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Summary. This paper deals with an algorithm for the solution of diffusion
and/or convection equations where we mixed the method of characteristics
and the finite element method. Globally it looks like one does one step
of transport plus one step of diffusion (or projection) but the mathematics
show that it is also an implicit time discretization of the PDE in Lag-
rangian form. We give an error bound (h+A4t+h xh/At in the interest-
ing case) that holds also for the Navier-Stokes equations even when the
Reynolds number is infinite (Euler equation).

Subject Classifications: AMS(MOS): 65M25, 65N30; Cr: 5.17.

Introduction

So far two methods were available to stabilize algorithms for the solution of
the Navier-Stokes equation at high Reynolds number: upwinding (see [7, 9, 10,
15, 17]) and leastsquares (see for instance [15]).
Recently a new method, or rather a revived old method (see [13], [5]), has
been considered in [6] which seems to have good stability properties.
du
ot
Du/Dt, the total derivative of u in the direction of the flow w.
Schematically it could be stated as a fractional step method:

The method takes into account the fact that +u Vu can be written as

Dun+§
=0
Di (1
n+ 1 n+4
uAt —vAu"“+Vp"“=f+uAt , Vutl=01in Q; wtr=upn. ()

Physically this means that the velocity at the next time step is obtained by a
transport of the velocity at the previous time step plus a diffusion of the result.
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310 O. Pironneau

However it is not easy to discretize and one does not know with what

precision (1) should be integrated. In this paper we shall give mathematical

Jjustifications to the previous algorithm while following the ideas of [1, 14]; 1e.

the implementation of the method of characteristics in a finite element context.
Briefly speaking to compute the solution of

ap

at+ul7p—v41p=fplr=0 3

for a given velocity field u, one first rewrites (3) as

D
Se=vap=f pl=0 @

and then discretizes {4) by an implicit scheme:

pr %) — p"(X"(x))

T _vApn+l(x)=fn+1; pn+llr=0 (5)

where X"(x) is the solution at t=ndt of

%=u(X,z); X((n+ 1) At)=x (6)

{(6) is integrated backward in time).

When v=0 this is the well known method of characteristics for the trans-
port equation. It is also close to the Lagrangian methods studied in [8].

Now if (5) is discretized in x by a finite element method then we can show
the following properties:
— unconditionnal stability for all v and At
— conservativity up to quadrature errors when v=0:

fprttdx=[p"dx Vn (7
(] Q

— error estimates of order h+At+h*/At with finite elements of degree 1,
independent of v,
— only symmetric linear systems to solve.

Therefore the only possible problem with this method is the numerical dissi-
pation. This aspect is discussed with numerical tests for a monodimensional
transport equation and for the Navier-Stokes equations in [2] and in a future
publication. Our applications to the computation of 3-D viscous incompres-
sible flows is done with a non conforming finite element of degree 1 which
has ¥V-u=0 exactly. This element, developed in [11] is convenient but the
method i1s by no means restricted to that element.

Notations
lolo=({lo|*dx)?,
Q

[(p[oo,Q =essup [‘P(X, t)L
[x,t]eQ
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(@, ¥)=] ¢ ddx,
2
pr(x)=p(x,m41),
X7(x)=X,(x,(m+1) At; mAt).
1. Transport Without Dissipation

In this paragraph we shall consider the simple transport (hyperbolic) equation:

d
a—’t’+uvp=f in @x710,T[
p(t=0)=p° in Q. (L.D

Here Q is a bounded (open) subset of R? or R* which could be, for example,
the region occupied by a fluid; u(x,t) is a vector field, say the velocity of the
flow at xeQ and time t. Although it is not essential, we shall assume for
simplicity that the two conditions hold:

Vou=0 in Qx]0,T[ (1.2)
u{x, t) is tangent to the boundary I' of Q for all
{x,t}el <10, T ie. u-n|p=0. (1.3)

Equation (1.1) is the governing equation of a macroscopic state variable of the
flow, for example the temperature or the density, which was p°(x) at time t=0
and which is transported by the flow without diffusion; f is the external source
per unit volume.

We recall that if Dp/Dt denotes the total derivative of p in the flow u then
(L.1) 1s really

D
D—’::f (1.4)
p(t=0)=p°

so that an explicit solution of (1.1) is
z
p(x, ) =p°(X(x,t; 0)) + | f(X(x, £; 7), 1) dT (1.5)
0

where X(.)=X(x,t;.) is the solution of the ordinary differential equation:

i—f:u(X, ) X()=x. (1.6)

When it is obvious we shall sometimes omit to write the parameters x,t in X.
In (1.6) x and t are parameters while 7 is the auxiliary time variable; if u is the
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Fig. 1. The method of characteristics. To study the dispersion of a pollutant one can compute the
trajectories of the flow particles and then deduce the shape of the polluted region at time ¢ from its
shape at time 0

vector field of a fluid then X{x,¢; 7) is the position of a fluid molecule at time t
which will be in x at time ¢ (see Fig. 1).
This result is precisely stated in the following proposition:

Proposition 1. Assume that u satisfies (1.2) and (1.3) and is uniformly lipschitz
in x in Q. Assume furthermore that p° u and f are in I®(Q), I®(Q x 10, T[);
then the solution of (1.1) satisfies (1.5), {1.6).

