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ON THE TRANSFORMATION GROUP OF A
REAL HYPERSURFACE

BY

S. M. WEBSTER

Abstract. The group of biholomorphic transformations leaving fixed a

strongly pseudoconvex real hypersurface in a complex manifold is a Lie

group. In this paper it is shown that the Chern-Moser invariants must vanish

if this group is noncompact and the hypersurface is compact. Also consid-

ered are transformation groups of flat hypersurfaces and intransitive groups.

Introduction. The purpose of this paper is to study the group of structure

preserving, or pseudoconformal, transformations of a real hypersurface M (of

dimension 2n + 1) in a complex n + 1 manifold, or more generally, of a

manifold with the same C-R structure. We will always assume that the C-R

structure is integrable and that the Levi form is nondegenerate. It follows

from the work of Chern and Moser [2] that this group is a Lie transformation

group.

There is some similarity between the geometry of M and the conformai

geometry of a Riemannian manifold. Over M there is a principal fibre bundle

B (the pseudoconformal bundle), a connection on B, and curvature invariants

the most important of which is the fourth order curvature tensor Sg^ (see [2]).

These have as analogues in the Riemannian case the bundle of conformai

frames the conformai connection, and the Weyl conformai curvature tensor.

If n > 2, S vanishes if and only if M is pseudoconformally flat, i.e., locally

equivalent to the standard sphere S2n+l in C+I [8].

Locally the structure of M is given by a real one-form 9, n complex

one-forms 9a, and their complex conjugates 9" —9a. They satisfy

0/\9x /\--- /\9n/\9X /\-• • Afl">0
and the equation

dO = igaß9a f\0t      mod 9.

Here and throughout this paper Greek indices run from 1 to n and the

summation convention is used. The nondegenerate hermitian matrix (gaß) is

Received by the editors February 12, 1976.

AMS (A/OS) subject classifications (1970). Primary 57E20, 53A55; Secondary 32F99.
Key words and phrases. Pseudoconformal transformation, Lie transformation group, strongly

pseudoconvex, real hypersurface.

© American Mathematical Society 1977

179

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



180 S. M. WEBSTER

the Levi form. If M is strongly pseudoconvex 9 is chosen so that this matrix is

negative definite. The holomorphic tangent bundle H{M) is the annihilator

of 9 in the real tangent bundle of M. We will have need of the dual vector

fields Xa, X- = Xa, and X = X.

The real one-form 9 is determined up to multiplication by a nonzero

function on M. For a choice of 9 the pair (M, 9), called a pseudohermitian

manifold in [8], is the analogue of a Riemannian structure underlying a

conformai structure.

In §1 we show that if M is compact, connected, and strongly pseudocon-

vex, and if the identity component of its pseudoconformal transformation

group is noncompact, then M is flat. The proof owes much to that given by

Obata [7] in the conformai case.

In §2 we study the unbounded one-parameter groups of pseudoconformal

transformations of 52n+1. The main result is the same as in the conformai

case [6]. This is used to show that, if M is as in the preceding paragraph and

has a finite fundamental group, then M is globally equivalent to S2n+X. In §3

we consider one-parameter groups with fixed points on a flat space.

We turn to intransitive groups of pseudohermitian transformations in §4.

The theorem here is that if G is an intransitive group of transformations of

(M, 9), M having dimension 2« + 1, then G has dimension less than or equal

to n2 + 1. For n = 1, Cartan [1] has shown that a three dimensional group of

pseudoconformal transformations of a real hypersurface in C2 must be

transitive.

The work presented in this paper was submitted as part of the author's

thesis at the University of California at Berkeley in June of 1975.

1. Spaces admitting a noncompact connected Lie group of pseudoconformal

transformations. In this section we prove the following:

Theorem (1.1). Let M be a compact, connected, strongly pseudoconvex

abstract real hypersurface, and let G be a connected Lie group of pseudoconfor-

mal transformations of M. If G is noncompact then M is locally equivalent to

the standard real hypersphere S2n+X in C+1 in the pseudoconformal sense.

This will be proved as follows. Suppose M is not locally S2n+X; then we will

show that the closure of every one-parameter subgroup of G is compact. By a

theorem of Montgomery and Zippin [5] G must itself be compact.

We first assume that dim M = 2n + I, n > 2.

