
1 3

https://doi.org/10.1007/s00530-017-0554-9

Multimedia Systems (2018) 24:327–340

REGULAR PAPER

On the trajectory of video quality transition in HTTP adaptive

video streaming

Yusuf Sani1 · Andreas Mauthe1 · Christopher Edwards1

Received: 4 June 2016 / Accepted: 29 May 2017 / Published online: 17 June 2017

© The Author(s) 2017. This article is an open access publication

browsers, TVs. Each of these platforms has specific

requirements with respect to transmission and video qual-

ity. Moreover, the environment within which most of the

video streaming clients operate is both unreliable and varies

over time. However, regardless of the access device, users

want the best viewing experience possible. HTTP adaptive

streaming (HAS) is the most successful technology so far

that allows content providers to cater for the requirements of

the multitude of devices and contexts. The process through

which a HAS client chooses a video rate is called adaptive

bitrate selection (ABR). The first generation of ABRs relied

on throughput estimation and selected the highest video

rate lower than the measured throughput [14]. This is based

on the work of Wang et al. [22] that showed if the avail-

able TCP throughput is twice the bitrate of the video plus

a few seconds of start-up delay TCP can ensure an accept-

able video streaming experience. It later became clear that

throughput estimation alone is not a sufficient parameter

for designing efficient ABR since an accurate bandwidth

estimation above the HTTP layer is difficult to achieve [6].

Consequently, any video rate selection algorithm that solely

depends on such a relatively inaccurate estimate results in

unnecessary rebuffering events [7], an undesirable variabil-

ity of video rate [6] and sub-optimal video quality [6].

Various attempts have been made to improve some of

the identified issues of throughput-based ABRs by sup-

plementing throughput measurements with information

about the playback buffer [1, 10, 21]. Using buffer occu-

pancy as a factor in video rate selection has developed

from regarding buffer state changes as a complementary

factor in making a rate selection decision [10, 21] to

employing it as the sole metric [7, 8]. Though, whatever

factor an ABR primarily relies on, it is difficult to build

an ABR that maximises Quality of Experience (QoE)

without taking buffer state changes into consideration.

Abstract HTTP adaptive video streaming matches video

quality to the capacity of a changing context. A variety of

schemes that rely on buffer state dynamics for video rate

selection have been proposed. However, these schemes are

predominantly based on heuristics, and appropriate models

describing the relationship between video rate and buffer

levels have not received sufficient attention. In this paper,

we present a QoE-aware video rate evolution model based

on buffer state changes. The scheme is evaluated within a

real-world Internet environment. The results of an exten-

sive evaluation show an improvement in the stability, aver-

age video rate and system utilisation, while at the same

time a reduction in the start-up delay and convergence time

is achieved by the modified players.

Keywords HTTP adaptive streaming · Adaptive bitrate

selection

1 Introduction

Nowadays, a typical video streaming service is expected

to serve a variety of platforms, e.g. smartphones, web

Communicated by P. Shenoy.

 * Yusuf Sani

 y.sani@lancaster.ac.uk

 Andreas Mauthe

 a.mauthe@lancaster.ac.uk

 Christopher Edwards

 c.edwards@lancaster.ac.uk

1 School of Computing and Communications InfoLab2l,

Lancaster University, Lancaster LA1 4WA, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-017-0554-9&domain=pdf

328 Y. Sani et al.

1 3

It has been shown in [7] that by basing ABR solely on

playback buffer occupancy a client can choose the high-

est quality level without the fear of an increase in rebuff-

ering. However, a linear increment of video rate, as used

in [7], may not always enhance the QoE. For example,

when the video quality is relatively high an increase in

the current video rate does not necessarily translate into

an improvement in the user-perceived quality, since as

shown in [3, 17] a stage is always reached when users do

not find any further increase beneficial. Furthermore, the

buffer management model employed in [7, 8] artificially

separates the ramping-up period from the steady state,

which results in significant loss of quality.

To ensure that the video rate evolves in a way that

optimises QoE, there is a need for a rate evolution map

that captures the desirable pattern of video quality tran-

sition. This paper will concentrate on the following

research question: If we have a QoE-aware model of the

relationship between the playback buffer state changes

and the available video rates, how much improvement in

user-perceived video quality can be achieved?

In order to answer this question, the paper first identi-

fies the patterns of quality changes that are known to affect

QoE, and then develops a QoE-aware model of the rate

map that combines all stages of video rate evolution, while

incorporating an optimal number of patterns that improve

user-perceived video quality. In this paper, we restrict our-

selves to the set of objective QoE metrics that are known

to have an impact on the user experience in adaptive video

streaming, which are video freeze, average video rate,

start-up delay, video quality convergence, and system uti-

lisation. Note the presented model is descriptive. In other

words, it is just a declarative representation of the relation-

ship between the video rate and the buffer state changes

and not a standalone algorithm. Hence, the paper dem-

onstrates how the proposed model can be used in practi-

cal systems by modifying selected throughput-based and

buffer-based ABRs. The modified algorithms are then inte-

grated into the implemented players. Extensive experimen-

tation over the Internet using both wired and wireless con-

nections shows the performance of the scheme.

The rest of the paper is structured as follows: Sect. 2 pre-

sents background and the related work; Section 3 discusses

the QoE-aware evolution trajectory and the system model;

Section 4 details the methodology and experimental set-up

used; Section 5 covered result presentation and finally the

paper is wrapped with a conclusion in Sect. 6.

2 Background and related work

HAS services usually divide a video file into a number of

chunks of equal temporal size with each chunk encoded

in multiple bitrates. A client progressively requests a rel-

evant chunk. The bitrate of the requested chunk is based

on the client’s measurement of the available resources.

