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Abstract 

There are increasing pressures upon the automotive industry to reduce harmful emissions 

as well as meeting the key objective of enhanced fuel efficiency, whilst improving or 

retaining the engine output power. The losses in an internal combustion engine can be 

divided into thermal and parasitic as well as due to gas leakage because of untoward 

compression ring motions. Frictional losses are particularly of concern at low engine speeds, 

assuming a greater share of the overall losses. Piston-cylinder system accounts for nearly 

half of all the frictional losses. Loss of sealing functionality of the ring pack can also 

contribute significantly to power losses as well as exacerbating harmful emissions. The 

dynamics of compression ring is inexorably linked to its tribological performance, a link 

which has not been made in many reported analyses. A fundamental understanding of the 

interplay between the top compression ring three-dimensional elastodynamic behaviour, its 

sealing function and contribution to the overall frictional losses is long overdue. This paper 

provides a comprehensive integrated transient elasto-tribodynamic analysis of the 

compression ring to cylinder liner and its retaining piston groove lands’ conjunctions, an 
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approach not hitherto reported in the literature. The methodology presented aims to aid 

the piston ring design evaluation processes. Realistic engine running conditions are used 

which constitute international drive cycle testing conditions.  
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Nomenclature 

A – Cross-sectional area of the ring 

Aa – Asperity contact area  

Ac – Nominal contact area of the ring’s 
contact face-width  

An1-An6 – Modal function constants 

b – Ring contact face-width 

Cn1, Cn2 – Time response constants 

Cz – Twisting stiffness 

d – Ring thickness 

dn, en – Modal function constants 

E – Young’s modulus of elasticity 

E’ – Composite Young’s modulus of 

elasticity 

Fe – Ring tension  

Fg – Applied gas force  

Fgroove – Piston groove friction 

FR – Net (residual) radial force 

FT – Tangential shear force 

F5/2 – Greenwood & Tripp statistical 

function 

f – Frequency 

g – Ring end gap 

h – Film thickness 

h0 – Minimum film thickness 

Ix – Second moment of area of the ring 

cross section 

i, j – Mode number (orthogonality 

condition) 

k – Stiffness parameter 

m – Ring mass per unit length 

p – Pressure 

patm- Atmospheric pressure 

pe - Elastic pressure due to ring tension 

pg - Gas pressure 

pl - Top ring’s leading edge pressure 

pt - Top ring’s trailing edge pressure 
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pgv- Pressure in ring-groove land 

conjunction 

P12 - Pressure difference between the top 

and bottom of the ring 

Qn - General forcing function 

r- Crank-pin radius 

R – Ring nominal crown radius 

RB – Cylinder bore radius 

s – Ring axial profile 

t – Time 

U – Speed of entraining motion 

V - Tangential modal response 

v – Tangential displacement 

W – Radial modal response 

Wa – Asperity load 

Wh – Lubricant reaction 

w – Radial displacement 

x – Direction of entraining motion (axial 

direction of piston) 

y – Circumferential degree of freedom 

(direction of groove land) 

 

Greek symbols 

α– Incomplete ring subtended angle 

α0- Atmospheric viscosity-pressure 

coefficient 𝛽0- Atmospheric viscosity-temperature 

coefficient 

β – Angle of twist  

∆ - Eigenvalue parameter 

 - Asperity distribution per unit area  

η – Lubricant dynamic viscosity 

η0 – Atmospheric dynamic viscosity 

  – Temperature 

0
  – Ambient temperature 

 - Average asperity tip radius of 

curvature 

λn – Frequency parameter 

λs – Stribeck oil film parameter 

μn – Modal function constant 

ξn - Time response of ring deflection 

ρ – Lubricant density 

σn1-3 – Roots of the eigenvalue problem  

σ – Composite roughness of the 

counterfaces 

ς – Coefficient of boundary shear strength  

τ – Viscous shear stress 

τ0 – Eyring shear stress of the lubricant 

 – Crank angle 

φ – Direction along the ring periphery 

ωf – Excitation frequency 

ωn – Natural frequency 

Subscripts/Abbreviations 

BDC – Bottom Dead Centre 
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c – Composite 

n – Mode shape index 

FDM – Finite Difference Method 

FEA – Finite Element Analysis 

IC – Internal Combustion Engine 

TDC – Top Dead Centre

 

Introduction 

The drive for fuel efficiency and reduced emissions calls for the reduction of IC (internal 

combustion) engine losses, comprising thermal and parasitic (pumping, friction). Thermal 

losses are the main contributors, but at low engine speeds the frictional losses are also quite 

significant. Low engine speeds correspond to the stop-start driving patterns seen in city 

driving, which progressively account for an ever greater proportion of typical vehicle use. 

The parasitic losses accounts for 15-20% of all the engine losses, with the piston-cylinder 

system having a 40-50% share. The piston top compression ring is designed to closely 

conform to the bore surface to seal the combustion chamber. Effective sealing in this 

conjunction has the adverse effect of increased frictional losses, which is quite 

disproportionate to its size. On the other hand, any degree of non-conformity would result 

in a plethora of problems, including power loss, blow-by, increased emissions, oil loss and 

lubricant degradation, to name but a few. Therefore, study of frictional losses from ring-

bore conjunction is a complex multi-variate problem which should include combined 

solution of transient lubrication and instantaneous three dimensional ring dynamics.               

With respect to the dynamic behaviour, the ring is subject to a complex combination of 

motions, constrained firstly by the limits set by its retaining piston grooves, and secondly by 

the liner surface. Smedley [1] describes the pioneering work from the mid-1800s, regarding 

ring dynamics in steam engines. Using the steam pressure to improve the ring’s sealing force 
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through its flexibility, thus improving ring-bore conformability. This was also noted by Priest 

and Taylor [2]. Furuhama et al [3-5] carried out combined numerical and experimental 

investigations into tribology of the compression ring. These studies showed that ring flutter 

occurs where the sealing capability of the compression ring is compromised, causing it to 

vibrate and undergo extreme deformation behaviour.  

