedules. Let binary decision variable zj t be defined as follows:

zj t =

{

1, if column t was chosen for trainee j ;

0, otherwise.

Let aijkt equal 1 if trainee j is scheduled during period i in column t to perform activity k.

Let cj t be the total cost of column t for trainee j (i.e., cj t =
∑n

i=1

∑

k∈Aj aijktpij ) and NCj

the total number of different columns for trainee j . The model can then be formulated as

Table 4 A column for trainee 2
Period Activity schedule

Trainee 1 Trainee 2 Trainee 3 Trainee 4

1 act 1

2 act 1

3 act 1

4

5 act 3

6 act 3

7 act 3

8

9 act 2

10 act 2
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follows:

Minimize

m
∑

j=1

NCj
∑

t=1

cj tzj t (15)

subject to:

∑

j∈Sk

NCj
∑

t=1

aijktzj t = 1 ∀i = 1, . . . , n and ∀k = 1, . . . , p, (16)

NCj
∑

t=1

zj t = 1 ∀j = 1, . . . ,m, (17)

zj t ∈ {0,1} ∀j = 1, . . . ,m and ∀t = 1, . . . ,NCj . (18)

The objective function (15) is again the minimization of costs, but now expressed as

the sum of the trainee schedules. Constraint set (16) states that each activity has to be per-

formed by exactly one trainee at each time period. Constraint set (17) ensures that exactly

one column has to be selected for each trainee. The master problem (15–18) is now a 0-1 set

partitioning problem. Let πik represent the dual prices of restrictions (16) and let µj repre-

sent the dual prices of restrictions (17). The reduced cost of a new column t for trainee j is

now given by:

−µj + cj t +

n
∑

i=1

∑

k∈Aj

−πikaijkt = −µj +

n
∑

i=1

∑

k∈Aj

(pij − πik)aijkt . (19)

3 The pricing problems

First, we state the pricing problem when decomposing on the activities. The pricing problem

for activity k can be stated as follows. Let xij equal 1 if trainee j is scheduled to perform

activity k during period i and yij be 1 if trainee j starts activity k at period i.

Minimize

n
∑

i=1

∑

j∈Sk

(pij − λij )xij (20)

subject to:

∑

j∈Sk

xij = 1 ∀i = 1, . . . , n, (21)

n
∑

i=1

xij ≥ ljk ∀j ∈ Sk, (22)

n
∑

i=1

xij ≤ ujk ∀j ∈ Sk, (23)

y1j = x1j ∀j ∈ Sk, (24)
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yij ≥ xij − x(i−1)j ∀i = 2, . . . , n and ∀j ∈ Sk, (25)

n
∑

i=1

yij ≤ 1 ∀j ∈ Sk, (26)

xij , yij ∈ {0,1} ∀i = 1, . . . , n and ∀j ∈ Sk. (27)

Objective (20) simply entails the minimization of the (variable part of) the reduced

cost (14). Constraints (21–27) are just a repetition of the constraints (3–9) for activ-

ity k.

When decomposing on the trainees the pricing problem only differs with respect to the

first constraint. Since constraint (2) applies at the individual trainee level, this constraint

is included in the pricing problem. Since the linking constraint is now constraint (3), this

constraint is left out of the pricing problem. The pricing problem for trainee j can be stated

as follows. Let xik equal 1 if trainee j is scheduled to perform activity k during period i and

yik be 1 if trainee j starts activity k at period i.

Minimize

n
∑

i=1

∑

k∈Aj

(pij − πik)xik (28)

subject to:

∑

k∈Aj

xik ≤ 1 ∀i = 1, . . . , n, (29)

n
∑

i=1

xik ≥ ljk ∀k ∈ Aj , (30)

n
∑

i=1

xik ≤ ujk ∀k ∈ Aj , (31)

y1k = x1k ∀k ∈ Aj , (32)

yik ≥ xik − x(i−1)k ∀i = 2, . . . , n and ∀k ∈ Aj , (33)

n
∑

i=1

yik ≤ 1 ∀k ∈ Aj , (34)

xik, yik ∈ {0,1} ∀i = 1, . . . , n and ∀k ∈ Aj . (35)

Objective (28) simply entails the minimization of the (variable part of) the reduced

cost (19). Constraints (29–35) are just a repetition of the constraint (2) and constraints (4–9)

for activity k.