Throughput-based ABRs select a chunk with the high-

est video rate lower than the measured throughput [20].

When the throughput changes, the buffer level may be

used as an indicator of whether to increase, decrease or

stay with the current video rate [10, 16]. However, those

ABR schemes that solely rely on buffer occupancy are

called buffer-based ABRs.

Throughput-based algorithms assume that the through-

put of a recently downloaded chunk is a rough estimate

of the current network condition. But due to short-term

throughput fluctuations, as a result of the TCP conges-

tion control mechanism and the difficulty in accurately

estimating throughput above the HTTP layer, through-

put-based algorithms use a weighted average to smooth

out the estimated network capacity [1]. However, using

historical data is known to reduce the responsiveness

of an algorithm [1]. A number of measurement studies

have shown that throughput-based algorithms are unsta-

ble [13], unnecessarily rebuffer [6], request sub-optimal

video rates [1], and are unfair [6].

A significant amount of research is focused on how to

improve the accuracy of the TCP throughput measure-

ment of a typical ABR scheme. The authors of [13] pro-

pose a probe and adapt technique. The algorithm mim-

ics the congestion control of TCP but at the application

layer. It uses TCP throughput as an input only when it is

an accurate indicator of the fair share of bandwidth. In

the same vein, the authors of [21] use machine learning

techniques to predict the achievable throughput by using

network state information.

In order to improve some of the downsides of through-

put-based services, various researchers use the buffer

level as a feedback signal to complement throughput esti-

mation [16]. Tian and Lui [21] went further by using the

playback buffer state change as the key feedback signal.

Huang et al. [7, 8] propose an algorithm that completely

relies on buffer occupancy for the video rate selection

decisions. They are motivated by the fact that the end-to-

end capacity can be indirectly derived from buffer state

changes. However, the model employed separates the

buffering from the steady-state phase, which obviously

creates a disconnected flow. Furthermore, at the start-up

period (called reservoir), only the lowest available video

rate is downloaded. Hence, there is a substantial loss in

video quality at the beginning of the streaming session.

During the ramping-up period, the video rate is linearly

incremented. However, in [23] it has been shown that the

probability of buffer starvation decreases exponentially

with respect to the initial buffer level. Therefore, a lin-

ear evolution of the video rate, when ramping-up, will

329On the trajectory of video quality transition...

1 3

unnecessarily prolong the convergence time. Further-

more, it is also worth noting that a constant and continu-

ous increment of the video rate may not always enhance

QoE. In [3] it was demonstrated that when the video

quality is high an increase in the current rate does not

necessarily translate into an improvement in the user-per-

ceived quality. Nevertheless, the paper made an important

observation: when the buffer is used as the main factor

of an ABR the trade-off between video quality and the

amount of rebuffering is unnecessary.

Earlier, Mok et al. [17] have studied the effect of video

rate transition on QoE. They found that a sudden drop in

video rate has a negative impact on user experience. To

improve QoE, they opted to switch down the video rate to an

intermediate level even when the target video level is lower.

The problem with this design is that the user will be down-

loading higher bitrate than the download rate, hence increas-

ing the risk of buffer starvation, especially since both the

intermediate level and the maximum buffer size are heuristi-

cally determined. While this work narrowed its investigation

to a pattern, in our previous work [18], we presented a bio-

inspired model that pays attention to the whole sequence of

the trajectory through the space of all possible system states.

3 System modelling and implementation

3.1 Quality evolution trajectory

A change in video quality level affects user experience.

However, the degree of the impact and whether it is positive

or negative depend on the pattern of the transition. In this

section, a QoE-aware video quality evolution is derived.

At any given time t after the video streaming has started,

the buffer may contain an array of chunks of different qual-

ity levels. However, chunks of different video rates gener-

ally have different sizes in bytes. We shall assume that all

chunks contain an equal amount of video time V in sec-

onds. Since there is no direct mapping between buffer size

in bytes and video time, we calibrate buffer in time, i.e. by

the second. This has also been assumed in [7, 21].

At the beginning of a streaming session (t = 0), a

server presents to a client a set of different video rates

Q = {q0, q1, q2, . . . , qn}, with |Q| = n + 1. Let us suppose

q0 < q1 < · · · < qn. Furthermore, let us assume that the

quality of the video perceived by a user increases with

video rate. Therefore, q0 is the minimum quality level

(referred here also as qmin) and qn is the maximum avail-

able quality level (called qmax). Suppose Bt is the buffer

occupancy at time t and Bmax is the maximum buffer

all measured in seconds. Let ĉt denote the estimated

throughput at time t with C(t) being the system capacity

(i.e. ĉt ≤ Ct).

Usually, after the receipt of the media description file

at t0, the play-out buffer is empty (B0 = 0), a client starts

requesting a chunk with quality level qmin in order to

minimise the start-up period. However, a prolonged

download of qmin will negatively affect the user experi-

ence. Hence, using a video rate selection function R(t),

the client should immediately start a gradual improve-

ment of the bitrate of the requested chunks as soon as it

receives the initial chunk, such that the video rate of

chunk i + 1 requested after successfully downloading

chunk i � 1 with video rate qk , where {k ∈ n : 0 ≤ k ≤ n} ,

is qk+1 = αqk, where {α : 0 < α ≤ 1}.1 Suppose that the

download of chunk i + 1 with starts at time ts and finishes

at te. Let us also assume that the rate at which the client’s

requested video rate evolves with respect to time dR(t)/dt

is g′(R). Assuming that C(t) � R(t) = qmax. In other

words, we have sufficient network capacity to cover for

highest available video rate. With this assumption, a cli-

ent can continuously increase it video until it reaches the

highest available. Simply put, g′(R) is positive at any time

after the start of streaming except when R(t) = qmax and

Bt = 0 in which case g′(R) = 0.