Tian et al [6] presented a study of ring dynamics and gas flow in a three-ring pack. It was 

found that static twist (the relative angle between the ring and its retaining groove) 

influences the ring-groove contact characteristics, stability and blow-by (flow of gasses from 

the combustion chamber into the crankcase). It was assumed that a layer of lubricant would 

be present on both the retaining grooves’ surfaces (in- and out- of the ring plane), allowing 

for a simplified Reynolds equation to be used to calculate the lubricant reactions between 

the ring and the groove lands. Tian [7] described how both diesel and gasoline engines are 

affected by the motion of the ring, notably ring flutter and collapse.  Furthermore, Fox et al 

[8] stated that in recent years there has been an attempt to reduce lubricant availability to 

the compression ring - cylinder liner conjunction in order to reduce engine emissions. As a 

result, the contribution of the top ring to ring pack friction has increased from 

approximately 13% in the 1980s to around 27% today [9]. A contribution between 13 - 40% 

is generally noted, depending on the engine type and running conditions [9]. Clearly, 

reduction in frictional losses is one of the key objectives. In fact, a 10% reduction in 

mechanical losses reduces the fuel consumption by approximately 1.5% [2]. 

The deformation of the bore and ring can originate from thermal and mechanical loading, 

cylinder head bolt tightening and abrasion [10-12]. In practice, the bore is not a right circular 

cylinder, which affects the ring-bore conjunctional friction and gas flow [13]. This lack of 
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conformity would be further exaggerated by complex ring dynamics, leading to blow-by 

which would reduce engine power, sometimes even outweighing any frictional losses from 

the same conjunction. Poor ring-bore conformability may also cause increased ingression of 

oil flow into the chamber, adding to the emissions [14]. 

With regard to the reported analyses, ring conformability is considered as the combined 

effect of ring elastic tension and gas pressure loading on the inner rim of ring, both striving 

to conform the ring to the cylinder surface [15]. Mishra et al [16] analysed the ring-bore 

conjunction, including ring in-plane conformability in an isothermal analysis. Mixed and 

boundary lubrication conditions were assumed at the TDC and BDC, showing reasonably 

good agreement with the experimental friction measurements of Furuhama and Sasaki [17] 

under engine motored condition. The deviations between the numerical predictions of 

friction [16] and the measurements [17] were seen to be due to ring dynamics as well as 

generated heat in the contact, not included in the analysis.  The effect of shear and 

compressive heating of the lubricant in the ring-bore conjunction under engine motored 

(not fired condition) was found to be marginal, when compared to an isothermal analysis by 

Baker et al [18]. The same, of course, is not true of engine fired condition, where there is 

still a dearth of comparative studies, owing to measurement of friction from the 

compression conjunction in isolation from the whole piston-cylinder system under fired 

condition.  Therefore, at least under motored condition, with sufficient chamber pressure 

complex ring dynamic behaviour may account for the noted differences between the 

predictions [16] and the experimental measurements [17].   

Dowson et al [19] examined the influence of ring twist, suggesting that the contact between 

the ring and the groove land is a critical factor inducing ring flutter. Their study assumed 
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that the axial ring motion closely followed that of the piston, once contact between the two 

bodies was established. Tian et al [20] considered both the ring twist and a gas flow model. 

A one dimensional, analytical solution of Reynolds equation was used to calculate the 

pressure profile along the piston groove. However, the ring dynamics employed did not 

include any transient elastic response of the compression ring. Tian [7, 20] has shown the 

effect of ring flutter on gas flow and oil transport. A formula was presented, showing the 

critical parameters which would avoid the ring radial collapse. Kurbet and Kumar [21] 

developed a three dimensional finite element (FE) model of the piston and compression 

ring, including ring twist and piston secondary tilting motion. They concluded that piston tilt 

significantly affects the dynamics of the compression ring. Recently, Baelden and Tian [22] 

developed a curved beam finite element model for piston compression ring, considering its 

structural deformation and contact with the cylinder liner. They showed that the traditional 

conformability analysis [15, 16, 23] does not take into account the complex behaviour of the 

ring dynamics.  

Baker et al [24, 25] included the effect of in-plane (radial) ring dynamics in quasi-static and 

transient lubrication study of piston compression ring – cylinder liner conjunction. Their 

results show progressively better conformance of numerical predictions with experimental 

measurements of lubricant film thickness reported by Takiguchi et al [26]. It is therefore, 

clear that a combined in-plane and out-of-plane ring dynamic analysis should be considered 

under transient analysis, which is the main contribution of the current paper. The combined 

solution of complex three dimensional ring elastodynamics with transient tribological 

analysis has not hitherto been reported in literature.  
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Methodology 

i) Ring dynamics (out-of-plane and in-plane ring motions). 

The out-of-plane ring dynamics are studied, making the following assumptions: 

 The ring is considered to be a thin structure as its neutral radius is an order of 

magnitude larger than its thickness.  

 Rotary inertia is neglected because of the ring thinness and its relatively low mass as 

well as lack of any significant rotational speed. 

 The neutral axis of the ring is assumed to be inextensible (𝑑 𝑟⁄ ≈ 0.0814 < 0.1). 

Ojalvo [27] uses Hamilton’s Principle to determine that an actual motion yields a stationary 

integral, 𝐼: 

𝛿𝐼 = ∫ (�̅� − �̅�)𝑑𝑡 = 0𝑡1𝑡0      (1) 

where �̅� and �̅� are the kinetic and potential energies of the system. The sign convention can 

be seen in figure 1, with the z axis being tangential to the beam. The potential energy can be 

defined as [27]: 

�̅� = ∫ [{ 𝑀𝑥22𝐸𝐼𝑥 + 𝑀𝑦22𝐸𝐼𝑦 + 𝑀𝑧22𝐶𝑧} − {𝑋𝑤 + 𝑌𝑢 + 𝑍𝑣 + Φ𝛽}]𝑅𝑑𝜃𝛼0   (2) 

where X, Y and Z are forces per unit length along the principal axes. The internal moments 

are defined as: 

𝑀𝑥 = 𝐸𝐼𝑥𝑅2 (𝑅𝛽 − 𝜕2𝑢𝜕𝜑2)     (3) 

𝑀𝑦 = 𝐸𝐼𝑦𝑅2 (𝜕2𝑤𝜕𝜑2 − ∂𝑣𝜕φ)     (4) 

𝑀𝑥 = 𝐶𝑧𝑅2 (𝑅 ∂𝛽𝜕φ − ∂𝑢𝜕φ)     (5) 
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As rotary inertial components are neglected, the kinetic energy of the system becomes: 

