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Summary. This paper deals with an algorithm for the solution of diffusion 
and/or convection equations where we mixed the method of characteristics 
and the finite element method. Globally it looks like one does one step 
of transport plus one step of diffusion (or projection) but the mathematics 
show that it is also an implicit time discretization of the PDE in Lag- 
rangian form. We give an error bound (h+At+h • in the interest- 
ing case) that holds also for the Navier-Stokes equations even when the 
Reynolds number is infinite (Euler equation). 

Subject Classifications: AMS(MOS): 65M25, 65N30; Cr: 5.17. 

Introduction 

So far two methods were available to stabilize algorithms for the solution of 
the Navier-Stokes equation at high Reynolds number: upwinding (see [7, 9, 10, 
15, 17]) and leastsquares (see for instance [15]). 

Recently a new method, or rather a revived old method (see [13], [5]), has 
been considered in [6] which seems to have good stability properties. 

8u 
The method takes into account the fact that ~f+uVu can be written as 

D u/D t, the total derivative of u in the direction of the flow u. 
Schematically it could be stated as a fractional step method: 

Dun+~ 
D ~ = O  (1) 

b/n+ 1 un+~ - 
A ~  -vAu"+l+Vp"+l=f+ A~' g-u"+ l=0  in O; u"+lIr=Ur. (2) 

Physically this means that the velocity at the next time step is obtained by a 
transport of the velocity at the previous time step plus a diffusion of the result. 
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However it is not easy to discretize and one does not know with what 
precision (1) should be integrated. In this paper we shall give mathematical 
justifications to the previous algorithm while following the ideas of [i ,  14]; i.e. 
the implementation of the method of characteristics in a finite element context. 

Briefly speaking to compute the solution of 

Op 4_uVp_vAp=f Plr=O (3) 
Ot 

for a given velocity field u, one first rewrites (3) as 

Dp 
- - - v A p = f  p] r=0  (4) 
Dt 

and then discretizes (4) by an implicit scheme: 

p"+'(x)-p"(X"(x)) 
-vAp"+X(x)=f"+l; p"+l ] r=0  (5) 

At 

where X"(x) is the solution at z=nAt of 

dX 
d-~=u(X,z); X((n+ l)At)=x (6) 

((6) is integrated backward in time). 
When v=0  this is the well known method of characteristics for the trans- 

port equation. It is also close to the Lagrangian methods studied in [8]. 
Now if (5) is discretized in x by a finite element method then we can show 

the following properties: 

- unconditionnal stability for all v and At 
- conservativity up to quadrature errors when v=0:  

S p.+l dx= f P"dx Vn (V) 
(2 f2 

- error estimates of order h+At+h2/At with finite elements of degree 1, 
independent of v, 
- only symmetric linear systems to solve. 

Therefore the only possible problem with this method is the numerical dissi- 
pation. This aspect is discussed with numerical tests for a monodimensional 
transport equation and for the Navier-Stokes equations in [2] and in a future 
publication. Our applications to the computation of 3-D viscous incompres- 
sible flows is done with a non conforming finite element of degree 1 which 
has V.u=O exactly. This element, developed in [11] is convenient but the 
method is by no means restricted to that element. 

Notations 

Iq~lo =(j  [q~12 dx)~, 
f~ 

[q~[oo, Q = essup [(p(x, t)[, 
[x, tlEQ 
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(~o, 0)  = S ~ ~ dx, 
O 

pro(x) = p(x, m A t), 

X~(x)=Xh(x,(m+ 1)At; mat). 

311 

1. Transport Without Dissipation 

In this paragraph we shall consider the simple transport (hyperbolic) equation: 

Op~_uVp=f in (2x]0,  T[  & 

p(t=O)=p ~ in O. (I.1) 

Here (2 is a bounded (open) subset of R 2 or R 3 which could be, for example, 
the region occupied by a fluid; u(x,t) is a vector field, say the velocity of the 
flow at xe(2 and time t. Although it is not essential, we shall assume for 
simplicity that the two conditions hold: 

V.u=O in (2 x ]0, T[  (1.2) 

u(x, t) is tangent to the boundary F of (2 for all 

{x, t} eF  x ]0, T [ .  i .e.u, nlr =0. (1.3) 

Equation (1.1) is the governing equation of a macroscopic state variable of the 
flow, for example the temperature or the density, which was p~ at time t = 0  
and which is transported by the flow without diffusion; f is the external source 
per unit volume. 

We recall that if Dp/Dt denotes the total derivative of p in the flow u then 
(1.1) is really 

Dp 
- f  (1.4) 

Dt 

p(t = O) = pO 

so that an explicit solution of (1.1) is 

p(x, t) = p o (X(x, t; 0)) + i f (X(x ,  t; Q, z) dz (1.5) 
0 

where X ( . ) =  X(x, t; .)  is the solution of the ordinary differential equation: 

dX 
~7=u(X , z ) ;  X(t)=x. (1.6) 

When it is obvious we shall sometimes omit to write the parameters x, t in X. 
In (1.6) x and t are parameters while z is the auxiliary time variable; if u is the 
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{X, t} 

�9 t ~ N  

.2> . . . . .  , ,  

Fig. 1. The method of characteristics. To study the dispersion of a pollutant one can compute the 
trajectories of the flow particles and then deduce the shape of the polluted region at time t from its 
shape at time 0 

vector  field of a fluid then X(x , t ;  ~) is the posit ion of a fluid molecule at t ime r 
which will be in x at t ime t (see Fig. 1). 

This result is precisely stated in the following proposi t ion:  

Proposition 1. Assume that  u satisfies (1.2) and (1.3) and is uniformly lipschitz 
in x in D. Assume fur thermore  that  p0, u and f are in L~176 L~176 x ]0, TD;  
then the solution of (1.1) satisfies (1.5), (1.6). 

Several numerical  methods  are based upon  this principle; the so called 
method  of characteristics and to a certain extent the vortex methods.  It was 
shown in [1] that  the methods of  characteristics could be implemented in a f inite 
element context by simply replacing u by one of  its f ini te element approximation 
U h �9 

Of course one could integrate (1.6) by any numerical  technique like the 
Runge -Ku t t a  algori thm. But for our appl icat ion it is easier to approx imate  u 
by u h. 

