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browsers, TVs. Each of these platforms has specific 

requirements with respect to transmission and video qual-

ity. Moreover, the environment within which most of the 

video streaming clients operate is both unreliable and varies 

over time. However, regardless of the access device, users 

want the best viewing experience possible. HTTP adaptive 

streaming (HAS) is the most successful technology so far 

that allows content providers to cater for the requirements of 

the multitude of devices and contexts. The process through 

which a HAS client chooses a video rate is called adaptive 

bitrate selection (ABR). The first generation of ABRs relied 

on throughput estimation and selected the highest video 

rate lower than the measured throughput [14]. This is based 

on the work of Wang et al.  [22] that showed if the avail-

able TCP throughput is twice the bitrate of the video plus 

a few seconds of start-up delay TCP can ensure an accept-

able video streaming experience. It later became clear that 

throughput estimation alone is not a sufficient parameter 

for designing efficient ABR since an accurate bandwidth 

estimation above the HTTP layer is difficult to achieve [6]. 

Consequently, any video rate selection algorithm that solely 

depends on such a relatively inaccurate estimate results in 

unnecessary rebuffering events [7], an undesirable variabil-

ity of video rate [6] and sub-optimal video quality [6].

Various attempts have been made to improve some of 

the identified issues of throughput-based ABRs by sup-

plementing throughput measurements with information 

about the playback buffer [1, 10, 21]. Using buffer occu-

pancy as a factor in video rate selection has developed 

from regarding buffer state changes as a complementary 

factor in making a rate selection decision [10, 21] to 

employing it as the sole metric [7, 8]. Though, whatever 

factor an ABR primarily relies on, it is difficult to build 

an ABR that maximises Quality of Experience (QoE) 

without taking buffer state changes into consideration.

Abstract HTTP adaptive video streaming matches video 

quality to the capacity of a changing context. A variety of 

schemes that rely on buffer state dynamics for video rate 

selection have been proposed. However, these schemes are 

predominantly based on heuristics, and appropriate models 

describing the relationship between video rate and buffer 

levels have not received sufficient attention. In this paper, 

we present a QoE-aware video rate evolution model based 

on buffer state changes. The scheme is evaluated within a 

real-world Internet environment. The results of an exten-

sive evaluation show an improvement in the stability, aver-

age video rate and system utilisation, while at the same 

time a reduction in the start-up delay and convergence time 

is achieved by the modified players.

Keywords HTTP adaptive streaming · Adaptive bitrate 

selection

1 Introduction

Nowadays, a typical video streaming service is expected 

to serve a variety of platforms, e.g. smartphones, web 
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It has been shown in [7] that by basing ABR solely on 

playback buffer occupancy a client can choose the high-

est quality level without the fear of an increase in rebuff-

ering. However, a linear increment of video rate, as used 

in [7], may not always enhance the QoE. For example, 

when the video quality is relatively high an increase in 

the current video rate does not necessarily translate into 

an improvement in the user-perceived quality, since as 

shown in [3, 17] a stage is always reached when users do 

not find any further increase beneficial. Furthermore, the 

buffer management model employed in [7, 8] artificially 

separates the ramping-up period from the steady state, 

which results in significant loss of quality.

To ensure that the video rate evolves in a way that 

optimises QoE, there is a need for a rate evolution map 

that captures the desirable pattern of video quality tran-

sition. This paper will concentrate on the following 

research question: If we have a QoE-aware model of the 

relationship between the playback buffer state changes 

and the available video rates, how much improvement in 

user-perceived video quality can be achieved?

In order to answer this question, the paper first identi-

fies the patterns of quality changes that are known to affect 

QoE, and then develops a QoE-aware model of the rate 

map that combines all stages of video rate evolution, while 

incorporating an optimal number of patterns that improve 

user-perceived video quality. In this paper, we restrict our-

selves to the set of objective QoE metrics that are known 

to have an impact on the user experience in adaptive video 

streaming, which are video freeze, average video rate, 

start-up delay, video quality convergence, and system uti-

lisation. Note the presented model is descriptive. In other 

words, it is just a declarative representation of the relation-

ship between the video rate and the buffer state changes 

and not a standalone algorithm. Hence, the paper dem-

onstrates how the proposed model can be used in practi-

cal systems by modifying selected throughput-based and 

buffer-based ABRs. The modified algorithms are then inte-

grated into the implemented players. Extensive experimen-

tation over the Internet using both wired and wireless con-

nections shows the performance of the scheme.

The rest of the paper is structured as follows: Sect. 2 pre-

sents background and the related work; Section 3 discusses 

the QoE-aware evolution trajectory and the system model; 

Section 4 details the methodology and experimental set-up 

used; Section 5 covered result presentation and finally the 

paper is wrapped with a conclusion in Sect. 6.