�̅� = ∫ (𝑚 2⁄ )[�̇�2 + �̇�2 + �̇�2]𝑅𝑑𝜃𝛼0     (6) 

The out-of-plane degrees of freedom are the axial displacement, u, and the twist angle 

about the neutral axis, β, as shown in Figure 1. Equations (3-5) are then substituted into 

equation (2), with the equation (6) substituted into equation (1). The resulting Euler-

Lagrange equations for the ring out-of-plane motion become [27]: 

𝜕4𝑢𝜕𝜑4 − 𝑅 𝜕2𝛽𝜕𝜑2 − 𝑘 (𝜕2𝑢𝜕𝜑2 − 𝑅 𝜕2𝛽𝜕𝜑2) = 𝑚𝑅4𝐸𝐼𝑥 (𝜕4𝑢𝜕𝑡2 − 𝑌𝑚)    (7)  

𝜕2𝑢𝜕𝜑2 − 𝑅𝛽 + 𝑘 (𝜕2𝑢𝜕𝜑2 + 𝑅 𝜕2𝛽𝜕𝜑2) = 𝑚𝑅4𝐸𝐼𝑥 (𝛷𝐹𝑚 )     (8) 

where 𝑌 and ΦF denote the forcing and torsional loading. It is noted that there is no in-plane 

degrees of freedom in equations (7) and (8) since the two problems are treated as 

uncoupled. 

 

Figure 1: Ring cross-section exhibiting its out-of-plane motion [27] 

 

The torsional loading in this problem is considered as negligible; ΦF = 0. Rearranging 

equation (8) and substituting into equation (7) yields: 

𝜕4𝛽𝜕𝜑4 + 2 𝜕2𝛽𝜕𝜑2 + 𝛽 = 𝑚𝑅4𝐶𝑧 (1+𝑘𝑅 ) (𝜕2𝑢𝜕𝑡2 − 𝑌𝑚)     (9) 
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where m is the ring mass per unit length, Cz is its twisting stiffness and k is the stiffness 

parameter: 
𝐶𝑧𝐸𝐼𝑥. The out-of-plane dynamic response takes the form of a solution, comprising 

spatial and temporal functions as: 

𝑢(𝜑, 𝑡) = ∑ 𝑈𝑛(𝜑)𝜉𝑛(𝑡)∞𝑛=1       (10) 𝛽(𝜑, 𝑡) = ∑ 𝛽𝑛(𝜑)𝜉𝑛(𝑡)∞𝑛=1       (11) 𝑌 = 𝑓(𝑡)∑ 𝑄𝑛𝑈𝑛(𝜑)∞𝑛=1 = 𝑓(𝑡)𝑊(𝜑)     (12) 

where Un(ϕ) represents the translational mode shapes, 𝛽𝑛(𝜑); the out-of-plane twist mode 

and Qn , the forcing function. Equations (10) and (11) represent the solution forms for the 

out-of-plane displacement and twist. Equation (12) shows the form of forcing function,𝑌, 

which varies with respect to both time and the angular coordinate 𝜑 around the ring’s 

periphery. Substitution of equations (10)-(12) into equation (9) yields: 

𝜉𝑛 (𝜕4𝛽𝑛𝜕𝜑4 + 2 𝜕2𝛽𝑛𝜕𝜑2 + 𝛽𝑛) = 𝑚𝑅4𝐶𝑧 (1+𝑘𝑅 ) (𝜉�̈� − 𝑄𝑛𝑚 𝑓(𝑡)) 𝑢𝑛    (13) 

Separation of variables in equation (13) and dividing through by ξnun, yields:  

−𝜆𝑛 (1+𝑘𝑅 ) = −𝜔𝑛2 (1+𝑘𝑅 ) 𝑚𝑅4𝐶𝑧       (14) 

From Equations (13) and (14), the homogeneous and non-homogenous parts of the out-of-

plane dynamic response are derived [28]: 

𝜕4𝛽𝑛𝜕𝜑4 + 2 𝜕2𝛽𝑛𝜕𝜑2 + 𝛽𝑛 = −𝜆𝑛 (1+𝑘𝑅 ) 𝑢𝑛     (15) 

𝜉�̈� + 𝜔𝑛2𝜉𝑛 = 𝑄𝑛𝑚 𝑓(𝑡)     (16) 

In the piston ring-cylinder liner conjunction, the out-of-plane force profile comprises:  

(i) the reaction force from the piston groove due to piston’s motion,  

(ii) gas pressure acting on the ring,  



11 GTP-16-1220 S. Theodossiades 

 

(iii) contact friction generated in the ring-cylinder conjunction  

(iv) the ring’s inertial response  

Thus, the resultant is a time-dependent distributed loading. The dynamic response is a 

function of the ring’s modal response, as well as the influence of the external forcing term: 

𝑄𝑛 = ∫ (𝑊(𝜑) 𝑢𝑛)𝑑𝜑𝛼0 ∫ 𝑢𝑛2𝑑𝜑𝛼0       (17) 

Equation (17) represents the force profile as it varies spatially (with 𝛼 being the maximum 

subtended angle of the ring), whereas 𝑓(𝑡) in equation (16) is the time varying component 

of the force. To derive the characteristic equation of the out-of-plane problem, equation (7) 

is rearranged and doubly integrated to find an expression for 𝑢𝑛 as: 

𝑢𝑛 = ( 𝑅1+𝑘) (∬ 𝛽𝑛𝑑𝜑𝛼0 − 𝑘𝛽𝑛)     (18) 

A solution is assumed for 𝛽𝑛 as: 

𝛽𝑛 = ∑ (𝐴𝑛𝐾 sin 𝜎𝑛𝐾𝜑 + 𝐵𝑛𝐾 cos 𝜎𝑛𝐾𝜑)3𝐾=1     (19) 

Substitution of equations (18) and (19) into equation (15) yields: 

∑ (𝜎𝑛𝐾4 − 2𝜎𝑛𝐾2 + 1)(𝐴𝑛𝐾 sin 𝜎𝑛𝐾𝜑 + 𝐵𝑛𝐾 cos 𝜎𝑛𝐾𝜑)3𝐾=1 =𝜆𝑛 ∑ ( 1𝜎𝑛𝐾2 + 𝑘) (𝐴𝑛𝐾 sin 𝜎𝑛𝐾𝜑 + 𝐵𝑛𝐾 cos 𝜎𝑛𝐾𝜑)3𝐾=1    (20) 

All the terms involving 𝜑 are linearly independent. Therefore, the characteristic equation 

can be derived as: 

(𝜎𝑛𝐾6 − 2𝜎𝑛𝐾4 + 𝜎𝑛2) = 𝜆𝑛(1 + 𝑘𝜎𝑛2)    (21) 

The cubic equation (22) is formed below, the solutions to which are given in terms of 𝜆𝑛. 