Let G, be a one-parameter subgroup of G with infinitesimal generator Y on

M. Assuming M is not flat, it follows that the pseudoconformal curvature

tensor Sgp55 is nonzero somewhere. Let U be a nonempty connected compo-

nent of the open set where S does not vanish. U is invariant under G, since G

is connected.
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ON THE TRANSFORMATION GROUP OF A REAL HYPERSURFACE 181

Since M is strongly pseudoconvex, we can choose a globally defined

nonvanishing one-form 9 annihilating the holomorphic tangent bundle

H (M). As in [8, §3], the one-form

(1.1) S*=\\S\\g-9

is a pseudoconformal invariant on U. Let X* be the corresponding invariant

transversal [8]. The following Lie derivatives then vanish

(1.2) LY9* = 0,       LYX* =[Y,X*]=0.

On U we can decompose Y uniquely as

(1.3) Y = tlY* + Y,

where

(1.4) r,^9*(Y),   0*(f) = O.

By the following proposition we may assume that r¡ does not vanish identi-

cally.

Proposition (1.2). Let Y be an infinitesimal pseudoconformal transformation

on a nondegenerate, integrable C-R manifold M. If Yp belongs to Hp(M)for all

p in an open subset U of M, then Y vanishes identically.

Proof. Choose an local frame (X, Xa, X-) and dual coframe (9, 9", 9"). We

have d9 = iga¿9a A 8* + 9 A <i>, and we can put Y = ZaXa + £% in the

open set U. Since Y preserves the structure, we have

(1.5) LY9 = u9.

We also have

(1.6) LY9 = Iyd9 + diY9 = igrfV' -ig^k« - <b(Y)9.

Comparing (1.5) and (1.6) we see that, for all ß, ga¡¡ £° = 0. Since gaj¡ is

nondegenerate, £a = 0 for all a, and so Y vanishes on U. The flow rj, of Y

induces a flow G[ on the pseudoconformal bundle B over M which preserves

the connection forms. G[ acts trivially on the part of B over U, so by

Theorem (3.2) of [3], G[ consists of the identity alone. Therefore, G, is also

the identity, and Y vanishes everywhere on M.   □

Returning to the proof of Theorem (1.1), we may assume that n > 0

somewhere by replacing Y by —Y, if necessary. For a sufficiently small

constant e > 0 we define a nonempty closed subset of U by

Ue = [p E U: i\(p) > b).

By (1.1) and (1.4) and the definition of U it is seen that r\(p) goes to zero asp

approaches the boundary of U. Therefore, Ue is a closed subset of M and so

is compact.

Ue is invariant under Gx, the flow of Y, because
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182 S. M. WEBSTER

Yr¡ = (LY9*)(Y) + 9*([Y,Y]) = 0.

It is also invariant under the closure Gx.

Let P be the pseudohermitian bundle over (U, 9*) with fibre U(n) [8, §1].

Pt, the part of P lying over Ut, is_compact and invariant by Gx. By Theorem

(3.2) of [3] and the fact that_G, is a Lie group, G, imbeds as a closed

submanifold of Pe. Therefore, G, is compact, and Theorem (1.1) is true for

n > 2.

For the case n = 1, we replace ||5||fl by the relative invariant Q on M3, the

vanishing of which is necessary and sufficient for M3 to be flat [1]. The same

argument shows that Theorem (1.1) holds in this case also.

2. Unbounded one-parameter groups on the real hypersphere. To study

further compact, strongly pseudoconvex spaces M admitting a noncompact,

connected Lie group of pseudoconformal transformations, we can restrict

ourselves to the pseudoconformally flat spaces. It follows from the structure

equations of [2, §5] that M can be developed locally onto the real hypersphere

S2n+X. If M is also simply connected, then the same monodromy argument as

in the conformai case [4] shows that M can be developed globally onto an

open subset of S2n+X. This development may not be one-to-one.

A pseudoconformal vector field on M will under this development be

mapped to a pseudoconformal vector field on an open subset of S2n+X.

Because S2n+X has such a large group of transformations, any such local

vector field extends to a unique global vector field. We therefore study

one-parameter groups, particularly those with noncompact closure, on S2n+l.

This is a matter of linear algebra.

In this section we will prove the following:

Theorem (2.1). Let G, be a one-parameter group of pseudoconformal trans-

formations of S2n+X having a noncompact closure. Let F, be its flow. Then either

(1) Ft has precisely two fixed points, p _ andp+, such that for any other point
pinS2n+x,

lim   F,(p)=p+, lim   Ft(p)=p_;
<-» + oo t-* — oo

or

(2) Ft has precisely one fixed point p'', such that for any point p in S2n+X,

lim   Fl(p)=p'.
r-»±oo

Before giving the proof we will derive the following corollary.

