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Abstract

In this paper, a stochastic integral of Ornstein–Uhlenbeck type is represented to be the
sum of two independent random variables: one has a tempered stable distribution and
the other has a compound Poisson distribution. In distribution, the compound Poisson
random variable is equal to the sum of a Poisson-distributed number of positive random
variables, which are independent and identically distributed and have a common specified
density function. Based on the representation of the stochastic integral, we prove that
the transition distribution of the tempered stable Ornstein–Uhlenbeck process is self-
decomposable and that the transition density is a C∞-function.
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1. Introduction

Recently, non-Gaussian processes of Ornstein–Uhlenbeck type have been widely used in
describing stochastic volatility of finance assets (see [2]) and default intensities (see [4]). There-
fore, the importance of the transition law of non-Gaussian processes of Ornstein–Uhlenbeck
type is growing. For the general result of the transition law of these processes, see Lemma 17.1
of [9], where the characteristic function of the transition distribution is given. There is also
some literature on the transition law of some important subclasses of these processes. For
instance, the transition law of gamma OU processes is studied in [15], where the maximum
likelihood estimator of the parameter is achieved by it; based on research on the transition law
of inverse Gaussian Ornstein–Uhlenbeck (IGOU) processes, the exact simulation algorithm is
obtained in [14].

The class of tempered stable Ornstein–Uhlenbeck (TSOU) processes is also an important
subclass of non-Gaussian processes of Ornstein–Uhlenbeck type (see [3]). In this paper, the
transition law of the TSOU process is determined by a stochastic integral of Ornstein–Uhlenbeck
type. In [3], the stochastic integral of Ornstein–Uhlenbeck type is represented by an infinite
series, so it is impossible from that to sample the innovations exactly for TSOU processes.
For the same stochastic integral, the sample method based on the numeric inversion of the
characteristic function (see [10]) is also approximate. However, the representation of the
stochastic integral of Ornstein–Uhlenbeck type in this paper includes neither an infinite series
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nor a numeric approximation, so that it is more attractive to make parametric inference and
exact simulation of TSOU processes. Moreover, we also obtain the self-decomposability of
the distribution of the integral, and it is obvious that the self-decomposable distribution is of
importance in theories and applications; see [2] and [9, Chapter 3].

The remainder of the paper is organized as follows. In Section 2 we provide some definitions
and recall some properties of TSOU processes that we will need in order to develop the transition
law and its properties. In Section 3 we set out the transition law of TSOU processes. In Section 4
we present some properties of the transition law. The paper closes with a discussion in Section 5.

2. Preliminaries

Firstly, we recall the definition of self-decomposability; for further details, the reader is
referred to [9, p. 90].

Definition 2.1. A distribution µ on R is called self-decomposable if, for every b > 1, there
exists a distribution µb on R such that the characteristic functions µ̂(z) and µ̂b(z) satisfy

µ̂(z) = µ̂(b−1z)µ̂b(z), z ∈ R.

A random variable with a self-decomposable distribution is called a self-decomposable random
variable.

Alternatively, a random variableX is self-decomposable if and only if, for each b > 1, there
exists a random variable Xb which is independent of X such that

X
d= b−1X +Xb,

where ‘
d=’ denotes equality in distribution.

The following lemma is a special case of Corollary 15.11 of [9].

Lemma 2.1. Let µ be an infinitely divisible distribution on (0,+∞) with Lévy measure ν.
Then, µ is self-decomposable if and only if ν takes the special form

ν(dx) = 1{x>0}
k(x)

x
dx,

where k(x) ≥ 0,
∫ +∞

0 (x2 ∧ 1)(k(x)/x) dx < ∞, and k(x) is decreasing on (0,+∞).

The class of tempered stable (TS) distributions was introduced in [11]. Their applicability
in survival analysis is discussed in [8].