The form of the roots for this equation varies according to Burington [29]: 

𝑆𝑛3 + 𝑝𝑆𝑛2 + 𝑞𝑆𝑛 + 𝑟 = 0     (22) 
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Let: 𝑎 ≡ (3𝑞 − 𝑝2)/3 𝑏 ≡ (2𝑝3 − 9𝑝𝑞 + 27𝑟)/27 

∆≡ (𝑏2 4⁄ ) + (𝑎3 27⁄ ) 

Thus, the three roots of the cubic equation (22) depend on ∆: 

a. If ∆ > 0, there is one real root and two complex conjugates as: 

𝜎𝑛1 = 𝑠1,                      𝜎𝑛2 = 𝜇 + 𝑖𝜐,                    𝜎𝑛3 = 𝜇 − 𝑖𝜐 

The solution form is as follow: 

𝛽𝑛 =   𝐴𝑛1 sin 𝜎𝑛1𝜑 + 𝐴𝑛2 sin 𝜇𝜑 cosh 𝜐𝜑 + 𝐴𝑛3 cos 𝜇𝜑 sinh 𝜐𝜑 + 𝐵𝑛1 cos 𝜎𝑛1𝜑 + 𝐵𝑛2 cos 𝜇𝜑 cosh 𝜐𝜑 + 𝐵𝑛3 sin 𝜇𝜑 sinh 𝜐𝜑  (23) 

b. If ∆ = 0 , then σn2 = σn3, yielding: 

𝛽𝑛 = 𝐴𝑛1 sin 𝜎𝑛1𝜑 + (𝐴𝑛2 + 𝐴𝑛3) sin 𝜎𝑛3𝜑 + 𝐵𝑛1 cos 𝜎𝑛1𝜑 + (𝐵𝑛2 + 𝐵𝑛3) cos 𝜎𝑛3𝜑 (24) 

c. If ∆ < 0, there are two possibilities: 

c.1:  if kλn < 1, there are 3 positive and unequal roots as: 

𝛽𝑛 = 𝐴𝑛1 sin 𝜎𝑛1𝜑 + 𝐴𝑛2 sin 𝜎𝑛2𝜑 + 𝐴𝑛3 sin 𝜎𝑛3𝜑 + 𝐵𝑛1 cos 𝜎𝑛1𝜑 + 𝐵𝑛2 cos 𝜎𝑛2𝜑 +𝐵𝑛3 cos 𝜎𝑛3𝜑    (25) 

c.2:  and finally, if kλn > 1, there is one real and two imaginary roots as: 

𝛽𝑛 = 𝐴𝑛1 sin 𝜎𝑛1𝜑 + 𝐴𝑛2 sinh 𝜎𝑛2𝜑 + 𝐴𝑛3 sinh𝜎𝑛3𝜑 + 𝐵𝑛1 cos 𝜎𝑛1𝜑 + 𝐵𝑛2 cosh 𝜎𝑛2𝜑 +𝐵𝑛3 cosh 𝜎𝑛3𝜑  (26) 

Considering equations (23)-(26), the expression for the out-of-plane modal displacement 

becomes: 

𝑈𝑛 = ( 1𝜎2 + 𝑘)𝛽𝑛     (27) 
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Archer [30] stated that the solutions with the form of equation (24) are only valid when the 

total ring subtended angle is greater than 2π. Therefore, for the case of a compression ring, 

equations (23) and (26) are the relevant solution forms. These are substituted into equation 

(19), which is in turn substituted into the boundary conditions [28]: 

𝑀𝑥 = (𝑅𝛽 − 𝜕2𝛽𝜕𝜑2)     (29) 

𝑀𝑧 = (𝑅 𝜕𝛽𝜕𝜑 + 𝜕𝑢𝜕𝜑)     (30) 

𝑉 = 𝜕(𝜕2𝑢𝜕𝜑2−𝑅𝛽)𝜕𝜑 − 𝑘 (𝜕𝑢𝜕𝜑 + 𝑅 𝜕𝛽𝜕𝜑)    (31) 

Equations (29)-(30) represent the bending moments and normal force. The boundary 

conditions are found by equating the same to zero for φ = 0 and φ = α in the case of an 

incomplete ring (unrestrained at both ends). This gives a set of 6 equations, each being a 

function of constants An1-3 and Bn1-3. Equating the determinant of this 6x6 matrix to zero and 

solving for the roots, the natural frequency parameters 𝜆𝑛 can be obtained. 

An FEA model of the ring (built in PATRAN/NASTRAN software) is used to validate the 

developed ring dynamics methodology. The FEA model contains 1024 nodes, each with 6 

degrees of freedom with free boundary conditions assumed at each ring extremity. Table 1 

shows a comparison between the natural frequencies predicted by the analytical method 

and the corresponding results from FEA analysis. Very good agreement is observed. Figure 2 

shows examples of the ring mode shapes. 

With regard to the in-plane ring dynamic behaviour, a similar approach to that expounded 

above for the case of the out-of-plane ring dynamics is followed (considering that the two 

sets of equations of motion are de-coupled for small deflections). The degrees of freedom 

employed for the in-plane case are the radial and tangential deflections, w and v [24, 25], as 



14 GTP-16-1220 S. Theodossiades 

 

opposed to the out-of-plane deflection and ring twist. Further information on the in-plane 

ring dynamics can be found in Baker et al [24, 25]. Additionally, whilst a finite element 

analysis is useful for validating the dynamics of the proposed methodology, the inclusion of 

a tribological model into the FEA would result in very long computation times. The required 

processing power for such an approach would be far too high to deliver results in a timely 

manner, compared with the presented semi-analytical methodology. 

