
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 12, DECEMBER 2008 1993

On the Trivariate Rician Distribution
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Abstract—An exact expression for the joint density of three
correlated Rician variables is not available in the open literature.
In this letter, we derive new infinite series representations for the
trivariate Rician probability density function (pdf) and the joint
cumulative distribution function (cdf). Our results are limited
to the case where the inverse covariance matrix is tridiagonal.
This case seems the most general one that is tractable with
Miller’s approach and cannot be extended to more than three
Rician variables. The outage probability of triple branch selective
combining (SC) receiver over correlated Rician channels is
presented as an application of the density function.

Index Terms—Cumulative distribution function (cdf), expo-
nential correlation, Rician fading, selection combining, trivariate
Rician distribution.

I. INTRODUCTION

IN PROPAGATION environments such as satellite or mi-
crocellular mobile radio channels with line-of-sight prop-

agation, the received signal consists of a direct component
and a number of multipath (reflected) components. Since the
received signal in this ubiquitous case has the Rician distribu-
tion [1], it is widely used by wireless communications systems
researchers for a myriad of analysis and design problems
involving diversity reception, multicarrier systems, multiple-
input multiple output (MIMO) systems, wireless channel mod-
eling and others.

Consequently, bivariate and multivariate Rice distributions
play a pivotal role in the performance analysis of practical
wireless communication systems and the related results date
back four decades [2]- [10]. Bello and Boardman [3] derive
the bivariate Rician density as a single finite-range integral.
Middleton [10] has derived the bivariate Rician density as an
infinite series of modified Bessel functions. However, his result
has gone unnoticed before. Abu-Dayya and Beaulieu [4] use
the integral in [3] for performance analysis of switched dual
diversity systems over correlated Rician fading. In [9], [11],
an infinite series for the bivariate Rician density is derived
by expanding the Bessel function in the integrand [3] and
is employed for performance analysis of dual diversity SC.

Paper approved by V. A. Aalo, the Editor for Diversity and Fading Channel
Theory of the IEEE Communications Society. Manuscript received March 28,
2006; revised September 2, 2006.

P. Dharmawansa was with the Telecommunications Field of Study, School
of Engineering and Technology, Asian Institute of Technology, Thailand. He
is now with the Department of Electronic and Computer Engineering, Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong (e-mail: eesinghe@ust.hk).

N. Rajatheva is with the Telecommunications Field of Study, School of
Engineering and Technology, Asian Institute of Technology, P. O. Box 4,
Klong Luang, Pathumthani 12120, Thailand (e-mail: rajath@ait.ac.th).

C. Tellambura is with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB T6G 2V4, Canada (e-mail:
chintha@ece.ualberta.ca).

Digital Object Identifier 10.1109/TCOMM.2008.060396

Miller [12] derives the pdf of norm of two correlated n-
dimensional non zero-mean Gaussian vectors. This result has
been used by Simon [13] to derive the pdf and cdf of the
bivariate Rician distribution.

The joint density of generalized p Rayleigh variables is
derived in [14] when the inverse of the correlation matrix
is tridiagonal. The trivariate case is considered there for
an arbitrary correlation matrix. Multivariate Rayleigh and
Nakagami-m distributions, which have many applications, are
analyzed in detail in [15]- [19]. The authors in [7], [8] analyze
the performance of L branch SC and equal gain combining
(EGC) over equi-correlated Rician environments. The authors
in [20] and [21] analyze the performance of several diversity
schemes over correlated Rician channels employing the chf
based approach. Furthermore, the performance of maximal
ratio combining (MRC) in correlated Rician channels are
analyzed in [22], [23]. Despite the extensive literature, no
exact analytical joint pdf and cdf are available in the open
literature for the trivariate (or higher order) Rician distribution.

In this letter, we derive a new series representation of the
trivariate Rician density using Miller [12] when the inverse
covariance matrix is tridiagonal. This condition holds for
exponentially correlated channels. Moreover, pdf and cdf of
bivariate and trivariate Rice distributions are also derived.
However, the trivariate analysis for an arbitrary correlation
matrix seems intractable. We consider only one application
- namely the performance analysis of triple branch SC over
correlated Rician fading environment.