Definition 2.2. Let p(x; κ, δ) be the probability density function of the positively skewed
κ-stable law S(κ, δ)with Laplace transform L(s) = exp{−δ(2s)κ} (κ ∈ (0, 1) and δ > 0). We
call TS(κ, δ, γ ) a tempered stable distribution with parameters κ ∈ (0, 1), δ > 0, and γ ≥ 0 if
its density is given by

p(x; κ, δ, γ ) = eδγ p(x; κ, δ)e−γ 1/κx/2. (2.1)

That is, p(x; κ, δ, γ ) is the exponentially tilted version of p(x; κ, δ).
For the TS(κ, δ, γ ) law, the parameter γ controls the tail behavior. When γ increases, we

obtain a distribution with thinner tails. If κ = 1
2 , the TS(κ, δ, γ ) law becomes the inverse
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Gaussian (IG) law with parameters δ > 0 and γ ≥ 0, denoted by IG(δ, γ ) (see [3]). The
probability density function of the IG(δ, γ ) law has the closed form

p(x; δ, γ ) = δ√
2π

eδγ x−3/2 exp

{
−1

2
(δ2x−1 + γ 2x)

}
1{x>0} . (2.2)

For general κ ∈ (0, 1), explicit expressions of p(x; κ, δ) are known only in the form of
series representations. Specifically, we have (cf., for instance, [7, p. 583])

p(x, κ, δ) = 1

2π
δ−1/κ

∞∑
k=1

(−1)k−1

k! sin(kκπ)�(kκ + 1)2kκ+1(xδ−1/κ )−kκ−1 1{x>0} .

The Lévy density of the TS(κ, δ, γ ) law (see [3]) is

u(x) = δ2κ
κ

�(1 − κ)
x−1−κ exp

{
−1

2
γ 1/κx

}
, x > 0.

Since xu(x) is nonnegative and decreasing for x > 0, it follows immediately from Lemma 2.1
that TS(κ, δ, γ ) is self-decomposable with support [0,∞). Since the class of self-decomposable
distributions is a subclass of infinitely divisible distributions, the TS(κ, δ, γ ) distribution has
the Laplace transformation (cf., for instance, [7, p. 450])

exp

{∫ ∞

0
(e−ux − 1)δ2κ

κ

�(1 − κ)
x−1−κ exp

{
−1

2
γ 1/κx

}
dx

}
.

Extending this expression to the left-hand half-plane {w ∈ C : Rew ≤ 0} by analyticity inside
and continuity to the boundary, and lettingw = iz, z ∈ R, we obtain the characteristic function
of the TS(κ, δ, γ ) law,

ψ(z) = exp

{∫ ∞

0
(eizx − 1)δ2κ

κ

�(1 − κ)
x−1−κ exp

{
−1

2
γ 1/κx

}
dx

}
. (2.3)

Given a TS(κ, δ, γ ) law, it follows from, for instance, [2] (and the references therein) that
there exists a stationary process X(t) and a Lévy process Z(t), independent of X(0), such
that X(t) ∼ TS(κ, δ, γ ) and, for all λ > 0, X(t) solves the following stochastic differential
equation of Ornstein–Uhlenbeck type:

dX(t) = −λX(t) dt + dZ(λt), λ > 0. (2.4)

It is easily verified that a (strong) solution to the Ornstein–Uhlenbeck equation, (2.4), is given
by

X(t) = e−λtX(0)+
∫
(0,t]

e−λ(t−s) dZ(λs).

