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On the transient modelling of hydro-elastic
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Abstract

Fluid structure interaction (fsi) of offshore structures is an im-
portant area of research. The behaviour of offshore structures in Nu-
merical Wave Tanks possessing fsi capabilities is of significant indus-
trial value. In fsi problems, it is necessary to interactively solve and
analyse both the structural and fluid dynamics as a coupled system,
because the structural response and fluid loading are mutually de-
pendent. We present a methodology for analysing a two-dimensional
fluid-structure interaction problem in the time domain. The method-
ology is based on a nonlinear velocity potential formulation and linear
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elastic theory. The transient forces exerted by the fluid on the struc-
ture vary due to the elastic response of the structure. The dynamics
of the free surface and the structure are also analysed for selected sce-
narios. We demonstrates that it is important to develop similar tools
capable of solving such fsi problems in order to perform reliable and
complete analysis leading to better and safer design.
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1 Introduction

Transient behaviour of offshore structures is often nonlinear and involves cou-
pled transient fluid-structure interaction (fsi). Research in this area is still
at an early stage. Frequency domain models are linear and any nonlinearity
emanating from either the fluid or structure behaviour will not be captured
in the frequency domain. Laboratory based experiments have limitations,
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for example, scale effects and instrumentation difficulties, requiring one to
resort to numerical simulations to study this class of problems. Here, it is
not only necessary to consider the fluid forces due to the wave loading on the
structure, but also the subsequent response of the structure to the applied
load. Typically, the fluid dynamics is solved to obtain the forces on the struc-
ture. The structural dynamics is subsequently solved to obtain its response
in terms of displacement to the applied load. However, if this displacement
is large enough, it will significantly alter the boundary conditions of the fluid
domain. This in turn will modify the force profile. It is therefore necessary
to solve both the fluid and structure problems in a coupled manner to obtain
the true behaviour of the structure and the corresponding fluid wave profile.
As it is common for the fluid domain to be solved in an Eulerian reference
frame and the structural domain in a Lagrangian framework, an Arbitrary
Lagrangian–Eulerian (ale) method is to be used.

The objective of the current work is to develop a fully nonlinear 3D Nu-
merical Wave Tank with fsi capabilities. This requires solving the nonlinear
fluid and structure behaviour in the time domain. While full free-surface
nonlinearity is considered for the waves, only geometric nonlinearity of the
structure is accounted for. In this paper, a 2D formulation of the above
problem is considered and reported. A velocity potential formulation is used
for the fluid flow problem as the ocean wave flow field is mostly irrotational.
The finite element method is chosen for solving this fsi problem. As the
free surface needs to be captured at each time step, along with the new po-
sition of the structure, there is a need to choose a meshing scheme that will
more aptly represent the wave surface profile. Therefore, unstructured tri-
angular meshes are used to discretize the fluid and structural domain. Mesh
smoothing is done at regular intervals to avoid skewed elements which lead
to solution inaccuracy.
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2 Mathematical models and numerical

strategies

The aim is to model both static and dynamic structural dynamics with fsi
capabilities. The equations governing fluid flow are the Laplace equation
with transient free surface and body boundary conditions. The free surface
condition is nonlinear by nature. However, only a geometric nonlinearity
exists on the body surface. Conversely, the equation governing the structure
is based on the principle virtual work, and is considered both in dynamic
and static form.

2.1 Nonlinear free-surface flow

The fluid is considered to be inviscid and incompressible and the flow ir-
rotational. However, the free surface is considered fully time evolving and
hence the governing free-surface condition becomes nonlinear. Under these
conditions a velocity potential φ exists and the fluid flow is governed by the
Laplace equation. The mathematical statement of the problem is

∇2φ = 0 in Ω (fluid region), (1)

∂φ

∂n
= f(Γ) on Γ = Sl + S0 + Sb + Sf . (2)

Here Ω is the domain bounded by the surface Γ. The surface is subdivided
into a body surface S0, a free surface Sf , a sea-bed Sb and two radiation
boundaries Sl; all are assumed to be piece-wise continuous. The nonlinearity
is introduced in the system through the full free-surface boundary conditions
(on Sf ) which written in Lagrangian form are

dφ

dt
= gη − 1

2
∇φ · ∇φ , (3)
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dx

dt
=

∂φ

∂x
,

dy

dt
=

∂φ

∂y
, (4)

where g is the acceleration due to gravity and η is the free surface elevation.
Physically, equation (3) imposes a constant pressure on the free surface while
equation (4) helps in keeping the free surface in phase with the water particles
on it. Assuming a piston movement of the form δ = δ0(1− cos ωt) , the wave
making condition for the left-hand side boundary is

φ,x = ωδ0 sin ωt . (5)

For the other surfaces (S0, Sb and Sl) the condition of no flow across the
boundary is used. These are Neumann type boundary conditions.