2   Background and related work

HAS services usually divide a video file into a number of 

chunks of equal temporal size with each chunk encoded 

in multiple bitrates. A client progressively requests a rel-

evant chunk. The bitrate of the requested chunk is based 

on the client’s measurement of the available resources. 

Throughput-based ABRs select a chunk with the high-

est video rate lower than the measured throughput [20]. 

When the throughput changes, the buffer level may be 

used as an indicator of whether to increase, decrease or 

stay with the current video rate  [10, 16]. However, those 

ABR schemes that solely rely on buffer occupancy are 

called buffer-based ABRs.

Throughput-based algorithms assume that the through-

put of a recently downloaded chunk is a rough estimate 

of the current network condition. But due to short-term 

throughput fluctuations, as a result of the TCP conges-

tion control mechanism and the difficulty in accurately 

estimating throughput above the HTTP layer, through-

put-based algorithms use a weighted average to smooth 

out the estimated network capacity [1]. However, using 

historical data is known to reduce the responsiveness 

of an algorithm [1]. A number of measurement studies 

have shown that throughput-based algorithms are unsta-

ble [13], unnecessarily rebuffer [6], request sub-optimal 

video rates [1], and are unfair [6].

A significant amount of research is focused on how to 

improve the accuracy of the TCP throughput measure-

ment of a typical ABR scheme. The authors of [13] pro-

pose a probe and adapt technique. The algorithm mim-

ics the congestion control of TCP but at the application 

layer. It uses TCP throughput as an input only when it is 

an accurate indicator of the fair share of bandwidth. In 

the same vein, the authors of [21] use machine learning 

techniques to predict the achievable throughput by using 

network state information.

In order to improve some of the downsides of through-

put-based services, various researchers use the buffer 

level as a feedback signal to complement throughput esti-

mation [16]. Tian and Lui [21] went further by using the 

playback buffer state change as the key feedback signal. 

Huang et al. [7, 8] propose an algorithm that completely 

relies on buffer occupancy for the video rate selection 

decisions. They are motivated by the fact that the end-to-

end capacity can be indirectly derived from buffer state 

changes. However, the model employed separates the 

buffering from the steady-state phase, which obviously 

creates a disconnected flow. Furthermore, at the start-up 

period (called reservoir), only the lowest available video 

rate is downloaded. Hence, there is a substantial loss in 

video quality at the beginning of the streaming session. 

During the ramping-up period, the video rate is linearly 

incremented. However, in [23] it has been shown that the 

probability of buffer starvation decreases exponentially 

with respect to the initial buffer level. Therefore, a lin-

ear evolution of the video rate, when ramping-up, will 
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unnecessarily prolong the convergence time. Further-

more, it is also worth noting that a constant and continu-

ous increment of the video rate may not always enhance 

QoE. In [3] it was demonstrated that when the video 

quality is high an increase in the current rate does not 

necessarily translate into an improvement in the user-per-

ceived quality. Nevertheless, the paper made an important 

observation: when the buffer is used as the main factor 

of an ABR the trade-off between video quality and the 

amount of rebuffering is unnecessary.

Earlier, Mok et al. [17] have studied the effect of video 

rate transition on QoE. They found that a sudden drop in 

video rate has a negative impact on user experience. To 

improve QoE, they opted to switch down the video rate to an 

intermediate level even when the target video level is lower. 

The problem with this design is that the user will be down-

loading higher bitrate than the download rate, hence increas-

ing the risk of buffer starvation, especially since both the 

intermediate level and the maximum buffer size are heuristi-

cally determined. While this work narrowed its investigation 

to a pattern, in our previous work [18], we presented a bio-

inspired model that pays attention to the whole sequence of 

the trajectory through the space of all possible system states.

3  System modelling and implementation

3.1  Quality evolution trajectory

A change in video quality level affects user experience. 

However, the degree of the impact and whether it is positive 

or negative depend on the pattern of the transition. In this 

section, a QoE-aware video quality evolution is derived.

At any given time t after the video streaming has started, 

the buffer may contain an array of chunks of different qual-

ity levels. However, chunks of different video rates gener-

ally have different sizes in bytes. We shall assume that all 

chunks contain an equal amount of video time V in sec-

onds. Since there is no direct mapping between buffer size 

in bytes and video time, we calibrate buffer in time, i.e. by 

the second. This has also been assumed in [7, 21].