Up to indistinguishability, this solution is unique (see [9, p. 104]). Since the marginal distribu-
tion of the stationary process X(t) is TS and X(t) satisfies (2.4), the process X(t) is called a
TSOU process (see, for instance, [3]). AsZ(t) is used to drive the Ornstein–Uhlenbeck process,
it is referred to as the background driving Lévy process.
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The law of the stochastic integral
∫
(0,t] e−λ(t−s) dZ(λs) plays an important role in finding

the transition law of the TSOU process X(t). In [3], this integral is represented as

∫
(0,t]

e−λ(t−s) dZ(λs)
d=

∞∑
i=1

exp{−λtri} min

{(
aiκ

Aλt

)−1/κ

, eiv
1/κ
i

}
+
N(λt)∑
i=1

exp{−λtr∗i }ci,
(2.5)

where {ei}, {vi}, {ai}, {ri}, {r∗i }, and {ci} are independent of one another and over i, except for
the {ai} process. Here the {ei} are exponential with mean 1/B, {vi}, {ri}, and {r∗i } are inde-
pendent and identically distributed standard uniforms, the {ci} are independent and identically
distributed �(1 − κ, 1

2γ
1/κ )s, and A = δ2κκ2/�(1 − κ) and B = 1

2γ
1/κ . Furthermore, the

a1 < a2 < · · · < ai < · · · are arrival times of a Poisson process with intensity 1, whileN(t) is
a Poisson process with intensity δγ κ . Equality (2.5) includes an infinite series representation,
so it is impossible from that to sample the innovations exactly for TSOU processes. For the
same stochastic integral, the sample method based on the numeric inversion of the characteristic
function (see [10]) is also approximate.

3. The transition law of TSOU processes

Since X(t) ∼ TS(κ, δ, γ ), its characteristic function is ψ(z), defined in (2.3). Let φ(z)
denote the characteristic function of Z(1). As noted Remark 4.3 of [1], φ(x) and ψ(x) are
related by

logφ(z) = z
∂ logψ(z)

∂z
.

Hence, the characteristic function of Z(1) is

φ(z) = exp

{∫ ∞

0
(eizx − 1)v(x) dx

}
, (3.1)

where

v(x) = δ2κ
κ

�(1 − κ)

(
κx−1 + 1

2
γ 1/κ

)
x−κ exp

{
−1

2
γ 1/κx

}
. (3.2)

Let Pt(x, B) denote the temporally homogeneous transition function of the TSOU process
X(t) over a time interval of length t , i.e. the conditional probability P(X(t) ∈ B | X(0) = x),
whereB is a Borel measurable subset of R. By Lemma 17.1 of [9], the temporally homogeneous
transition function Pt(x, B) satisfies

∫ ∞

−∞
eizyPt (x, dy) = exp

{
ize−λtx + λ

∫ t

0
ϕ(e−λ(t−s)z) ds

}
, (3.3)

where ϕ(z) = log(φ(z)) and φ(z) is the characteristic function of Z(1).

Theorem 3.1. If γ > 0, the TSOU process X(t), given that X(0) = x, can be represented
as the sum of a constant, a TS random variable, and a compound Poisson random variable in
distribution, that is,

X(t)|X(0)=x d= e−λtx +Wt
0 +

Ñ t∑
i=1

Wt
i , (3.4)
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where Wt
0 ∼ TS(κ, δ(1 − e−κλt ), γ ), the random variable Ñ t has a Poisson distribution of

intensity δγ (1 − e−κλt ), andWt
1,W

t
2, . . . are independent random variables having a common

specified density function,

fWt (w) = 2κκγ−1

�(1 − κ)
(eκλt − 1)−1w−κ−1

(
exp

{
−1

2
γ 1/κw

}
− exp

{
−1

2
γ 1/κweλt

})
1{w>0} .

(3.5)
Furthermore, {Wt

0}, {Wt
1,W

t
2, . . .}, and {Ñ t } are independent of one another.