For  example  if u h is piecewise constant  in x and t on a finite element 
t r iangulat ion of f2 x ]0, T [  then (1.6) has a computab le  exact solution and (1.5) 
allows the computa t ion  of the exact solution of 

0p 
Ot ~-uh Vp = fh 

p(t  = 0) = po (1.7) 

where fh and p~ h are any interpolates o f f  and pO. 
Indeed when u h is piecewise constant  in f2 x ]0, T [  then X h solution of 

dX~ X.(t) (1.8) d': = uh(Xh' T); = X 

is a b roken  straight line; i.e. Xh(T) describes a straight segment inside each 
finite e lement  when r varies. In Q x ]0, T [  each element is a prism. 

Therefore  to compute  p(x, t )  we get the following algori thm which assumes 
fh to be piecewise constant: 

Algori thm 1 (transport)  

0. Set { x ~ 1 7 6  i = 0  and p = 0 .  
1. Find in which element K of E2 x ]0, T [  lies {x i, ti}. 
2. Compu te  IZ<0 such that  {x ~, t ~} + f l { U h l K ,  1} belongs to 0K. 

~+1 t ~+1 t t+ l  3. Set t = t + # , x  = x ' + # u h t  K. If t > 0  set P=P-- fh]K# and go back 
to 1 with i = i +  1 else set p=p--fh[K#+pOh(x i+1) and stop. 
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If one wants a piecewise linear approximation of the solution of (1.1) at T 
then it suffices to apply algorithm 1 with each node of the triangulation of Q 
for x and t =  T. It is shown in [1] that such an algorithm is statistically non 
dissipative (the integral of p over (2 is preserved), unconditionally stable in h 
and At and of order O(h)+O(At) .  Since this result is of interest for the 
understanding of the following methods we reproduce the essential part of the 
proof. 

Proposition 2. Let p ( . , . )  be the solution of (1.1) (i.e. p is given by (1.5). Let Ph 
be the solution of (1.7) (i.e. ph(x,t)  can be computed by algorithm 1 for all 
{x, t}cQ),  then 

lOb(x, t ) -  p(x, t)[ =< Tl fh - -  f[oo,a + IP ~ -- pO[oo,a + C11Uh--U[oo, a 

(I VP~ o<,. a + [ Vf[ oo, o) (I .9) 

(l. Ioo,o stands for the sup norm on Q =f2 x ]0, T[). 

Proo f  From (1.5) and step 3 of Algorithm 1 we have 

ph(x, t ) -  p(x, t)= p~ t; o)) - p~ t; 0)) 

+ i (fh(Xh( x, t; z), z ) - f ( X ( x ,  t; z), z)) dz. 
0 

Hence 

[ph(X, t)-- p(x,  t)l < Ip Oh __ pO[~,~ + t VpOt~,aiXh(X, t; O) -- X(x ,  t; O)t 
! t 

+~ t f h (Xh( z ) ) - - f (Xh (~ ) ) l&+lV f loo .a  ~ [Xh ( z ) -X (~ ) [dz .  (1.10) 
0 0 

On the other hand according to (1.6) and (1.8) 

~(~) = Xh(x, t; z ) -  X(x,  t; z) 

satisfies 6(t)=0 and 

13I = [u~(X~, ~) - u(X, ~)t < luh - uI ~ ,  a + [ Vuloo, al~[  

and from the Bellman-Gronwall lemma this yields 

I U  h - -  U] 
]fi(~)l < [exp ( lVu loo ,a ( t - z ) ) -  1]. (t.11) 

fvuloo,e 

Finally (1.10) and (1.11) imply (1.9). [] 

Important  Remark.  Proposition t does not insure that the solution of (1.7) exists 
when u h is piecewise constant because the hypothesis of Lipschitz continuity is 
not met. And indeed this is seen in step 2 where # may be zero if at the 
intersection of two elements both velocities point outward both elements. 
However if u h derives from a stream function, or vector, Oh: 

u h = Vx  qJh (1.12) 
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( m-1 )At 

(m-2)At 

~ x 2 

- ~ ' ~  .....  character is t ic  

x 1 

Fig. 2. Finite elements and characteristics. If [2 is divided into non overlapping triangles and ]0, T[ 
is divided into intervals of length A t  then (2 x ]0, T[ is triangulated by prisms and the characteris- 
tics are broken lines made of straight segments inside each prism 

and if q5 h is piecewise linear in x and continuous then this trouble cannot 
happen; the normal component of u h is then continuous at the interfaces of the 
elements. []  

Comments. The main drawback of Algorithm 1 lies in the fact that it is not a 
marching technique which updates p(x,t) to obtain p(x , t+At ) .  In [1] we have 
discussed a procedure which advances the characteristics both forward and 
backward in time without dissipation but it does not seem to apply to the 
transport diffusion equation, which is the goal of this paper. 

Therefore, given Hh, a n  approximation of finite dimension of L2(f2), consid- 
er the following algorithm: 

Algorithm 2 (transport+projection). Starting with m=0,  compute m+l Ph G H h  

from p~" by solving the linear system: 

p~ + ~(x) ~ ( x )  d~ = ~ p";(X~(x)) ~.(x) ax 
12 12 

(m + 1 )At 

+~ ~ fdXh(x , (m+l )A t ; z ) , z )dZ t lh (X)dx ,  
12 mat 

V ~ h @ H  h 

(1.13) 
where 

X~(x) = Xh(X, (m + 1) A t; m A t) 

where X h is the solution of (1.8) with u h a piecewise constant approximation of 
u, satisfying (1.12). 

Comments. 1. Theoretically the second integral in (1.13) can be computed 
exactly, by computing the polyhedral shape of X~"(Tj) for all j. In practice one 
will have to use a quadrature formula, (see Fig. 3). 