The pricing problems in both decomposition approaches can be solved in a similar way

using a forward dynamic programming approach. Consider first the case in which we de-

compose on the activities. Suppose we are searching a new column for activity k. This

problem can be visualized by a matrix. The columns in this matrix represent the trainees

j ∈ Sk and the rows represent the time horizon. Each cell of the matrix has a cost gij which
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Table 5 Pricing problema for activity k: optimal solution in bold

Period i gij = non-availability cost pij - dual price λij

Trainee j = 1 Trainee j = 2 Trainee j = 3 Trainee j = 4

1 0 1 1 2

2 0 1 1 1

3 4 2 1 4

4 2 1 0 0

5 0 0 4 0

6 1 5 3 1

aFor ease of explanation all cost values are integer. Note however that during column generation these cost
values are usually fractional due to the dual prices

equals the corresponding non-availability cost pij minus the corresponding dual price λij .

This matrix has to be traversed from top to bottom in the cheapest way possible, while visit-

ing each column exactly once between a minimum and a maximum number of rows. Table 5

represents an instance of such a pricing problem for an activity performed by four trainees

that all have to be scheduled between one and two periods in a time horizon of six periods.

The optimal solution has a cost of 2 and is indicated in bold. It first schedules trainee 1 for

two periods, followed by trainee 3 for two periods, then trainee 2 for one period and finally

trainee 4 for one period.

The pricing problem can be solved with a dynamic programming approach. Dynamic

programming (Bellman 1957; Dreyfus and Law 1977) is a decomposition technique that first

decomposes the problem into a nested family of subproblems. If T denotes a set of trainees,

the subproblem can be described as finding the cheapest way to reach a period i with all

trainees in T scheduled. Let cost(i, T ) represent this cost. Consider the pricing problem for

activity k. Recall that ljk and ujk are the respective minimum and maximum number of

periods assistant j has to perform activity k. The recursive formulation of cost(i, T ) is as

follows:

cost(i, T ) = MINj∈T

{

MINljk≤d≤ujk

{

cost(i − d,T \{j}) +

d
∑

b=1

g(i−d+b)j

}}

. (36)

To solve the pricing problem, we must calculate cost(n,Sk) using (36) and make sure we

know which schedule it represents. Algorithm 1 (that uses a recursive subprocedure outlined

in Algorithm 2) can be used to achieve this purpose. In this pseudo-code, sch_cost(i1, i2, j)

equals the cost to schedule trainee j from period i1 until i2 and current represents the cost

of the partial schedule (or path) during construction.

Algorithm 1 FIND-NEW-ACTIVITY-COLUMN(k)

for (i = 1 to n) do

for (all possible subsets T of trainee set Sk) do

cost(i, T ) ← 999999999;

end for

end for

RECURSION(n,Sk);
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Algorithm 2 RECURSION(i,T )

if (i = 0) AND (T = Ø) then

return 0; {beginning of time horizon reached}

else if (
∑

j∈T ljk > i) OR (
∑

j∈T ujk < i) then

cost(i, T ) ← +∞;{state cannot lead to a feasible solution}

return cost(i, T );

else if (cost(i, T ) �= 999999999) then

return cost(i, T ); {state already visited, can be pruned}

else

min_current ← +∞;

for (all trainees j ∈ T ) do

for (d = ljk to ujk) do

current ← sch_cost(i − d + 1, i, j)+RECURSION(i − d,T \{j});

if (current < min_current) then

min_current ← current;

end if

end for

end for

cost(i, T ) ← min_current;

return cost(i, T );

end if

Recursive algorithm 2 starts with a number of checks in order to be able to stop the

current recursion. The first one checks if the beginning of the time horizon is reached. If

this is not the case, the second step checks whether it is still possible to find a feasible

schedule starting from the current state. This is not the case if the sum of all minimum

requirements of the not yet scheduled trainees exceeds the remaining time horizon or, the

reverse, if the sum of all maximum requirements does not suffice to reach the beginning of

the time horizon. In the third step it is checked if the current state has already been visited.

If all checks are passed the partial path is extended with the assignment of a next trainee.