Corollary (2.2). Let M be a compact, connected, strongly pseudoconvex

C-R manifold with finite fundamental group. If M admits a noncompact,

connected Lie group G of pseudoconformal transformations, then M is globally

equivalent to S2n+X.
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ON THE TRANSFORMATION GROUP OF A REAL HYPERSURFACE 183

Proof. By_Theorem (1.1), M and hence its universal covering space A/_are

flat. Since M is compact, the development map is a covering. Thus, M is

globally equivalent to S2"+1. Since G is noncompact, it has a closed, noncom-

pact one-parameter subgroup Gx; see [5]. Gx lifts to a closed noncompact

one-parameter subgroup Gx on M. By Theorem (2.1), Gx has either one or two

fixed points, which must cover the fixed points of Gx. Therefore, M is a one

or two sheeted covering. If it were a two sheeted covering, both fixed points

of Gx would lie over the same fixed point of Gx. However, from case (1) of

Theorem (2.1) these two fixed points have different character as f-» +00,

one attracting and one repelling; hence, they could not cover the same fixed

point of Gx. Therefore, M * M =*  S2n+l.   D

We go on to prove Theorem (2.1). As in [2] we view 52n+I as a real

hyperquadric in complex projective space. A pseudoconformal transforma-

tion of S2rt+1 is induced by a projective transformation carrying 52n+1 into

itself. Such a transformation is represented by a linear isomorphism A of

C+2, the space of homogeneous coordinates, which leaves invariant S, those

coordinates of points in 52n+1. We denote by [Z] the point in projective

space with homogeneous coordinates Z.

5 is defined by

(2.1) S~ = [Z E Cn+2: (Z, Z ) = 0},

where (," ) is a nondegenerate hermitian form of signature (n + 1, 1). We can

view the pseudoconformal group of S2n+X as SU(n + 1, 1).

A one-parameter subgroup A (t) of SU(n + 1, 1) is given by

(2.2) A(t) = e'B.

where

(2.3) (BZ, W) + (Z, ~BW) = 0,       Z, W E Cn+2.

Eigenvectors Z of B on S correspond to fixed points [Z] of the group A(t)

acting on S2n+1.

Condition (2.3) readily implies the following:

Lemma (2.3). Let Z be an eigenvector of B with eigenvalue X.IfZ is not in S,

then X is purely imaginary.   □

Lemma (2.4). Let (,') be an hermitian form on CN+X, and B be any operator

satisfying (2.3). If B has no eigenvectors on S, then CN+X has a basis of

eigenvectors with purely imaginary eigenvalues.

Proof. B has some eigenvector, BZ0 = A0Z0, and X0 + X0 = 0 by Lemma

(2.3). By assumption Z0g(Z0)x; hence, CN+l = (Z0) © (Z0)x. (Z,)1- is

invariant under B by (2.3). We restrict B and the hermitian form to (Zq)1,
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where, by induction, we have a basis Z,, ..., ZN of eigenvectors with purely

imaginary eigenvalues. Z0, Z,,.. ., ZN is the required basis of CN+l D
For the operator B of Lemma (2.4) it follows that the corresponding

one-parameter group A(t) is bounded. Therefore, we assume that B has at

least one eigenvector on S. There are two cases.

Case (1). B has at leas_t_two distinct eigenvectors Z0 and Zn+, on 5.

We must have (Z0, Zn+1) ^ 0. Otherwise, S would contain the complex

2-plane of all aZ0 + bZn+x, a, b E C, and S2n+1_would contain a complex

line, which it does not. We may assume that (Z0, Zn+1) = - i/2. From (2.3),

Z0 and Z„+, have eigenvalues À and —X, respectively.

Choose Z,.Z„, a basis of (Z0, Zn+1)-L. If relative to the basis (Z0, Za,

Z„+I)of C+2 we have

(2.4) Z = fflZfl,       0 < a < n + 1,

then

(2.5)       (z, z ) = rAf - /^-r^" +1 (m5 -^r71),

where haß is positive definite hermitian. (2.3) is now written

(2.6) Bh + h'B = 0.

From (2.6) it is seen that B has the matrix form

(2.7)

where

b»

1
2/

P

2iba

(2.8)
P = P> Bl\ß + A«i^-0,

= h„zcay"

q = q,

K = *of6ir'  trace B = B? + x ~ x = °-

Since Z0 and Zn+1 are eigenvectors, we have

p = q = ca = d3 = ba = bß = 0.

