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Abstract
In this paper the turnpike phenomenon is studied for problems of optimal controlwhere
both pointwise-in-time state and control constraints can appear. We assume that in the
objective function, a tracking term appears that is given as an integral over the time-
interval [0, T ] and measures the distance to a desired stationary state. In the optimal
control problem, both the initial and the desired terminal state are prescribed. We
assume that the system is exactly controllable in an abstract sense if the time horizon
is long enough. We show that that the corresponding optimal control problems on
the time intervals [0, T ] give rise to a turnpike structure in the sense that for natural
numbers n if T is sufficiently large, the contribution of the objective function from
subintervals of [0, T ] of the form

[t − t/2n, t + (T − t)/2n]

is of the order 1/min{tn, (T − t)n}. We also show that a similar result holds for
ε-optimal solutions of the optimal control problems if ε > 0 is chosen sufficiently
small. At the end of the paper we present both systems that are governed by ordinary
differential equations and systems governed by partial differential equations where
the results can be applied.
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1 Introduction

Since the turnpike property has been discussed by P. A. Samuelson in mathematical
economics in 1949 (see [2]), the turnpike phenomenon for optimization problems has
been analyzed in various contexts, see for example [1,21,22]. For optimal control
problems with partial differential equations see [15] or [19], where distributed con-
trol is considered for linear–quadratic optimal control problems. Problems of optimal
boundary control are studied in [7]. In [17], both integral- and measure–turnpike prop-
erties are considered. The turnpike phenomenon for linear quadratic optimal control
problems with time-discrete systems is studied in [5].

In this paper, we consider exponential integral–turnpike properties in an abstract
framework where the system is governed by an abstract nonlinear semigroup. For
our turnpike result we assume that the governing system is exactly controllable for
sufficiently large time horizons. For systems that are governed by hyperbolic partial
differential equations, this assumption is often satisfied. We consider a process on a
finite time interval [0, T ]where an initial state is prescribed at the initial time zero and
a terminal state is prescribed at the terminal time T . The objective function is given by
an integral on the time interval [0, T ] and contains the control cost and a penalization
of the distance to a desired stationary state. The solution of the corresponding static
problem with this objective function defines a desired steady state. We show that the
resulting optimal controls have a turnpike structure, where for sufficiently large T for
any natural number n there exists a neighborhood of t ∈ (0, T ) of the form

(
t − t

2n−1 , t + T − t

2n−1

)

where the contribution to the objective function from this neighborhood decays with
order 1/min{tn, (T − t)n}. This result is shown in a general framework that allows
for pointwise-in-time state constraints and pointwise-in-time control constraints. One
option for the numerical treatment of problems with terminal constraints is the exact
penalization of the terminal constraints that has been considered in [11]. The control
constraints that we consider include the case of switching constraints, that only allow
for a discrete set of control values (see [13]).

Our turnpike result is given for ε-optimal controls and states. For the case of finite-
dimensional systems, turnpike results for slightly suboptimal control-state pairs have
already been stated in [4]. They imply that the members of a minimizing sequence
for a fixed time horizon T approach the corresponding exponential turnpike structure.
Sincewe consider ε-optimal control–state pairs, our turnpike results are also applicable
to optimal control problems where the existence of an optimal control is not clear a
priori. These turnpike result are also useful for numerical computations since they show
that for sufficiently large time horizons T , sufficiently accurate approximations of the
optimal control–state pairs must be close to the optimal steady state in a neighborhood
of T /2.

This paper has the following structure. First we introduce some notation and define
the dynamic optimal control problem. Then we motivate our analysis by pointing out
that it completes the characterization of the turnpike situation as an addition to the
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measure turnpike property that has been studied in [17]. Our analysis is more specific
in showing that close to interior points of the time interval the distance between the
static and the dynamic optimum becomes very small. In order to clarify this, we
introduce the measure turnpike property with interior decay. Then in Sect. 3 we state
the turnpike result. For the proof, we need several auxiliary results. At the end of the
paper, we present some examples where our results can be applied.