At the beginning of a streaming session (t = 0), a 

server presents to a client a set of different video rates 

Q = {q0, q1, q2, . . . , qn}, with |Q| = n + 1. Let us suppose 

q0 < q1 < · · · < qn. Furthermore, let us assume that the 

quality of the video perceived by a user increases with 

video rate. Therefore, q0 is the minimum quality level 

(referred here also as qmin) and qn is the maximum avail-

able quality level (called qmax). Suppose Bt is the buffer 

occupancy at time t and Bmax is the maximum buffer 

all measured in seconds. Let ĉt denote the estimated 

throughput at time t with C(t) being the system capacity 

(i.e. ĉt ≤ Ct).

Usually, after the receipt of the media description file 

at t0, the play-out buffer is empty (B0 = 0), a client starts 

requesting a chunk with quality level qmin in order to 

minimise the start-up period. However, a prolonged 

download of qmin will negatively affect the user experi-

ence. Hence, using a video rate selection function R(t), 

the client should immediately start a gradual improve-

ment of the bitrate of the requested chunks as soon as it 

receives the initial chunk, such that the video rate of 

chunk i + 1 requested after successfully downloading 

chunk i � 1 with video rate qk , where {k ∈ n : 0 ≤ k ≤ n} , 

is qk+1 = αqk, where {α : 0 < α ≤ 1}.1 Suppose that the 

download of chunk i + 1 with starts at time ts and finishes 

at te. Let us also assume that the rate at which the client’s 

requested video rate evolves with respect to time dR(t)/dt 

is g′(R). Assuming that C(t) � R(t) = qmax. In other 

words, we have sufficient network capacity to cover for 

highest available video rate. With this assumption, a cli-

ent can continuously increase it video until it reaches the 

highest available. Simply put, g′(R) is positive at any time 

after the start of streaming except when R(t) = qmax and 

Bt = 0 in which case g′(R) = 0.

To ensure that the client gets its fair share of the avail-

able bandwidth, we rely on the recommendation of [7, 

8], which states that the highest rate is selected only 

when a buffer is full or nearly full (i.e. R(t) = qmax when 

Bt → Bmax). This will ensure that provided the high-

est video rate is not reached, the OFF period will not be 

activated (i.e. we use a back-to-back download). In other 

words, the system starts at minimum video rate when the 

buffer is empty, and continuously increment its video 

rate in such a manner that the video increment terminates 

when the buffer is full.

To avoid high amplitude variation (e.g. an abrupt drop 

of the video quality), which is known to be detrimental 

to QoE [17, 25] and to minimise the negative impact of 

recency effect [5, 9], transition decision to qk+1 should 

depend on qk. Furthermore, since users are not known to 

be appreciative of an increase in the video quality when 

the video rate is relatively high [3] we recommend a non-

linear g′(R). In fact, Yamagishi and Hayashi [24] have 

shown that, given a set of linearly incremented video 

rates, the saturation begins to take effect at about half-

way through the available video rates, when they studied 

the relationship between video rate and the subjective 

video quality. Therefore, we suggest that after reaching 

qmax/2 a client should start reducing the rate at which it 

1 It is worth noting while other researchers like [4] and [13] have 

advocated for the use of a gradual increment of the video rate at 

the beginning of a streaming session, for the purpose probing the 

network capacity, our scheme differs in the sense that we use the 

increment to control buffer flow.



330 Y. Sani et al.

1 3

increases its video quality. Figure 1 summarises the tra-

jectory of g′(R) that we deduced from the foregoing dis-

cussion. The path is concave pinned at two points q = 0 

and q = qmax with amplitude at qmax/2. This pattern can 

easily be described by a quadratic function with q = 0 

and q = qmax and a positive constant α. It should be noted 

that the value of the constant α determines the vertex of 

the parabola. In other words, it determines the maximum 

value the g′(R) can attain (see Fig. 1 a number of trajecto-

ries using different values of α are plotted).

3.2  Modelling

Given the desired video evolution path just derived, we 

next formulate a video rate prediction model.

3.2.1  Continuous rate

We first look at a case where R(t) results in any value 

between qmin to qmax. With this assumptions, we can model 

R(t) as a continuous function.2

Clients usually infer C(t) from ĉ(t) for the purpose 

of rate selection. Suppose c(ti) is the estimated through-

put when t = ti derived from the average of h number of 

chunks calculated thus:

Let us assume that a HAS client requests chunk i imme-

diately after chunk i − 1 is completely downloaded 

(1)g′(R) = aq(qmax − q)

2 This is without loss of generality, in fact, in the next section we 

drop this assumption.

c(ti) =
1

ti − ti−h

∫
h

i−h

ĉ(t)dx.

except when the buffer is full. In which case it waits for 

V seconds (chunk size) before sending a request. Except 

during the off period, the playback buffer drains at the 

one buffer second every real time second and fills at 

C(t) / R(t), therefore the rate at which buffer changes is

In most contexts, C(t) is time-varying; therefore, if the 

client is to avoid buffer starvation, the output of R(t) has 

to adapt to this changing environment with time.