II. TRIVARIATE DISTRIBUTION

A. Probability Density Function

Let {X,Y,Z} be two dimensional Gaussian vectors with
means given by E (X) = E (Y) = E (Z) = a, where
X = (x1 x2)

T
,Y=(y1 y2)

T
,Z= (z1 z2)

T and a =
(a1 a2)

T . Here (·)T , E (·) denote the transpose of a matrix
and the mathematical expectation, respectively. Let Vi =
(xi yi zi) , 1 ≤ i ≤ 2, be independent three dimensional
Gaussian vectors composed of the ith components of X,Y and
Z with positive definite covariance matrix of order 3×3, M3.
In the following display, the columns are the 2-dimensional
Gaussian vectors

X Y Z
V1 x1 y1 z1

V2 x2 y2 z2

(1)

and the rows Vj are independent from each other and with
identical covariance matrix M3. The inverse covariance matrix
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of Vj is

W3 = M−1
3 =

⎛
⎝w11 w12 w13

w12 w22 w23

w13 w23 w33

⎞
⎠ . (2)

As mentioned above, we assume that W3 is a tridiagonal
matrix (i.e., w13 = 0). The amplitudes r1 = |X|, r2 = |Y|
and r3 = |Y|, being the square root of sum of squares of 2
nonzero-mean Gaussian variates, are Rician variates [1]. Here
| · | denotes the Euclidean norm of a column vector. The joint
density of X,Y and Z can then be written as [12]

f (X,Y,Z) =
1

8π3M3
exp
{
−1

2

( 3∑
i=1

wiir
2
i + a2w4

)}

× exp
{
XT (w1a − w12Y) + w2YT a

}
× exp

{
ZT (w3a − w23Y)

}
(3)

where w1 = w11 + w12, w2 = w22 + w23 + w12, w3 =
w33 + w23, w4 = w1 + w2 + w3, a = |a| and M3 denotes
the determinant of square matrix M3. The power correlation
coefficient of the Rician variates can be written as ρη =
Cov

(
r2
i , r2

j

)
/
√

var (r2
i ) var

(
r2
j

)
for all 1 ≤ i, j ≤ 3.

From the pdf (3), we must integrate out X,Y,Z, subject
to the constraints r1 = |X|, r2 = |Y|, r3 = |Z|, which will
yield the joint pdf of correlated Rician variables {r1, r2, r3}.
Consequently the trivariate Rician density of r1 = |X|, r2 =
|Y| and r3 = |Z| can be written as

g (r1, r2, r3) =
1

8π3M3
exp
{
−1

2

( 3∑
i=1

wiir
2
i + a2w4

)}

×
∫
|X|=r1

exp
{
XT (w1a − w12Y)

}
dσx

×
∫
|Z|=r3

exp
{
ZT (w3a − w23Y)

}
dσz

×
∫
|Y|=r2

exp
(
w2YT a

)
dσy

(4)

where dσx, dσy and dσz are the elements of surface area. The
first integral can be evaluated as [12, eq.2.2.9]∫

|X|=r1

exp
{
XT (w1a − w12Y)

}
dσx

= 2πr1I0 (r1|w1a − w12Y|)

where I0(z) is the modified Bessel function of the first
kind and zeroth order and the second integral follows the
same form. Using the Neumann addition formula for Bessel
functions [24: pp.365], followed by change of variables in the
second integral to polar coordinates and choosing a as the
polar axis [12], we arrive at (5), where εk is the Neumann
factor (ε0 = 1, εk = 2 for k = 1, 2...), θ is the angle between
a and Y and In (z) is the modified Bessel function of the first
kind and order n. The integral in (5) can be evaluated by using
the identity cos kθ cos pθ ≡ 1

2 [cos (k + p) θ + cos (k − p) θ]
and [25: eq.7.34], to give the trivariate Rician distribution as
shown at the bottom.