Since haß is positive definite hermitian and the second relation of (2.8)

holds, we may choose Z,.Z„ so that both (Za, Zß) = 8aß- and BZa =

AaZa where Xa + Xa = 0. As ^(0 is unbounded, we must have X = p + iv,

p^O.
Let Z =£ 0 given by (2.4) represent a point [Z] in S2n+X other than [Z0] and

[Zn+X]. From (2.5) it is seen that £° * 0 and £"+1 ^ 0. The action of y4(/) is
given by

(£°, r, r+1 ) -» (e'("+/-)i°, e'H", e-'("-'")r+1 ).
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ON THE TRANSFORMATION GROUP OF A REAL HYPERSURFACE 185

Let us assume /x > 0, so that as t -» + oo we have

|e'("+/")f°|^ +00,       |e-'<"-*->f"+1h0>

and the other components remain bounded. Therefore, as t -^ +00, [Z] -»

[Z0]. Also, as t -> - 00, [Z] -+ [Z„+,].

Gwe (2). 5 has only one eigenvector Z0 in S with eigenvalue A0.

Lemma (2.5). If B satisfies (2.6) a«<7has X as an eigenvalue, it also has -Xas

an eigenvalue.

Proof.

0 = det(5 - XJ)det(A) = det(5A - Xh) = det(-h'B - Xh)

= det(-h)det'(B + XI).   Q

_Let W be an eigenvector with eigenvalue - X0. We are assuming (W,

W) j= 0, so that A0 is purely imaginary, as are all the other eigenvalues. Let

X0,  \,.\  be  the  distinct  eigenvalues  of  B  with  eigenspaces  K0,

Kx,..., Kr, respectively.

Lemma (2.6). K0 + Kx + ■ ■ ■ + KrQ (Z^.

Proof. It follows from (2.3)_that if BZj = XjZjJorj > 0, then (Zp Z0) = 0.

Suppose Z' G A^and (Z\ Z) j-_0, say (Z\ Z0) = 1. Put Z = aZ0+ Z',

a = a. Then (Z, Z) = 2a + (Z\ Z'), and we can choose a so that Z lies in S,

contradicting the fact that Z0 is the only eigenvector in S. Hence A^ Q (Z^1-.

D

Lemma (2.7). For any Z in Cn+2 the complex line determined by the origin

and A (t)Z approaches the subspace K0 + ■ • • + Kr as t -> ± 00.

This will finish the proof of Theorem (2.1) as follows: since S is invariant

by A(t) and S n (A:0 + • • • + JÇ.) = (Z0), we have, for any [Z] in S2n+1,

[A (t)Z] -» [Z0] as t -> ± 00.

Proof. This will follow from the Jordan canonical form for B, according to

which Cn+2 = Vo © • • • © V. The dimension «,. of Vj is the multiplicity of

A,- in the characteristic polynomial of B, and each VJ is invariant under B and

under A (t). B induces on each Vj an operator 2?. of the form

Bj-Nj + Dj,   NjDj-DjNj,   2>y - A/,,

where Nj is nilpotent. A(t) decomposes as A(t) = e'B° © • • • © e'Bj, and

e«y . e«* (/ + «ty + • • • + j£ (A,. )*j,       |e^ = 1,

where k < «,■ is such that (Njf i=- 0 and all higher powers of N vanish.
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186 S. M. WEBSTER

Since any Z in Cn+2 has the decomposition Z = Z° + - • • + Zr, ZJ E

VJ, it suffices to show that the complex line determined by the origin and

e'B'ZJ approaches Kj as t -» ± oo. To simplify the notation assume «, = k + 1,

so that Nj has all ones below the main diagonal, and Vj contains a unique (up

to multiple) eigenvector Wj = (1, 0,..., 0). Putting ZJ = (f °,..., f *), we

have

S-eat=U°+Sit+--- +Sk^,V + --- + $k    'k~\y ,

...,Sk-x+ £%£").

As t -» ± oo the dominant term is in the first coordinate; hence, the line of

£ • e'N approaches the line of Wj.   □

Theorem (2.1) is proved.

3. One parameter groups on pseudoconformally flat spaces. In this section

we will prove the following theorem.

Theorem (3.1). Let M be connected, strongly pseudoconvex, and pseudocon-

formally flat, and suppose M admits a one-parameter Lie group Gx of transfor-

mations which has a fixed point p0. Then either G, is compact or M is globally

equivalent to S2n+X or to S2n+X with a point deleted.