Therefore, all possible assignments of all not yet scheduled trainees are investigated. Once

all the calculations are done, the best new column can easily be constructed backwards. We

use binary encoding to represent the (sub)sets T . For more details on the solution of the

pricing problem we refer to Beliën and Demeulemeester (2006).

Suppose m trainees have to perform a particular activity. For each time instance we need

to store at most all possible subsets of m trainees. Hence, the space complexity is given by

O(n · 2m). In the recursive algorithm each state (i, S) leads to at most R ∗ m other states.

The complexity of this recursion is thus O(n · 2m · R · m).

If we are decomposing on the trainees, a similar approach can be used. This time the

columns of the cost matrix represent the activities. Since it is possible that a trainee performs

no activity during certain time periods, an extra column has to be added that represents

‘performing no activity’ and can be visited more than once. Obviously, all rows of this

column have a cost equal to 0. Table 6 visualizes the pricing problem for a particular trainee

j that has to perform three activities all between a minimum of one and a maximum of

two periods. Each cell of the matrix has a cost hik which is the difference between the
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Table 6 Pricing problema for trainee j : optimal solution in bold

Period i hik = non-availability cost pij - dual price πik

Activity k = 1 Activity k = 2 Activity k = 3 No activity

1 −2 1 1 0

2 −2 1 1 0

3 4 2 1 0

4 2 1 −1 0

5 0 −3 4 0

6 1 5 3 0

aFor ease of explanation all cost values are integer. Note however that during column generation these cost
values are usually fractional due to the dual prices

corresponding non-availability cost pij and the corresponding dual price πik . Note that cost

values can be negative due to possible positive values for the dual prices πik . We also applied

dynamic programming to solve this pricing problem. The recursive algorithm is very similar

as the one outlined above.

Suppose a trainee has to perform p activities. For each time instance we need to store at

most all possible subsets of p activities. Hence, the space complexity is given by O(n · 2p).

In the recursive algorithm each state (i, S) leads to at most R ∗p ∗ n other states. The added

factor n, in contrast with the previous subproblem, is due to the fact that the activities do not

necessarily immediately follow each other, but instead some periods may be left blanc. The

complexity of this recursion is thus O(n2 · 2p · R · p).

4 Branching

If the LP relaxation of the master problem does not have an integral optimal solution,

a branching scheme is needed to drive the solution into integrality. Vanderbeck (2000)

describes several branching schemes that are appropriate in branch-and-price algorithms.

Beliën and Demeulemeester (2006) describe three possible branching schemes for the

trainee scheduling problem. Since their computational results indicated that branching on

the timetable cells provides the best and most robust results, we will use this branching

scheme.

Branching on the timetable cells corresponds to branching on the original xijk variables.

The main advantage of this branching scheme is that it preserves the structure of the pricing

problem, in the activity-based decomposition as well as in the trainee-based decomposition.

Let us first consider the case in which we are decomposing on the activities. The next xijk

to branch on is found by selecting the largest fractional column. Suppose this is a column

for activity k. Then, we search the first timetable cell (i, j) for which there exists another

fractional column that schedules a different activity at timetable cell (i, j). In the left branch

xijk is set to 1, while in the right branch it is set to 0. If xijk is set to 1, gij ′ is set to +∞ for

all j ′ �= j in the pricing problem of activity k. For the pricing problems for activities k′ �= k

only gij is set to +∞. Else if xijk is set to 0, gij is set to +∞ in the pricing problem of

activity k. A second advantage is the fact that this branching scheme yields a more balanced

branch-and-bound tree compared to standard column branching.

The same branching scheme can be applied if we are decomposing on the trainees. Here,

the next xijk to branch on is also found by selecting the largest fractional column. Suppose
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this is a column for trainee j . Then, we search for this column the first time period i for

which there exists a second fractional column that schedules a different activity than the

first column during time period i. Suppose that the first fractional column schedules activity

k during the conflicting time period i. Again, xijk is set to 1 in the left branch and to 0 in

the right branch. The timetable costs in the pricing problems are modified as follows. If xijk

is set to 1, hik′ is set to +∞ for all activities k′ �= k in the pricing problem of trainee j .

Furthermore, hik is set to +∞ in the pricing problems of all trainees j ′ �= j . Else if xijk is

set to 0, hik is set to +∞ in the pricing problem of trainee j .