 

Table 1: Out-of-plane natural frequencies of the compression ring 

Mode Number Analytical Method 

Natural Frequency (Hz) 

FEA model 

Natural Frequency (Hz) 

% Difference 

1 92.54 93.33 0.846 

2 254.29 256.42 0.828 

3 534.92 538.91 0.74 

4 903.02 908.57 0.611 

5 1357.72 1366.52 0.644 

6 1889.86 1901.72 0.624 

7 2506.75 2520.66 0.552 
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Figure 2: Example of the out-of-plane ring mode shapes for a ring with free-free boundary 

conditions: (a) Analytical method (f = 92.54Hz) and (b) FEA model (f = 93.33Hz). 

 

ii) Ring lubrication and friction 

In the lubrication analysis of the piston ring-cylinder liner contact, fully flooded inlet 

conditions are assumed. The lubricant temperature is kept constant throughout the engine 

cycle. The temperature of the liner is found to be much higher than any generated 

temperature rise due to viscous shear of the lubricant in the short transit time through the 

small width of the contact, as demonstrated by Morris et al [31]. 

A commonly used assumption in the lubrication of compression ring-cylinder conjunction is 

that no side leakage of lubricant occurs circumferentially as the lubricant entrainment into 

the conjunction takes place along the axial direction of the piston (along the ring contact 

(a) 

(b) 
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face-width). The Reynolds equation is derived from the classic Navier-Stokes equations 

keeping the most significant terms and corresponding to the following additional 

assumptions: (i) The pressure, density and viscosity are constant across the film’s thickness 

and (ii) Inertia terms are neglected. Thus, Reynolds equation becomes:  

𝜕𝜕𝑥 (𝜌ℎ3𝜂 𝜕𝑝𝜕𝑥) + 𝜕𝜕𝑦 (𝜌ℎ3𝜂 𝜕𝑝𝜕𝑦) = 12 (𝑢𝑎𝑣 𝜕𝜕𝑥 (𝜌ℎ) + 𝜕𝜕𝑡 (𝜌ℎ))  (31) 

A two-dimensional finite difference discretisation method (FDM) is used to solve Reynolds 

equation, simultaneously with the film thickness relationship: 

ℎ(𝑥, 𝛽, 𝑡) = ℎ𝑚(𝑡) + 𝑠(𝑥) + 𝑤(𝛽, 𝑡)     (32) 

where, 𝑠(𝑥) = 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔  is the profile of the ring face-

width for the type of engine under investigation (described later) [13]. To include cavitation, 

Swift-Stieber boundary conditions were used, which sets any negative pressure developed 

in the contact to the cavitation pressure and also assumes that the pressure gradient 

vanishes at the lubricant film rupture boundary [13]. hm represents the minimum film 

thickness at a given time step and 𝛽 is the angle of twist. Ring twist also affects its axial 

contacting profile with the surface of the bore. For a tilt angle 𝛽 (determined through out-

of-plane ring dynamic analysis), a simple co-ordinate transformation is used to obtain the 

instantaneous contacting profile as: 𝑠(𝑥, 𝑦) = 𝑥 sin 𝛽 + 𝑠(𝑥) cos 𝛽.  

Additionally, the variation of lubricant bulk rheology (density and viscosity) with generated 

pressures and temperature is also taken into account as: 

For density [32]: 

𝜌 = 𝜌0(1 − 0.65 × 10−3∆𝜃) [1 + 6×10−10(𝑝−𝑃𝑎𝑡𝑚)1+1.7×10−9(𝑝−𝑃𝑎𝑡𝑚)]    (33) 
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For viscosity [33]: 

𝜂 = 𝜂0 exp {(ln 𝜂0 + 9.67) [( −138
0−138)−𝑆0 (1 + 𝑝−𝑃𝑎𝑡𝑚1.98×108)𝑍 − 1]}   (34) 

where:  = + 273 and 0 = 0 + 273, and: 

𝑍 = 𝛼05.1×10−9[ln(𝜂0)+9.67]  and 𝑆0 = 𝛽0(0−138)ln(𝜂0)+9.67      (35) 

An initial guess is made for the minimum gap ℎ𝑚(𝑡) which alters during the Gauss-Seidel 

iterative procedure using over-relaxation through which the generated pressure distribution 

is obtained at any instant of time (corresponding to a given crank angle location):  

𝑝𝑖,𝑗𝑛 = (1 − 𝛾)𝑝𝑖,𝑗𝑜 + 𝛾𝑝𝑖,𝑗𝑛        (0 < 𝛾 < 2)    (36) 

The relaxation factor 𝛾 is problem-dependent. Pressure convergence at each node is 

achieved by using the following criterion: 

𝐸𝑟𝑟𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = ∑ ∑ |𝑝𝑖,𝑗𝑛 −𝑝𝑖,𝑗𝑜 |𝐽𝑗=1𝐼𝑖=1∑ ∑ 𝑝𝑖,𝑗𝑛𝐽𝑗=1𝐼𝑖=1 ≤ 1 × 10−5   (37) 

Once the pressure distribution is obtained, the hydrodynamic load carrying capacity 

produced by the ring, Wh, is obtained as: 

𝑊ℎ = ∫∫𝑝𝑑𝐴      (38) 

With thin films, there is an increasing chance of direct interaction of asperities on the 

contiguous surfaces. Therefore, at least in parts of the engine cycle a mixed regime of 

lubrication is anticipated. For an assumed Gaussian distribution of asperities, Greenwood 

and Tripp [34] proposed a model for calculating the contacting asperity loads [34]: 

𝑊𝑎 = 16√215 𝜋(𝜁𝜅𝜎)2√𝜎𝜅 𝐸′𝐴𝐹5 2⁄ (𝜆𝑠)    (39) 
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In equation (39), the terms (𝜁𝜅𝜎) and (𝜎 𝜅⁄ ) are the dimensionless roughness parameters 

obtained through surface roughness measurements. 𝜅 is the average asperity radius of 

curvature, 𝜁 is the number of asperity peaks per unit area and 𝜎 represents the composite 

surface roughness. 𝐴 is the apparent contact area (the assumed smooth ring face-width 

contact area, prior to the inclusion of surface roughness). 𝜆𝑠 is the Stribeck film ratio, being 

the ratio of film thickness to the average surface roughness. 𝐹5 2⁄ (𝜆𝑠) is the probability 

distribution of asperity heights. In this study, this is approximated by a fifth-order 

polynomial curve [35]: 