Several numerical methods are based upon this principle; the so called
method of characteristics and to a certain extent the vortex methods. It was
shown in [1] that the methods of characteristics could be implemented in a finite
element context by simply replacing u by one of its finite element approximation
U,

Of course one could integrate (1.6) by any numerical technique like the
Runge-Kutta algorithm. But for our application it is easier to approximate u
by u,.

For example if u, is piecewise constant in x and ¢t on a finite element
triangulation of Q x]0, T] then (1.6) has a computable exact solution and (1.5)
allows the computation of the exact solution of

dp
E'{"uh Vp th
1.7
p(t=0)=p,
where f, and p? are any interpolates of f and p°.
Indeed when u, is piecewise constant in Q x 10, T[ then X, solution of
ax
(X, X, 0=x (L8)

is a broken straight line; ie. X,(r) describes a straight segment inside each
finite element when 7 varies. In Q2 x 0, 7] each element is a prism.

Therefore to compute p{x,t) we get the following algorithm which assumes
1, to be piecewise constant:

Algorithm 1 (transport)

0. Set {x%¢°}={x,t}; i=0and p=0.

1. Find in which element K of Q x 10, T[ lies {x/,¢'}.

2. Compute u<0 such that {x',¢'} + u{u, g, 1} belongs to K.

3. Set it =4 p,x' P =xi - puy . I 71 >0 set p=p—flxpu and go back

to | with i=i+1 else set p=p—f,[x u+p2(x'**) and stop.
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If one wants a piecewise linear approximation of the solution of (1.1) at T
then it suffices to apply algorithm 1 with each node of the triangulation of Q
for x and t=T 1t is shown in [1] that such an algorithm is statistically non
dissipative (the integral of p over Q is preserved), unconditionally stable in &
and At and of order O(h)+0(4t). Since this result is of interest for the
understanding of the following methods we reproduce the essential part of the
proof.

Proposition 2. Let p(.,.) be the solution of (1.1) (i.e. p 1s given by (1.5). Let p,
be the solution of (1.7} (le. p,(x,t) can be computed by algorithm 1 for all
{x,t}€Q), then

1pu6, ) =P OIS T = f o0 +108 — POloo 0 €1l — Ul g
(V0.0 Wfl . 0) (1.9)
(I. 1, o stands for the sup norm on Q=0 x 10, T]).
Proof. From (1.5) and step 3 of Algorithm 1 we have

a6 1) pl, =YX, 5, £5 0) — (X (3, £ 0)
+ s{ (ﬁl(Xh(x’ t; T)7 T) _f(X(X, t; T), T)) dr.
0

Hence

I, )= (e, DI S 103~ p°ls, @ +17P o, 0l X, £ 0) = X(x, 15 O)f
+ K@) = X de +Pf 1, o [ 1X, () — X (9l dr. (1.10)
0 0

On the other hand according to {1.6) and (1.8)
ory=X,(x, ;11— X(x,t; 1)
satisfies 6(t)=0 and
18] = [up(X,, T — (X, D) < [, — il o+ [Vatl ol
and from the Bellman-Gronwall lemma this yields

Juy, —u]
Wuly o
Finally (1.10) and (1.11) imply (1.9). []

Important Remark. Proposition 1 does not insure that the solution of (1.7) exists
when u, is piecewise constant because the hypothesis of Lipschitz continuity is
not met. And indeed this is seen in step 2 where u may be zero if at the
intersection of two elements both velocities point outward both elements.
However if u, derives from a stream function, or vector, ¥,:

lo(o)l =

Lexp(IPul,, ot —1)) —1]. (1.11)

u,=Vxy, (1.12)
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Fig. 2. Finite elements and characteristics. If Q is divided into non overlapping triangles and 10, T[
is divided into intervals of length A¢ then € x J0, T[ is triangulated by prisms and the characteris-
tics are broken lines made of straight segments inside each prism

and if ¢, is piecewise linear in x and continuous then this trouble cannot
happen; the normal component of u, is then continuous at the interfaces of the
elements. [

Comments. The main drawback of Algorithm [ lies in the fact that it is not a
marching technique which updates p(x,t) to obtain p(x,t+ 4t). In [1] we have
discussed a procedure which advances the characteristics both forward and
backward in time without dissipation but it does not seem to apply to the
transport diffusion equation, which is the goal of this paper.