2. If u h satisfies (1.12) then with t/h= 1 it is easy to see that (1.13) implies 
conservativity : 

p'ff + ' (x) dx = ~ p'ff(x) dx (1.14) 
12 12 
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,,,,,c,- . . . . . . . . .  X h "/"" ...... 

",, T,ii"-, i 

Fig. 3. A possible shape for the deformation of T under the transport field u h 

however conservativity may be lost once a quadrature  formula is introduced in 
the right member  of (l.13); it will be satisfied with the precision of the 
quadrature  formula. 

3. Algorithm 2 amounts  to Algori thm 1 on the time interval ] m A t  
(m+ 1)At[ plus a H h projection of the result p"~(Xh(. , (m+  1)A t; mA t)), which of 
course is not in H h 

Choices for  H h. Given a triangulation Jhh = UT~ of f2, made of triangles tetra- 
hedra in R 3, reasonable choices for H h include: 

0 Hh ={qh-rlhlT, is constant VT~}. (1.15) 

H~ ={~/h continuous:  ~hlr, is affine VT~}, (1.16) 

H~' = {r/h continuous at the middle of each side (resp. face) 

of T i only; rlhIr ' affine VT~}, (1.17) 

H~ = {q, continuous:  rlhIr ~ quadrat ic  VTi}. (1.18) 

Error  Analysis. Before studying the problem of numerical quadrature  let us 
find an error bound for algorithm 2. 

Theorem 1. Assume that H h has the following property:  

inf (~[rl--~lhleds)~<--_ II~ll hk (1.19) 
~h~Hh 

where II. II is some (Sobolev) semi-norm. 
Then Algorithm 2 gives: 

(f IP~ (x) - p (x, mA t)l 2 dx)~ < T IVpl oo, ~ [Uh -- ul ~,~ + [pO _ pOlo 
f2 

h k 
+At- TI ItPtl Ioo,~o. rl + T f L -  f l~ ,e ,  Vm. (1.20) 

Corollary 1. With H i or H i '  and Uh, fh piecewise constant, Algorithm 2 is O(h) 
+ O(A t) + O(h2/A t). 

With H~ and Uh, fh piecewise bilinear in (x , t )  it is O ( h 2 ) + O ( A t  2) 
+ 0 (h 3/A t). 
With H ~ and u h piecewise constant it is O(h)+ O(A t ) + O ( h / A t )  

P r o o f  o f  Theorem I. To make things simple assume first that f = 0 .  Then H u 
denotes the projection operator  of  L2(O) on H h, i.e. 
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(1.21) HI/q =arg  min It /-  qhlO z 
qhEHh 

In~)o= 1 
o r  

~(f f lHrl--r])~hdx=O Vq)hEH h 
f2 

(recall our notations: 

Iglo =(j~ g2 dx)~). (1.22) 
O 

With f = 0, Algorithm 2 is simply 

p,~+ i ( .  ) = H n  p"~(X"~(. )). (1.23) 

So if p"( . )  denotes p ( . , m A t ) ,  knowing that p " + l ( x ) = p m ( X m ( X ) )  where X is 
defined by (1.6), we have: 

]p '~+l - -pm+l lo<lHH[P~(S"h ' ) - -pm(X")] lo+FII~pm(Xm)- -pm(Xm) l  o. (1.24) 

The last term is bounded by using (1.19), For the first term, since Hn is a 
contraction we have: 

m X m m m < m m I//o[Ph ( h ) - P  (X)][o=]Ph ( X h ) - P ( X ~ ) l o  

<= jp"; (x ' ; ) -  pm(X~")l 0 + Ip"(x~)  - p~(x~ 

The last term above is bounded as usual by lI7ploo,QlXh--X[oo,Q hence also by 

]VPloo,QlUh--Uloo,a At  

while the first one is equal to [p~"-pm[ 0 because of the fundamental formula: 

g(Xh(X , t; Z))dx = ~ g(Xh)dX h. (1.25) 
I2 I2 

Indeed X h satisfies (1.8) and u h satisfies (1.12) therefore the Jacobian of the 
transformation x ~ X h ( x  ) is equal to 1. For the same reason we also have 

g(Xh(X,  t; z) f (x) d x  = ~ g(y) f (Xh(y  , r; t )dy .  (1.26) 
[2 f2 

All the pieces gathered, (1.20) is obtained after summing for all m. 
If f : # 0  then by using (1.26) we rewrite (1.13) as 

(m + 1 )At 

~p '~+lqhdX=~p '~r lh (X '~ (x ) )dx+ S ~ f h ( X h ( X , ( m + l ) A t ) ; t ) r l h d x d t  ( 1 . 2 7 )  
f2 ~2 rndt 

where 
--m X h ( x ) = X h ( X  , m A t ;  (m + 1)At) (1.28) 

then we define (duality argument) 

rl~ +1 = H h rl~(Xh(X , (m -- i) A t; (m + 1 -- i) a t)) 

so that (1.27) now yields 
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( n +  1 )A t  

~P'~lhdX=f phO ~h '~dx + ~. ~ I fh(Xh(X,(m+l)At);t)"hdtdx" 
f2 f2 n = 0 ~ n d t  

F r o m  there it is easy to get an error est imate by the above method applied on 
qh (see [9]). 

Remark. The behavior  in At+h2/At was numerically observed in [14]. It 
implies the existence of an opt imal  At of the order of h. [ ]  

An interesting phenomenon  occurs for the choice (1.17): the linear system 
(1.13) is diagonal.  Indeed if qk denotes the k ~h middle node and r/~ the corre- 
sponding basis function, i.e. : 

then 

k r (1.29) r/~(q~)=dikl Vk, l; rlheHn , 

p~'+ ( q ) = ~ .  p,(X,(x)l~l~(x)dx+ ~ S "~fh(Xh) dzdx (1.30) 
k F8 Fd m a t  

where s k is the area (resp. volume) of the elements of Jhh which contains qk (see 
Fig. 4). 