Equations (1)–(4) define a mixed Dirichlet–Neumann boundary value
problem. The steady state equation (1) is repeatedly solved over time using
transient boundary conditions (3)–(5). A finite element method is adapted
to discretize equation (1). Details of the methodology may be found in Wu
and Taylor [2].

Having obtained the quasi-steady velocity potentials, the transient pres-
sure force on the structure due to the fluid flow is calculated using Bernoulli’s
equation. The instantaneous pressure force

F = −ρ
∂

∂t

∫
S0

φn ds + ρ

∫
S0

(
∂φ

∂n
∇φ− 1

2
∇φ∇φ

)
ds , (6)

where ρ is the fluid density and n is the outward normal to the fluid or the in-
ward normal to the structure. However, it is not straightforward to calculate
the velocities (gradient of φ) within the integrals as linear shape functions
are used. Here again, the method proposed by Wu and Taylor [3] has been
used. In order to minimise inaccuracies in this quasi-static procedure, the
time step is kept small and an iterative loop in adopted in the fsi coupling.
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2.2 Structural formulation

The structure considered here is a submerged semi-infinite solid body that
extends to infinity in the direction normal to the fluid flow. This reduces
the structural problem to two dimensions and hence the deformation of the
structure may be obtained by modelling it as a plane strain problem. The
displacements of the structure are measured in the xy-coordinate system
and are denoted by U (x, y) = (u, v) and U = US0 on the surface S0. The
stresses and strains are linearly related through a material matrix. The
basis of the displacement based finite element procedure is the principle of
virtual displacements. It is stated that for any compatible small virtual
displacements imposed on a body that is in a state of equilibrium, the total
internal virtual work must equal to the total external virtual work:∫

t

∫
S

εT σ dA dt =

∫
t

∫
S

ρU̇
T
U̇ dAdt +

∫
t

∫
Γ=S0

US0 T fS0 dS dt . (7)

The discretized form of the governing equation of motion for the structural
system without damping is

[M]Ü + [K]U = [F] , (8)

where [M] and [K] are the structural mass and stiffness matrices, Ü and U
are the generalized nodal accelerations and displacements, and [F] is the
generalized force vector which is a summation of the external nodal forces [Fe]
and the nodal forces exerted on the structure due to the fluid oscillation [P],
that is, [F] = [Fe] + [P] . The body is discretised with triangular finite
elements. The fluid forces are obtained after each time step and are applied to
the structure to obtain the static structural response. A dynamic structural
analysis is also performed for certain cases. The methodology of solving
the above system of matrices is given in [4]. A comparison of static and
dynamic coupling and the need for added mass terms are discussed in detail
in Section 3.2.
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2.3 Computational methods

The forgoing mathematical formulation looks simple. However, major com-
putational difficulties lie in obtaining stable and accurate solutions over an
extended period of time. This section summarises a sequential coupling pro-
cedure that has been successfully employed for obtaining a dynamic equilib-
rium of the hydrodynamic fluid-structure system considered here. The focus
is on the ‘conventional serial staggered’ (css) approach for dynamic coupling
as presented by Farhat and Lesoinne [5]. In addition, as finite element pro-
cedures produce sparse matrices, the issues of node renumbering and mesh
dependence of the solutions are also discussed.