To ensure that the client gets its fair share of the avail-

able bandwidth, we rely on the recommendation of [7,

8], which states that the highest rate is selected only

when a buffer is full or nearly full (i.e. R(t) = qmax when

Bt → Bmax). This will ensure that provided the high-

est video rate is not reached, the OFF period will not be

activated (i.e. we use a back-to-back download). In other

words, the system starts at minimum video rate when the

buffer is empty, and continuously increment its video

rate in such a manner that the video increment terminates

when the buffer is full.

To avoid high amplitude variation (e.g. an abrupt drop

of the video quality), which is known to be detrimental

to QoE [17, 25] and to minimise the negative impact of

recency effect [5, 9], transition decision to qk+1 should

depend on qk. Furthermore, since users are not known to

be appreciative of an increase in the video quality when

the video rate is relatively high [3] we recommend a non-

linear g′(R). In fact, Yamagishi and Hayashi [24] have

shown that, given a set of linearly incremented video

rates, the saturation begins to take effect at about half-

way through the available video rates, when they studied

the relationship between video rate and the subjective

video quality. Therefore, we suggest that after reaching

qmax/2 a client should start reducing the rate at which it

1 It is worth noting while other researchers like [4] and [13] have

advocated for the use of a gradual increment of the video rate at

the beginning of a streaming session, for the purpose probing the

network capacity, our scheme differs in the sense that we use the

increment to control buffer flow.

330 Y. Sani et al.

1 3

increases its video quality. Figure 1 summarises the tra-

jectory of g′(R) that we deduced from the foregoing dis-

cussion. The path is concave pinned at two points q = 0

and q = qmax with amplitude at qmax/2. This pattern can

easily be described by a quadratic function with q = 0

and q = qmax and a positive constant α. It should be noted

that the value of the constant α determines the vertex of

the parabola. In other words, it determines the maximum

value the g′(R) can attain (see Fig. 1 a number of trajecto-

ries using different values of α are plotted).

3.2 Modelling

Given the desired video evolution path just derived, we

next formulate a video rate prediction model.

3.2.1 Continuous rate

We first look at a case where R(t) results in any value

between qmin to qmax. With this assumptions, we can model

R(t) as a continuous function.2

Clients usually infer C(t) from ĉ(t) for the purpose

of rate selection. Suppose c(ti) is the estimated through-

put when t = ti derived from the average of h number of

chunks calculated thus:

Let us assume that a HAS client requests chunk i imme-

diately after chunk i − 1 is completely downloaded

(1)g′(R) = aq(qmax − q)

2 This is without loss of generality, in fact, in the next section we

drop this assumption.

c(ti) =
1

ti − ti−h

∫
h

i−h

ĉ(t)dx.

except when the buffer is full. In which case it waits for

V seconds (chunk size) before sending a request. Except

during the off period, the playback buffer drains at the

one buffer second every real time second and fills at

C(t) / R(t), therefore the rate at which buffer changes is

In most contexts, C(t) is time-varying; therefore, if the

client is to avoid buffer starvation, the output of R(t) has

to adapt to this changing environment with time.

We want R(t) to closely match C(t), in which case we do

not expect the buffer to change often, that is, dB(t)
dt

≈ 0.

From Eqs. (1) and (3)

after simplification using partial fraction method and

using R(t) = q we have

by integrating equation (5) we have

The streaming starts with a minimum video rate; there-

fore, q = qmin and B = B0 . Using this information e can

be evaluated as thus:

Substituting Eq. (7) into (6) and simplifying it, we have:

Finally, solving for q and (Bt − Bt0
≈ Bt), since

{B0 : 0 < B0 ≤ V}

3.2.2 Discrete rate

By dropping our assumption about the continuous nature

of video rates, the video quality has to be chosen from a

finite discrete set. Furthermore, q can only move from one

valid value to another. We assume the quality level change

(2)
dB(t)

dt
=

C(t)

R(t)
− 1.

(3)
dR(t)

dt
=

dR(t)

dB
.
dB

dt
.

(4)g′(R) =

dR(t)

dt
=

dR(t)

dB
= αq(qmax − q),

dR(t)

q(qmax − q)
= αdB,

(5)

∫
1

q
dq +

∫
1

qmax − q
dq =

∫
αqmaxdB.

(6)ln q − ln |qmax − q| = αqmaxB + e.

(7)e = ln
qmin

qmax − qmin

− αqmaxBt0 .

(8)ln
q

qmax − q
−

qmin

qmax − qmin

= αqmax(Bt − Bt0).

(9)R(t) =
qmax

1 + [
qmax

q0
− 1]e−αqmaxBt

′
g

(R
)

q
0

q
max

α = 0.3

α = 0.5

α = 0.7

α = 0.9

Fig. 1 Derived trajectory of video quality evolution

331On the trajectory of video quality transition...

1 3

is done only between adjacent video rates, that is, qk can

only move either to qk−1 or qk+1.

The model is now modified to reflect this. To change a

video rate a buffer must have grown or contracted by a cer-

tain buffer distance. Precisely, to change the quality level

we need �Bk = R−1(qk+1) − R−1(qk). When �Bk is posi-

tive the quality level is going to be increased and when it

is negative the quality level is reduced. When R(B) = qmax

�Bk ≤ 0. Simply put at the maximum buffer level ABR

algorithm can only reduce or stay with the current quality

level.