Mass lumping can also be used on (1.13) to obtain an explicit scheme with 
H A. Then" 

q 
P"~+ (q')= ~i ~ p"~(X"~(x)) tfh(X) dx 

3 (m+ 1)dt 
+~7 ~ ma,Y fh(Xh)q~n(x)dxdz (1.31) 

for all vertex qi. There r/~ is the basis function corresponding to qi and a i is the 
suppor t  of q~ (the set of x where rt~(x) 4= 0). However  with (1.31) the scheme is 
no longer conservative. An error est imate can be obtained for (1.31). It can be 
shown that the scheme is of order  h+At+h2/At as long as the grid is regular 
in the sense that 

ai qi= ~ qk Ski2" (1.32) 
qk m id-node 
neighbor to q~ 

However  it is not clear whether  this condit ion is purely technical or really 
necessary (see [14]). 

If  mass lumping is used in both sides of (1.13) then again convergence and 
similar error estimates can be shown (see [14]). 

Fig. 4. Degree of freedom of p h E H ~ '  according to (1.17). S k is the area of the two triangles 
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Numerical Quadrature 

The effect of numerical quadrature on the second integral in (1.13) is to replace 
the ope ra to r / / n  by an approximate projection opera tor / )n .  

From the error analysis point of view (see (1.24)) we need that 

[ ( / 7 ~  - I'I ~) Plo < C(p) h 2. (1.33) 

If a Gauss quadrature formula is used with coefficients co~ and nodes x j this 
means that: 

sup [S prlh dx - Z o3~ p(xO 1Jlh(XJ)I/l~lh[O ~ C(p) h 2. (1.34) 
~lhEHh 

This is achieved with a quadrature formula which is exact for polynomials of 
degree 4. However simpler quadrature formulas, for example with the vertices 
only, may not to destroy the rate of convergence. To retain conservativity it is 
better to use (1.26) first and then use the quadrature. The effect of numerical 
quadrature is studied in [14]. 

Numerical Tests: a Monodimensional Example 

We shall now consider the case 

(Op , Op ,~ 
~-+U~xx=U in ] - 2 ,  + 2 [ x ] 0 , 1 [  

p( t=O)=p~ if x < 0  

0 if x > 0 ;  u=0.75. 

(1.35) 

The exact solution is 

p ( x , t ) = p ~  if - l < x + u t < O  
(1.36) 

=p~ if x + u t > O  and p ~  if x + u t < - l .  

Since the velocity is constant there is no error in the computations of the 
characteristics and Algorithm 1 simply gives the interpolate of the exact 
solution (see Fig. 5); (we maintain p(1, t )= 1 to simulate artificially a boundary 
layer). Algorithm 2 with H~ takes m times the least square fit of the previous 
solution over a grid which is translated by uAt. If u A t = h  of course there is no 
error but otherwise the curve gradually broadens (see Fig. 6). Naturally a 
similar behavior is to be expected when H ] is chosen. Notice that this scheme 
does not like shocks. When H~' is taken then the broadening of the hump is 
not so great because of (1.30); outside { x : - l < x + u t < O }  Ph is exactly zero 
(see Fig. 7). Shocks are also handled better (Fig. 8). It seems from these calcu- 
lations that H i' is better than Hh ~ when p is not regular. 
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4- 

+ + 
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+ + 

+ + + + + + + + 4 . 1 " * -  

4 - +  
-I-4- 

+ 
+ 

+ 

* - t - + + + 1 " + 1 "  t _ t ' 4 .  

-t- 

Fig. 5. Non conforming linear discontinuous teast square interpolate of the initial condition p~ 
=sin(rc(x + 1)), x<O, p~ =0,  x > 0 p ~  1 

Fig. 6. Solution at T =  1 of (1.35) with the initial condition of Fig. 5 At=0.1  (10 time steps), with 
algorithm 2 and conforming linear elements. There is no L ~ damping but the sin-wave is 
deformated the p ( l , t ) = l  creates also an oscillation in the projected curve. This element does not 
handle shocks very well. The integrals are computed exactly 

+ +  + 

q. + 

+ + 

+ + 

+ + + + + + +  + +  

§ 

+ 

+ 

4 - + +  

Fig. 7. Same calculation than for Fig. 6 but with linear non conforming elements with 2 nodes per 
element at distance hi3 and 2h/3. Notice that again there is no L ~ damping and that the simulated 
boundary layer does not creates any oscillation 

Fig. 8. Solution at T = I  of (1.35) with p ~  x < 0  (i.e. the shock curve in the middle of the 
figure) with At=0.1.  The shock is broadened but with almost no oscillations 
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2. The Linear Transport-Diffusion Equation 

We shall now study the generalization of the previous methods to the linear 
transport-diffusion equations: 

0p 

Ot 
- - + u V p - v A p = f  in (2 x ]0, T[  

p( t=O)=p ~ p l r=Pr  . 

As before we assume that 

(2.1) 

V.u=O in f2x ]O, T[; u.nlr=O. (2.2) 

In general u is the velocity field of an incompressible fluid and p can be its 
temperature or the concentration of a pollutant... Assumptions (2.2) are not 
essential so long as uFp is replaced by V.(pu) but they make the analysis 
simpler. 

Equation (2.1) is also: 

Dp 
- - -  v A  p = f (2.3) 
Dt 

We have seen from (1.5) that ~ -  really means p(X(x,  t; ~), v)l~=t- Therefore if 

we discretize (2.2) in time with a purely implicit scheme, we obtain a formula 
to compute pm+l from p ' :  

p "  + 1 (x) - / "  ( x  m (x)) 
vAp" + 1 (x) = f "  + 1 (x) (2.4) 

At 

where X(x,  t; ~) is the solution of 

dX 
7 = u ( X ,  z); X(x, t; t )=x ;  
a ' c  

and where: 
Xm(X)= X(x,  (m+ I) At; mat). 