𝐹5 2⁄ (𝜆) = −0.0046𝜆𝑠5 + 0.0574𝜆𝑠4 − 0.2958𝜆𝑠3 + 0.7844𝜆𝑠2 − 1.0776𝜆𝑠 + 0.6167 (40) 

Total contact ring-liner friction is as the result of viscous shear of the lubricant and any 

direct boundary interactions:   

𝑓𝑡 = 𝑓𝑣 + 𝑓𝑏      (41) 

Styles et al [36] presented the boundary friction as: 

𝑓𝑏 = 𝜏0𝐴𝑒 + 𝜉𝑊𝑎     (42) 

where, 𝜏0 is the lubricant limiting Eyring stress and 𝜉 the pressure coefficient of boundary 

shear strength of surface asperities. Styles et al [36] measured this parameter for the coated 

material of the ring contacting face, used in the current study. The values were 0.3038 and 

0.2012 for a new and an end-of-life ring [36]. Ae is the effective asperity contact area, 

accounting for the summation of contact areas at the tip of asperities [35]: 

𝐴𝑒 = 𝜋2(𝜁𝜅𝜎)2𝐴𝐹2(𝜆𝑠)     (43) 

Viscous component of overall friction is: 

𝑓𝑣 = 𝜏(𝐴 − 𝐴𝑒)     (44) 
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where τ is the viscous shear stress of the lubricant: 

𝜏 = (𝜏𝑥2 + 𝜏𝑦2)1 2⁄ = |± ℎ2 ∇⃑⃑ 𝑝 + �⃑� 𝜂ℎ|    (45) 

The ring dynamic response for both the in-plane [24, 25] and out-of-plane cases includes a 

forcing term, which incorporates any excitation applied to the relevant ring plane. This force 

profile is extracted from the tribological analysis post calculation of the external and internal 

forces acting upon the ring, as shown in Figure 3 for the ring’s cross-section. Considering in-

plane dynamics, it can be seen that the forces acting on the ring include: elastic (ring 

tension) force, Fe, the combustion gas force, Fg, and the contact reactions; Wh, Wa. The 

approach with which the out-of-plane methodology is coupled to the tribological analysis 

differs slightly from the in-plane case. The following relation in the out-of-plane direction is 

derived from the free body diagram of figure 3: 

∑𝐹𝑥 = 𝐹𝑔 + 𝑚𝑔 − 𝑓𝑣 − 𝑓𝑏 − 𝑅𝑔 = 𝐹𝐴    (46) 

where, FA is the resultant out-of-plane force acting upon the ring. 

 

   

Figure 3: Free body diagram for a cross-section of the top compression ring 
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The ring’s weight is negligible when compared with the gas force, with a typical weight of 

approximately 0.05N. The reaction force from the piston groove acting upon the ring, 𝑅𝑔 is 

calculated using Tian’s method [6]. A layer of lubricant is assumed to be present on the 

groove’s surface. Tian [6] solved the one-dimensional Reynolds’ equation in pure squeeze, 

where h here is the thickness of any film of lubricant in the ring-groove land conjunction: 

𝜕𝜕𝑥 (ℎ3𝜂 𝜕𝑝𝑔𝑣𝜕𝑦 ) = 12 𝜕ℎ𝜕𝑡      (47) 

As it can be seen, this approach neglects the effect of any sliding between the ring and the 

groove face. If the ring is assumed to be rigid, then this assumption can be upheld. However, 

with in-plane dynamics included, some sliding occurs as the result of ring in-plane motion 

relative to the groove land. Therefore, equation (47) becomes: 

𝜕𝜕𝑥 (ℎ3𝜂 𝜕𝑝𝑔𝑣𝜕𝑦 ) = 6 𝜕𝑤(𝜑,𝑡)𝜕𝑡 𝜕ℎ𝜕𝑦 + 12 𝜕ℎ𝜕𝑡     (48) 

The solution of equation (48) gives the generated conjunctional pressure. The contact 

reaction becomes:   

𝑅𝑔 = ∫𝑝𝑔𝑣𝑑𝑦                                                               (49) 

It should be noted that term 𝐹𝑔 is the net gas force, which is the difference between the 

cylinder and crankcase gas applied pressures. The crankcase pressure is assumed to be 

equal to the atmospheric pressure for this analysis, although an inter-ring gas pressure 

model can replace this for a more realistic approach, which would affect the boundary 

conditions for Reynolds equation. For this purpose a gas blow-by model would be required, 

such as that presented in Baker et al [37].  
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iii) Solution procedure. 

Figure 4 shows a flowchart of the solution steps for the coupling of ring dynamics with 

tribology in both the ring-bore and ring-groove land conjunctions. This extends the work of 

Baker et al [24, 25]. A summary of the solution procedure is as follows: 

 At each crank angle increment, the ring dynamics’ model extracts the net force profiles 

acting upon the ring. 

 The deformed ring profile is then calculated using the external excitation and returns to 

the tribological analysis. The circumferential film profile is then updated, as are the 

localised velocity values. 

 The converged values from the previous step are provided as initial conditions for the 

next crank angle increment. 

The solution time for each engine speed case can be over 24 hours, due to the small time 

step discretisation which is necessary at piston reversals, high pressures and temperatures. 

This enables the ring to respond elastically to the applied loads and provides a high 

resolution output. It can clearly be seen that any in-plane motion of the ring would affect its 

out-of-plane motion and vice-versa. For example, the in-plane ring dynamics influences the 

lubricant film thickness (equation (32)), thus the generated ring-bore friction. Additionally, 

the ring’s axial velocity as the result ring’s out-of-plane dynamics affects the in-plane 

lubricant reaction force. However, the mathematical solution for transient ring dynamics 

shows that the in-plane and out-of-plane equations of motion have no common degrees of 

freedom, and so can be solved separately. The coupling is through the tribological contact 

conditions. 
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Figure 4: Coupled tribodynamics model for the three dimensional motion of the 

compression ring   
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Results and discussion 

i) System specifications 

The system analysed is based on a cylinder of a high performance V12 gasoline engine with 

a maximum power output of 510 BHP. Each cylinder has a stroke of 80 mm, and a bore 

radius of 44.5 mm. The lubricant used in the analysis is SAE 10W40. Table 2 lists the 

lubricant rheological parameters. The ring surface roughness parameters used in calculation 

of boundary friction are listed in Table 3. These data are obtained through topographical 

measurements using the Alicona Infinite Focus Microscope (IFM). The compression ring 

dimensions and material properties are provided in Table 4. 