Therefore, given H,, an approximation of finite dimension of I3(Q), consid-
er the following algorithm:

Algorithm 2 (transport+ projection). Starting with m=0, compute pJ*'eH,
from p}' by solving the linear system:

ffz pi(x) my(x) dx =(f2 PRX () () dx

(m+1)41

+i | AXux,(m+1) 4t;7), v)dTy,(x)dx,  Vn,eH,
Q

mAt
(1.13)
where
XPx)=X,(x,(m+1) At; m 4t)

where X, is the solution of (1.8) with u, a piecewise constant approximation of
u, satisfying (1.12).

Comments. 1. Theoretically the second integral in (1.13) can be computed
exactly, by computing the polyhedral shape of X;(T)) for all j. In practice one
will have to use a quadrature formula, (see Fig. 3).

2. If u, satisfies (1.12) then with #,=1 it is easy to see that (1.13) implies
conservativity:

[ o+ (x)dx=| () dx (L14)
2 2
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Fig. 3. A possible shape for the deformation of T under the transport field u,

however conservativity may be lost once a quadrature formula is introduced in
the right member of (1.13); it will be satisfied with the precision of the
quadrature formula.

3. Algorithm 2 amounts to Algorithm 1 on the time interval Jmdt
(m+1) At plus a H, projection of the result pj'(X,(., (m+1) 4t; mAt)), which of
course is not in H,.

Choices for H,. Given a triangulation Z,=UT, of ©, made of triangles tetra-

13

hedra in R?, reasonable choices for H, include:

HY ={n,: m|y. is constant YT}. (1.15)
H, ={n, continuous: n,/;, is affine VT;}, (1.16)
H} ={#, continuous at the middle of each side (resp. face)

of T; only; 1,/ affine VT}}, (1.17)
H} ={n, continuous: #,/;, quadratic VT}. (1.18)

Error Analysis. Before studying the problem of numerical quadrature let us
find an error bound for algorithm 2.

Theorem 1. Assume that H, has the following property:

inf (fln—n,*>ds)*<|n| K* (1.19)
nheHn 0
where ||. || is some (Sobolev) semi-norm.

Then Algorithm 2 gives:

(J1or () —p(x, mAt)? dx)* STV ply, oluy~uly o +1pR — 0%l
Q

k

h
+Z THol 0.t F T = Sloo. 0> Y (1.20)

Corollary 1. With H} or H} and u,, f, piecewise constant, Algorithm 2 is O(h)
+0(4t)+0(h?*/4y).

With H}? and wu,, f, piecewise bilinear in (x,t) it is O(h?)+0(4t?)
Lo/ A1),
With HY and u, piecewise constant it is O(h)+O0(4t)+ O(h/At)

Proof of Theorem 1. To make things simple assume first that f=0. Then I
denotes the projection operator of L*(Q) on H,, ie.
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Iy n=arg minly—nl3 (1.21)
]r;':lefihi

or
J.(HH”I"’?)(Phdx:O Vo,eH,
2

(recall our notations:

Iglo=(!§? g*dx)*). (1.22)

With f =0, Algorithm 2 is simply

P () =My o (X3 (). (1.23)

So if p™(.) denotes p(., mAt), knowing that p™*'(x)=p™(X™(x)) where X is
defined by (1.6), we have:

loh 1 —p o ST Loy (X3) — p™(X™) o + 1T g p™(X™) = p™(X™)o-  (1.24)

The last term is bounded by using (1.19). For the first term, since I, is a
contraction we have:

T Lo (X7 — p™(X™)lo S 17 (X7 — p(X ™,
Sl (X)) = p" (X0 + o™ (X7) — " (X™)lo.
The last term above is bounded as usual by [Vp|, ,X,—X],, o hence also by
Vol olth—tly o At

while the first one is equal to |p}' — p™|, because of the fundamental formula:
[ (X, (x, 53 1) dx = [ g(X,) dX,. (1.25)
2 2

Indeed X, satisfies (1.8) and u, satisfies (1.12) therefore the Jacobian of the
transformation x— X ,(x) is equal to 1. For the same reason we also have

;flg(Xh(x, t;7) f(x) dX=!J2g(y)f(Xh(y, 13 1)dy. (1.26)

All the pieces gathered, (1.20) is obtained after summing for all m.
If f +0 then by using (1.26) we rewrite (1.13) as

B (m+ 1)4t
[ ot mdx=[pim(X70CNdx+[ | fX,(x, (m+ 1) 40); mydxde (1.27)
Q Q Q2  mdt
where B
XP()=X,(x,mAt; {m+1) 4¢) (1.28)

then we define (duality argument)
Mt = I, 13 (X (x, (m— 1) At5 (m+ 1 — 1) A1)

so that (1.27) now yields
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m (a4 1)dr

jphnhdx jp,?r];l"dx-!—Zj | fulXa(x, (m+1) 40); ), de dx.

n=090 ndat

From there it is easy to get an error estimate by the above method applied on
My (see [9]).