Written in variational form (2.4) becomes" 

(2.5) 

~(p'+',,7)+,,(v/'+', v,~)=~(,o"(x'(.),,7)+(f"+',,7), V,TeH~(#), (2.6) 
/.+1 _prett~(~); pO given, (2.7) 

where ( . , . )  denotes the L2(O)-scalar product: 

( f  tl) = ~ f (x) ~l(x) dx (2.8) 
~2 

and H0~(O) is the usual Sobolev subspace of functions which are zero on F. 
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Finite Element Approximation of(2.6), (2.7) 

If we denote again by H h one of the spaces defined in (1.16), (1.18) then 

Hoh= {tlheHh: th,(q k) = 0  

Now (2.6) is approx imated  by 

g q k node corresponding 

to a degree of freedom on F}. (2.9) 

1 m + l  1 ,, ,, m+ 
~-(Ph ,rlh)+v(Vp~ +~, Vqh)=~f(ph(Xh ( . ) ) , r /h )+( f  ~ l, rlh ) VtlheHoh (2.10) 

p,~+ 1 __prh~Hoh; pO, Prh given approximat ions  of po, Pr (2.11) 

where X h is the solution of (2.5) with u replaced by an approximat ion  u h (in 
general piecewise constant  in x and t). If (1.17) is used (non conforming 
element), (Vp"~ +1 Vrlh ) is taken to be ~ S VP'~ +1 Vrlh dx" 

i T~ 

Comments. Natural ly  the total derivative in (2.3) could have been discretized 
either by an explicit scheme or by a Crank-Nicholson  scheme. F rom the 
results of the last paragraph  we can already see that  the following com- 
binat ions are suitable: 
- with (2.10) H0h should be constructed from (1.16) or (1.17), 
- with an explicit scheme in t ime (1.17) makes  everything explicit, 
- w i t h  a Crank-Nicholson  scheme (1.18) should be chosen. However  with 
(1.17) and a u h piecewise linear in t the error might be of  order h2+ At2+ h2/A t 
thereby allowing bigger t ime steps (At ~ho.6). 

Error Analysis and Stability 

By letting _ ,.+1 G--Oh in (2.10) we find that  

(lp~ "+ 1I~ + vAt[ Vp"~ + 112) ~ < ]P~"10 + Jfh "+ 11o A t. (2.12) 

Therefore the method  is unconditionally stable in the L 2 sense. As v tends to 
zero it is also conservative because it becomes the a lgori thm of paragraph  1. 
Let us show that  it has the same error estimates:  

Theorem 2. The method (2.9)-(2.11) is of  order  h+At+h2/At  when H~ or Hh 1' 
are selected. More  precisely if Pr=O, p'~ is computed  by (2.10) and pm is 
computed  by (2.4), then: 

(]p"~-p"~[Z + vAtlV(p"~-p")[2)~ < ~ { i n f  (]p"--rlh[~ + v At[V(p"--rlh)I2) ~:} 
n= 1 rlheHh 

+(Ip~ - p~ + v Atll7 (p~176 + TI f 2 -  f"[o 
h 2 

+ s u p  {[V~"loolu h-u[o  ~ T} + c~ttP"l{ 2,o~ (2.13) 
n 

(c=O with H~). 
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Proof Let fire= p~"-p" ,  and assume H~ is used. 

By subtraction of (2.4), multiplied by t/h and integrated on f2, from (2.10), 
we find that (see (1.28) for the definition of )(h(-)): 

1 6,,+ 1 1 6" 17t/h) 7 / (  , t/,) - ~ (  , t/h(x~"(. )) + v(Va ~ + 1, 

<[[f~"+l--f"+a[o+tVplo~,Q[uh--u[~,O]It/h[O; (2.14) 

where IFploo.e=suplFpmt~,r~ can be shown to be bounded by differentiation of 
(2.4) and the maximum principle. 

1 ,. X ~  The second term has been transformed by (1.26); ~ ( p  ,t/h( h ( ' ))  has been 
added and subtracted. Define r/~"+l by 

1 . ,+ ,  g =1(6 , .+ , ,r  
7i(t/h , h)+V(Vt/~'+L VG) 

+v(V6 "+I, V~h) V~heHoh. 

Then from (2.14) and (1.25) 

1 
m + l  2 - -  V V m + l  2 

At qh o ~- r/h o 

= la Io + If,2 -f"+llo+lVpI~,,Qtuh-uloo]lrl'~+11o. 

Therefore 
r7 m + l  2x�89 (lt/~+ II~ + Atv  vt/h o~ 

< ([6ml~ + AtvIVcY%) ~ + A t(]fh m+l - - f " +  110 + [17p]o~lUh--U[~). (2.16) 

NOW from (2.15) and the definition of 6" we find that  

t /~ ,+ l_  . ,+I - --Ph -17np'+~(.) 
=6~+: +p~+ i ( . )_/~,  p,,+i(.) 

w h e r e / 7 ,  is the projector on Hob with respect to the norm 

(I. [~ + vAtIF. I~) ~ = II-111- (2.17) 

So we find that (2.16) yields 

(I6"+ l]~ + vAtlV6"+ ~l~)~ < [Ip'--~Hp"I[ ~ 

+ (16"1g + vAtl V6ml~)+ + A t(lf2' + 1 _ fro+ 1 Io +ll7p[oo l uh -ul~o). 

NOW it remains to sum for all m to complete the proof. The second assertion 
in the theorem comes from the identity 

Hpm+l--~Hpm+INl= inf }}p"+l--t/hlli 
rlh~Soh 
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when H~' is used we have an addit ional  term in the left hand side of (2.14) 
because (~ Am+ 1 

and the last term is not zero if r/h is discontinuous;  {~?T~} i are the boundaries  of 
the elements of the triangulation. 

Define a new interpolat ion 7z~, by 

' 7~h@Hoh. 

T h e n  i f  ~ "  + 1 _ ,. + 1 o - P h  - ~ p " + ~ ,  we now have 

1 m + l  
+(f~'+'-- fm+~,t lh)+~-~( p --~'hpm+',tlh) 

which, in turn, yields 

II~im + i J[ 1 =< II 6'~1[ 1 + d t l f ~  +1 - f " +  l I o + Ip m + l  -7c~  pro+ l lo 

+ Ip ~ - rc~ P~lo + Ipm(X~'( .  )) - Pm(Xm(" ))1. 