To the best of our knowledge, the joint pdf (6) is a new
result. Note however that (6) is not valid unless w13 = 0.
Nevertheless, if a given covariance matrix has no tridiagonal
inverse, then we can follow the Green’s matrix approach
suggested in [17] to produce the best approximate covariance
matrix with a tridiagonal inverse. Next we illustrate some
simplifications of (6).

1) Bivariate Density: Here we obtain the bivariate Rician
distribution from the Trivariate distribution. Although it is
natural to integrate out r3 in (6) to get the joint density of
r1, r2, we use an alternative method by taking w23 = 0, which
implies k = 0 and (6) then can be written as a product of the
bivariate density and a univariate Rician density. Thus we get
the bivariate Rician density as

g2 (r1, r2) =
r1r2

M2
exp
{
−1

2

(
2∑

i=1

wiir
2
i + wia

2

)}

×
∞∑

p=0

εp(−1)pIp (w1ar1) Ip (w12r1r2)

× Ip (w2ar2) .

(7)

where M2 denotes the determinant of 2×2 covariance matrix
of the underlying Gaussian variables corresponding to the
Rice variables r1, r2. This agrees with the previous result [10:
eq.9.56].

2) Independent Rice Envelopes: If r1, r2 and r3 are inde-
pendent, then w12 = w23 = 0 and the two infinite summations
in (6) can be simplified to

g (r1, r2, r3)=
3∏

i=1

wiiri exp
{
−1

2
wii

(
r2
i + a2

)}
I0 (wiiari) .

Therefore we get a product of three Rician density functions.

g (r1, r2, r3) =
r1r2r3

2πM3
exp
{
−1

2

( 3∑
i=1

wiir
2
i + a2w4

)} ∞∑
k=0

∞∑
p=−∞

εk(−1)k+pIk (w3ar3) Ik (w23r2r3)

× Ip (w1ar1) Ip (w12r1r2)
∫ 2π

0

cos kθ cos pθ exp (w2ar2 cos θ) dθ

(5)

g (r1, r2, r3) =
r1r2r3

M3
exp
{
−1

2

( 3∑
i=1

wiir
2
i + a2w4

)} ∞∑
k=0

∞∑
p=−∞

εk(−1)k+pIk (w3ar3) Ik (w23r2r3)

× Ip (w1ar1) Ip (w12r1r2) Ik+p (w2ar2) .

(6)
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3) Trivariate Rayleigh Density: When a = 0, the trivariate
Rayleigh distribution can be obtained from (6) by considering
the degenerated infinite summation when k = p = 0 as

g (r1, r2, r3) =
r1r2r3

M3
exp
{
−1

2

3∑
i=1

wiir
2
i

}

× I0 (|w12|r1r2) I0 (|w23|r2r3) .

This exactly coincides with the density function given in [17:
eq.2] when n = 2.

The exponential correlation model gives a tridiagonal form
of inverse [19]. If we assume σ2

i , σ2
j , ρ|i−j| as the vari-

ances and correlation coefficient of the underlying Gaus-
sian variables corresponding to the Rice variables ri and
rj respectively, we can write ρη = Cov

(
r2
i , r2

j

)
=

ρ|i−j|(a2+ρ|i−j|σiσj)√
(a2+σ2

i )(a2+σ2
j )

. For Rayleigh random variables, it re-

duces to ρη = ρ2|i−j| [19].