After branching, it may be the case that there exists a column that would price out favor-

ably, but is not present in the column pool. Therefore, the column generation proceeds after

each new branching.

Since we have a method to generate columns and a branching scheme to cut away frac-

tional solutions, our branch-and-price algorithm is complete. The initial set of columns is

composed by a heuristic that repeatedly adds columns until a feasible solution is found. The

branch-and-price algorithm is extended with a number of speed-up techniques the most im-

portant being a lower bound calculation based on the Lagrange dual. For more details on

the initial heuristic and on the speed-up techniques we refer to Beliën and Demeulemeester

(2006). After each master optimization exactly one pricing problem is solved for each de-

composed item. Hence, the dual prices are updated after the addition of at most p or m

columns depending on the decomposition technique.

5 Computational results

5.1 Real-life data sets

The first computational experiment entails the application of the original ILP formulation

(1–9) and both decomposition approaches on two real-life problems. In both problems 8

trainees are scheduled for a time horizon of 35 periods. All trainees have to perform 6 activ-

ities in the first problem and 7 activities in the second problem. The differences between the

maximum and minimum number of periods trainee have to perform an activity vary between

1 and 4 for both problems. The algorithms are coded in Visual C++.NET. The CPLEX 8.1

LP solver has been used to solve the master problems. For the original ILP formulation

of (1–9) we used the CPLEX 8.1 MIP solver with standard settings. The experiments have

been performed on a 2.4 GHz Pentium 4 PC with the Windows XP operating system. Table 7

displays the computational results.

The best results are obtained when decomposition takes place on the activities. As can

be seen in Table 7, using ILP (1–9) the number of nodes left was still growing after 1800

Table 7 Results on two real-life problems

Problem 1 Problem 2

ILP (1–9) Decomp. Decomp. ILP (1–9) Decomp. Decomp.

on activities on trainees on activities on trainees

Best solution found – 16 20 – 10 10

LP relaxation 5.00 15.09 15.00 6.00 9.37 9.30

Explored nodes 453 100 71 390 24 42

Comp. time (s) 1800 78.73 1800 1800 20.89 1036.06
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seconds of computation time. Whereas through ILP (1–9) even though no feasible solution

could be found within this time limit, the branch-and-price algorithm in which decompo-

sition takes place on the activities could solve the first problem in 78.73 seconds and the

second problem in 20.89 seconds. When one is decomposing on the trainees only the sec-

ond problem could be solved to optimality within the given time limit. These differences

are mainly caused by the huge difference between the LP relaxations of ILP (1–9) on the

one hand and the LP relaxations of both decomposition approaches on the other hand: 5.00

versus 15.09 and 15.00 for the first problem and 6.00 versus 9.37 and 9.30 for the sec-

ond problem. Comparing these bounds with the optimal solutions, 16 and 10, we conclude

that the LP relaxation of ILP (1–9) is dramatically weak, whereas the LP relaxations of the

decomposition approaches, particularly when decomposing on the activities, are extremely

strong.

Both real-life problems have indicated that a decomposition approach outperforms stan-

dard integer programming for solving this kind of scheduling problems. In order to be able

to state more founded conclusions with respect to the differences between both decompo-

sition approaches, we had to run them on a larger number of problems. Therefore, we have

composed a test set.

5.2 Test set

The computational performance of both decomposition approaches was compared using the

problem set introduced by Beliën and Demeulemeester (2006). This test set has been com-

posed by a guided random procedure in which the six factors that could have an influence

on the problem complexity were varied: the number of periods, the number of trainees, the

number of activities, for each activity the number of trainees performing the activity, the

difference between the maximum and minimum number of consecutive periods (further re-

ferred to as the range) and finally the magnitude of the costs. In Table 8, a number of settings

for these six factors are displayed.