We want R(t) to closely match C(t), in which case we do 

not expect the buffer to change often, that is, dB(t)
dt

≈ 0. 

From Eqs. (1) and (3)

after simplification using partial fraction method and 

using R(t) = q we have

by integrating equation (5) we have

The streaming starts with a minimum video rate; there-

fore, q = qmin and B = B0 . Using this information e can 

be evaluated as thus: 

Substituting Eq. (7) into (6) and simplifying it, we have:

Finally, solving for q and (Bt − Bt0
≈ Bt), since 

{B0 : 0 < B0 ≤ V}

3.2.2  Discrete rate

By dropping our assumption about the continuous nature 

of video rates, the video quality has to be chosen from a 

finite discrete set. Furthermore, q can only move from one 

valid value to another. We assume the quality level change 

(2)
dB(t)

dt
=

C(t)

R(t)
− 1.

(3)
dR(t)

dt
=

dR(t)

dB
.
dB

dt
.

(4)g′(R) =

dR(t)

dt
=

dR(t)

dB
= αq(qmax − q),

dR(t)

q(qmax − q)
= αdB,

(5)

∫
1

q
dq +

∫
1

qmax − q
dq =

∫
αqmaxdB.

(6)ln q − ln |qmax − q| = αqmaxB + e.

(7)e = ln
qmin

qmax − qmin

− αqmaxBt0 .

(8)ln
q

qmax − q
−

qmin

qmax − qmin

= αqmax(Bt − Bt0).

(9)R(t) =
qmax

1 + [
qmax

q0
− 1]e−αqmaxBt

′
g

(R
)

q
0

q
max

α = 0.3

α = 0.5

α = 0.7

α = 0.9

Fig. 1  Derived trajectory of video quality evolution
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is done only between adjacent video rates, that is, qk can 

only move either to qk−1 or qk+1.

The model is now modified to reflect this. To change a 

video rate a buffer must have grown or contracted by a cer-

tain buffer distance. Precisely, to change the quality level 

we need �Bk = R−1(qk+1) − R−1(qk). When �Bk is posi-

tive the quality level is going to be increased and when it 

is negative the quality level is reduced. When R(B) = qmax 

�Bk ≤ 0. Simply put at the maximum buffer level ABR 

algorithm can only reduce or stay with the current quality 

level.

3.3  Behaviour of the model

3.3.1  Convergence

Figure 2 presents various plots of Eq. (9) (qmin = 100 

kbps, 2000 kbps, 12000 kbps and qmax = 8000 kbps). The 

most important observable characteristic of the curves 

is that the rate at which the video quality changes var-

ies. It starts slowly and then becomes faster (the plots 

having steeper gradients) as the value of video qual-

ity level qk increases. Again, on approaching qmax the 

rate begins to flatten. From this, it can be derived that 

limB→∞ R(t) = qmax (i.e. the limiting factor of R(B) is 

qmax). In other words, the maximum value of q assuming 

an infinite buffer size is qmax. As can be seen qmax is 

asymptotically reached for all the plots independent of 

the initial value of the video rate (q0). Furthermore, after 

reaching qmax any increase in the buffer size does not 

result in a rise in q. This buffer level (B∗), barring any 

other consideration by an algorithm designer, can be con-

sidered as Bmax.

Another relevant factor is the convergence time of the 

model. First, from the discussion of the desirable trajectory 

at Sect. 3.1 we can deduce that the evolution constant α 

determines the speed of the g′(R). So, the higher the value 

of α the faster the rate of video quality change and hence 

the shorter the convergence time. Therefore, the choice of 

this parameter has an impact on the convergent time.

3.3.2  Stability

The equilibrium of the model is the point at which 

C(t) = R(t), that is, when dR(t)
dB

= 0. Equating the 

Eq. (4) to zero gives us two equilibrium points, q
∗

= 0 

and q
∗

= qmax. It is obvious that when a client has not 

started requesting any video it will stay in that state for-

ever. However, it is interesting to investigate the behav-

iour of the model near q∗
= 0. When streaming session 

is just starting, the buffer level is most likely going to be 

very low, in other words, close to q∗
= 0 the buffer level 

is low. When qk is very small, αq
2 is small compared to 

αqqmax. Therefore, Eq. (4) becomes dR(t)
dB

≈ αqqmax. We 

can infer from this equation, provided α < 0 any small 

perturbation in the system state will result in an exponen-

tial growth of the video rate away from the current rate 

resulting in an equilibrium that is unstable.