B. Cumulative Density Function

The trivariate cumulative density function is given by

G (r1, r2, r3) =
∫ r1

0

∫ r2

0

∫ r3

0

g(x, y, z)dxdydz. (8)

Since In(z) = I−n(z) for any integer n, we can expand In(z)
as

In (z) =
∞∑

k=0

z2k+|n|

22k+|n|k!Γ (k + |n| + 1)
(9)

where Γ(z) is the gamma function. By replacing the Bessel
function terms in (6) with (9) and integrating term-by-term
because of the uniform convergence of the series, we derive
the trivariate joint cdf as shown in (10), where κ1 = i3 + i4 +
|p|+ 1, κ21 = i1 + i3 + i5 + k+|p|+|k+p|

2 , κ22 = i2 + i4 + i5 +
1+ k+|p|+|k+p|

2 , κ3 = i1 + i2 +k+1, γ(α, z) =
∫ z

0 tα−1e−tdt
is the incomplete gamma function [25]. When a = 0, (10) can
easily be simplified to the trivariate Rayleigh cdf given in [17,
eq.6] when n = 3.

The bivariate joint cumulative distribution function can be
written using (10) as shown in (11). It can easily be simplified
to [13, eq.11] once suitable parameters are assumed. Now ρη

simplifies to ρη = Cov
(
r2
1 , r

2
2

)
=

ρ(a2+ρσ1σ2)√
(a2+σ2

1)(a2+σ2
2)

.

III. TRUNCATION ERROR

Assume that the trivariate cdf series (10) is limited
to K, 2P − 1, I1, I2, I3, I4 and I5 terms in the variables
k, p, i1, i2, i3, i4 and i5 respectively. It should be noted that
the second summation is truncated symmetrically around the
zeroth term. Then the rest of the terms represent the truncation
error. Following the fact that γ (a, z) ≤ Γ(a) [18], we can
write the truncation error upper bound as

|ETR| ≤
K−1∑
k=0

P−1∑
p=−P+1

I1−1,I2−1,I3−1,I4−1∑
i1,i2,i3,i4=0

∞∑
i5=I5

Ep

+
K−1∑
k=0

P−1∑
p=−P+1

I1−1,I2−1,I3−1∑
i1,i2,i3=0

∞∑
i4=I4

∞∑
i5=0

Ep

+
K−1∑
k=0

P−1∑
p=−P+1

I1−1,I2−1∑
i1,i2=0

∞∑
i3=I3

∞∑
i4,i5=0

Ep

+
K−1∑
k=0

P−1∑
p=−P+1

I1−1∑
i1=0

∞∑
i2=I2

∞∑
i3,i4,i5=0

Ep

+
K−1∑
k=0

P−1∑
p=−P+1

∞∑
i1=I1

∞∑
i2,i3,i4,i5=0

Ep

+
K−1∑
k=0

∞∑
p=P

∞∑
i1,i2,i3,i4,i5=0

[Ep + E−p]

+
∞∑

k=K

∞∑
p=−∞

∞∑
i1,i2,i3,i4,i5=0

Ep (12)

where Ep is defined at the bottom of the previous page with all
the symbols having their usual meaning. Further simplification

G (r1, r2, r3) =
1

M3
exp
{
−a2w4

2

} ∞∑
k=0

∞∑
p=−∞

εk(−1)k+p
∞∑

i1,i2,i3,i4,i5=0

a2κ21w
2i3+|p|
1 w

2i5+|k+p|
2 w2i1+k

3 w2i2+k
23 w

2i4+|p|
12

2κ21wκ1
11wκ22

22 wκ3
33 i1!i2!i3!i4!i5!

×
γ
(
κ1,

w11r2
1

2

)
γ
(
κ22,

w22r2
2

2

)
γ
(
κ3,

w33r2
3

2

)
(i1 + k)! (i2 + k)! (i3 + |p|)! (i4 + |p|)! (i5 + |k + p|)! (10)

G2 (r1, r2)=
1

M2
exp

{
−a2

2
(w1 + w2)

} ∞∑
p=0

εp(−1)p
∞∑

l,m,n=0

a2(l+n+p)w2l+p
1 w2n+p

2 w2m+p
12

2l+n+pwl+m+p+1
11 wm+n+p+1

22 l!m!n! (l+p)! (m+p)! (n+p)!