The present sequential coupling procedure is initialised by solving the
nonlinear free-surface problem. The fluid forces on the structure are then
computed using equation (6) and imposed onto the structural nodes as per
equation (7). The resulting structural displacements and velocities are ob-
tained by solving the structural system. This yields the new body boundary
position for the fluid domain along with the new velocity conditions. At
the interface, no separation of fluid particles is allowed, that is the velocity
of the fluid particle is equal to the structural displacement at that time in-
terval (∂φ/∂x = ∂u/∂t and ∂φ/∂y = ∂v/∂t). This results in an arbitrary
displacement of the nodes along the structure boundary. Using these up-
dated boundary conditions and the boundary position at the fluid-structure
interface, solution of the fluid flow is obtained for the next time step. These
steps are repeated iteratively until convergence, to march the fluid-structure
dynamics in time. As the fluid node is not allowed to separate from the struc-
ture, continuity of normal velocity is satisfied implying a no-flow boundary
condition. However, the tangential velocity is allowed as the structure itself
undergoes deformation. Though there may be differences in the tangential
velocity of fluid and structure at the interface, the iterative approach adopted
is expected to reduce such inaccuracies. The mesh quality is verified at reg-
ular intervals for skewness and a Laplacian smoothing is performed when
necessary.
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The Revere Cuthill–Mckee (rcm) algorithm has been used in the present
study to reduce the bandwidth of the fluid system matrix. This ensures a
compact storage of the matrix and speeds up the solution process enormously.
A typical simulation where the domain is discretised with 4829 nodes the
modified bandwidth has been 18 which is only 0.4% of the full matrix. A
Laplacian smoothing algorithm [6] is used in order to maintain mesh qual-
ity resulting from dynamic mesh movement. This smoothing method was
adopted after testing various mesh adaptation techniques for fsi problems
involving dynamic boundaries [7]. The mesh quality (skewness) is finally
tested by comparing the edge ratios of the triangular elements and Laplacian
smoothing is performed until a good quality mesh is obtained. A singular-
ity exists at the corner of the wave maker piston and the free surface. It is
necessary to handle the singularity appropriately which otherwise would re-
sult in solution instabilities. In this work height of the corner node (the free
surface position) is monitored. If the height of the corner node is above the
wave maker piston then the calculated φ (free surface potential) is enforced.
Otherwise a Neumann boundary condition of the known velocity of the wave
maker piston is enforced.

In numerical computations, the accuracy of the solution depends on the
mesh. It is a usual practice to define the mesh density in gravity wave
simulations as the number of nodes per wavelength. Analysis shows that
a mesh independent solution is reached for mesh densities (Nm) above 40;
details of the complete mesh independence analysis may be found in [7, 8].
Validation is an essential requirement of any computational algorithm. The
present fluid-structure algorithm has been extensively validated [8].

3 Results and discussion

The objective of the present study is to demonstrate a ‘Numerical Wave
Tank’ with capabilities to perform hydro-elastic computations in addition
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to wave generation and absorption. The numerical experiments that follow
are selected with this objective in mind. The discussions demonstrate the
capabilities and usefulness of the present approach in simulating the hydro-
elastic behaviour of a typical underwater structure.

3.1 Simulation scenarios

The flow domain consists of a rectangular tank of length 60d, where d is the
depth of the undisturbed water; d = 1.0m in all simulations. The domain is
meshed with Nm between 40 and 50. The structural configuration considered
here is an underwater vertical wall of height 0.67d and width B = 0.03125 d .
A total of nine combinations of simulation scenarios are considered by vary-
ing material properties, coupling method and wave frequency. The flexural
rigidity of the structure has been varied by considering different values of
Young’s Modulus and Poisson ratio. The structure is placed at a distance
of 6d from the left boundary (the wave maker). The amplitude δ0 of the
wave maker is maintained at 0.05d for all the simulations considered for this
study. Complete details of the various simulation scenarios considered are
given in Table 1.

The range of material properties considered here covers a wide range
of materials whose properties are available in standard tables. However,
in order to further test the computations procedures used here, material
properties outside the standard range also are used and they are reported
as and when needed. For all computations the nondimensional time step
∆t∗ = ∆t

√
g/d = π/120 is used for both the fluid and structural solution.