Remark. The behavior in At+h?/At was numerically observed in [14]. It
implies the existence of an optimal At of the order of h. [

An interesting phenomenon occurs for the choice (1.17): the linear system
(1.13) is diagonal. Indeed if ¢* denotes the k™ middle node and 5% the corre-
sponding basis function, i.e.:

) =60 Vh T nkeH], (129)
then
3 (m+ 1)a
==t | T D] (130)
k 2 mdar

where s, is the area (resp. volume) of the elements of .7, which contains g* (see
Fig. 4).

Mass lumping can also be used on (1.13) to obtain an explicit scheme with
H}. Then:

3

p?."“(qi)—o, ;;p (XK () 1y (x) dx

3 {m+ 14t )
+=§ | KX m(x)dxde (1.31)

G 0 ma
for all vertex ¢'. There 7 is the basis function corresponding to ¢' and ¢ is the
support of #i (the set of x where 7i(x)=+0). However with (1.31) the scheme is
no longer conservative. An error estimate can be obtained for (1.31). it can be
shown that the scheme is of order h+ At+h%/At as long as the grid is regular
in the sense that

o.d= Y  qs/2. (1.32)

g* mid-node
neighbor tog*

However it is not clear whether this condition is purely technical or really
necessary (see [14]).

If mass lumping is used in both sides of (1.13) then again convergence and
similar error estimates can be shown (see [14]).

Fig. 4. Degree of freedom of p,eH] according to (1.17). S, is the area of the two triangles
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Numerical Quadrature

The effect of numerical quadrature on the second integral in {1.13) is to replace
the operator II, by an approximate projection operator I1,.
From the error analysis point of view (see (1.24)) we need that

(T — 1 ) plo < C(p) h?. (1.33)

If a Gauss quadrature formula is used with coefficients w; and nodes x/ this
means that:

sup || py, dx —Zw; p(x?) 1, () /iyl o < C o) b2 (1.34)

nmeHn

This is achieved with a quadrature formula which is exact for polynomials of
degree 4. However simpler quadrature formulas, for example with the vertices
only, may not to destroy the rate of convergence. To retain conservativity it is
better to use (1.26) first and then use the quadrature. The effect of numerical
quadrature is studied in [14].

Numerical Tests: a Monodimensional Example

We shall now consider the case

dp 0Op

§+u$=0 in 12, +2[ x]0,1[
_ (1.35)
p{t=0)=p°x) if x<0
0 if x>0;u=0.75.
The exact solution is
plx, )=p%x+ut) if —l<x4ut<0 (1.36)

=p%(0) if x+ut>0 and p°(—1) if x+ut<—1.

Since the velocity is constant there i1s no error in the computations of the
characteristics and Algorithm 1 simply gives the interpolate of the exact
solution (see Fig. 5); (we maintain p(1,¢)=1 to simulate artificially a boundary
layer). Algorithm 2 with H} takes m times the least square fit of the previous
solution over a grid which is translated by udt. If udt=h of course there is no
error but otherwise the curve gradually broadens (see Fig. 6). Naturally a
similar behavior is to be expected when H; is chosen. Notice that this scheme
does not like shocks. When H} is taken then the broadening of the hump is
not so great because of (1.30); outside {x: —1<x+ut<O0} p, is exactly zero
(see Fig. 7). Shocks are also handled better (Fig. 8). It seems from these calcu-
lations that H; is better than H; when p is not regular.
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Fig. 5. Non conforming linear discontinuous least square interpolate of the initial condition p®(x)
=sin(n(x+ 1)), x<0, p°(x)=0, x>0p°(1)=1

Fig. 6. Solution at T=1 of (1.35) with the initial condition of Fig.5 4t=0.1 (10 time steps), with
algorithm 2 and conforming linear elements. There is no I damping but the sin-wave is
deformated the p(l,#)=1 creates also an oscillation in the projected curve. This element does not
handle shocks very well. The integrals are computed exactly

++ + +
H++++ s +++++ 4+t

s e bttt T +4 .

Fig. 7. Same calculation than for Fig 6 but with linear non conforming elements with 2 nodes per
element at distance h/3 and 2h/3. Notice that again there is no [* damping and that the simulated
boundary layer does not creates any oscillation

Fig. 8. Solution at T=1 of (1.35) with p°(x)=1, x <0 (ie. the shock curve in the middle of the
figure) with 4¢=0.1. The shock is broadened but with almost no oscillations
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2. The Linear Transport-Diffusion Equation

We shall now study the generalization of the previous methods to the linear
transport-diffusion equations:

9
P o uVp—vAp=fin ©x710,T[

ot
p(t=0=p°% plr=pr. -

As before we assume that
Vou=0in Qx]10,T{;u-n=0. (2.2)

In general u is the velocity field of an incompressible fluid and p can be its
temperature or the concentration of a pollutant... Assumptions (2.2) are not
essential so long as uVp is replaced by F-{pu) but they make the analysis
simpler.
Equation (2.1) is also:
Dp

o vae=1. (2.3)

D 0
We have seen from (1.5) that D—lt) really means EP(X (x, t; 1), 7)|,_,. Therefore if

we discretize (2.2) in time with a purely implicit scheme, we obtain a formula
to compute p™*! from p™:

P x) — p™(X ™ (x))

T, —vAp™* ) =f""1(x) (2.4)

where X (x, t; 1) is the solution of

dx
——=u(X, 1); X(x,t; ) =x;
dt
and where:
X"™x)=X(x, (m+1) 4t; mAr). (2.5)

Written in variational form (2.4) becomes:

1 1
— ("L, AL P =—(p" (X" (), M+ ("), VneH(Q), (2.6)
At At
pmHt—preHy(Q); p° given, 2.7
where (., .) denotes the I*(Q)-scalar product:
(fLm=ff(x)n(x)dx (2.8)
(2]

and H}(€) is the usual Sobolev subspace of functions which are zero on I
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Finite Element Approximation of (2.6}, (2.7)

If we denote again by H, one of the spaces defined in (1.16), (1.18) then
Ho,={n€H,: n,(d)=0 Vg* node corresponding
to a degree of freedom on I'}. (2.9)

Now (2.6) is approximated by

1 1
Z;(PZ."“,'?;,)JN(VP;.'"“,Vﬂh)=z(PZ"(Xh'"(-)),m)+( W) Vny€Ho,  (210)

m+1

ot —prneHg,s p7, pr, given approximations of p° py. (2.11)

where X, is the solution of (2.5) with u replaced by an approximation u, {(in
general piecewise constant in x and ). If (1.17) is used (non conforming
element), (Vpy*' Vn,) is taken to be Y, | Vop+' vy, dx.

i T,
Comments. Naturally the total derivative in (2.3) could have been discretized
either by an explicit scheme or by a Crank-Nicholson scheme. From the
results of the last paragraph we can already see that the following com-
binations are suitable:
- with (2.10) H,, should be constructed from (1.16) or (1.17),
- with an explicit scheme in time (1.17) makes everything explicit,
- with a Crank-Nicholson scheme (1.18) should be chosen. However with
(1.17) and a u, piecewise linear in ¢ the error might be of order h?+ 412 +h?/At
thereby allowing bigger time steps (At =h, 4).

Error Analysis and Stability

By letting 1, =pr*! in (2.10) we find that
(o G+ vat Vo 9 slpilo + 1T Mo At (2.12)

Therefore the method is unconditionally stable in the L? sense. As v tends to
zero it is also conservative because it becomes the algorithm of paragraph 1.
Let us show that it has the same error estimates:

Theorem 2. The method (2.9)~(2.11) is of order h+ At +h?/At when H} or H}
are selected. More precisely if p,=0, py' is computed by (2.10) and p™ is
computed by (2.4), then:

(o5 = p™o +v AtV (i —p™Ig)* < i {inf (10" —mlg+v AtV (p"—n,)i3)*}

n=1 nkeHxn

+(pw — Pl +v 4tV (o —pNDE + TI =S "o
2

h
+sup {{F" o lu,—uly T}+cEllp"ll 2,00 (2.13)

(c=0 with HY).
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Proof. Let §™=p"—p™, and assume H} is used.

By subtraction of (2.4), multiplied by 5, and integrated on Q, from (2.10),
we find that (see (1.28) for the definition of X,(.)):

1 1 _
I(5m+ , M) ‘Z(‘Sm’ (X5 () +v(om™ Y V1)
SO =1 o +1P0l . oltty — e o1 M4los (2.14)

where |Vpl,, o =supVp"|, o can be shown to be bounded by differentiation of
(2.4) and the maximum principle.

1 _
(0", n(X7(.)) has been

The second term has been transformed by (1.26); T,

added and subtracted. Define 7'+ by

1 1
SR G T e =07 )
(VoL VE)  VE,EeH,,
Then from (2.14) and (1.25)

1
— e v G
At

1
< [ 1870 4 L = 1 g P gty =l T o

Therefore
(nr+ G+ Aev|Pyp 13
(™5 + Aev |V EMHE+ AL = f7H o+ Pl luy—ul). (2.16)

Now from (2.15) and the definition of 6™ we find that
Mt =py =My pm ()
—gm+1 +{)m+1(-)"ﬁyf)m+1(-)
where [T, is the projector on H, with respect to the norm
(-5 +vadp. gyt =|. 1, (2.17)
So we find that (2.16) yields
(0" T+ vatpom TR <l p" — 7y o™,
(™G +vAV MG+ A (LA — " o 1Vl ol —ul)-

Now it remains to sum for all m to complete the proof. The second assertion
in the theorem comes from the identity

l]pm+1__ﬁHpm+i|llz u:lf !}pm+1—nhl|l
NMheion



Transport-Diffusion Algorithm 323

when H, is used we have an additional term in the left hand side of (2.14)
because a1

6
(_A/’mﬂ,”lh):(v hm)+2 j N, dl
i oT,
and the last term is not zero if #, is discontinuous; {0T;}, are the boundaries of
the elements of the triangulation.
Define a new interpolation «, by