1.1 Notation and definition of optimal control problems

Let a time interval [0, T ], a Banach space Y with the norm ‖ · ‖Y and a Banach space
X with the norm ‖ · ‖X be given. Let an initial state y0 ∈ Y and a desired stationary
state yd ∈ Y be given. We state the relation between the state and the control in the
form

y = �(a, y0, u, t), (1.1)

where for a ∈ [0,∞) and t > a the mapping � maps {a} × Y × L2((a, t), X) × {t}
to C([a, t], Y ) with �(a, y0, u, t)(a) = y0. We assume the semigroup property that
for any subinterval (a1, t1) of (a, t) we have

�(a, y0, u, t)|(a1, t1) = �(a1, �(a, y0, u, t)(a1), u|(a1, t1), t1). (1.2)

As an example, think of a strongly continuous semigroup of contractions, see [20].
Let a static state y(σ ) ∈ Y corresponding to a static control u(σ ) ∈ X be given,

that is the constant function y(σ ) in C([a, t], Y ) and u(σ ) as a constant control in
L2((a, t), X) satisfy the equation

y(σ ) = �(a, y(σ ), u(σ ), t).

Let real numbers a and b with a < b be given. Let f0 : R× X ×Y → [0, ∞) be a
continuous function. For states y ∈ L2((a, b), Y ) and controls in u ∈ L2((a, b), X)

for any subinterval (a1, b1) of (a, b), we have the inequality

0 ≤
∫ b1

a1
f0(t, y|(a1, b1)(t), u|(a1, b1)(t)) dt ≤

∫ b

a
f0(t, y(t), u(t)) dt . (1.3)

For states y ∈ L2((a, b), Y ) and controls in u ∈ L2((a, b), X) define the objective
function

J(a, b)(u, y) =
∫ b

a
f0(t, y(t), u(t)) dt (1.4)

where y is the system state that is generated by the control function u. This type of
objective functions has also been considered in [17].

For y0 and yd ∈ Y , we consider a dynamic optimal control problem with the initial
condition

y(a) = y0 (1.5)
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and the terminal condition
y(b) = yd . (1.6)

We consider the state constraint

y(t) ∈ F, t ∈ [0, T ] (1.7)

where F is a nonempty closed subset of Y such that y(σ ) ∈ F . We also consider the
control constraint

u(t) ∈ U for t ∈ (0, T ) almost everywhere, (1.8)

where U is a nonempty closed subset of X such that u(σ ) ∈ U .
For real numbers a, b > a, an initial state y0 ∈ Y and a terminal state yd ∈ Y

consider the parametric optimization problem

P(a, b, y0, yd) : min
u

J(a, b)(u, y)

subject to (1.1), (1.5), (1.6), (1.7) and (1.8).
Let v(a, b, y0, yd) denote the optimal value for P(a, b, y0, yd).
For ε ≥ 0, let ŷε(a, b, y0, yd) denote an ε–optimal state and ûε(a, b, y0, yd) denote

an ε–optimal control for P(a, b, y0, yd) in the sense that the constraints (1.1), (1.5),
(1.6), (1.7) and (1.8) are satisfied and

J(a, b)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd)) ≤ v(a, b, y0, yd) + ε (1.9)

that is

∫ b

a
f0(t, ŷε(a, b, y0, yd)(t), ûε(a, b, y0, yd)(t)) dt

≤ v(a, b, y0, yd) + ε. (1.10)

Note that for any subinterval (a1, t1) of (a, b), assumptions (1.2) and (1.3) imply
the inequality

v(a1, t1, ŷε(a, b, y0, yd)(a1), ŷε(a, b, y0, yd)(t1)) ≤ v(a, b, y0, yd) + ε.