This table requires some further information. First of all, the number of activities and

the number of trainees having to perform an activity are expressed as a percentage of the

number of trainees. For instance, a test problem with 12 trainees and 75% activities contains

8 activities. Observe that the number of activities never surpasses the number of trainees,

as otherwise not all activities can be performed. In other words, the schedule is not totally

occupied after solving the scheduling problem. Recall that the remaining part of the schedule

has to be filled up with activities for which the consecutiveness is less important. The ratio

number of activities over number of trainees is the total schedule occupation percentage. The

factor setting random(x) indicates that the data is generated randomly, but in such a way that

Table 8 Design of the experiment

Factor Nr. of Nr. of Nr. of Nr. of trainees Range Magnitude

setting periods trainees activities per activity of costs

1 18 6 60% 60% 1 1

2 35 8 75% 75% 2 U(1,5)

3 52 10 90% 90% 3

4 12 random (75%) 4

5 random (2)

6 random (3)
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the average is equal to x. A magnitude of the costs equal to 1 indicates that the non-available

time periods, that are generated randomly for each trainee, all have a cost of 1. Alternatively,

these cost values are drawn from a uniform distribution between 1 and 5.

According to these factor settings, problem instances were generated with randomness

on both the activity-trainee assignments and the non-available periods. In order to exclude

trivial and non-feasible problems as much as possible, the trainee occupations were kept

more or less at the same level. The total number of periods containing positive costs equals

3, 4 or 5 per trainee for instances with 18, 35 and 52 periods. For each factor setting three

problem instances have been generated. The total number of test problems was bounded by

subsequently fixing the first three factors and the next two factors at an intermediate level.

This resulted in 3 ∗ (4 ∗ 6 ∗ 2) + 3 ∗ (3 ∗ 4 ∗ 3 ∗ 2) = 360 problem instances.

5.3 Discussion of results

In this section, we summarize the most important findings from our computational exper-

iments. Detailed figures of the results for the activity-based decomposition technique can

also be found in Beliën and Demeulemeester (2006). Here we compare these results with

those for the trainee-based decomposition approach. Table 9 and following contain subsets

of these results that are representative for all obtained results. For each problem the LP re-

laxation, best found solution, computation time, number of generated columns and number

of nodes is given for both decomposition techniques. The problem name in the second col-

umn refers to the different factor settings for generating the problem (see Table 8). The first

number stands for the first factor, the second for the second factor etc. The last number (after

‘_’) indicates the replication number. If the algorithm fails to find an optimal solution within

1800 seconds, the computation time in Table 9 and following is indicated with ‘1800’. The

reason why the computation time was limited to 1800 seconds is that the algorithms could

not solve the problem to optimality within a reasonable time limit for the larger problem

instances in our test set. Obviously, without this time limit, it would be much easier to make

a fair comparison between both decomposition approaches. We could, for instance, look to

the total number of nodes or to the total computation time required by each decomposition

technique to obtain the optimum for all the instances. Unfortunately, some problems may

require days (or even weeks) of computation time, particularly for the decomposition on

the trainees. Therefore, we had no option but to set a time limit within which a reasonable

amount of the problem instances could be solved by at least one of the decomposition ap-

proaches. Fortunately, a time limit of 1800 seconds leads already to important performance

differences and hence provides us with a suitable database for comparing both decomposi-

tion approaches.

Table 9 gives a first indication of how the two decomposition approaches compare to

each other. This table contains the summarized results for 36 of the easy instances in our test

set. These are problems with 35 periods, 8 trainees and 5 activities in which each activity

is performed by 4 trainees. For these dimensions both decompositions manage to find the

optimal solution for all problem instances within the time limit. However, the computation

times tend to be higher when decomposing on the trainees. Note that one of the explanations

of this performance difference can be found in the difference between the LP relaxations.

The LP relaxations of the decomposition on the activities approach tend to be higher than

those of the decomposition on the trainees approach.

Table 10 contains the same information, but now for 36 problem instances in which the

number of trainees having to perform each activity increases from 4 to 6. If we compare this

table with the previous one, it becomes clear that the number of trainees having to perform
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each activity is an important factor for the difficulty of our problem. When decomposing on
the trainees, only 13 problems could be solved to optimality within 1800 seconds, compared
to 35 problems when decomposing on the activities. When the algorithm failed to solve the
problem to optimality, a computation time of 1800 seconds was accounted for the calculation
of the average. Even with this underestimation of the computation times for the non-solved
problems, there is a clear difference between the average computation times of both decom-
position approaches. If we compare the average solution quality, we can conclude that the
trainees decomposition, although frequently not capable of detecting the optimal solution,
succeeds in finding close to optimal solutions.