The second equilibrium point is q∗
= qmax. Again we are 

interested in what happens near this point. Let us assume 

that

When we substitute q = qmax + ǫ into Eq. 4, we get

 However, if q is close to qmax, for all α > 0 the ǫ2 will 

be very small; therefore, we have dR(t)
dB

≈ −αǫqmax. Thus 

small perturbation will decay exponentially, reverting 

ǫ = q − qmax.

dR(t)

dB
= −αǫqmax − ǫ2.

Fig. 2  Evolution of the R(t) in both Continuous and Discrete mode.
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back to the qmax. Hence, the equilibrium q
∗

= qmax is 

asymptotically stable.

3.4  Implementation

The proposed model is applied within the two selected 

rate adaptation algorithms to demonstrate its applica-

bility. First, the algorithm proposed by Huang et al. [7, 

8], henceforth called the original buffer-based algo-

rithm. And secondly, the one proposed by Miller et al. 

[16], which we called the original throughput-based 

algorithm.

When modifying the implementation of the buffer-

based algorithm, the same algorithm is used as pre-

sented [7, 8] with one modification, that is, from the 

very beginning the proposed rate map is used. Simply 

put, the reservoir is not used. Hence, from the start, the 

algorithm relies on the proposed model. The summary of 

the algorithm is thus: the current video rate is increased 

to the next level only if the rate suggested by the pro-

posed model exceeds the next higher available quality 

level. However, if the current video rate suggested by the 

model is below the next lower available video rate the 

quality level is switched down. Otherwise, the algorithm 

retains its video rate (for a detail discussion of the algo-

rithm see [7, 8]).

To retrofit the proposed model into [16], the algorithm 

had to be slightly modified. It is worth noting that none of 

the changes affect the throughput related logic. In order 

to closely map the original buffer dynamics, the playback 

buffer is divided into three phases. The first phase is when 

the video rate change is slow, with a threshold at Bqt1. The 

next phase is when the video rate grows exponentially, 

which ends at Bqt2. The third is when the video quality 

level increase reaches saturation, which starts at Bmax. The 

threshold can be calculated thus:

For x = 1 the β = 0.1 and for x = 2 the β = 0.73. The 

modified version of the throughput-based algorithm is pre-

sented in the Algorithm 1.

Algorithm1: Modifiedthroughput-basedABR

input : c(tk)k=1,...te

Bk {Bk :0 <B k ≤ Bmax}
output: qk+1:Nextvideorate

Bdelay

static runningFastStart:=true;
Bdelay=0

qk+1 = qk

if runningFastStart

∧ qk �= qmax

∧ qk ≤ α1.c(tk) then

if B(t) <B qt1 then

if qk+1 ≤ α2.c(tk) ∨ R(t) ≥ qk+1 then
qk := qk+1

end

elseif B(t) <B qt2 then

if qk+1 ≤ α3.c(tk) ∨ R(t) ≥ qk+1 then
qk := qk+1

end

else

if qk+1 ≤ α4.c(tk) ∨ R(t) ≥ qk+1 then
qk := qk+1

end

if B(t) ≥ Bmax then
qk := qmax ∧ delay := V

end

end

else
runningFastStart:=false;
if B(t) <B qt1 then

if R(t) ≤ qk−1 then
qk := qk−1

end

elseif B(t) <B qt2 then

if qk−1 ≥ ĉ(t) ∨ R(t) ≤ qk−1 then
qk := qk−1

end

else

if qk ≥ α5.c(tk) ∨ R(t)== qmax then
delay := V

else
qk := qk

end

end

end

Bqtx = R−1(qmin + β(qmax − qmin)) 4  Performance evaluation

This section presents the experimental set-up and the per-

formance evaluation metrics

Fig. 3  Experimental set-up
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4.1  Experimental set-up

The test-bed set-up is shown in Fig. 3. The client is con-

nected to the Internet either via an Ethernet switch or EE’s 

3G networks. The web server is located at the Alpen-Adria-

Universität Klagenfurt, which hosts the Big Buck Bunny 

dataset [12].

All the players used are implemented in Python, and run 

on top of Ubuntu 12.04.2 LTS. The host that runs the play-

ers also hosts: Dummynet, tcpdump, lsof, and Wget.

Throughout the wireline experimentation, the maxi-

mum downstream available bandwidth was limited to 

6 mbps, while for the wireless, a “blue-sky” test was 

conducted. For all the buffer-based players, Bmax = 240

s. And for the player running the original buffer-based 

algorithm, the reservoir is set to 40s. We found through 

experiments the values between 0.05 and 0.1 are appro-

priate for the growth constant qmaxα of the proposed 

model; therefore, we use qmaxα = 0.05 throughout, 

while for both throughput-based algorithms (original 

and modified), we retain the same configurations as 

used in [16]. Each experiment was conducted 10 times 

and the average result is used. When more than one 

player is used, or when a player and background traf-

fic worked at the same time, all are run on the same 

machine.