Note that the placement of structure close to the wave maker may cause
re-reflection. The simulations could not be run for long durations without a
total re-meshing of the computational domain due to mesh failure and the
formation of skewed meshes. Placing the structure close to the wave maker
ensures that waves reach the structure before mesh failure. As the focus of
the present work is to study the nonlinear fluid structure coupling, the effects
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Table 1: Simulation Scenarios
Scenario Structure Material properties ω∗ Coupling

(a) Steel E = 200GPa µ = 0.3 1.0 Dynamic
(b) Arbitrary E = 0.2GPa µ = 0.35 1.0 Dynamic
(c) Arbitrary E = 0.1GPa µ = 0.35 1.0 Dynamic
(d) Steel E = 200GPa µ = 0.3 1.0 Static
(e) Arbitrary E = 0.0025GPa µ = 0.35 1.0 Static
(f) Steel E = 200GPa µ = 0.3 0.5 Dynamic
(g) hdpe E = 0.8GPa µ = 0.35 0.5 Dynamic
(h) Arbitrary E = 0.2GPa µ = 0.35 0.5 Dynamic
(i) Arbitrary E = 0.1GPa µ = 0.35 0.5 Dynamic

of re-reflection of waves from the wave maker are ignored.

3.2 Simulation results

The transient pressure forces on the structure induced in the direction of
wave propagation are shown in Figure 1 for different material properties of
the structure. Periodicity of the force plots show the interactive behaviour
of the fluid and the structure. The plots show that the structure starts to
feel the fluid pressure approximately one cycle after initiation of the wave
maker operation for wave frequency ω∗ = 1.0 . In contrast, for ω∗ = 0.5 ,
the structure starts to feel the wave force after approximately half a cycle.
Observe in the figure that the forces on the structures are periodic and sta-
ble for the case of dynamic coupling, while static coupling over-predicts the
forces, as also observed by Pal et al. [9]. Although the static and dynamic
coupling initially respond with the same amplitude, the forces become unre-
alistic after some time when static coupling is employed. The simulations fail
due to excessive mesh movement and formation of a negative element area.
This indicates that the structure responds too rapidly and inclusion of mass
and added-mass terms may give more realistic results. The time at which
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Figure 1: Transient wave forces on structures with different properties for
ω∗ = 1.0 and ω∗ = 0.5 .
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the structure becomes unrealistic varies for each simulation. For example,
results for scenarios (a) and (d), representing dynamic and static coupling for
steel, are virtually identical up to 3 cycles, after which the sudden increase
in force causes mesh failure for static coupling. The same behaviour can also
be observed for case (e). On inclusion of the full structural dynamics, the
forces are controlled and stable. After some time a periodic force history is
developed, indicating a stable range of the fluid-structure interaction process.
This stable range develops after 3 cycles [1].

Different material properties lead to similar force patterns. However,
there is a significant difference in the force magnitudes for different material
characteristics. For ω∗ = 1.0 , when the elastic constant E is reduced from
200 GPa to 0.2 GPa, the force amplitude increases by about 30%. This in-
crease is about 100% when the E is reduced from 0.2GPa to 0.1GPa. This
nonlinear relationship should be expected as the total system has geometric
(due to dynamic interaction of the structure with the fluid) and mathemati-
cal nonlinearities (from the free surface). This indicates a significant need for
transient coupled fluid-structure modelling for the present set of conditions.

The effects of reflected waves from the far end are not seen yet as the
domain length is much longer. Any reflections from the left boundary are
also invisible. For ω∗ = 0.5 , significant differences in the force patterns are
also seen for different material characteristics. When the elastic constant E is
reduced from 200 GPa to 0.8GPa, the force amplitude hardly increases (cases
(f) and (g)). However, further reduction of the constant to 0.2GPa shows
a marginal increase in the force magnitude. However, a significant (about
40%) increase in transient force amplitudes is seen when the elastic constant
is further reduced to 0.1GPa. This once again, confirms a significant need for
transient fluid-structure coupling. This means that as the frequency reduces,
the increase of force magnitudes based on fluid-structure interaction also
reduces. This is expected as waves have longer lengths when the frequency
reduces. As the amplitude of paddle operation is kept constant, waves will
be flatter for ω∗ = 0.5 and hence forces should be less. However, we feel
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Figure 2: Time history of specific nodes for a structure with E = 0.1GPa.

that for the particular structural configuration considered here, formation of
vortices around the top of the structure may have some effect on the transient
dynamics and hence the forces. Therefore, these forces should be treated as
indicative values, merely demonstrating the nonlinear coupled behaviour.