Let y be the infinitesimal generator of G, on M. Develop a small neighbor-

hood U of p0 onto an open subset U' of S2n+X, p0 corresponding to p'0. Y\v

corresponds to a pseudoconformal vector field on U', which extends to a

unique global Y' on S2n+X. There are three cases according to whether the

one-parameter group G'x of Y' is

(1) bounded, i.e., has compact closure G'x in SU(n + 1, 1),

(2) unbounded with behavior (1) of Theorem (2.1), or

(3) unbounded with behavior (2) of Theorem (2.1).

Case (1). By integration over G'x, G'x leaves invariant some 9' and also the

corresponding positive definite Riemannian metric

ds2 = 9'2 - Re(g^'a ® Q'f}

on S2n+X. A small geodesic ball B' in U' centered at/?ó is mapped isometri-

cally by each g' in G'x. Each g in G, leaves the corresponding 9 on U invariant

and maps the corresponding B Q U diffeomorphically.

Lemma (3.2). In Case (1), G, is compact.

Proof. We introduce the following notation:
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PsC(Af, p0) = the group of global pseudoconformal transformations of M

leaving p0 fixed.

PsC(2?, p0) = the group of pseudoconformal transformations of B leaving

p0 fixed.

PsC'(B,p0) = PsC(B,p0) n PsC(M,p0).

PsH(7?, 9, p0) = the group of pseudohermitian transformations leaving p0

fixed.

PsH(7L 9, pQ) is compact. We have

Gx closed Ç PsC(M,p0),

since Gx is a Lie subgroup; therefore,

Gx closed Q PsC(B,p0).

Since

G, ç PsH(7?, 9,Po) C ?sC(B,Po),

it will suffice to show that PsC'(2?, p0) is a closed subset of PsC(7?, p0).

Let {<pj} be a sequence in PsC'(7L /?0) and suppose <fy converges to <£ in

PsC(7?, /j0). We must show that <f> is globally defined on M. Choose a

pseudoconformal frame e0 atp0. We have <fy • e0 -» <f> • e0. By Theorem (3.2) of

[3] the map g -> g • e0 embeds PsC(Af) into the bundle B of pseudoconformal

frames as a closed submanifold. So there exists some <b0 in PsC(M) with

"Êo ' eo ~ $ ' eo- Since <p and (b0 agree at e0, we have <p = <i>0 on B.   □

Case (2). Pass to the universal covering M of M, Y covering Y and px lying

over^0. Let/be development of M over S2/l+1. Let/?! correspond to p_ of

Theorem (2.1) and Y correspond to Y' under/. Define

V = {/>i} U {all orbits of yieaving/?,}.

Since Y and hence Y are complete vector fields, / maps V one-to-one onto

S2n+1 - (p+). Suppose/?2 is in bdry(F); then f(p2) = p+. Since/is a local

diffeomorphism, bdry( V) is discrete, and so V has no exterior. Furthermore,

Y has exactly one zero of typep_. Interchanging/^ and/?, in this argument

shows that Y has exactly one zero of type/?+ also. So, either bdry(F) = {p2)

and M** S2n+X, or bdry(K) = 0 and M « S2n+X - {p + }. In the latter

case Y has only one zero, so M is a one sheeted covering. In the former case

Y has two zeroes of opposite character, so again M is a one sheeted covering.

Case (3). We proceed as in Case (2) except that there is only one zero p' of

Y' and/»' = f(px). Let

U = {all orbits of Y leaving/?,}.

Again, since Y is complete,/ maps U one-to-one onto S2n+1 - {/>'}, bdry(tV)

C f~l(p') is discrete, and U has no exterior. For any p2 in U lim,^.,^ <¡>,(p2)

= px, where <J>, is the flow of Y. Suppose also/(/?*) = p'. Then for any p* in
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U*, lim,.^«, <t>,(p2) = p*. As M is connected, U n U* ¥= 0, so we have

px = /?*. Therefore,/maps M = U \j {px) one-to-one and onto S2n+l. Since

Y has only one zero, M =*  M =*  S2n+X.

This proves Theorem (3.1).

In view of Theorem (3.1) it follows that if M satisfies the hypothesis of

Theorem (1.1), then either Ms S2n+X or every closed noncompact one-

parameter subgroup on M has no fixed points. In this respect let us note the

following:

Proposition (3.3). Suppose Gx is a one-parameter Lie group of pseudoconfor-

mal transformations of M as in Theorem (1.1), and let Y be its infinitesimal

generator. If Y is never tangent to H(M), then G, is compact.