Moreover, due to (1.2), for all y1 ∈ Y , y2 ∈ Y we have the inequality

v(a, b , y0, yd) ≤ v(a, a1 , y0, y1) + v(a1, t1, y1, y2) + v(t1, b, y2, yd). (1.11)

This implies the following lemma:

Lemma 1.1 For any subinterval (a1, t1) of (a, b), we have

J(a1, t1)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

≤ v(a1, t1, ŷε(a, b, y0, yd)(a1), ŷε(a, b, y0, yd)(t1)) + ε (1.12)
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that is (ûε(a, b, y0, yd), ŷε(a, b, y0, yd))|(a1, t1) yield an ε–optimal control–state
pair for the optimal control problem

P(a1, t1, ŷε(a, b, y0, yd)(a1), ŷε(a, b, y0, yd)(t1)).

Proof We have

v(a, a1 , y0, ŷε(a, b, y0, yd)(a1)) ≤ J(a, a1)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd)).

v(t1, b, ŷε(a, b, y0, yd)(t1), yd) ≤ J(t1, b)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd)).

Moreover we have

J(a, b)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

= J(a, a1)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

+ J(a1, t1)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

+ J(t1, b)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

≤ v(a, b , y0, yd) + ε.

With (1.11) this yields

J(a1, t1)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

≤ v(a, b , y0, yd) + ε − J(a, a1)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

− J(t1, b)(ûε(a, b, y0, yd), ŷε(a, b, y0, yd))

≤ v(a, b , y0, yd) + ε − v(a, a1 , y0, ŷε(a, b, y0, yd)(a1))

−v(t1, b, ŷε(a, b, y0, yd)(t1), yd)

≤ v(a1, t1, ŷε(a, b, y0, yd)(a1), ŷε(a, b, y0, yd)(t1)) + ε.

Thus we have shown (1.12) and Lemma 1.1 is proved. �	

2 Themeasure turnpike property with interior decay

In [17] a certain integral turnpike property and a stronger measure turnpike property
are studied. In Definition 2 in [17] (see also [3,22]) the measure turnpike property is
defined as follows:

The problem P(a, b, y0, yd) enjoys the measure turnpike property at (y(σ ), u(σ )) ∈
F × U if for every ε > 0 there exists a real number �(ε) > 0 such that for all b > a
we have the inequality

μ{t ∈ [a, b] : ‖ŷ0(a, b, y0, yd)(t) − y(σ )‖Y + ‖û0(a, b, y0, yd)(t) − u(σ )‖X > ε}
≤ �(ε)

where μ denotes the Lebesgue measure of the set.

123



242 Mathematics of Control, Signals, and Systems (2021) 33:237–258

In [17], themeasure turnpike property is shownunder the strict dissipativity assump-
tion. Similarly as in Definition 1 in [17], we define:

The problem P(a, b, y0, yd) is strictly dissipative at (y(σ ), u(σ )) ∈ F × U if f0
is time-independent and for all (y, u) ∈ F × U for the supply rate function

ω(y, u) = f0(y, u) − f0(y(σ ), u(σ ))

there exists a storage function S : F → R that is locally bounded and bounded from
below and a continuous and strictly increasing function α : [0,∞) → [0, ∞) with
α(0) = 0 such that for all b > a the dissipation inequality holds, that is for any
admissible pair (y(·), u(·)) and for all τ ∈ [a, b] we have

S(y(a)) +
∫ τ

a
ω(y(t), u(t)) dt ≥ S(y(τ ))

+
∫ τ

a
α

(
‖y(t) − y(σ )‖Y + ‖u(t) − u(σ )‖X

)
dt . (2.1)

Let MS denote an upper bound for |S(y)| for y ∈ F .

Remark 2.1 The relation between strict dissipativity and turnpike properties is dis-
cussed in [4], see also [3].

Example 2.2 Let γ ∈ (0, 1] be given. For

f0(y, u) = ‖y − y(σ )‖2Y + γ ‖u − u(σ )‖2X ,

the problem P(a, b, y0, yd) is strictly dissipative at (y(σ ), u(σ )) ∈ F × U with
MS = 0 and α(z) = γ

2 |z|2.
Example 2.3 In [17], an example for a strictly dissipative optimal control problemwith
distributed control of the heat equation is given.