× γ

(
l + m + p + 1,

w11r
2
1

2

)
γ

(
m + n + p + 1,

w22r
2
2

2

)
. (11)

Ep =
εk exp

{
−a2w4

2

}
a2κ21Γ (κ1) Γ (κ22) Γ (κ3)w

2i3+|p|
1 w

2i5+|k+p|
2 w2i1+k

3 |w23|2i2+k|w12|2i4+|p|

M32κ21wκ1
11wκ22

22 wκ3
33 i1!i2!i3!i4!i5! (i1 + k)! (i2 + k)! (i3 + |p|)! (i4 + |p|)! (i5 + |k + p|)!
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of (12) is a difficult task. However, the upper bound may be
loose for some small values of ri’s since we bounded the
incomplete gamma function with the gamma function.

A more tighter bound can be obtained for the truncation
error of the bivariate Rician cumulative density using the
arguments given in [15] as shown in (13) below, where
1F1 (λ; μ; z) is the confluent hypergeometric function [25].
The number of terms needed in (10), (11) to achieve four
and five significant figure accuracy are tabulated in Table I
and Table II respectively. In the case of (10), we have to deal
with seven truncated summations and it reduces the calculation
speed significantly. We have used the exponential correlation
model and Mathematica software to obtain those numerical
values.

IV. APPLICATION: OUTAGE PROBABILITY OF TRIPLE

BRANCH SC

In this section, the new density function and related statistics
are used to analyze the performance of triple branch SC over
correlated Rician environment. Outage probability being the
probability that the output SNR, γ, falls below a specified level
γth is an important system performance measure. We assume
that the noise components at different diversity branches are
additive white Gaussian noise (AWGN) with identical power
spectral density. Let γk and γ̄k denote the instantaneous and
the average SNR at the k-th branch (k = 1, 2, 3). In SC,
the branch with the largest instantaneous SNR is selected
as the output, γsc = max(γ1, γ2, γ3). Using the relation
γk = γ̄k

E(r2
k)

r2
k = γ̄k

(2mkk+a2)r
2
k, where rk is the amplitude

of the received signal at the k-th branch, we may obtain
the outage probability as given in (14), where G(λ1, λ2, λ3)
is the joint cdf of the branch amplitudes (10). Note that
the covariance matrix M specifies the correlation (fading
correlation) between three Gaussian samples.

Figure 1 depicts the outage performance of triple branch
SC over correlated Rician fading environment. For brevity
we consider uniform power delay profile with exponential
covariance matrix defined by mij = σ2ρ|i−j|, 0 < ρ <
1 [19]. Furthermore, we normalize the channel such that
σ2 =

√
1

2(1+K) and a =
√

K
K+1 with K being the Rician

factor. We have considered different K and ρ values to show
the performance variation. As can be seen from the graph,
the correlation among the diversity branches degrades the
performance. Since the theoretical outage expression is in
the form of an infinite series, we truncate the series for
numerical evaluation. The number of terms being used from
each index, k, p, i1, i2, i3, i4, i5 vary in between the minimum
of 7, 7, 7, 3, 7, 4, 7 and the maximum of 17, 17, 16, 9, 16, 9, 16.
Usually it is tedious to work with nested infinite summations
even if they are truncated, since the calculation time and
accuracy solely depend on the available computing power.

V. CONCLUSION

In this paper, a new infinite series is derived for the
trivariate Rician pdf using Miller’s approach when the under-
lying Gaussian variables have the tridiagonal form of inverse
covariance matrix. This assumption is valid if the exponential
correlation model holds. However, the trivariate density for an
arbitrary correlation matrix seems intractable and remains as
an open problem. The trivariate cdf is also derived and the
previously available result for the bivariate case is turned out
to be a special case of our results. Historically, the bivariate
Rician case goes back four decades and the original result of
Middleton [10, eq.9.56] has gone unnoticed before.
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|ETR| ≤
1F1

(
I3 + 1; I3 + 2;−w22r2

2
2

)
(I3 + 1)

P−1∑
p=0

I1−1∑
i1=0

I2−1∑
i2=0

∞∑
i3=I3

Rε1F1

(
p + 1; p + 2;−w11r2

1
2

)
(i1 + p)! (i2 + p)! (I3 + p)!