’ ap ’ ’ ’
(Vamn 0, Vi) =V, p, th.)—z j %ﬂhdr VnhEH(l)h nhEH(l)h'

t T,

Then if " *1=p*! —m p"*! we now have
1 m+1 m+ 1 1 m m m m
E(é )+ (V0 ’Vhr]h):Z(ph(Xh(‘))_p (X™C)) )

1
+(fm+1 fm+1’nh)+z_t_(pm+1_n;lpm+1’nh)
which, in turn, yields

[ SN0+ Aelfim Tt = o+ 1o —m 0™
+lpm—m, "o+ 1P (X ()~ (X))

Now it can be shown (see [17]) that |p —=}, plo <cp®l, h*
Thus the rest of the proof is the same except for this additional term which
produces at the end an extra term in the right hand side of (2.13):

o115, ch?/At,

Remark. 1. Theorem 2 does not give a good bound on |V(p}' —p™)|, when v+0.
From (2.15) one can in fact obtain also

1
(ZAcfV (o} —p'")lé)*§7 clh+At+h2/A1).
y
2. The error estimates is produced from (2.13) provided we show that [p™
—plo 18 O(41) and |Fp|,, is bounded for all m. Such results are easy to obtain

from (2.4).

Practical Implementations. Therefore the same type of quadrature formula must
be used: a Gauss formula of precision h* for example.
The error analysis also tells us that the time step At which gives the least
error is
of

ol +1Pply

At=21|7 (Vp)| /( at

) (2.18)

However for very small v since every time step has a smoothing effect one may
prefer to use large time step with perhaps a higher order approximation for
H,.
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Fig. 9. Solution of (2.22) at T=1, after 10 iterations (4t=0.1) for v=0.01. Conforming linear
elements are used (h=0.1)

Upwinding effect. Let us apply the mean value theorem to the right hand side
of (2.10): there exists £(x) such that

PR =pp(x)+ Vo (€ () (X7 (x) = %) (2.19)

the “indicates a subgradient because p, is not in C*(£2) (see Ekland [8]); and
from (2.5) there exists 8 such that

X" —x=u,(X,(x,(m+1)4t; 0),0) At; mAr<<(m+1) At. (2.20)

Therefore (2.10) can be rewritten as

1 1
E(p;"“,nh)Jrv(Vp;"“, Vi =( h'"“,m)+z(pi,", M)
+(PoME) uy(Xp(0(x), 1) Vn,eHy,. (2.21)

Since &(x) lies between X,(x,(m+1)At; mAt) and x it means that (2.21) is an
upwinded finite element semi-implicit approximation.

Compared with the usual upwinded schemes we have the following advan-
tage:
- stability with symmetric linear systems,
- optimal error estimates.

Numerical Tests: a Monodimensional Example

As in Paragraph 1 we have tested the method on

Z—/t)+ul7p—vAp=0 in 1—1, +1[ x]0, 1[; u=0.75.
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Fig. 10. Same on Fig. 9 but with the non conforming linear discontinuous element of Fig.7;
v=002 and 0.05. Since the element is discontinuous, —v4p has been approximated by a finite
difference formula

p(x,0)=sin IT(x+1) if x<0 (2.22)

=0 otherwise;
p(—=1,9=0,p(1,0)=1

For small values of v this problem has a boundary layer at x=1.

Both approximations (linear continuous element and linear discontinuous
element) give satisfactory results: no oscillation, reasonable numerical dissi-
pation (see paragraph 1) and a proper treatment of the boundary layer.

The discontinuous element seems to be more dissipative at equal number of
degrees of freedom (which implies & (discontinuous) =2k (continuous)).

3. Application to the Navier-Stokes Equations

Although much more complex and non linear, the Navier-Stokes equations are
of the transport-diffusion type:

Z—L;-Hl Vu—vAu=f—Vp
V=0 in 2x70, T[ .
u(t=0)=u’; u/,=0. (31)
Indeed in variational form (3.1) can also be rewritten as
D
(D—';, v) (P, Voy=(f,v)  Yuel,(Q)
(3.2)

u(., ey, (Q={veH (Q)"; V-.v=0 in Q;v|,=0}.
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As before D/Dt is the total derivative in the direction u, (.,.} is the scalar
product of I2(Q)™ (m=1,n or n* and n is the dimensionality of the flow (n=2
or 3).

We shall discretize in time by a purely implicit scheme, as before, even
though in practice one may prefer a Crank-Nicholson scheme; for theoretical
considerations it is simpler and it has the same difficulties as the second
scheme.

So (3.2) is approximated in time by

le(u’” Loy v(Vumtt, Po)y=(fm*1, v)+%(u"‘(X’"(.), v)  Yoedy(Q)

umtledy (@) (3.3)
where X™(x)=X(x,(m+1)4t; mAt) is the solution of

d—X:u"'(X), X{x, t;t)=x. (3.4)
dt
It is important to stress the good behavior of this algorithm:
1. each time iteration amounts to a Stokes problem plus a transport of the
previous solution on the characteristics. Therefore the linear systems will be
symmetric.