3.3 Behaviour of the model

3.3.1 Convergence

Figure 2 presents various plots of Eq. (9) (qmin = 100

kbps, 2000 kbps, 12000 kbps and qmax = 8000 kbps). The

most important observable characteristic of the curves

is that the rate at which the video quality changes var-

ies. It starts slowly and then becomes faster (the plots

having steeper gradients) as the value of video qual-

ity level qk increases. Again, on approaching qmax the

rate begins to flatten. From this, it can be derived that

limB→∞ R(t) = qmax (i.e. the limiting factor of R(B) is

qmax). In other words, the maximum value of q assuming

an infinite buffer size is qmax. As can be seen qmax is

asymptotically reached for all the plots independent of

the initial value of the video rate (q0). Furthermore, after

reaching qmax any increase in the buffer size does not

result in a rise in q. This buffer level (B∗), barring any

other consideration by an algorithm designer, can be con-

sidered as Bmax.

Another relevant factor is the convergence time of the

model. First, from the discussion of the desirable trajectory

at Sect. 3.1 we can deduce that the evolution constant α

determines the speed of the g′(R). So, the higher the value

of α the faster the rate of video quality change and hence

the shorter the convergence time. Therefore, the choice of

this parameter has an impact on the convergent time.

3.3.2 Stability

The equilibrium of the model is the point at which

C(t) = R(t), that is, when dR(t)
dB

= 0. Equating the

Eq. (4) to zero gives us two equilibrium points, q
∗

= 0

and q
∗

= qmax. It is obvious that when a client has not

started requesting any video it will stay in that state for-

ever. However, it is interesting to investigate the behav-

iour of the model near q∗
= 0. When streaming session

is just starting, the buffer level is most likely going to be

very low, in other words, close to q∗
= 0 the buffer level

is low. When qk is very small, αq
2 is small compared to

αqqmax. Therefore, Eq. (4) becomes dR(t)
dB

≈ αqqmax. We

can infer from this equation, provided α < 0 any small

perturbation in the system state will result in an exponen-

tial growth of the video rate away from the current rate

resulting in an equilibrium that is unstable.

The second equilibrium point is q∗
= qmax. Again we are

interested in what happens near this point. Let us assume

that

When we substitute q = qmax + ǫ into Eq. 4, we get

 However, if q is close to qmax, for all α > 0 the ǫ2 will

be very small; therefore, we have dR(t)
dB

≈ −αǫqmax. Thus

small perturbation will decay exponentially, reverting

ǫ = q − qmax.

dR(t)

dB
= −αǫqmax − ǫ2.

Fig. 2 Evolution of the R(t) in both Continuous and Discrete mode.

332 Y. Sani et al.

1 3

back to the qmax. Hence, the equilibrium q
∗

= qmax is

asymptotically stable.

3.4 Implementation

The proposed model is applied within the two selected

rate adaptation algorithms to demonstrate its applica-

bility. First, the algorithm proposed by Huang et al. [7,

8], henceforth called the original buffer-based algo-

rithm. And secondly, the one proposed by Miller et al.

[16], which we called the original throughput-based

algorithm.

When modifying the implementation of the buffer-

based algorithm, the same algorithm is used as pre-

sented [7, 8] with one modification, that is, from the

very beginning the proposed rate map is used. Simply

put, the reservoir is not used. Hence, from the start, the

algorithm relies on the proposed model. The summary of

the algorithm is thus: the current video rate is increased

to the next level only if the rate suggested by the pro-

posed model exceeds the next higher available quality

level. However, if the current video rate suggested by the

model is below the next lower available video rate the

quality level is switched down. Otherwise, the algorithm

retains its video rate (for a detail discussion of the algo-

rithm see [7, 8]).

To retrofit the proposed model into [16], the algorithm

had to be slightly modified. It is worth noting that none of

the changes affect the throughput related logic. In order

to closely map the original buffer dynamics, the playback

buffer is divided into three phases. The first phase is when

the video rate change is slow, with a threshold at Bqt1. The

next phase is when the video rate grows exponentially,

which ends at Bqt2. The third is when the video quality

level increase reaches saturation, which starts at Bmax. The

threshold can be calculated thus:

For x = 1 the β = 0.1 and for x = 2 the β = 0.73. The

modified version of the throughput-based algorithm is pre-

sented in the Algorithm 1.

Algorithm1: Modifiedthroughput-basedABR

input : c(tk)k=1,...te

Bk {Bk :0 <B k ≤ Bmax}
output: qk+1:Nextvideorate

Bdelay

static runningFastStart:=true;
Bdelay=0

qk+1 = qk

if runningFastStart

∧ qk �= qmax

∧ qk ≤ α1.c(tk) then

if B(t) <B qt1 then

if qk+1 ≤ α2.c(tk) ∨ R(t) ≥ qk+1 then
qk := qk+1

end

elseif B(t) <B qt2 then

if qk+1 ≤ α3.c(tk) ∨ R(t) ≥ qk+1 then
qk := qk+1

end

else

if qk+1 ≤ α4.c(tk) ∨ R(t) ≥ qk+1 then
qk := qk+1

end

if B(t) ≥ Bmax then
qk := qmax ∧ delay := V

end

end

else
runningFastStart:=false;
if B(t) <B qt1 then

if R(t) ≤ qk−1 then
qk := qk−1

end

elseif B(t) <B qt2 then

if qk−1 ≥ ĉ(t) ∨ R(t) ≤ qk−1 then
qk := qk−1

end

else

if qk ≥ α5.c(tk) ∨ R(t)== qmax then
delay := V

else
qk := qk

end

end

end

Bqtx = R−1(qmin + β(qmax − qmin)) 4 Performance evaluation

This section presents the experimental set-up and the per-

formance evaluation metrics

Fig. 3 Experimental set-up

333On the trajectory of video quality transition...