The measure turnpike property defined above can be satisfied if there exist real
numbers M > 0, ϒ0 > 0 and λ ∈ (0, 1) such that for all b sufficiently large such that

M < min{λ, (1 − λ)} (b − a)

for all t ∈ [a + λ (b − a) − M, a + λ (b − a) + M] the inequality

‖ŷ0(a, b, y0, yd)(t) − y(σ )‖Y + ‖û0(a, b, y0, yd)(t) − u(σ )‖X > α−1(ϒ0) (2.2)

holds. However, such a situation contradicts the intuition about the turnpike phe-
nomenon that in the interior of the time interval close to the point a + λ (b − a), the
distance of the dynamic optimum to the static optimum becomes very small, which is
for example the case if an exponential turnpike property holds.

In order to exclude such a situation, we say that the problem P(a, b, y0, yd) enjoys
the measure turnpike property with interior decay at (y(σ ), u(σ )) ∈ F ×U if problem
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P(a, b, y0, yd) enjoys the measure turnpike property at (y(σ ), u(σ )) ∈ F × U and
in addition there exist C1 > 0 and λ1 ∈ (0, 1) such that for all λ ∈ (0, 1) and all b
sufficiently large we have the inequality

a+(λ+(1−λ) λ1) (b−a)∫
a+λ(1−λ1) (b−a)

α(‖ŷ0(a, b, y0, yd)(t) − y(σ )‖Y

+‖û0(a, b, y0, yd)(t) − u(σ )‖X ) dt

≤ C1

min{λ, (1 − λ)} (b − a)
. (2.3)

If (2.2) is valid, the measure turnpike property with interior decay cannot hold.
This can be seen as follows. If (2.3) holds we have

lim
b→∞

a+(λ+(1−λ) λ1) (b−a)∫
a+λ(1−λ1) (b−a)

α(‖ŷ0(a, b, y0, yd)(t) − y(σ )‖Y

+‖û0(a, b, y0, yd)(t) − u(σ )‖X ) dt = 0. (2.4)

If inequality (2.2) holds, we have for b sufficiently large

a+λ (b−a)+M∫
a+λ (b−a)−M

α(‖ŷ0(a, b, y0, yd)(t) − y(σ )‖Y + ‖û0(a, b, y0, yd)(t) − u(σ )‖X ) dt

≥ 2 M ϒ0. (2.5)

For b sufficiently large, we have

[a + λ (b − a) − M, a + λ (b − a) + M]
⊂ [a + λ(1 − λ1) (b − a), a + (λ + (1 − λ) λ1) (b − a)].

Hence (2.4) contradicts (2.5).
So we see that the measure turnpike property with interior decay provides a more

detailed picture of the turnpike phenomenon than the classical measure turnpike.

Remark 2.4 Note that also an exponential turnpike property, where there exist C1 > 0
and μ > 0 such that for all T > 0 for all t ∈ [0, T ] we have

α
(
‖ŷ0(a, b, y0, yd)(t) − y(σ )‖Y + ‖û0(a, b, y0, yd)(t) − u(σ )‖X

)
≤ C2 (exp(−μ t) + exp(−μ (T − t)))

implies the measure turnpike property with interior decay.

123



244 Mathematics of Control, Signals, and Systems (2021) 33:237–258

For finite-dimensional systems, the exponential turnpike property has been studied
in [18]. Exponential sensitivity and turnpike analysis for linear quadratic optimal
control of general evolution equations have been studied in [6]. The results that we
present here allow for general nonlinear infinite-dimensional dynamcis that satisfy
(1.1).

3 A general turnpike result

Throughout this section we assume that for all (a, b) ⊂ (0, T ) and all z0, z1 ∈ F
the problems P(a, b, z0, z1) are strictly dissipative at (y(σ ), u(σ )) ∈ F × U . For the
subsequent analysis, we replace the objective function in (1.4) by

J(a, b)(u, y) =
∫ b

a
ω(y(t), u(t)) dt (3.1)

where we assume that for all y ∈ F and u ∈ U we have ω(y, u) ≥ 0. Note that
this is equivalent to subtracting the number (b − a) f0(y(σ ), u(σ )) from the objective
function.We show that under the strict dissipativity and an abstract exact controllability
assumption that we define in (3.7) below, problem P(a, b, y0, yd) has the measure
turnpike property with interior decay. This is stated in Theorem 3.6.