2. the method is unconditionally stable. Indeed letting v =u™""!

in (3.3) gives

(G +vAe <[ o AL+ u™g
<[f™ o At +(umE+vAtvun2)r, (3.5)

Spatial Discretization with a Divergent Free Element

To discretize in space we shall begin with the method of Crouzeix-Raviart [6],
Thomasset [16], extended to the 3 — D case by Hecht [11].
Let

Jon={v,: v,l7 linear; v, continuous at the mid-nodes;
V-0, =0, ¥ T; v,(g") =0 if ¢* is 2 mid-node of I'}. (3.6)
The mid-nodes are the middles of each side of triangles in R* and of each face
of tetrahedras in R3. J,, is a nonconformal approximation of J,(£2) of order 1.

Basis functions of J,, are rather difficult to construct, but it is more a
theoretical difficulty than a practical one: the Fortran codes are not complex

(see [11]).
Then (3.3) 1s approximated by

1
Z(uhm+ l, v +v(V, uhm+ 1: Vi ow)

1
=(f"1, Uh)+zz(”;."(Xf(-), v Vo,edq, 3.7
uptled,,;ul given in Jy,.

where P, u,(x) is Vu,(x) if xeT; and O at the discontinuities of u,.
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To make X}' computable we define i}, piecewise constant in x, by

Vxy", VxE)=(uy,VxE) thEH}l,fhxnh.:O;
preH! (see {1.16)), ¥, xnl =0;

=V xy";

ax

A= (X,(0), X5 0) =x; and (3.8)
T

Xpx)=X,(x,(m+1)At; mAt).

Naturally in practice one would have to use a quadrature formula for the last
terms in (3.7) (say a Gauss formula of precision h* after having used (1.26)).

Remark 1. Although (3.8) defines @} uniquely, ¥" i1s not unique. Numerically
one must either add a penalty term or take the (unique) determination that
satisfies (see [4]).

VwrveEy=@r v =&y véeH;é, xn=0o0nTl
Yrxn=0onTI

This problem is easier, ¥" is unique (and @} -n=0 on I' also).

Stability and Error Analysis

Proposition 3. Scheme (3.7) is unconditionnaly stable:
(w115 + Aev | DS Al f75 o+ (uflF +v AV, ul5)? (3.9)
Proof. As above. [

Note that even when v is very small, (3.7) has a unique solution. Con-
vergence and error analysis for all values of v is somewhat hopeless since it
would constitute also an existence (and perhaps uniqueness) proof of solution
of Euler’s equations in R3, (a hard problem in itself).

Therefore let us only give arguments about error estimates which assume
existence and uniqueness and regularity of the Euler and Navier-Stokes equa-
tions.

If we follow exactly the proof of Theorem 2 of previous paragraph we come
to

(lup t =t 2 v AtV (T —um T DS (WA vh A [V (VU™

) U Ko+ o 4 = 7 g Atk uny o b 1O

where the third term in the right was bounded by |Vu|_ |u,—u|, 4t in the
previous analysis.
This estimate is not sufficient in our case we must proceed more carefully.
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By using the mean value theorem we get as before:

[u™ (X, (., m+ 1) 4t); mA)) —u™(X (., (m+1) 4t); mAL)),

3.11
étvulm,QlX;,n_Xmlo ( )

where u™ is the solution of (3.3), and [Vul Q—sup |Vu™| . Now by definition of
X, and X (see (3.8) and (3.4)):

A ¥, XIS @) P o X, = XI@: (1)
therefore
X7 — X () S ettt [ K (5) = (X, (2 d (3.13)
mat

Hence

(m+ 1)t 5
( | lﬁL"(Xh(r))—u'"(Xh(r))ldr) dx. (.14

mbt

.f ]X;.n—Xmlz dxéezwulwdtj'
e o]

Recall that the Schwartz inequality implies that

b b 1
[gdx<yb—a (f g’ dx) ; therefore
(m+ 1)4t

| Xy —Xmg<drei=dt [ [la(X () ~u™(X, (03] d.

mAt

Fortunately X,(t) can be replaced by x as in (1.25) because V-iiy =0 so we
find that

| X7 — X", < Atel et |fm —ym| | (3.15)
If we show that

[y —u™y <fuy —u™y+clVul  h (3.16)
then (3.10), (3.11), (3.15) imply that (see (2.17)):

= =™+ S Ll —u™|| [1+241)Vul  e7=4]
+chAtVul? eli=dt | fmd_ gmtll Ap 4 c(h® +vhAt) VW],

Therefore we can state the following result:

Theorem 3. Assume that (3.3)-(3.4) has a unique solution in L*(0, T; W2 2(Q)).
Let u'(.) be the solution of (3.7)-(3.8) then for h, 4t small enough:
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h2
(=3 v 2017 =3 < [2 (T2 e g+ T =)
a3+ v A7 — )2
+o((v+hADIAT) ol P2 o) h] exp(|Vul, oT) (3.17)

i.e. the scheme (3.7)-(3.8) is of order h+ At +h?/At.