1 3

4.1 Experimental set-up

The test-bed set-up is shown in Fig. 3. The client is con-

nected to the Internet either via an Ethernet switch or EE’s

3G networks. The web server is located at the Alpen-Adria-

Universität Klagenfurt, which hosts the Big Buck Bunny

dataset [12].

All the players used are implemented in Python, and run

on top of Ubuntu 12.04.2 LTS. The host that runs the play-

ers also hosts: Dummynet, tcpdump, lsof, and Wget.

Throughout the wireline experimentation, the maxi-

mum downstream available bandwidth was limited to

6 mbps, while for the wireless, a “blue-sky” test was

conducted. For all the buffer-based players, Bmax = 240

s. And for the player running the original buffer-based

algorithm, the reservoir is set to 40s. We found through

experiments the values between 0.05 and 0.1 are appro-

priate for the growth constant qmaxα of the proposed

model; therefore, we use qmaxα = 0.05 throughout,

while for both throughput-based algorithms (original

and modified), we retain the same configurations as

used in [16]. Each experiment was conducted 10 times

and the average result is used. When more than one

player is used, or when a player and background traf-

fic worked at the same time, all are run on the same

machine.

4.2 Evaluation metrics

The following objective QoE metrics are known to affect

user experience [11, 15, 19] and are used in evaluating

the impact of the proposed model on the two modified

algorithms.

 – Rebuffers: is the total number of video freeze events

per streaming session [19].

 – Average video rate: is the average of video qual-

ity weighted by the duration each video was played.

This is calculated as
t1q1+t2q2...tnqn

tn−t1
 and measured in

kb/s [19].

 – Instability: is the fraction of successive chunk requests

by a player in which the requested video rate changes

[2], measured at the steady state.

 – Utilisation of available network resource: is calculated

by dividing the average video rate by the average net-

work capacity [21].

 – Convergence time: is the time taken to settle at the

sustainable video rate.

 – Start-up Delay: is defined as the amount of time it

takes a player to download a predefined number of

chunks before the playback starts [11].

5 Results

This section discusses the result of the various test-bed

experiments conducted in both wired and wireless envi-

ronments. The purpose of these experiments is to evalu-

ate how much improvement in QoE-related metric, if any,

is gained by the use of the proposed model.

5.1 Client with wireline access

5.1.1 Evolution rate

The evolution rate of the video quality is determined

by the constant α, which takes a value from {0 < α}. To

assess the effect of different values of α on the perfor-

mance of an adaptive video player we present, in Fig. 4,

the result of some experiments conducted using the fol-

lowing carefully selected values: (0.5, 0.2, 0.1, 0.05).

As shown in Fig. 4a for the values of qmaxα = 0.5 and

qmaxα = 0.2 the system is very aggressive. The player

downloads video rates that are more than what the

available system capacity can safely handle. Addition-

ally, when the bandwidth drops the player is not able to

reduce the video rate to the sustainable quality level in

time to avoid rebuffering (see Fig. 4b). The video stall

is unnecessary since the capacity of the system could

(a) Effect of different values of α on video rates.

(b) Effect of different values of α on buffer evolu-

tion.

Fig. 4 Impact of different evolution rate constant α

334 Y. Sani et al.

1 3

have sustained a lower quality level without any rebuffer-

ing. Furthermore, when the available capacity is low the

player recurrently undershoots its buffer, which not only

increases the chances of rebufferings but the player’s

instability. However, when the evolution rate constant is

reduced to α = 0.1 and α = 0.05 the player is not only

able to prevent video freeze but also the video rate is able

to converge at maximum available bandwidth.

Table 1 summarises the effect of different values of

evolution constant on the performance of the proposed

model. It can be seen as the values increase both the buffer

requirement and convergence time drop. However, this

comes at an increasing risk of rebuffering events. In sum-

mary, it was found when qmaxα is above 0.1 the player

is extremely aggressive, while the player is very stable

between 0.1 to 0.05.

5.1.2 Variable bandwidth

These experiments are aimed at demonstrating the elas-

ticity of the proposed model, i.e. how it adapts to a rap-

idly changing bandwidth. As can be seen from Fig. 5, the

streaming started with a maximum available bandwidth

of 6 mb/s, after 80s the bandwidth dropped to 2 mb/s at

150s it dropped again to 900 kb/s, finally at 270 s it rose

back to 6 mb/s and stayed until the end.

The first thing to note is that the video rate of chunks

downloaded by the player employing the proposed model

(Fig. 5b, d), are able to converge at a higher video rate, in

fact, the modified buffer-based player converges at exactly

the system capacity (see Fig. 5b). Table 2 shows that the

modified players achieve a maximum video rate of 6 and

5mb/s against the 4mb/s for the original players. This

translates to 100 and 85% throughput utilisation, which

is an improvement of 33 and 18% utilisation compared to

the original buffer-based and throughput-based players,

respectively. As can be observed, both throughput-based

players suffer lower utilisation than the corresponding

buffer-based players, a look at Fig. 5c, d will show that in

both instances once the buffer level reaches the threshold

value, both players activate the periodic download sched-

uling to stabilise the buffer. This can be seen in the green

plot, results in high throughput variation, consequently

affecting the utilisation of both. Furthermore, the modified

buffer-based player recorded an improvement of 854 kb/s

in the average video rate, while modified throughput-base

player improved the average video rate by 433 kb/s.