The exact controllability assumption requires that if the control time is greater than
or equal to aminimal time tmin, the optimal values of the control problem are uniformly
bounded with a bound that depends only on the distance between the initial state and
y(σ ) and the distance between the terminal state and y(σ ).

For our analysis we need the following lemma.

Lemma 3.1 Let ε ≥ 0 and a nonempty subinterval [b1, b2] ⊂ [a1, a2] be given, that
is we have a1 ≤ b1 < b2 ≤ a2. Then for any ε-optimal state ŷε(a1, a2, y0, yd) of
P(a1, a2, y0, yd) there exists a number t1 ∈ (b1, b2) such that

α(‖ŷε(a1, a2, y0, yd)(t1) − y(σ )‖Y + ‖ûε(a1, a2, y0, yd)(t1) − u(σ )‖X )

+ S(ŷε(a1, a2, y0, yd)(b2)) − S(ŷε(a1, a2, y0, yd)(b1))

b2 − b1

≤ 1

b2 − b1
[v(a1, a2, y0, yd) + ε] . (3.2)

This implies the inequality

α
(
‖ŷε(a1, a2, y0, yd)(t1) − y(σ )‖Y + ‖ûε(a1, a2, y0, yd)(t1) − u(σ )‖X

)

≤ v(a1, a2, y0, yd) + ε − [
S(ŷε(a1, a2, y0, yd)(b2)) − S(ŷε(a1, a2, y0, yd)(b1))

]
b2 − b1

(3.3)
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Proof The dissipation inequality (2.1) yields

∫ b2

b1
α(‖ŷε(a1, a2, y0, yd)(s) − y(σ )‖Y + ‖ûε(a1, a2, y0, yd)(t1) − u(σ )‖X ) ds

+ S(ŷε(a1, a2, y0, yd)(b2)) − S(ŷε(a1, a2, y0, yd)(a1))

≤
∫ b2

b1
ω(ŷε(a1, a2, y0, yd)(s), ûε(a1, a2, y0, yd)(s)) ds ≤ v(b1, b2, y0, yd) + ε

where the last step follows from the definition (1.9) of an ε-optimal solution and the
definition (3.1) of the objective function. Define I1(b1, b2)

=
∫ b2

b1
α(‖ŷε(a1, a2, y0, yd)(s) − y(σ )‖Y + ‖ûε(a1, a2, y0, yd)(t1) − u(σ )‖X ) ds

+ S(ŷε(a1, a2, y0, yd)(b2)) − S(ŷε(a1, a2, y0, yd)(a1)).

Then we have the inequality

I1(b1, b2) ≤ v(b1, b2, y0, yd) + ε. (3.4)

Suppose that for all t ∈ (b1, b2) we have

α(‖ŷε(a1, a2, y0, yd)(t) − y(σ )‖Y + ‖ûε(a1, a2, y0, yd)(t) − u(σ )‖X )

+ S(ŷε(a1, a2, y0, yd)(b2)) − S(ŷε(a1, a2, y0, yd)(b1))

b2 − b1

>
1

b2 − b1
[v(a1, a2, y0, yd) + ε] .

Integration yields

∫ b2

b1
α(‖ŷε(a1, a2, y0, yd)(s) − y(σ )‖Y + ‖ûε(a1, a2, y0, yd)(s) − u(σ )‖X ) ds

+ S(ŷε(a1, a2, y0, yd)(b2)) − S(ŷε(a1, a2, y0, yd)(a1))

= I1(b1, b2) > v(a1, a2, y0, yd) + ε.

With (3.4) this implies

v(a1, a2, y0, yd) + ε < I1(b1, b2) ≤ v(a1, a2, y0, yd) + ε.