When we look at the problem instances with only 18 periods instead of 36 (Table 11), we
see that all 72 problems could be solved to optimality within the time limit of 1800 seconds
when decomposing on the activities. When decomposing on the trainees, the optimum was
not found for one problem instance.

If we compare these figures with the results for the problem instances with 52 periods
(Table 12), we can conclude that also the number of periods is an important factor for the
difficulty of the problem. For the largest problems often even no feasible solution could be
obtained. In that case the column containing the best found solution (Sol.) reports a ‘–’ and
the average solution could not be calculated.

The complexity of the problem also grows with an increasing number of trainees, an
increasing number of activities and an increasing magnitude of the range. Compare, for
instance, the first six lines with the last six lines in Table 11 and Table 12. More details on
the contribution of each factor to the problem difficulty falls beyond the scope of this paper,
but can be found in Beliën and Demeulemeester (2006).

An overall summary of the computational results is given in Table 13. The first row
indicates the number of problems that could be solved to optimality within 1800 seconds
using each decomposition approach. The second row contains the number of problems for
which the decomposition was faster. For the remaining problems, either the computation
time was the same or none of both approaches succeeded in solving the problem within the
time limit of 1800 seconds. The fourth row indicates the average solution quality for the 340
problems for which both decompositions found at least a feasible solution. For the required
computation time, the number of columns and the number of nodes, a distinction is made
between the results for all instances and the results for only those problem instances for
which both decompositions found an optimal solution within the time limit.

These results clearly indicate that decomposition on the activities outperforms decompo-
sition on the trainees. When decomposing on the activities, more problems could be solved
to optimality, average computation times are lower, less columns are needed to prove op-
timality and more nodes could be evaluated. Moreover, only for two instances no feasible
solution was found compared to 20 instances in the trainee-based decomposition approach.

If we only look at those instances for which both decompositions found a feasible so-
lution, the average solution quality of the trainee-based decomposition exceeds that of the
activity-based decomposition by more than 10%.

If we only look at the problems for which both decompositions found an optimal solu-
tion, the number of nodes evaluated in the activity-based decomposition still exceeds those
of the trainee-based decomposition. The higher number of nodes in the activity-based de-
composition is contradictory with the higher LP relaxations. It turns out that the average is
misleading at this point. The last-but-one row in Table 13 indicates that the activity-based
decomposition could solve more problems in less nodes than the trainee-based decompo-
sition. Hence, there is only a small number of problems for which the number of nodes of
the activity-based decomposition dramatically exceeds those of the trainee-based decom-
position. As can be expected, this mainly occurs in those few problems for which the LP
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Table 13 Overall summary computational results

Decomposition on

Activities Trainees

Nr. solved to optimality 329 220

Nr. times faster 315 10

Avg. solution valuea 13.14 14.84

Nr. times feasible solution 358 340

Avg. comp. time (s)b 218.32 790.90

Avg. comp. time (s)c 19.92 149.24

Avg. nr. columns 4543.21 15591.94

Avg. nr. columnsc 335.38 607.14

Avg. nr. nodes 120.05 39.82

Avg. nr. nodesc 29.16 22.42

Nr. times nr. nodes is lowerc 126 40

Nr. times LP relaxation is lower 12 76

aFor only the 340 problems in which both decompositions found at least a feasible solution within 1800
seconds
bA computation time of 1800 seconds was accounted if the algorithm failed to find the optimal solution within
the time limit
cFor only those 219 problems in which both decompositions found an optimal solution within 1800 seconds

relaxation is lower. The last row contains the number of instances for which the LP relax-

ation is lower. For only 12 instances the LP relaxation of the activity-based decomposition

is lower compared to 76 for the reverse case. For the other instances, both LP relaxations

were equal. 8 out of the 12 instances in which the LP relaxation of the activity-based de-

composition is lower have a random number of trainees per activity (setting 4 for factor 4 in

Table 8) and a small range (setting 1 for factor 5 in Table 8).