N o w  it c a n  b e  s h o w n  (see [17]) t h a t  I P -  n~ Plo--< c II p~ 2 h2. 
Thus the rest of  the proof  is the same except for this addit ional  term which 

produces at the end an extra term in the right hand side of (2.13): 
Ilpll 2, oo ch2/A t. 

Remark. 1. Theorem 2 does not give a good bound  on IV(p"~-pm)]o when v+0 .  
F r o m  (2.15) one can in fact obtain also 

1 
(Z A t l V (p"~ - pm)lo2)i < ~-v c(h + A t + h2/A t). 

2. The error est imates is produced from (2.13) provided we show that  lp ~ 
- P [ o  is O(At) and [Vp[o~ is bounded  for all m. Such results are easy to obtain 
from (2.4). 

Practical Implementations. Therefore the same type of quadra ture  formula must 
be used: a Gauss  formula of precision h 3 for example. 

The error analysis also tells us that  the t ime step At which gives the least 
error is 

( Ou ) (2.18) 0 f  +]Vp[oo ~ -  o~ At~- 2h[V(Vp)loj ~ [  ~ 

However  for very small v since every t ime step has a smoothing  effect one may 
prefer to use large t ime step with perhaps  a higher order approx imat ion  for 
H h . 
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Fig. 9. Solution of (2.22) at T=I, after 10 iterations (At=0.1) for v=0.01. Conforming linear 
elements are used (h=0.1) 

Upwinding effect. Let us apply the mean value theorem to the right hand side 
of  (2.10): there exists ~(x) such that 

p~(x";(x) = p~'(x) + ~'p~"(~ (x))(x";(x)-x) (2.19) 

the "indicates a subgradient because Ph is not  in C1(f2) (see Ekland [8]); and 
from (2.5) there exists 0 such that 

X'~ - x = u h (X h (x, (m + 1) A t; 0), O) A t; m A t < 0 < (m + 1) A t. (2.20) 

Therefore (2.10) can be rewritten as 

1 m+~ ,~+~ 1 ,. 
~(ph ,O+v(vp"; +~,v~h)=(~ ,~h)+~/(Ph,~h) 

+ (Vp"~(~(x)) uh(Xh(O(x)), tlh) Y~heHoh. (2.21) 

Since ~(x) lies between X h ( x , ( m + l ) A t ; m A t  ) and x it means that (2.21) is an 
upwinded finite element semi-implicit approximation.  

Compared  with the usual upwinded schemes we have the following advan- 
tage: 
- stability with symmetric linear systems, 

- optimal error estimates. 

Numerical Tests: a Monodimensional Example 

As in Paragraph 1 we have tested the method on 

c~p 

Ot 
- - + u V p - v A p = O  in ] - 1 ,  + l [ x ] 0 ,  1 [ ;u=0 .75 .  
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Fig. 10. Same on Fig. 9 but with the non conforming linear discontinuous element of Fig. 7; 
v=0.02 and 0.05. Since the element is discontinuous, -yAp has been approximated by a finite 
difference formula 

p(x,O)=sinFl(x+l) if x < 0  (2.22) 

=0  otherwise; 

p ( -  1, t)=0, p(1, t)= 1 

For small values of v this problem has a boundary layer at x = 1. 
Both approximations (linear continuous element and linear discontinuous 

element) give satisfactory results: no oscillation, reasonable numerical dissi- 
pation (see paragraph 1) and a proper treatment of the boundary layer. 

The discontinuous element seems to be more dissipative at equal number of 
degrees of freedom (which implies h (discontinuous)= 2h (continuous)). 

3. Application to the Navier-Stokes Equations 

Although much more complex and non linear, the Navier-Stokes equations are 
of the transport-diffusion type: 

& +u V u - v A u = f  - V p  

V.u=O 

u(t=O)=u~ u[r=0.  

in f2 x ]0, T[  

(3.1) 

Indeed in variational form (3.1) can also be rewritten as 

(~tt'v)+v(Vu' Vv)=(f,v) VVeJo(fl) 

u(., t)eJo(f2 ) = {veil I (f2)"; V. v = 0 in f2 ;v l r=0 }. 
(3.2) 
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As before D/Dt is the total  derivative in the direction u, ( . , . )  is the scalar 
product  o f / -2(0)  m ( m =  t, n or n 2 and n is the dimensional i ty of the flow ( n = 2  
or 3). 

We shall discretize in t ime by a purely implicit scheme, as before, even 
though in practice one may  prefer a Crank-Nicholson  scheme; for theoretical 
considerat ions it is s impler and it has the same difficulties as the second 
scheme. 

So (3.2) is approx imated  in t ime by 

~-~(ul ,,+i,v)+v(Vu,,+l ' Vv)=(fm+1, v)+l(um(Xm(.) ,v)  vveJo(O) 

urn+ 1 e J0((2) (3.3) 

where Xm(x)=X(x , (m+ 1)At; mAt) is the solution of 

dX 
d~=Um(X), X(x,  t; t)=x. (3.4) 

It is impor tan t  to stress the good behavior  of  this a lgor i thm: 
1. each t ime iteration amounts  to a Stokes problem plus a t ranspor t  of  the 

previous solution on the characteristics. Therefore the linear systems will be 
symmetric. 

2. the method  is unconditionally stable. Indeed letting v = u m+ 1 in (3.3) gives 

([um+ II~ + vAtIVurn+ ilg)�89 <l f "+  lloAt + lUm[o 

<= [f"~+ I[o A t + ([u"l 2 + vA t] Vum[2) �89 (3.5) 

Spatial Discretization with a Divergent Free Element 

To discretize in space we shall begin with the method  of Crouzeix-Raviar t  [63, 
Thomasse t  [16], extended to the 3 - D  case by Hecht  [113. 

Let  

Joh = {Vh: Vhl T linear; v h cont inuous at the mid-nodes;  

V-Vh[r----0, VT; G(qk)=o if qk is a mid-node  of F}. (3.6) 

The mid-nodes  are the middles of  each side of triangles in R 2 and of each face 
of  te trahedras in R 3. Job is a nonconformal  approx imat ion  of Jo((2) of order  1. 
Basis functions of Joh are rather  difficult to construct,  but it is more  a 
theoretical  difficulty than a practical  one: the For t ran  codes are not  complex 
(see [11]). 