4.2  Evaluation metrics

The following objective QoE metrics are known to affect 

user experience [11, 15, 19] and are used in evaluating 

the impact of the proposed model on the two modified 

algorithms.

 – Rebuffers: is the total number of video freeze events 

per streaming session [19].

 – Average video rate: is the average of video qual-

ity weighted by the duration each video was played. 

This is calculated as 
t1q1+t2q2...tnqn

tn−t1
 and measured in 

kb/s [19].

 – Instability: is the fraction of successive chunk requests 

by a player in which the requested video rate changes 

[2], measured at the steady state.

 – Utilisation of available network resource: is calculated 

by dividing the average video rate by the average net-

work capacity [21].

 – Convergence time: is the time taken to settle at the 

sustainable video rate.

 – Start-up Delay: is defined as the amount of time it 

takes a player to download a predefined number of 

chunks before the playback starts [11].

5  Results

This section discusses the result of the various test-bed 

experiments conducted in both wired and wireless envi-

ronments. The purpose of these experiments is to evalu-

ate how much improvement in QoE-related metric, if any, 

is gained by the use of the proposed model.

5.1  Client with wireline access

5.1.1  Evolution rate

The evolution rate of the video quality is determined 

by the constant α, which takes a value from {0 < α}. To 

assess the effect of different values of α on the perfor-

mance of an adaptive video player we present, in Fig. 4, 

the result of some experiments conducted using the fol-

lowing carefully selected values: (0.5, 0.2, 0.1, 0.05). 

As shown in Fig. 4a for the values of qmaxα = 0.5 and 

qmaxα = 0.2 the system is very aggressive. The player 

downloads video rates that are more than what the 

available system capacity can safely handle. Addition-

ally, when the bandwidth drops the player is not able to 

reduce the video rate to the sustainable quality level in 

time to avoid rebuffering (see Fig. 4b). The video stall 

is unnecessary since the capacity of the system could 

(a) Effect of different values of α on video rates.

(b) Effect of different values of α on buffer evolu-

tion.

Fig. 4  Impact of different evolution rate constant α
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have sustained a lower quality level without any rebuffer-

ing. Furthermore, when the available capacity is low the 

player recurrently undershoots its buffer, which not only 

increases the chances of rebufferings but the player’s 

instability. However, when the evolution rate constant is 

reduced to α = 0.1 and α = 0.05 the player is not only 

able to prevent video freeze but also the video rate is able 

to converge at maximum available bandwidth.

Table 1 summarises the effect of different values of 

evolution constant on the performance of the proposed 

model. It can be seen as the values increase both the buffer 

requirement and convergence time drop. However, this 

comes at an increasing risk of rebuffering events. In sum-

mary, it was found when qmaxα is above 0.1 the player 

is extremely aggressive, while the player is very stable 

between 0.1 to 0.05.

5.1.2  Variable bandwidth

These experiments are aimed at demonstrating the elas-

ticity of the proposed model, i.e. how it adapts to a rap-

idly changing bandwidth. As can be seen from Fig. 5, the 

streaming started with a maximum available bandwidth 

of 6 mb/s, after 80s the bandwidth dropped to 2 mb/s at 

150s it dropped again to 900 kb/s, finally at 270 s it rose 

back to 6 mb/s and stayed until the end.

The first thing to note is that the video rate of chunks 

downloaded by the player employing the proposed model 

(Fig. 5b, d), are able to converge at a higher video rate, in 

fact, the modified buffer-based player converges at exactly 

the system capacity (see Fig. 5b). Table 2 shows that the 

modified players achieve a maximum video rate of 6 and 

5mb/s against the 4mb/s for the original players. This 

translates to 100 and 85% throughput utilisation, which 

is an improvement of 33 and 18% utilisation compared to 

the original buffer-based and throughput-based players, 

respectively. As can be observed, both throughput-based 

players suffer lower utilisation than the corresponding 

buffer-based players, a look at Fig. 5c, d will show that in 

both instances once the buffer level reaches the threshold 

value, both players activate the periodic download sched-

uling to stabilise the buffer. This can be seen in the green 

plot, results in high throughput variation, consequently 

affecting the utilisation of both. Furthermore, the modified 

buffer-based player recorded an improvement of 854 kb/s 

in the average video rate, while modified throughput-base 

player improved the average video rate by 433 kb/s. 

5.1.3  Video rate convergence

Next, we compare the convergence time of the modified 

players against the original players. Fig. 6a shows when 

the bandwidth suddenly increases at 120 s both players 

running the buffer-based algorithm are able to converge 

at the right quality level, albeit at different time. While it 

only took the modified buffer-based player 65 s to reach 

the convergence state, it took the original buffer-based 

player three times longer (i.e. 165 s). Furthermore, from 

Fig. 6b it can be seen that by using the proposed model 

the convergence time can be reduced by up to 80 s in 

comparison with the original throughput-based player.