Proof. For the TSOU process X(t), the characteristic function of Z(1) is defined in (3.1),
so that, by (3.3),

∫ ∞

−∞
eizyPt (x, dy) = exp

{
ize−λtx + λ

∫ t

0

(∫ ∞

0
(exp{ie−λ(t−s)zx} − 1)v(x) dx

)
ds

}

= exp

{
ize−λtx + λ

∫ t

0

(∫ ∞

0
(exp{ie−λuzx} − 1)v(x) dx

)
du

}

= exp

{
ize−λtx + λ

∫ ∞

0
v(x)

(∫ t

0
(exp{ie−λuzx} − 1) du

)
dx

}

= exp

{
ize−λtx +

∫ ∞

0
v(x)

(∫ x

e−λt x
(eizw − 1)

1

w
dw

)
dx

}

= exp

{
ize−λtx +

∫ ∞

0
(eizw − 1)

∫ eλtw
w

v(x) dx

w
dw

}
,

where v(x) is defined in (3.2). Here we have adopted the transformations u = t − s and
w = e−λux respectively in the second and fourth equalities. Let kt (w) = ∫ eλtw

w
v(x) dx. Then

kt (w) = δ2κκ

�(1 − κ)

∫ eλtw

w

(
κx−1 + 1

2
γ 1/κ

)
x−κ exp

{
−1

2
γ 1/κx

}
dx

= δ2κ−1κ

�(1 − κ)
w−κ

∫ λt

0

(
2κe−κh + γ 1/κe(1−κ)hw

)
exp

{
−1

2
γ 1/κweh

}
dh

= δ2κ−1κ

�(1 − κ)
w−κ

∫ λt

0
d

(
−2e−κh exp

{
−1

2
γ 1/κweh

})

= δ2κκ

�(1 − κ)
w−κ

(
exp

{
−1

2
γ 1/κw

}
− e−κλt exp

{
−1

2
γ 1/κweλt

})
, (3.6)

where the second equality follows from the transformation h = ln x − lnw. Hence∫ ∞

−∞
eizyPt (x, dy) = exp

{
ize−λtx +

∫ ∞

0
(eizw − 1)

kt (w)

w
dw

}

= exp{ize−λtx}φ1(z)φ2(z), (3.7)

where

φ1(z) = exp

{∫ ∞

0
(eizw − 1)

δ(1 − e−κλt )2κκ
�(1 − κ)

w−κ−1 exp

{
−1

2
γ 1/κw

}
dw

}
, (3.8)

φ2(z) = exp

{∫ ∞

0
δγ (1 − e−κλt )(eizw − 1)fWt (w) dw

}
,
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and fWt (w) is as defined in (3.5). That φ1(z) is the characteristic function of the TS(κ, δ(1 −
e−κλt ), γ ) law can be shown by (2.3). Hence, φ1(z) can be treated as the characteristic function
of the distribution of the random variable Wt

0 described in (3.4). For w > 0, fWt (w) ≥ 0, and

∫ ∞

0
fWt (w) dw = 2κκγ−1

�(1 − κ)
(eκλt − 1)−1

(
γ

2κ
− γ eκλt

2κ

)
�(−κ) = 1,

we have shown thatfWt (w) defined in (3.5) is a density function. Hence,φ2(z) is a characteristic
function of a compound Poisson distribution. The compound Poisson distribution is the same
as the distribution of the random variable

∑Ñ t

i=1W
t
i described in (3.4). Equalities (3.7)–(3.8)

imply that {Wt
0}, {Wt

1,W
t
2, . . .}, and {Ñ t } are independent of one another. This completes the

proof.

Remark 3.1. If κ = 1
2 , the marginal distribution of the TSOU process X(t) becomes the IG

distribution with parameters δ > 0 and γ ≥ 0, i.e.X(t) ∼ IG(δ, γ ). Now, the marginal density
ofX(t) in (2.1) has the closed form (2.2). The process {X(t), t ≥ 0} is referred to as an IGOU
process (see [3]). Here, if γ > 0,Wt

i (i = 1, 2, . . .) in (3.4) has the simpler probability density
function

fWt (w) = γ−1

√
2π

(eλt/2 − 1)−1w−3/2
(

exp

{
−1

2
γ 2w

}
− exp

{
−1

2
γ 2weλt

})
1{w>0} .

In terms of the transition law of the IGOU process, the exact simulation algorithm of the process
is obtained in [14].