Proof. Choose some 9 defining H(M). Let 17 = 9(Y). tj is never zero,

since Y is always transversal. We have LY9 = u9, so that LYr\ = ur¡, and

LY(t]~x9) = 0. G, leaves 9* = tj-1c9 invariant, so must be compact by Theo-

rem (1.2) of [8].   □

4. Intransitive groups. In this section we prove the following theorem.

Theorem (4.1). Let G be an effective Lie group of pseudohermitian transfor-

mations of a strongly pseudoconvex, connected, C-R manifold (M, 9) of dimen-

sion 2n + I. If G is not transitive then the dimension of G is less than or equal

to n2 + 1.

Example (4.2). To see that the estimate on dim G is the best possible,

consider S2n+X Q C+x with 9 = idr, where r = zxzx + • • • + z"z" + ww -

1. The group is G = U(n) + (7(1) acting on Cn+1 by

(za, w) -> (zf>Uß, wp),     U'U =I,pp=l.

This group preserves r and hence 9 and is clearly intransitive.

To prove Theorem (4.1) we recall that relative to an admissible coframe as

in [8], we have

(4.1) dB = igaß-9a A O?.

On H (M) we have the negative definite hermitian form

(4.2) h = ga-ß9aBl

This form is invariant under the action of G. For a point p in M we use the

notation

G(p) = orbit of/? under G

and

Gp = isotropy subgroup of p,
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ON THE TRANSFORMATION GROUP OF A REAL HYPERSURFACE 189

so that G(p) = G/Gp. We also define Wp = Tp(G(p)) n Hp(M), and

J = complex multiplication on 77^, (A/).

Wp is a real subspace of Hp, so 0 < dim Wp < 2n, and is invariant under the

action of Gp. We have a faithful representation of Gp on U(n), the unitary

group of (Hp, h, J).

The proof is divided into four parts.

(1) Suppose Wp = 0 for some p in M. Then dim G(p) < 1 and dim G =

dim G(p) + dimGp<l + n2.

(2) Claim. For any/? in M, dim Wp < 2n, i.e., J^ =h Hp, If Wp = Hp, then

two cases are possible:

(a) Tp(G(p)) = 7], (A/). Then G is locally transitive at/? and G(/?) is an

open subset of M. Since the pseudohermitian bundle has compact fibres U(n)

and G is a Lie transformation group, G (/?) is also closed in M. So G (/?) = A/,

contradicting the fact that G is not transitive.

(b) Tp(G(p)) = Hp(M). Then G(/?) is a maximal integral submanifold of

9 = 0. Therefore d9 vanishes when restricted to G(p), contradicting the fact

that the form (4.2) is negative definite on Hp(M).

So we may assume that 0 < dim Wp <2n for all /? in M. Let us denote

Vp = Wp n JWp, and Kp = Wp + JWp. These are Gp invariant complex

subspaces of Hp(M).

(3) Suppose that, for some p in M, Wp is not a totally real subspace of Hp,

i.e., Vp =£ 0. We get a non trivial Gp invariant decomposition Hp= Vp® VpL.

Letting / = dimc Vp, we have Gp Q U(l) © U(n - /). So

dim Gp < I2 + (n - I)2 < 1 + (n - I)2,

and

dim G < 2« + 1 + (n - 1)2= n2 + 2.

If equality holds in the last estimate, then dim G (/?) = 2n and dim Gp = 1

+ (n — l)2. The complex dimension of Vp is then n — 1, and G^ =? t/(n — 1)

© t/(l). Since the dimension of Wp is at most one less than dim G(p), we

have dim Wp = 2« - 1. We have Gp invariant decompositions Wp «■ 1^, © Ä,

and 77p = ^, © (Ä + JR), where 7? is a one dimensional subspace. It follows

that Gp C U(n - 1) © 0(1, R), implying that dim Gp < (n - I)2, a con-

tradiction. Hence dim G < n2 + 1.

(4) Suppose that, for some /? in M, Wp is nontrivial and totally real. We

then have dim Wp = k < n, and Kp is of complex dimension k. We have the

Gp invariant decompositions Hp = Kp@ K^, and Kp = Wp © JWp. There-

fore,

dimGp <\k(k-l) + (n- kf,

and
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dim G < (k + 1) + \k{k - 1) + (n - kf

<n2+l-x2k2 + \k<n2+l,

since k < n.

Theorem (4.1) is proved.
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