Further understanding of the fsi process demanded analysis of other
physical quantities. One of the parameters could be time history of typi-
cal nodes on the structure. For this purpose, the time histories of the two
nodes located at mid-height and at full-height of the structure for an elas-
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tic constant 0.1GPa are considered as this was the structure that showed
maximum nonlinearity (Figure 1). Figure 2 shows time histories for two dif-
ferent frequencies (ω∗ = 0.5 and ω∗ = 1.0) against the relative structural
motions x/B, where B is the width of the structure. Comparison of nodal
histories shows a strong frequency dependence of the structural motion, an
expected tendency in dynamic systems. For ω∗ = 0.5 , the whole structure
seems to move in phase. Whereas, for ω∗ = 1.0 , the top node and mid node
move out of phase. This is reasonable as the ω∗ = 0.5 wave is much longer
in period. Hence, all the nodes in the structure behave in unison as if they
are facing a slowly varying current. A minor high frequency mode could be
observed superposed with the main wave mode. This secondary mode could
correspond to the natural frequencies of the structure. In summary, a strong
correlation between the wave and structural frequencies is captured in the
time domain nonlinear fsi approach, and the structural behaviour is totally
time dependent showing traces of its natural frequencies over the primary
motions.

Figure 3 shows an energy spectral plot of the free surface for ω∗ = 1.0 with
the simulations conducted for structures of two different materials. This fre-
quency is chosen as it showed the maximum displacement and dynamic force
nonlinearities. A spectral analysis of the free surface profile is carried out
in order to identify frequencies other than the incident wave frequency gen-
erated by the structural interaction. Comparing the transient force pattern
in Figure 1 for ω∗ = 1.0 , it was expected that the free surface profile would
show a trace of other high frequency disturbances created by the structural
motions. The spectral densities for the two materials are plotted in the wave
number space as the free surface profile is a spatial quantity. See that the
spectral densities for the two materials follow each other throughout wave
number space. They show a peak at k ≈ 1.2 , corresponding to the incident
wavelength of about 5.2m. There is a second frequency seen at k ≈ 4.8 .
This may correspond to the secondary cycle seen in the nodal displacements.
However, this needs further confirmation with more simulations and experi-
ments.
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Figure 4: Effect of incident wave frequencies on the dynamic force.
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To clearly establish a link between magnification of dynamic fsi effects
in relation to the wave frequency, transient forces are simulated for ω∗ = 0.5 ,
0.75, 1.0 and 1.25 for a particular structure. The dynamic force histories are
plotted in Figure 4 for all these frequencies. This exercise is performed for
E = 0.1GPa to achieve maximum fsi effects. The plots once again reveal
that there is an increase in the dynamic forces as the frequency increases up
to ω∗ = 1.0 . Further increase in the frequency does not result in an increase
in the dynamic forces.

In all these exercises, a strong coupling between wave frequency, struc-
tural displacements and dynamic forces are noticed. However, sufficient data,
be it experimental or numerical, is not available to pinpoint specific corre-
lation between them. We are currently considering a more accurate fluid-
dynamic solver, different material and structural models, and advanced solver
and meshing techniques. All these are challenges for further studies.

4 Concluding remarks

The use of a nonlinear velocity potential and linear elasticity theory is demon-
strated in studying fluid structure interaction. This was accomplished by
using an unstructured meshing technique in both the fluid and structural
solvers. This has helped in progressing our effort to create a Numerical
Wave Tank with fsi capabilities.

Various test conditions were simulated and analysed. In summary, the
force applied on the structure changes due to the structure’s elastic response,
in both the elastic deformation and the sway. The dynamics of the structure
has a nonlinear effect on transient hydrodynamic pressure forces. In addition,
the transient forces have a strong correlation with material properties of the
structure. The increase in transient force amplitudes for various elastic con-
stants also varies as the wave frequency is changed. In general, as the wave
frequency reduces, the gap between elastic and rigid structure dynamics also
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reduces. Hence, the fluid-structure coupling is more significant at high fre-
quencies. Analysis of the structural dynamics, resulting free-surface profiles
and dynamic forces establishes the existence of critical frequency. However,
its relationship with the structural properties is still to be established. Future
studies should focus on the relationship between the importance of material
characteristics and wave frequencies as for as dynamic interactions are con-
cerned. Also, the effect of fluid-structure coupling on the free surface profiles
should be analysed over a wide range of frequencies. Sophisticated algorithms
in the area of mesh handling and radiation dampers should be employed for
this purpose.
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