Remark 3.2. Based on Theorem 3.1, the exact simulation method of the TSOU process X(t)
can be implemented, which is more reliable than the approximate method based on Rosinski’s
series representation, (2.5). The implementation of an exact simulation of the TSOU process
is achievable for the following two main reasons.

1. If X ∼ S(κ, δ) then X has decomposition (a special case of the result in [5] or [12]; see
also [13])

X
d= 2

(
δ cos

(
κπ

2

))1/κ sin κ(π/2 + U)

(cos(U))1/κ

(
cos(U − κ(π/2 + U))

E

)1/κ−1

, (3.9)

whereU andE are independent of each other,U is uniformly distributed on (−π/2, π/2),
and E is exponential with mean 1. Furthermore, by equality (2.1),

p(x; κ, δ, γ ) ≤ eδγ p(x; κ, δ) for x > 0

and eδγ is a known constant. Hence, the generation of the TS(κ, δ, γ ) random variate
can be implemented by the acceptance–rejection sampling technique.

2. The generation of Wt
i (i = 1, 2, . . .) in Theorem 3.1 can also be implemented by the

acceptance–rejection sampling technique. For w > 0,

exp

{
−1

2
γ 1/κw

}
− exp

{
−1

2
γ 1/κweλt

}
= 1

2
γ 1/κ

∫ weλt

w

exp

{
−1

2
γ 1/κx

}
dx

≤ 1

2
γ 1/κ exp

{
−1

2
γ 1/κw

}
w(eλt − 1),
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so that fWt (w) defined in (3.5) satisfies

fWt (w) ≤ M
(γ 1/κ/2)1−κ

�(1 − κ)
w−κ exp

{
−1

2
γ 1/κw

}
,

where M > 0 is a known constant and ((γ 1/κ/2)1−κ/�(1 − κ))w−κ exp{− 1
2γ

1/κw} is
the density of the�(1 − κ, 1

2γ
1/κ ) distribution. Thus, the acceptance–rejection sampling

technique can be employed. Furthermore, combining the acceptance–rejection method
with the composition method (see [6, p. 66]), we find a method to improve the acceptance
probability as close to 1 as possible. The method used to improve the acceptance
probability is the same as that in [14].

Theorem 3.2. If γ > 0, the TSOU process X(t), given that X(0) = x, can be represented
as the sum of a constant, a TS random variable, and a compound Poisson random variable in
distribution, that is,

X(t) | X(0)=x d= e−λtx + W̄ t
0 +

N̄ t∑
i=1

W̄ t
i , (3.10)

where W̄ t
0 ∼ TS(κ, δ(1 − e−κλt ), γ eκλt ), the random variable N̄ t has a Poisson distribution of

intensity δγ (eκλt − 1), and W̄ t
1, W̄

t
2, . . . are independent random variables having a common

specified density function fWt (w) defined in (3.5). Furthermore, {W̄ t
0}, {W̄ t

1, W̄
t
2, . . .}, and

{N̄ t } are independent of one another.

Proof. Representation (3.7) has the alternative form
∫ ∞

−∞
eizyPt (x, dy) = exp

{
ize−λtx +

∫ ∞

0
(eizw − 1)

kt (w)

w
dw

}

= exp{ize−λtx}φ̄1(z)φ̄2(z),

where

φ̄1(z) = exp

{∫ ∞

0
(eizw − 1)

δ(1 − e−κλt )2κκ
�(1 − κ)

w−κ−1 exp

{
−1

2
(γ eκλt )1/κw

}
dw

}
,

φ̄2(z) = exp

{∫ ∞

0
δγ (eκλt − 1)(eizw − 1)fWt (w) dw

}
,

and fWt (w) is as defined in (3.5). For the same reason as in the proof of Theorem 3.1, φ̄1(z)

is the characteristic function of the distribution of the random variable W̄ t
0 and φ̄2(z) is a

characteristic function of a compound Poisson distribution of the random variable
∑N̄ t

i=1 W̄
t
i .