5.1.3 Video rate convergence

Next, we compare the convergence time of the modified

players against the original players. Fig. 6a shows when

the bandwidth suddenly increases at 120 s both players

running the buffer-based algorithm are able to converge

at the right quality level, albeit at different time. While it

only took the modified buffer-based player 65 s to reach

the convergence state, it took the original buffer-based

player three times longer (i.e. 165 s). Furthermore, from

Fig. 6b it can be seen that by using the proposed model

the convergence time can be reduced by up to 80 s in

comparison with the original throughput-based player.

However, a player needs not to always converge to

a high video quality level. It can as well converge to a

lower quality level. Fig. 7 presents such a scenario. When

the bandwidth suddenly drops, it takes the player using

the original buffer-based logic longer to converge even

though it is coming from a quality level that is a lot lower

(see Fig. 7a). That is 102s against 146s for the unmodi-

fied buffer-based algorithm.

Furthermore, Fig. 7b shows when the bandwidth sud-

denly drops, the player running the unmodified through-

put-based algorithm was so aggressive in its reduction

of the video rate that the player had to reach the low-

est available video quality before it later stabilises at a

sub-optimal rate. Such a large amplitude in video quality

change is detrimental to QoE. However, the player run-

ning the proposed model was much more conservative in

its reduction and was able to converge at the appropriate

quality level.

5.2 Start-up delay

In all the experimentation conducted, the players are set

to start playing after fifteen (15) chunks are downloaded,

which translates to Bt = 30. Figure 8 shows the delay

incurred by each of the players. As can be seen, both buffer-

based players (modified and original) are able to start play-

ing at less than 2 s, that is, about 1.7 s after the first chunk

is requested. Though they achieve similar performance,

the original buffer-based player set about 40 s of a reser-

voir (the initial period when only the lowest video quality

is requested), effectively downloading further twenty-three

(23) chunks at the lowest video rate after the elapse of the

start-up period, when this needs not to be the case. However,

the modified buffer-based player starts a gradual increase

Table 1 Effect of different values of evolution constant(α)

Evolution con-

stant

Buffer under-

shoot

Convergence

time

Bmax(s) (%)

0.5 3 10 28

0.2 1 12 32

0.1 0 28 63

0.05 0 51 126

335On the trajectory of video quality transition...

1 3

in its video quality after the first nineteen (19) chunks are

downloaded, i.e. it requests only four further chunks at the

lowest video rate after the start of the playback. For the orig-

inal throughput-based player the start-up delay is quite high,

5.4 s. But interestingly, the modified version reduces the

start-up delay to about 2 s. While the former tries to strictly

match video rate to the available bandwidth, hence down-

loading relatively high video rates at the start-up period the

latter is more conservative, replenishing its buffer faster.

5.3 Fairness

Another desirable property of a streaming service is fair-

ness towards other players and background traffic in the

network. In this section, we investigate how fair the players

running the proposed model are to both other players and

background long-live TCP traffic.

5.3.1 Multiple players

For the experiments, four players running the same imple-

mentation of either the original players or the modified

player are used, as the case may be. In each case, the maxi-

mum bandwidth of the bottleneck link is set to 6 mb/s. In the

case where the players are fair, they should equally share the

available bandwidth since all the players are connected to the

same network and are also running on a similar device. As

can be seen from Fig. 9a, b none of the buffer-based play-

ers (both the modified and original) utilised more/less than

1.5mb/s, which is the fair share. Furthermore, they achieved

this with a high level of stability. However, the case of the

two throughput-based players there is a slight difference,

both players were able to reach the fair bandwidth, but its

comes at the cost of decrease in stability (see Fig. 9c, d).

5.3.2 A player and background traffic

In this section, the impact of background TCP traffic on

all the players is investigated. To do this the case where a

player and background traffic (file download from the same

server) compete is investigated. The download starts 30s

after the start of streaming.

As can be seen from Fig. 10 in all the investigated sce-

narios the players are able to use, almost, the entire avail-

able bandwidth (see the achieved throughput in green).

However, as soon as the background traffic is started the

achieved throughput starts to gradually drop until an equi-

librium is reached. The buffer-based players (both the base-

line and modified versions) fairly share the available band-

width, that is, each uses about 3000 kbps. Furthermore, it is

worth noting that the drop in video rate does not affect the

stability of the players. In other words, both buffer-based

(a) Original buffer-based

(b) Modified buffer-based

(c) Original throughput-based

(d) Modified throughput-based

Fig. 5 Video quality change, for both the original and the modified

algorithms, operated in an environment with changing bandwidth

336 Y. Sani et al.

1 3

players are able to maintain a near absence of video rate

oscillation in their download even though the TCP through-

put fluctuates (see Fig. 10a, b). However, the original

throughput-based player requests video chunks lower than

its fair share (1500 kbps) under-utilising its fair share of

the available bandwidth by about 50%. The modified ver-

sion improves the video rate to 2000 kbps, but still not a

fair situation.