+
1F1

(
I2+1; I2+2;−w11r2

1
2

)
(I2 + 1)2

1F1

(
I2+1; I2+2;−w22r

2
2

2

) P−1∑
p=0

I1−1∑
i1=0

∞∑
i2=I2

∞∑
i3=0

Rε

(i1 + p)! (I2 + p)! (i3 + p)!

+
1F1

(
I1 + 1; I1 + 2;−w11r2

1
2

)
(I1 + 1)

P−1∑
p=0

∞∑
i1=I1

∞∑
i2=0

∞∑
i3=0

Rε1F1

(
p + 1; p + 2;−w22r2

2
2

)
(I1 + p)! (i2 + p)! (i3 + p)!

+
1F1

(
P+1; P+2;−w11r2

1
2

)
1F1

(
P+1; P+2;−w22r2

2
2

)
(P + 1)2

∞∑
p=P

∞∑
i1=I1

∞∑
i2=0

∞∑
i3=0

Rε

(i1+P )! (i2+P )! (i3+P )!

(13)

Rε =
εp exp

{
−a2

2 (w1 + w2)
}

a2(i1+i3+p)w2i2+p
12 r

2(i1+i2+p+1)
1 r

2(i2+i3+p+1)
2 w2i1+p

1 w2i3+p
2

M2i1!i2!i3!22(i1+i2+i3+p+1)+p

Pout = Pr(0 ≤ γsc ≤ γth) = G

(√
γth(2m11 + a2)

γ̄1
,

√
γth(2m22 + a2)

γ̄2
,

√
γth(2m33 + a2)

γ̄3

)
(14)
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TABLE I
NUMBER OF TERMS NEEDED IN EACH INDEX K,P, I1, I2, I3, I4, I5 IN (11) TO ACHIEVE FOUR SIGNIFICANT FIGURE ACCURACY.

a ρ r1 = r2 = 1 r1 = r2 = 2 r1 = r2 = 5
1 3, 3, 3, 2, 3, 2, 3 5, 5, 5, 3, 5, 3, 4 6, 7, 6, 4, 6, 4, 6

3
0.1

4, 4, 5, 3, 5, 3, 4 5, 5, 8, 3, 8, 3, 7 9, 9, 11, 5, 11, 5, 11
1 3, 3, 3, 2, 3, 2, 3 6, 5, 5, 4, 5, 4, 5 11, 11, 8, 6, 8, 6, 8

3
0.3

5, 5, 5, 4, 5, 4, 5 6, 6, 8, 6, 8, 6, 8 11, 11, 12, 6, 12, 6, 12

TABLE II
NUMBER OF TERMS NEEDED IN EACH INDEX P, L, N, M IN (12) TO

ACHIEVE FIVE SIGNIFICANT FIGURE ACCURACY.

a ρ r1 = r2 = 1 r1 = r2 = 2 r1 = r2 = 5
1 3, 4, 4, 2 5, 5, 5, 3 7, 7, 4, 6

3
0.1

5, 6, 6, 2 7, 9, 9, 4 11, 15, 15, 15
1 3, 4, 4, 3 5, 5, 4, 4 7, 7, 7, 6

3
0.3

5, 6, 6, 3 7, 8, 8, 4 15, 13, 13, 9
1 3, 3, 3, 3 6, 4, 4, 6 9, 6, 6, 14

3
0.6

5, 5, 5, 3 9, 7, 7, 7 17, 12, 19, 11
1 5, 3, 3, 5 7, 4, 4, 10 9, 6, 28, 5

3
0.8

7, 5, 5, 5 10, 7, 7, 11 17, 11, 11, 38

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00
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ρ = 0.1, 0.3, 0.6

Fig. 1. Outage probability of three branch SC versus normalized average
SNR of the first branch γ̄1/γth for several values of K and ρ over correlated
Rician fading channel.
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