Proof. According to the previous discussion we only have to prove {3.16).
Let v* = —u™ and §,=Vx ¢, then from the definition of i, we get

(@ —u",0%) 1

[ty —u™g= =—— Ly —u™, v*) + (i —uf, v* — 5,)]
[v*]o [v*]o
Sl =l =y
0

or equivalently with &, =1 —D,:
[ — w3 Sl —uP| iy —u™ o + luf — o1, — ™o
From this we show easily that (use a’?<a(b+c)+bc=a=(b+c))
fity — u™o = (fuy —u"o +|u™ — @y o)

and since it is true for all &,, @, =Vx &, it demonstrates (3.16), because V-u™=0.

Spatial Discretization by the Hood-Taylor Element

In [2] the Stokes problem is approximated with conforming elements of degree
2 for the velocity u, and degree 1 for the pressure p, on the same triangulation
(triangles or tetrahedra). This element is of order h* for |u,—u|, and h* for

|V (u, —u)l, (see [3]).
More precisely let

Von={v, continuous: v,|; quadratic in x; (3.18)
V4l =0} < (H o(Q)"
0,=1{q, continuous: g,|; linear in x} = H!(£2). (3.19)

Then (3.1) is approximated by (Crank-Nicholson’s scheme):
i
(u"'+1 v+ (Vul"“ Vo) +(Vpp o) = (X5 ()), v)

—~—(I7uh,l70h)+( o) Vo,eVy,

m+1
€Von

(Vg uy =0 Vq,€Qy; pyT'€Q, (3.20)
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where X}'(x) is the solution at time t=mA4t of

ax,
dt

=u,(X,,7); X (m+1)4)=x. (3.21)

As the first term in the right hand side of (3.20) must be computed by a Gauss
quadrature formula of precision h* the solution of (3.21) is needed for 4 (5 in
R?) points x per triangle (tetrahedron).

In (3.21) u, is piecewise quadratic in X and ideally piecewise linear in t.
Therefore (3.21) is approximated by a method of Runge-Kutta of degree2:

X;‘"(x)zx——Az—![u;,"*‘(x)+u;,"(x—Atu;‘"“(x))]. (3.22)

This formula makes (3.20) non linear in u*'. Some improvement over (3.22)
can be obtained if we change the variable of integration: (see (1.26)).

(X (), o) =, v, (X7 ) +O(V-w,) (3.23)
then

_ At
Xm+1 :x+—2—[uf(x)+u;,"“(x+Atu;,"(x))]. (3.29)

Adams method is even better:

m+1 __ m m—1
Xyt t=x+ Arfuy(x) +uy = 1(x)]/2 (3.25)
1.40
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Fig. 11. Visuali_ation of a 3-D flow for the cavity problem at Reynolds number 100. Computation
is done by (3.7), (3.8)
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because (3.20) is again linear in ¥ "1, In all likelyhood however one can expect
that Adams method will give good results only if u, is a smooth function of ¢.

Therefore (3.20), (3.25) should be a well balanced scheme of order h3/At+h?
+At? according to the considerations of the previous paragraph. The in-
terested reader will find in [2] several numerical implementation and tests of
this algorithm. A secure error bound is however not as easy as in the previous
case because V-u, is not exactly zero and because (3.21) can no longer be
integrated exactly. However if a projection like (3.8) is used then a precision of
order h+At+h*/At can be shown as before but it is not optimal for this
scheme. We include the visualization of a 3-D flow for the cavity problem with
v=1/100 computed with method (3.7), (3.8): see Fig. 11. The result is borrowed
from Hecht [11].

Conclusion

For the convection-diffusion equation we have shown that by mixing the
method of characteristics and the finite element method we are able to derive
first and second order accurate conservative schemes, of the upwinding type,
which do not blow up when the diffusion coefficient tends to zero. Moreover
these schemes are numerically better than the usual upwinding schemes be-
cause they require numerical solution of symmetric systems only.

However their numerical implementations require a further step, a quadra-
ture formula for the right hand sides, which is difficult to devise so as to keep
the conservativity and the error estimates. Thus in that sense this paper is not
complete and will be followed later on by another one dealing only with this
difficult problem.

The analysis extends to some non linear problems like the Navier-Stokes
equations. We exhibit a stable conservative O(h+ 4t+h?/At) scheme for the
Navier-Stokes equations and we show that the scheme of [2] is likely to be
0(h? + At* +h3/4t) provided that the characteristics are properly computed and
a suitable quadrature formula is used.

Acknowledgement. 1 am grateful to P.A. Raviart for his suggestions on the generalization of the
transport algorithm to the Transport-diffusion algorithm, and also to V. Girault for the thorough
reading and comments of the manuscript. Computations have been made on the home computer
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