5.4 Client with wireless access

The next set of experiments were conducted in a wire-

less environment. We used a MacBook Pro to run all the

Table 2 Adaptation for variable bandwidth

Players Maximum video rate (kb/s) Average video rate (kb/s) Throughput utilisation (%)

Original buffer-based 4000 2982 67

Modified buffer-based 6000 3827 100

Original throughput-based 4000 2212 67

Modified throughput-based 5000 2645 85

(a) Original vs modified buffer-based player

(b) Original vs modified throughput-based player

Fig. 6 Video quality convergence, for both the original and the modi-

fied algorithms, when bandwidth increases

(a) Original vs modified buffer-based player

(b) Original vs modified throughput-based player

Fig. 7 Video quality convergence, for both the original and the modi-

fied algorithms, when bandwidth suddenly drops

Fig. 8 Start-up delay when Bt = 30 s

337On the trajectory of video quality transition...

1 3

(a) Original buffer-based player

(b) Modified buffer-based player

(c) Original throughput-based player

(d) Modified throughput-based player

Fig. 9 Four players streaming at the same time

(a) Original buffer-based player

(b) Modified buffer-based player

(c) Original throughput-based player

(d) Modified throughput-based player

Fig. 10 Video quality change as a player compete with background

TCP traffic

338 Y. Sani et al.

1 3

players as and when required. The laptop was connected

to the EE 3G network at Lancaster City Centre. The same

server as in the case of wired environment is used. All

experiments were conducted within two days. The chan-

nel capacity, in all of the presented results, has not been

restricted.

As can be seen from Fig. 12 the throughput of

the wireless network is highly fluctuating, which makes

it difficult to ascertain the actual capacity of the link.

Therefore, no utilisation is presented. From Fig. 12a,

c the maximum quality level attained by the original

players are 600 and 700 kb/s respectively. However,

the modified versions of the players are able to achieve

1500 kb/s each (see Fig. 12b, d). Importantly, this helps

the modified players to achieve 45% increase of the aver-

age video quality. The summary results are presented in

Table 3.

Finally, a stability test for the players is conducted (see

Fig. 11). Both the original throughput-based and buffer-

based players suffer a high degree of instability, at the

steady-state the players are respectively 12.6 and 11.8%

unstable. However, the instability is significantly reduced,

when the proposed model is used, to 2.6% for the modified

buffer-based player and 4.0% for the modified throughput

player.

Fig. 11 Video quality stability

Table 3 Adaptation in wireless environment

Players Maximum video rate

(kb/s)

Average video

rate (kb/s)

Original buffer-based 600 567

Modified buffer-based 1500 1247

Original throughput-

based

700 536

Modified throughput-

based

1500 1239

(a) Original buffer-based player

(b) Modified buffer-based player

(c) Original throughput-based player

(d) Modified throughput-based player

Fig. 12 Video quality change, for both the original and the modified

algorithms, operated in a wireless environment

339On the trajectory of video quality transition...

1 3

5.5 Effect of different chunk sizes

Up until now, we have used chunks with the size of 2s, that is

V = 2, in this section, we present the test of the sensitivity of

the proposed model to different chunk sizes. For this, we run

the same experiment presented at Sect. 5.1.2 with chunks of

four and six seconds video playtime each. Further, only the

result of the modified buffer-based player is shown.

From Fig. 13b, it can be seen the pattern of the buffer evo-

lution is identical regardless of the chunk size used. From

this, we can conclude that the model is not sensitive to the

change in chunk size. However, the proposed model has seen

an increase in average video rate as the chunk size increases

(see Table 4). This is confirmation of a result reported in ear-

lier in the literature, which found the larger chunk size the

higher the chances of TCP reaching the steady state, which

in turn allows the play to perceive higher throughput.

6 Conclusion

The purpose of an adaptive bitrate selection module, in

HTTP adaptive streaming services, is primarily to match

video rate to the available system capacity. The selection

of the resource representing the system capacity, on which

the video rate adaptation is based on, is context depend-

ent. However, regardless of the resource use as a situational

indicator, It will be difficult to build an ABR scheme that

maximises QoE without taking into consideration the

dynamics of buffer state. In this paper, a QoE-aware model

of the relationship between video rate and buffer state

changes is presented. The model defines the optimal buffer

requirements for any given set of video quality levels while

providing an optimum QoE. The proposed scheme is evalu-

ated within a real-world Internet environment. Our results

show that incorporating a system model that captures the

relationship between buffer state changes and video rate

reduces both the start-up delay and convergence time, while

at the same time increases the average video rate, network

utilisation, and stability. Importantly, this is achieved with-

out introducing additional rebuffering.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecom-

mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

 1. Akhshabi, S., Anantakrishnan, L., Begen, A.C., Dovrolis, C.:

What happens when http adaptive streaming players compete for

bandwidth? In: Proc. of the NOSSDAV, pp. 9–14 (2012)

 2. Akhshabi, S., Anantakrishnan, L., Dovrolis, C., Begen, A.C.:

Server-based traffic shaping for stabilizing oscillating adaptive

streaming players. In: NOSSDAV, pp. 19–24 (2013)

 3. Cranley, N., Perry, P., Murphy, L.: User perception of adapting

video quality. Int. J. Hum.-Comput. Stud. 64(8), 637–647 (2006)

 4. De Cicco, L., Mascolo, S.: An adaptive video streaming con-

trol system: modeling, validation, and performance evaluation.