Here, both W̄ t
0 and

∑N̄ t

i=1 W̄
t
i are described in (3.10).

Since the probability density function of the TS(κ, δ, γ ) law is the exponentially tilted version
of that of the S(κ, δ) law, the latter can be treated as a special case of the TS(κ, δ, γ ) law. If
γ = 0, it follows from (2.3) that the characteristic function of the S(κ, δ) law is

ψ(z) = exp

{∫ ∞

0
(eizx − 1)δ2κ

κ

�(1 − κ)
x−1−κ dx

}
. (3.11)

If γ = 0, the marginal distribution of the TS(κ, δ, γ ) OU process becomes the S(κ, δ) law, so
that we refer to this process as the positively skewed stable OU process.
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Corollary 3.1. The positively skewed stable OU process X(t), given that X(0) = x, can be
represented as

X(t)|X(0)=x d= e−λtx +Wt
0, (3.12)

where Wt
0 ∼ S(κ, δ(1 − e−κλt )).

Proof. By equality (3.6), if γ = 0 then

kt (w) = δ(1 − e−κλt )2κ κ

�(1 − κ)
w−κ .

Hence, the temporally homogeneous transition function Pt(x, B) satisfies

∫ ∞

−∞
eizyPt (x, dy) = exp{ize−λtx}ϕ(z),

where

ϕ(z) = exp

{∫ ∞

0
(eizw − 1)δ(1 − e−κλt )2κ κ

�(1 − κ)
w−κ−1 dw

}
.

It follows from equality (3.11) that ϕ(z) is the characteristic function of the S(κ, δ(1 − e−κλt ))
law. This completes the proof.

Remark 3.3. For the positively skewed κ-stable random variable, since we have decompo-
sition (3.9), the generation of Wt

0 in Corollary 3.1 can be exactly implemented. Thus, exact
simulation of the positively skewed stable OU process X(t) can also be easily implemented
by (3.12).

4. Some properties of the transition law

The function kt (w) defined by (3.6) has the following properties.

Lemma 4.1. If 1
2 ≤ κ < 1 and γ > 0, then, for w > 0, kt (w) ≥ 0,

∫ +∞

0
(w2 ∧ 1)

kt (w)

w
dx < ∞,

and kt (w) is decreasing on (0,∞).

Proof. Forw > 0, kt (w) ≥ 0 is obvious. We have
∫ ∞

0 (w2 ∧ 1)(kt (w)/w) dw < ∞ because
of ∫ 1

0
wkt (w) dw ≤ δ2κκ

�(1 − κ)

∫ 1

0
w1−κ exp

{
−1

2
γ 1/κw

}
dw ≤ δ2κκ

�(1 − κ)
< ∞

and
∫ ∞

1

kt (w)

w
dw ≤ δ2κκ

�(1 − κ)

∫ ∞

1
w−κ−1 exp

{
−1

2
γ 1/κw

}
dw

≤ δ2κκ

�(1 − κ)

∫ ∞

1
exp

{
−1

2
γ 1/κw

}
dw

< ∞.
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If κ , δ, γ , λ, and t are fixed, then kt (w) is a function of w only. We have

dkt (w)

dw
= δ2κκ

�(1 − κ)
w−κ−1

[(
κ + 1

2
γ 1/κweλt

)
e−κλt exp

{
−1

2
γ 1/κweλt

}

−
(
κ + 1

2
γ 1/κw

)
exp

{
−1

2
γ 1/κw

}]
.

For fixed 0 < κ < 1, w > 0, and γ ≥ 0, we consider the function

f (x) = (
κ + 1

2γ
1/κwx

)
x−κ exp

{− 1
2γ

1/κwx
}
, (4.1)

where 1 ≤ x ≤ eλt . If 1
2 ≤ κ < 1 then f (x) is a monotone decreasing function for 1 ≤ x ≤ eλt

because

f ′(x) = ( 1
2 − κ

)
γ 1/κwx−κ exp

{− 1
2γ

1/κwx
}

− (
κ2x−1−κ + 1

4γ
2/κw2x1−κ) exp

{− 1
2γ

1/κwx
}

< 0.