However, a player needs not to always converge to 

a high video quality level. It can as well converge to a 

lower quality level. Fig. 7 presents such a scenario. When 

the bandwidth suddenly drops, it takes the player using 

the original buffer-based logic longer to converge even 

though it is coming from a quality level that is a lot lower 

(see Fig. 7a). That is 102s against 146s for the unmodi-

fied buffer-based algorithm.

Furthermore, Fig. 7b shows when the bandwidth sud-

denly drops, the player running the unmodified through-

put-based algorithm was so aggressive in its reduction 

of the video rate that the player had to reach the low-

est available video quality before it later stabilises at a 

sub-optimal rate. Such a large amplitude in video quality 

change is detrimental to QoE. However, the player run-

ning the proposed model was much more conservative in 

its reduction and was able to converge at the appropriate 

quality level.

5.2  Start-up delay

In all the experimentation conducted, the players are set 

to start playing after fifteen (15) chunks are downloaded, 

which translates to Bt = 30. Figure 8 shows the delay 

incurred by each of the players. As can be seen, both buffer-

based players (modified and original) are able to start play-

ing at less than 2 s, that is, about 1.7 s after the first chunk 

is requested. Though they achieve similar performance, 

the original buffer-based player set about 40 s of a reser-

voir (the initial period when only the lowest video quality 

is requested), effectively downloading further twenty-three 

(23) chunks at the lowest video rate after the elapse of the 

start-up period, when this needs not to be the case. However, 

the modified buffer-based player starts a gradual increase 

Table 1  Effect of different values of evolution constant(α)

Evolution con-

stant

Buffer under-

shoot

Convergence 

time

Bmax(s) (%)

0.5 3 10 28

0.2 1 12 32

0.1 0 28 63

0.05 0 51 126
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in its video quality after the first nineteen (19) chunks are 

downloaded, i.e. it requests only four further chunks at the 

lowest video rate after the start of the playback. For the orig-

inal throughput-based player the start-up delay is quite high, 

5.4 s. But interestingly, the modified version reduces the 

start-up delay to about 2 s. While the former tries to strictly 

match video rate to the available bandwidth, hence down-

loading relatively high video rates at the start-up period the 

latter is more conservative, replenishing its buffer faster.

5.3  Fairness

Another desirable property of a streaming service is fair-

ness towards other players and background traffic in the 

network. In this section, we investigate how fair the players 

running the proposed model are to both other players and 

background long-live TCP traffic.

5.3.1  Multiple players

For the experiments, four players running the same imple-

mentation of either the original players or the modified 

player are used, as the case may be. In each case, the maxi-

mum bandwidth of the bottleneck link is set to 6 mb/s. In the 

case where the players are fair, they should equally share the 

available bandwidth since all the players are connected to the 

same network and are also running on a similar device. As 

can be seen from Fig. 9a, b none of the buffer-based play-

ers (both the modified and original) utilised more/less than 

1.5mb/s, which is the fair share. Furthermore, they achieved 

this with a high level of stability. However, the case of the 

two throughput-based players there is a slight difference, 

both players were able to reach the fair bandwidth, but its 

comes at the cost of decrease in stability (see Fig. 9c, d). 

5.3.2   A player and background traffic

In this section, the impact of background TCP traffic on 

all the players is investigated. To do this the case where a 

player and background traffic (file download from the same 

server) compete is investigated. The download starts 30s 

after the start of streaming.

As can be seen from Fig. 10 in all the investigated sce-

narios the players are able to use, almost, the entire avail-

able bandwidth (see the achieved throughput in green). 

However, as soon as the background traffic is started the 

achieved throughput starts to gradually drop until an equi-

librium is reached. The buffer-based players (both the base-

line and modified versions) fairly share the available band-

width, that is, each uses about 3000 kbps. Furthermore, it is 

worth noting that the drop in video rate does not affect the 

stability of the players. In other words, both buffer-based 

(a) Original buffer-based

(b) Modified buffer-based

(c) Original throughput-based

(d) Modified throughput-based

Fig. 5  Video quality change, for both the original and the modified 

algorithms, operated in an environment with changing bandwidth



336 Y. Sani et al.

1 3

players are able to maintain a near absence of video rate 

oscillation in their download even though the TCP through-

put fluctuates (see Fig. 10a, b). However, the original 

throughput-based player requests video chunks lower than 

its fair share (1500 kbps) under-utilising its fair share of 

the available bandwidth by about 50%. The modified ver-

sion improves the video rate to 2000 kbps, but still not a 

fair situation.