Decomposition on the trainees resulted in a smaller computation time for only 10 in-

stances. How can we explain this difference? First of all, as already mentioned, the LP

relaxation of the root node (thus before branching) tends to be higher if one decomposes on

the activities. Since the problem structure does not change after branching, LP relaxations

may be expected to exceed those in the trainee-based decomposition approach throughout

all nodes of the branch-and-bound tree. Consequently, nodes can be pruned earlier in the

activity-based decomposition approach. A second reason why decomposition on the activ-

ities is faster than decomposition on the trainees lies in the difference between the master

problems. The first master contains m times n ‘lower than or equal to’ constraints, whereas

the second master contains p times n ‘equal to’ constraints. Note that all equality constraints

are translated into two inequality constraints. Since m∗n is smaller than 2 ∗p ∗n for all our

problems, the master is often solved faster for the activity-based decomposition approach.

Third, also the networks in the pricing problems tend to be smaller and thus can be solved

faster if one decomposes on the activities.

6 Modeling power

For the problem we have described in Sect. 1, both decomposition techniques could be ap-

plied. Would this still be the case if the problem statement slightly changes? In this section
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it will be shown that decomposing on the activities can only be applied if the problem has

specific characteristics. On the contrary, decomposing on the staff members is a more gen-

eral approach, since it can be used in a much larger range of staff scheduling problems. This

nice property of staff-based decomposition is probably the reason why decomposing on the

activities has never been applied in the staff scheduling literature so far.

In order to successfully decompose a problem, the question one has to ask is which con-

straints will be taken care of in the subproblem or similarly, which constraints will remain

in the master. The information provided by the dual prices of this last set of constraints

should be easily carried over to the subproblem without complicating it too much. To make

this point clear, suppose that there are precedence constraints on the order in which the

staff members perform their respective activities, i.e., a trainee can only perform a certain

activity after (s)he has already performed another activity. This constraint would make it

considerably harder to decompose on the activities. Similarly, suppose that the holes in the

individual trainee schedules (with holes we mean periods in which no activity is scheduled),

in one way or another, contribute to the objective function (e.g., one hole of two periods is

preferred to two holes of one period). Whereas this extension could be perfectly addressed in

the trainee-based decomposition scheme, it produces serious problems in the activity-based

decomposition scheme. As a third example, observe that in our problem the requirement

constraints (4) and (5) for each trainee are automatically satisfied if one selects a schedule

(column) for each activity. If it would, however, not be possible to select, for each activity,

a set of trainees so that the individual requirement constraints are implicitly satisfied (and

thus can be left out of the master), decomposition on the activities would not be suitable.

Summarizing, decomposition on the activities is only appropriate if either no constraints

(or few) apply at the individual staff member level or, alternatively, if these constraints are

automatically satisfied when scheduling activity patterns.

7 Conclusions and future research

In this paper, a comparison was made between two decomposition approaches for a partic-

ular staff scheduling problem in which a number of trainees has to be scheduled. In the first

part the trainee scheduling problem was introduced and stated as an integer program. Next,

two decomposition approaches have been developed. First, the problem was reformulated

as a zero-one multi-commodity flow problem in which we decompose on the activities. Sec-

ond, the problem was reformulated as a set partitioning problem in which we decompose on

the staff members. The pricing problems in both decomposition approaches could be solved

in a similar way using a dynamic programming approach. A branching scheme was devel-

oped in order to cut away fractional solutions. Also the branching scheme could be applied

in both decomposition approaches. An experiment was set up in which the computational

efficiency of both decomposition approaches has been compared.

The computational tests revealed that decomposition on the activities clearly outperforms

decomposition on the staff members. In the next section the modeling power of both decom-

position techniques has been discussed. Since most staff scheduling problems have a lot of

constraints that apply at the level of individual staff members, decomposition on staff mem-

bers could be used in a wider range of problems. In the rare case that most constraints

apply at the level of the activity schedules, decomposition on the activities is more suitable.

Activity-based decomposition is also appropriate if each combination of activity schedules

automatically satisfies all individual staff member constraints. This was the case for the

considered trainee scheduling problem.
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Concerning future research it would be interesting to identify other staff scheduling prob-

lems for which decomposition on the activities could be applied. Given the interesting com-

putational properties, this approach could also be suitable to calculate lower bounds for a

number of staff scheduling problems for which the above mentioned conditions do not hold.

To that purpose a part of the individual staff member constraints is relaxed so that the result-

ing problem could be optimized using activity-based column generation.
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