IEEE/ACM Trans. Netw. 22(2), 526–539 (2014)

Fig. 13 Impact of different chunk sizes

Table 4 Effect of different chunk sizes

Chunk size (s) Average video rate

(kb/s)

2 4000

4 4524

6 4891

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

340 Y. Sani et al.

1 3

 5. Hossfeld, T., Seufert, M., Sieber, C., Zinner, T.: Assessing effect

sizes of influence factors towards a QoE model for http adaptive

streaming. In: Proc. of the QoMEX, pp. 111–116 (2014)

 6. Huang, T.Y., Handigol, N., Heller, B., McKeown, N., Johari, R.:

Confused, timid, and unstable: picking a video streaming rate is

hard. In: Proc of the ACM IMC, pp. 225–238 (2012)

 7. Huang, T.Y., Johari, R., McKeown, N.: Downton abbey without

the hiccups: buffer-based rate adaptation for http video stream-

ing. In: Proc. of the FhMN, pp. 9–14 (2013)

 8. Huang, T.Y., Johari, R., McKeown, N., Trunnell, M., Watson,

M.: A buffer-based approach to rate adaptation: evidence from a

large video streaming service. In: Proc. of the 2014 ACM confer-

ence on SIGCOMM, pp. 187–198 (2014)

 9. J.341, I.T.: Objective perceptual multimedia video quality meas-

urement of HDTV for digital cable television in the presence of a

full reference. https://www.itu.int/rec/T-REC-J.341-201603-I/en

 10. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and

stability in http-based adaptive video streaming with festive. In:

Proceedings of the 8th International Conference on Emerging Net-

working Experiments and Technologies, ACM, pp. 97–108 (2012)

 11. Krishnan, S., Sitaraman, R.: Video stream quality impacts viewer

behavior: inferring causality using quasi-experimental designs.

IEEE/ACM Trans. Netw. 21(6), 2001–2014 (2013)

 12. Lederer, S., Muller, C., Timmerer, C.: Dynamic adaptive stream-

ing over http dataset. In: Proc. of the MMsys, pp. 89–94 (2012)

 13. Li, Z., Zhu, X., Gahm, J., Pan, R., Hu, H., Begen, A., Oran, D.:

Probe and adapt: Rate adaptation for http video streaming at

scale. IEEE J. Sel. Areas Commun. 32, 719–733 (2014)

 14. Liu, C., Bouazizi, I., Gabbouj, M.: Rate adaptation for adaptive

http streaming. In: Proceedings of the second annual ACM con-

ference on Multimedia systems, pp. 169–174 (2011)

 15. Liu, Y., Dey, S., Gillies, D., Ulupinar, F., Luby, M.: User experi-

ence modeling for dash video. In: 2013 20th International Packet

Video Workshop, pp. 1–8 (2013)

 16. Miller, K., Quacchio, E., Gennari, G., Wolisz, A.: Adaptation

algorithm for adaptive streaming over http. In: Proc. of the PV,

pp. 173–178 (2012)

 17. Mok, R.K., Luo, X., Chan, E.W., Chang, R.K.: Qdash: a QoE-

aware dash system. In: Proc. of the MMsys, pp. 11–22 (2012)

 18. Sani, Y., Mauthe, A., Edwards, C., Mu, M.: A bio-inspired

HTTP-based adaptive streaming player. In: 2016 IEEE Interna-

tional Conference on Multimedia Expo Workshops (ICMEW),

pp. 1–4 (2016)

 19. Seufert, M., Egger, S., Slanina, M., Zinner, T., Hobfeld, T.,

Tran-Gia, P.: A survey on quality of experience of http adaptive

streaming. Commun. Surv. Tutor. IEEE 17(1), 469–492 (2015)

 20. Thang, T.C., Ho, Q.D., Kang, J.W., Pham, A.T.: Adaptive

streaming of audiovisual content using mpeg dash. IEEE Trans.

Consum. Electron. 58(1), 78–85 (2012)

 21. Tian, G., Liu, Y.: Towards agile and smooth video adaptation in

dynamic http streaming. In: Proc. of the CoNEXT, pp. 109–120

(2012)

 22. Wang, B., Kurose, J., Shenoy, P., Towsley, D.: Multimedia

streaming via TCP: an analytic performance study. In: Proceed-

ings of the 12th annual ACM international conference on Multi-

media, pp. 908–915 (2004)

 23. Xu, Y., Zhou, Y., Chiu, D.M.: Analytical QoE models for bit-

rate switching in dynamic adaptive streaming systems. IEEE

Trans. Mob. Comput. 13(12), 2734–2748 (2014). doi:10.1109/

TMC.2014.2307323

 24. Yamagishi, K., Hayashi, T.: Parametric packet-layer model for

monitoring video quality of iptv services. In: 2008 IEEE Interna-

tional Conference on Communications, pp. 110–114 (2008)

 25. Zink, M., Schmitt, J., Steinmetz, R.: Retransmission schedul-

ing in layered video caches. In: IEEE International Conference

on Communications, 2002. ICC 2002, vol. 4, pp. 2474–2478

(2002)

https://www.itu.int/rec/T-REC-J.341-201603-I/en
https://doi.org/10.1109/TMC.2014.2307323
https://doi.org/10.1109/TMC.2014.2307323

	On the trajectory of video quality transition in HTTP adaptive video streaming
	Abstract
	1 Introduction
	2 Background and related work
	3 System modelling and implementation
	3.1 Quality evolution trajectory
	3.2 Modelling
	3.2.1 Continuous rate
	3.2.2 Discrete rate

	3.3 Behaviour of the model
	3.3.1 Convergence
	3.3.2 Stability

	3.4 Implementation

	4 Performance evaluation
	4.1 Experimental set-up
	4.2 Evaluation metrics

	5 Results
	5.1 Client with wireline access
	5.1.1 Evolution rate
	5.1.2 Variable bandwidth
	5.1.3 Video rate convergence

	5.2 Start-up delay
	5.3 Fairness
	5.3.1 Multiple players
	5.3.2 A player and background traffic

	5.4 Client with wireless access
	5.5 Effect of different chunk sizes

	6 Conclusion
	References