Then  (3.3) is approx imated  by 

1 urn+ I Ti( h ,vh)+v(V~u"; +1, V~v~) 

=(f ro+ i ,  V h ) + l  (u,~(X,r,(.), vh ) VVheJo h (3.7) 

m + i  . 0 u h eJoh,U h given in Joh. 

where VhUh(X) is VUh(X) if xeT~ and 0 at the discontinuities of  u h. 



Transport-Diffusion Algorithm 327 

To make X~' computable we define ~ ' ,  piecewise constant in x, by 

(V x ~m, V x ~ 0 = ( u  ~, V x ~  0 V~h~H~,~ h x n l r = 0 ;  

tPh"eH ~ (see (1.16)), ~ x nI r=0;  
~ m  

u h = g x ~hm; 

d X  h 
dz --U"h(Xh(z))' X h ( X ' t ;  t ) = X ;  and (3.8) 

X'~ (x) = X h (x, (m + 1) A t; m A t). 

Naturally in practice one would have to use a quadrature formula for the last 
terms in (3.7) (say a Gauss formula of precision h 3 after having used (1.26)). 

Remark I. Although (3.8) defines ~ '  uniquely, ~h ~ is not unique. Numerically 
one must either add a penalty term or take the (unique) determination that 
satisfies (see [4]). 

- -  m t .  (VtlYhm ' V~h) __(Uh ' ~7 X ~h) V~heHh' ~h x n = 0  on F 

~h~xn=0  on E 

This problem is easier, ~ "  is unique (and ~ ' .  n = 0 on F also). 

Stability and Error Analysis 

Proposition 3. Scheme (3.7) is unconditionnaly stable: 

(]u~,+qg+Atvl ,~+12~ ,.+1 VhUh 1o) < A t l f  [o+(lu"~lg+v~tlVhu"~l~) ~ (3.9) 

Proof. As above. []  

Note that even when v is very small, (3.7) has a unique solution. Con- 
vergence and error analysis for all values of v is somewhat hopeless since it 
would constitute also an existence (and perhaps uniqueness) proof of solution 
of Euler's equations in R 3, (a hard problem in itself). 

Therefore let us only give arguments about error estimates which assume 
existence and uniqueness and regularity of the Euler and Navier-Stokes equa- 
tions. 

If we follow exactly the proof of Theorem 2 of previous paragraph we come 
to 

(lug *+1 - u  m+ 1[o2 + vA t] Vh(u"~ +1 - u  m+ 1)]o2)~ =<(h 2 + vhA t)[V(Vu")loo 

+lu,,(X,~)__um(X,,)lo+[U,~__umlo+lf~.+1__fm+l[oAt+c[Tu,~tl2,~h2 (3.10) 

where the third term in the right was bounded by IVutoolUh--Ul~At in the 
previous analysis. 

This estimate is not sufficient in our case we must proceed more carefully. 
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By using the mean value theorem we get as before: 

[Um(Xh(., (m + 1) A t); mA t)) - u~(X(.,  (m + 1) A t); mA t))lo 

<=IVu]oo,QIX" ~ - Xm[O 
(3.11) 

where u" is the solution of (3.3), and IVul~,~=sup [vumloo. Now by definition of 
X h and X (see (3.8) and (3.4)): 

d 
IX h -  Xl(~) ~ [u~(Xh(v)) - u m(xh(~))] +lVul~o,QlXh- Xl (m); (3.12) 

therefore 

(m + 1)At  

IX"~-Xml(x)<e Iv"f~~ ~ Ifi'~(Xh(r))--u~(Xh(z))ldr. (3.13) 
mAt  

Hence 
[ ( m  + 1 ),:It ~ 2 

J]X'~--Xmi2dx<--e21V"i~176 e ~ Jve [u~(Xh(r)l-u"(Xh(r))ld~) dx. (3.14) 

Recall that the Schwartz inequality implies that 

1 

gdx < g2 dx therefore 

(m + 1 )A t 
m m 2  I X n - X  lo <Ate  21wl~A' ~ [[u"~(Xh(Z))--um(Xn(v))l~] dz. 

m a t  

For tunate ly  Xh(~ ) can be replaced by x as in (1.25) because V - ~ ' = 0  so we 
find that 

IX~-- Xmlo ~ ~te  Iv"I~176 . (3.15) 

If we show that 

[zT~" - u"[o =< lu;" - umlo + C117Uloo h (3.16) 

then (3.10), (3.11), (3.15) imply that  (see (2.17)): 

ilu~,+ 1 _ urn+ 1 ii * 5 [- II u~ - umll i [1 + 2 A t l  Vu[oo e Iv"l~m] 

+chAtlVul 2 etVUj~, + i f  m+ 1 _f~+l[oAt  +c(h2 + vhAt)[VVu]o~. 

Therefore we can state the following result: 

Theorem 3. Assume that (3.3)-(3.4) has a unique solution in L~ T; W 2'~(f2)). 
Let  u~'(.) be the solution of  (3.7)-(3.8) then for h, At small enough: 
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(lu;,"- uml2> +V,J tl V.( 'r u')lg)~ <= [2 (T ~ Ilull z,oo,Q + h 2  T fh--f oo e) 

+ (1~ ~ - u~ ~ + ~,,~ tl vh(u 7 - u~ o2) =~ 

+ c((v + h lA  t)117(17u)1oo e i7u ~ Q) h i  exp(I Vuto~,e T) (3. 17) 

i.e. the scheme (3.7)-(3.8) is of order  h+ At +h2/At. 