Table 2: Lubricant Parameters 

Parameter Value Unit 

Pressure-viscosity coefficient 2×10
-8

 m
2
/N 

Thermal expansion coefficient 6.5×10
-4

 1/°K 

Lubricant density 833.8 at 40 [°C], 783.8 at 100 [°C] kg/m
3
 

Lubricant kinematic viscosity 59.99 at 40 [°C], 9.59 at 100 [°C] ×10
-6

 m
2
/s 

 

Table 3: Ring surface roughness parameters used in the boundary friction model 

Parameter Value Unit 

Ra for the liner 0.26 µm 

Ra for a new ring 0.408 µm 

Roughness parameter (ζκσc)c 0.074 - 

Measure of asperity gradient (σc/κ)c 0.309 - 

 

Table 4: Compression ring dimensions and material properties 

Property Value 

Elastic modulus 203 GPa 
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Ring density 7800 kg/m
3
 

Ring thickness 3.5 mm 

Axial face-width 1.15 mm 

Nominal fitted ring radius 44.52 mm 

Ring second moment of area 2.25X10
-12

 m
4
 

Ring end gap size (free ring) 10.5mm 

 

ii) Predictions for the engine under consideration 

The methodology presented is used for the tribo-dynamic analysis of an engine with the 

specifications provided in Tables 2-4. 

Figure 5 depicts the ring axial displacement within the groove for a complete cycle at low 

engine speed. For each crank angle increment, the displacement corresponding to the 

whole compression ring profile has been plotted. This enables the reader to appreciate the 

overall ring motion (rigid body), as well as the elasticity of the ring at each crank angle. At 0° 

(TDC), the range of the ring deflection is within approximately 1μm. However, when the ring 

has been forced away from the top groove face at approximately 30° past TDC, the range of 

deflection can be seen to be of the order of tens of micrometres (as demonstrated by the 

three-dimensional insert of figure 5). A qualitatively similar trend has been observed in the 

experimental measurements of Takiguchi [26], as well as by Namazian and Heywood [14]. 

The ring’s sealing capability (its conformity to the groove land to reduce pressure loss) can 

be compromised when the combustion pressure is sufficient to force the ring away from the 

upper groove land. Takiguchi [26] observed that in some low-speed cases, the ring remained 

in contact with the lower groove face throughout the combustion event. The results 

presented in the current work qualitatively agree with those of Takiguchi (at approximately 

2000rpm) [26]. As with the ring-to-liner film thickness comparison, there is a difference 
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between the contact in the thrust and anti-thrust sides, which could not be monitored by 

the experimental set up by Takiguchi et al [26].    

At the point of maximum pressure in this gasoline engine (crank angle of 22˚), the ring is 

forced away from the top groove land, which would result in loss of sealing. The 

corresponding ring modal shape is shown in the inset to figure 5. The same trend is noted in 

Takiguchi’s results at higher engine speeds (2400rpm). Engine speeds above 2400rpm show 

more stable behaviour in terms of ring out-of-plane motion [26]; the combustion pressure is 

unable to overcome the piston inertial dynamics effect on the ring. The ring’s axial position 

changes between the crank angles 180˚ and 540˚ in figure 6, with minimal loss of sealing. 

Figure 6 demonstrates the ring’s elastic deformation as it is forced away from the top 

groove face (at approximately 24° past TDC in figure 5). It can be seen that the elastic 

deformation becomes more pronounced as the ring is forced away from the top groove 

face. When the ring is not pressed against the piston groove, the flexibility of the ring 

becomes a greater influence on the forced response of the ring. 

Figure 7 shows the frictional power loss variations calculated using an assumed rigid ring, an 

in-plane elastic ring (only), and a fully 3D dynamics case. The engine speed and lubricant 

temperature are 1000rpm and 40°C, respectively. These correspond to cold start-up 

conditions which are often used as a part of New European Drive cycle (NEDC) for emission 

testing. Increased asperity interactions appear as the “spikes” in frictional power loss 

around the TDC and BDC. This is especially noticeable away from the high pressure reversal 

point just before combustion. The squeeze effect caused by ring in-plane dynamics may also 

promote further asperity interactions, thus increase the power loss around the firing point, 

even for comparable minimum film thickness predictions. 
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Figure 5: Ring out-of-plane axial position throughout the engine cycle, alongside ring axial 

velocity and cylinder gas pressure (Engine speed = 1500rpm, lubricant temperature = 120°C 

at full throttle) 

 

Figures 8 and 9 present the overall ring axial motion at 1000rpm, as well as the three-

dimensional response of the ring as it is forced to the bottom groove face. Again, significant 

elastic behaviour is seen during the transition from one groove face to the other. Such a 

dramatic ring deformation could indicate potential ring flutter and blowby issues, as 

increased elastic response can lead to ring instability and the loss of sealing. 

Figures 10 and 11 show the friction power loss and ring displacement at higher engine 

speed (2000rpm). The inclusion of ring dynamics in both planes gives very similar friction 

power results to those with that just including the in-plane ring dynamics. This suggests that 
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when assessing the frictional power loss associated with the top compression ring, the 

inclusion of out-of-plane ring dynamics may have less effect as the engine speed increases. 

Here the in-plane and out-of-plane ring dynamic methodologies have been applied in a 

decoupled manner. Therefore, the consideration of the out-of-plane ring dynamics does not 

seem to have a significant effect on the tribological performance (when compared with the 

effect of in-plane dynamics only), particularly with high liner temperature resulting in thin 

lubricant films. 