Now, for w > 0,
dkt (w)

dw
= δ2κκ

�(1 − κ)
w−κ−1[f (eλt )− f (1)] ≤ 0,

where f is defined in (4.1). So kt (w) is decreasing on (0,∞).

Lemma 4.2. If γ = 0 then, for w > 0, kt (w) ≥ 0,
∫ +∞

0 (w2 ∧ 1)(kt (w)/w) dx < ∞, and
kt (w) is decreasing on (0,∞).

Proof. The proof is the same as that of Lemma 4.1.

Theorem 4.1. If 1
2 ≤ κ < 1 and γ > 0 or 0 < κ < 1 and γ = 0, then the transition law of

the TSOU process X(t) has the following properties.

1. The transition law of the TSOU process X(t) is self-decomposable.

2. For fixed t > 0 and X(0) = x > 0, the transition law of the TSOU process X(t)
has a density with respect to Lebesgue measure. Here the transition density is denoted
p(t, x, y).

3. For fixed t > 0 and x > 0, the transition density p(t, x, y) is aC∞-function with respect
to y on R.

Proof. Since the Lévy measure of the transition law has the form

νt (w) = kt (w)

w
dw,

where kt (w) is as defined in (3.6), the self-decomposability of the transition law ofX(t) follows
from Lemma 2.1, Lemma 4.1, and Lemma 4.2. By Theorem 27.13 of [9], for fixed t > 0 and
X(0) = x > 0, the transition functionPt(x, y) of the processX(t) is absolutely continuous with
respect toy on R. We denote the density byp(t, x, y). Since kt (0+) = limw→0+ kt (w) = +∞,
by Theorem 28.4 of [9], the process X(t) has a C∞ transition density with respect to y on R.
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5. Discussion

In this paper, the transition law of the TSOU process is represented as (3.4), by which
exact simulation of the process can be implemented. Otherwise, based on the infinite series
representation, (2.5), exact simulation is impossible. The error of the approximate simulation
method based on (2.5) is influenced by the value of the parameter of the process (see [14]).
Since the S(κ, δ) OU process can be treated as a special case of the TS(κ, δ, γ ) OU process
when γ is equal to 0, representation (3.12) can also be treated as a special case of (3.4) when
γ is equal to 0. If γ = 0, Wt

0 ∼ TS(κ, δ(1 − e−κλt ), γ ) and
∑Ñ t

i=1W
t
i in (3.4) respectively

degenerate into Wt
0 ∼ S(κ, δ(1 − e−κλt )) and 0. But, if γ = 0, representation (2.5) is invalid.

The class of self-decomposable distributions is a subclass of the class of infinitely divis-
ible distributions. Its importance in the theory of Lévy processes, processes of Ornstein–
Uhlenbeck type, and self-similar additive processes, and in applications, is growing. See [2]
and [9, Chapter 3]. In this paper, the law of the stochastic integral

∫
(0,t] e−λ(t−s) dZ(λs)

is self-decomposable. It belongs to a new four-parameter distribution having the following
characteristic function:

ψ(z) = exp

{∫ ∞

0
(eizx−1)

δ2κκ

�(1 − κ)
x−κ−1

(
exp

{
−1

2
γ 1/κx

}
−ζ exp

{
−1

2

(
γ

ζ

)1/κ

x

})
dx

}
,

where κ ∈ [ 1
2 , 1), ζ ∈ (0, 1), δ > 0, and γ ≥ 0 are parameters. The TS(κ, δ, γ ) law can be

treated as the special case as ζ → 0+. It is also an interesting problem to see properties of this
new four-parameter distribution.
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