Proof According to the previous discussion we only have to prove (3.16). 
Let v* -- u h-m _um and 17 h = 17x ~h then from the definition of fin we get 

la~'- u"l 0 - (a~"- ~ ,  v*) _ 1 {(u~'- u", v*) + (a~"- uL v* - 0h)] 
Iv*lo Iv*lo  

, .  Iv*-~hlo 
< u m ,, - u'-_~hlO 
_- h - u  o~- h lv*lo 

or equivalently with &h = ~ '  -- ~h: 

b/h m 2 m m ~m m m ~m - ' - u  I o < l u h - u  Io tuh-u  Io+luh--Uhlol~h--umlo . 

F r o m  this we show easily that (use a 2 <a(b + c) + b c ~ a  <(b + c)) 

l ~ '  - Um[o < ([u~' - -  Umlo + ]u m - -  COhl o)  

and since it is true for all ~h, ~ a~h- = Vx (h it demonst ra tes  (3.16), because V.u m =0.  

Spatial Discretization by the Hood-Taylor Element 

In [2] the Stokes problem is approx imated  with conforming elements of degree 
2 for the velocity u h and degree 1 for the pressure Ph on the same tr iangulat ion 
(triangles or tetrahedra). This element is of order  h 3 for [uh--u] o and h z for 
]V(Uh-- U)lo (see [3]). 

More  precisely let 

Voh = {v h continuous:  Vh] r quadrat ic  in x; (3.18) 

vhhr = 0} = (/-S~(C2))" 

Q,h = {qh continuous:  qhlr linear in x} t i l l ( f 2 ) .  (3.19) 

Then (3.1) is approx imated  by (Crank-Nicholson 's  scheme): 

( u m + , , vh) + z ( W 7 , , Wh) + ( V p T  ' , vh) = ( . :  ( X : ( . ) ), 

V 
--~(17u'~, VVh)+(f~'+ l, Vh) Vvh~ Voh 

(Vqh, U'~+l)=O Vqh~Qh ; p'~+aeQh. (3.20) 
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where X'~(x) is the solution at t ime z=mAt of 

dXh 
--Uh(Xh, z); Xh((m+l)AO=x. (3.21) 

dz 

As the first term in the right hand side of (3.20) must  be computed  by a Gauss  
quadra ture  formula  of precision h '~ the solution of (3.21) is needed for 4 (5 in 
R 3) points x per triangle (tetrahedron). 

In (3.21) u h is piecewise quadrat ic  in X and ideally piecewise linear in t. 
Therefore (3.21) is approx imated  by a me thod  of Runge-Kut t a  of  degree2: 

x'~(x) = x - ~  [u'2 + '(x) + u'2(x- ~ t u'~ +'ix))]. (3.22) 

This formula  makes  (3.20) non linear in u~ '+1. Some improvement  over (3.22) 
can be obtained if we change the variable of  integration: (see (1.26)). 

then 
i u ' 2 ( x ' 2 ( . ) ) ,  ,~.) = (u 'L v,(s + ' ( .))) + o(I v . . , l )  

~.~+1 At +1 ,. 
= x + - -  [u~"(x) + u~" ix + A t uh (x))]. 

2 

Adams  method  is even better:  

x T + ~ = x + Z t [ u T ( x ) + u ~ - ' ( x ) ] / 2  

(3.23) 

(3.24) 

i3.25) 

1.40 

.,,,"T ....................................... 5;7 
t . t0 , / / ~  

o3_ ...... t 

0.20p i . ~  ~ ; g " "  
O.05k i..- ...... i , , ""  

-0.10 ~ . . . . . . . . . . . . . . . . . . .  .v 
- 0.10 0.20 0.50 0.80 1.10 1.40 

Le plan de coupe a pour equation 2 ' =  0.556 

Fig. 11. Visuali_ation of a 3-D flow for the cavity problem at Reynolds number 100. Computation 
is done by (3.7), (3.8) 
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"+~ In all l ike lyhood however one can expect  because  (3.20) is again  l inear in u h . 
that  Adams  method  will give good  results only if u h is a smooth  function of t. 

Therefore (3.20), (3.25) should be a well ba lanced  scheme of order  h3/At + h 2 
+ A t  2 according to the considera t ions  of the previous paragraph .  The in- 
terested reader  will find in [2] several numerical  implementa t ion  and tests of 
this algori thm. A secure error  bound  is however not  as easy as in the previous 
case because V.u h is not  exactly zero and because (3.21) can no longer  be 
in tegra ted  exactly. However  if a projec t ion  like (3.8) is used then a precis ion of 
order  h + A t + h 2 / A t  can be shown as before but  it is not  op t imal  for this 
scheme. We include the visual izat ion of a 3-D flow for the cavity problem with 
v- -1 /100 computed  with method  (3.7), (3.8): see Fig. 11. The result is bo r rowed  
from Hecht  [11]. 

Conclusion 

For  the convect ion-diffusion equat ion  we have shown that  by mixing the 
method  of character is t ics  and the finite element  me thod  we are able to derive 
first and  second order  accurate  conservat ive schemes, of the upwinding type, 
which do not  blow up when the diffusion coefficient tends to zero. Moreover  
these schemes are numerical ly  bet ter  than the usual  upwinding  schemes be- 
cause they require numerica l  solut ion of symmetric systems only. 

However  their numerica l  implementa t ions  require a further step, a quadra-  
ture formula  for the  right hand  sides, which is difficult to devise so as to keep 
the conservat ivi ty  and  the error  estimates.  Thus in that  sense this paper  is not  
comple te  and will be followed later  on by another  one deal ing only with this 
difficult problem. 

The analysis extends to some non l inear p roblems  like the Navier -S tokes  
equations.  We exhibit  a stable conservat ive O ( h + A t + h 2 / A t ) s c h e m e  for the 
Navier -S tokes  equat ions  and  we show that  the scheme of  [2] is likely to be 
0(h 2 -t-zlt 2 +h3/At)  provided  that  the characteris t ics  are proper ly  computed  and 
a sui table  quadra tu re  formula  is used. 

Acknowledgement. 1 am grateful to P.A. Raviart for his suggestions on the generalization of the 
transport algorithm to the Transport-diffusion algorithm, and also to V. Girault for the thorough 
reading and comments of the manuscript. Computations have been made on the home computer 
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