 

 

Figure 6: Three-dimensional ring deformation at the point of maximum cylinder pressure, 

(Engine speed = 1500rpm, lubricant temperature = 120°C at full throttle) 

 

24° 

25° 

26° 

27° 
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Figure 7: Total friction power loss for rigid, in-plane elastic and fully elastic models of the 

compression ring at 1000rpm with lubricant temperature of 40°C, part throttle 

 

 

Figure 8: Ring out-of-plane axial position throughout the engine cycle, alongside ring axial 

velocity and cylinder gas pressure (Engine speed = 1000rpm, lubricant temperature = 40°C) 
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Figure 9: Three-dimensional ring deflection during the power stroke (Engine speed = 

1000rpm, lubricant temperature = 40°C, part throttle) 

 

 

Figure 10: Total frictional power loss comparisons for a rigid ring, an in-plane elastic ring and 

a full dynamic one at 2000 rpm, with lubricant temperature of 40°C (part throttle) 
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Figure 12 shows a comparison of the friction power loss predicted for the cases of rigid and 

deformed rings (in-plane dynamics and fully transient cases), corresponding to higher 

lubricant temperatures of 120°C. This represents the temperature of the cylinder liner 

under the hot steady state part of the NEDC in low speed urban driving condition.  The 

presented methodology does not include any gas flow prediction through the ring pack, 

which in the case of out-of-plane ring dynamics would alter as the ring moves from the 

lower groove land to its top land. This would subsequently further affect the lubricant film 

thickness.  

 

 

Figure 11: Ring out-of-plane axial position throughout the engine cycle, alongside ring axial 

velocity at 2000 rpm, with lubricant temperature of 40°C 
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Figure 12: Friction power loss comparison for a rigid ring, an in-plane elastic ring and a fully 

dynamic ring at the engine speed of 2000rpm with lubricant temperature of 120°C (full-

throttle) 

 

The inclusion of out-of-plane ring dynamics allows for any lateral/axial ring motion with 

respect to the piston. Although the piston groove restricts the ring’s motion in the axial 

piston direction, there is room for the ring to move rigidly and elastically during the engine 

cycle. From the engine data available, a gap of tens of micrometres remains between the 

ring and its retaining groove lands. It is assumed that a layer of lubricant would be present 

on both the groove lands. Using the method proposed by Tian [6], the groove lubricant 

reaction is calculated when the gap between the ring and the groove becomes less than 

10μm as a fully flooded condition is assumed. If the gap is greater, then the cylinder (top of 

the ring) or crankcase (bottom of the ring) pressure is used in the calculations. 

The minimum film thickness predictions of both the in-plane and fully dynamic analyses 

show good agreement with each other. The in-plane analysis has a significantly reduced 

solution time due to the lower complexity of the dynamics. In some cases, where the 
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motion of the ring within the groove is not of interest, it may be sufficient to run an in-plane 

only analysis across a full speed sweep.  

Figure 13 shows the position of the ring within the groove throughout the engine cycle at 

1500rpm, alongside the difference in axial velocity of the ring and its instantaneous 

displacement. The displacement is presented in the same way as in figure 5, with each crank 

angle increment showing the ring response at each circumferential response. The ring 

velocity variation is shown in figure 13b, and is seen to largely follow the piston’s velocity 

profile, as would be expected. However, in the instances immediately after the point of 

maximum velocity in each stroke, there is a small deviation from an otherwise smooth  
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(b) 

Figure 13: (a) Compression ring axial groove position and three dimensional ring profiles 

within the piston groove; (b) ring velocity variation (Engine speed = 1500rpm, lubricant 

temperature = 40°C) 

 

curve. These ‘spikes’ are shown in the net velocity results in figure 13a and occur due to 

piston’s axial velocity slowing upon approaching the dead centres prior to reversal. The 

compression ring continues moving at a higher velocity and loses contact with the piston 

groove land. As the ring approaches the opposite face of the groove, the lubricant present 

there creates a reaction force, slowing the ring so that it once again follows the velocity 

profile of the piston, with some slight localised variations. The motion of the ring away from 

either of the groove lands may cause loss of sealing (some gas pressure is expected to be 

lost through the gap behind the ring). This would increase the probability of ring axial 

oscillations (flutter) and blow-by. Figure 13 also shows examples of ring deformation at 

different positions throughout the engine cycle. Note the scale in each of the deformed ring 

profiles, which suggests that there is greater deformation when the ring is in transition 

between the two groove lands. This can be expected due to the groove reaction against the 

(b) 
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ring, which would reduce its elastic displacement. Figure 13b shows that the ring largely 

follows the axial velocity of the piston with reduced elastic body response. 

 

 

Figure 14: Compression ring axial groove position and three dimensional ring profiles within 

the piston groove (Engine speed = 1500rpm, lubricant temperature = 40°C) 

 

Further three-dimensional results of the ring are shown in figure 14. These correspond to 

snapshots of the engine cycle before, during and after the ring has moved from one groove 

face to the other. In contrast to figures 6 and 9, the ring’s elastic deformation is much less 

apparent, with the rigid body motion dominating the response. As the ring’s inertial forces 

(applied by the piston during its translation through the liner) are not overcome by the 

cylinder pressure, the loading on the ring does not cause the elastic response previously 

seen. This response would suggest a more stable ring pack, with lower risk of flutter and 

blowby occurring.  
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Conclusions 

A tribological model, incorporating three-dimensional transient elastodynamics of the 

transient compression ring has been presented. In particular, the out-of-plane ring 

elastodynamics are described in detail, including its transient response, alongside 

verification of the modal features against a finite element model. The coupling mechanism 

between ring dynamics and tribology has not hitherto been reported in literature, 

accounting for the main contribution of the paper. The methodology is also verified against 

experimental work of other studies in open literature and shows reasonably good 

agreement. 

Nevertheless, the numerical results obtained demonstrate the effect of ring dynamics on 

the tribological analysis of the compression ring. An increase in frictional power loss 

throughout the engine cycle is generally noted, as is the out-of-plane ring motion within the 

groove. This motion may have an effect on the ring-to-groove sealing, which has previously 

been demonstrated by the model predictions. 

The observation of ring motion within the groove indicates the potential for the presented 

model to be further extended, or incorporated within a complete piston ring pack model. 

Gas flow, specifically blow-by, is an important issue when optimising the performance of 

engines. The ability to capture the ring’s axial motion would facilitate the coupling of 

transient ring dynamics, tribology and gas flow, which would provide a significantly 

advanced ring pack model. The above constitute aspects for future work. In particular, the 

results for combined elastodynamics and tribological analyses present conditions of 
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practical importance, already simulating conditions at cold start-up and hot steady state 

parts of the emission evaluation NEDC. Using the presented methodology, a more accurate 

prediction can be obtained ascertaining the effect of ring material, pre-tension and axial 

profile on its tribological performance. With a gas flow model, the gas flow through the ring 

pack can be analysed for various ring designs, with the optimum dynamic performance 

giving the lowest gas flow rate through the ring. 
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