5.4  Client with wireless access

The next set of experiments were conducted in a wire-

less environment. We used a MacBook Pro to run all the 

Table 2  Adaptation for variable bandwidth

Players Maximum video rate (kb/s) Average video rate (kb/s) Throughput utilisation (%)

Original buffer-based 4000 2982 67

Modified buffer-based 6000 3827 100

Original throughput-based 4000 2212 67

Modified throughput-based 5000 2645 85

(a) Original vs modified buffer-based player

(b) Original vs modified throughput-based player

Fig. 6  Video quality convergence, for both the original and the modi-

fied algorithms, when bandwidth increases

(a) Original vs modified buffer-based player

(b) Original vs modified throughput-based player

Fig. 7  Video quality convergence, for both the original and the modi-

fied algorithms, when bandwidth suddenly drops

Fig. 8  Start-up delay when Bt = 30 s
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(a) Original buffer-based player

(b) Modified buffer-based player

(c) Original throughput-based player

(d) Modified throughput-based player

Fig. 9  Four players streaming at the same time

(a) Original buffer-based player

(b) Modified buffer-based player

(c) Original throughput-based player

(d) Modified throughput-based player

Fig. 10  Video quality change as a player compete with background 

TCP traffic
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players as and when required. The laptop was connected 

to the EE 3G network at Lancaster City Centre. The same 

server as in the case of wired environment is used. All 

experiments were conducted within two days. The chan-

nel capacity, in all of the presented results, has not been 

restricted.

As can be seen from Fig. 12 the throughput of 

the wireless network is highly fluctuating, which makes 

it difficult to ascertain the actual capacity of the link. 

Therefore, no utilisation is presented. From Fig. 12a, 

c the maximum quality level attained by the original 

players are 600 and 700 kb/s respectively. However, 

the modified versions of the players are able to achieve 

1500 kb/s each (see Fig. 12b, d). Importantly, this helps 

the modified players to achieve 45% increase of the aver-

age video quality. The summary results are presented in 

Table 3.

Finally, a stability test for the players is conducted (see 

Fig. 11). Both the original throughput-based and buffer-

based players suffer a high degree of instability, at the 

steady-state the players are respectively 12.6 and 11.8% 

unstable. However, the instability is significantly reduced, 

when the proposed model is used, to 2.6% for the modified 

buffer-based player and 4.0% for the modified throughput 

player.

Fig. 11  Video quality stability

Table 3  Adaptation in wireless environment

Players Maximum video rate 

(kb/s)

Average video 

rate (kb/s)

Original buffer-based 600 567

Modified buffer-based 1500 1247

Original throughput-

based

700 536

Modified throughput-

based

1500 1239

(a) Original buffer-based player

(b) Modified buffer-based player

(c) Original throughput-based player

(d) Modified throughput-based player

Fig. 12  Video quality change, for both the original and the modified 

algorithms, operated in a wireless environment
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5.5  Effect of different chunk sizes

Up until now, we have used chunks with the size of 2s, that is 

V = 2, in this section, we present the test of the sensitivity of 

the proposed model to different chunk sizes. For this, we run 

the same experiment presented at Sect. 5.1.2 with chunks of 

four and six seconds video playtime each. Further, only the 

result of the modified buffer-based player is shown.

From Fig. 13b, it can be seen the pattern of the buffer evo-

lution is identical regardless of the chunk size used. From 

this, we can conclude that the model is not sensitive to the 

change in chunk size. However, the proposed model has seen 

an increase in average video rate as the chunk size increases 

(see Table 4). This is confirmation of a result reported in ear-

lier in the literature, which found the larger chunk size the 

higher the chances of TCP reaching the steady state, which 

in turn allows the play to perceive higher throughput.

6  Conclusion

The purpose of an adaptive bitrate selection module, in 

HTTP adaptive streaming services, is primarily to match 

video rate to the available system capacity. The selection 

of the resource representing the system capacity, on which 

the video rate adaptation is based on, is context depend-

ent. However, regardless of the resource use as a situational 

indicator, It will be difficult to build an ABR scheme that 

maximises QoE without taking into consideration the 

dynamics of buffer state. In this paper, a QoE-aware model 

of the relationship between video rate and buffer state 

changes is presented. The model defines the optimal buffer 

requirements for any given set of video quality levels while 

providing an optimum QoE. The proposed scheme is evalu-

ated within a real-world Internet environment. Our results 

show that incorporating a system model that captures the 

relationship between buffer state changes and video rate 

reduces both the start-up delay and convergence time, while 

at the same time increases the average video rate, network 

utilisation, and stability. Importantly, this is achieved with-

out introducing additional rebuffering.
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