This is a contradiction. �	
Now we consider the optimal control Problem P(0, T , y0, yd).
Let λ ∈ (0, 1) be given. Define

λ0 = min{λ, (1 − λ)}.
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Consider the intervals

I λ+ = (0, λ T /2),

I λ− = ((λ + (1 − λ)/2) T , T ) = ((1 + λ) T /2, T ).

Then we have I λ+ ⊂ (0, T /2) and I λ− ⊂ (T /2, T ). For the length of I λ+ we have
l(I λ+) = λT /2 ≥ λ0 T /2. Moreover l(I λ−) = (1 − λ)T /2 ≥ λ0 T /2.

Let ε ≥ 0 be given. Lemma 3.1 implies that there exists a point t+1 ∈ I λ+ such that

α
(
‖ŷε(0, T , y0, yd)(t+1 ) − y(σ )‖Y + ‖ûε(0, T , y0, yd)(t+1 ) − u(σ )‖X

)

≤ 2
v(0, T , y0, yd) + ε − [

S(ŷε(0, T , y0, yd)( λ T
2 )) − S(ŷε(0, T , y0, yd)(0))

]
λ T

.

(3.5)

Moreover there exists a point t−1 ∈ I λ− such that

α
(
‖ŷε(0, T , y0, yd)(t−1 ) − y(σ )‖Y + ‖ûε(0, T , y0, yd )(t−1 ) − u(σ )‖X

)

≤ 2
v(0, T , y0, yd) + ε −

[
S(ŷε(0, T , y0, yd)(T )) − S(ŷε(0, T , y0, yd )(

(1+λ) T
2 ))

]
(1 − λ) T

.

(3.6)

Now we state our abstract exact controllability assumption:
Assume that there exist a constant μ0 > 0 and a time tmin > 0 such that for all

initial times tini t and all initial states zini t ∈ F and for all terminal times tterm and
all terminal states zterm ∈ F if tterm − tini t ≥ tmin we have the inequality

v(tini t , tterm, zini t , zterm) ≤ μ0

[
α

(
‖zini t − y(σ )‖Y

)
+ α

(
‖zterm − y(σ )‖Y

)]
.

(3.7)

With (3.5) and (3.6), inequality (3.7) implies that if T ≥ tmin we have

α
(
‖ŷε(0, T , y0, yd)(t+1 ) − y(σ )‖Y + ‖ûε(0, T , y0, yd)(t+1 ) − u(σ )‖X

)

≤ 2
μ0 α

(‖y0 − y(σ )‖Y
) + μ0 α

(‖yd − y(σ )‖Y
) + ε

λ0 T

− 2
S(ŷε(0, T , y0, yd)( λ T

2 )) − S(ŷε(0, T , y0, yd)(0))

λ0 T
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and

α
(
‖ŷε(0, T , y0, yd)(t−1 ) − y(σ )‖Y + ‖ûε(0, T , y0, yd)(t−1 ) − u(σ )‖X

)

≤ 2
μ0

[
α

(‖y0 − y(σ )‖Y
) + α

(‖yd − y(σ )‖Y
)] + ε

λ0 T

− 2
S(ŷε(0, T , y0, yd)(T )) − S(ŷε(0, T , y0, yd)(

(1+λ) T
2 ))

λ0 T
.

Remark 3.2 A sufficient condition for (3.7) is that for t0 ≥ tmin there exists a control
function u1 ∈ L2(a, t0) such that u1(t) ∈ U for t ∈ (a, t0) almost everywhere,
y1 = �(a, z0, u1 t0) satisfies y1(a) = z0, y1(b) = zd and y1(t) ∈ F for t ∈ (a, t0)
and

∫ t0

a
f0(y1(s), u1(s)) − f0(y(σ ), u(σ )) ds ≤ μ0

(
‖z0 − y(σ )‖2Y + ‖zd − y(σ )‖2Y

)
.

This is the case if for t > tmin, we have y1(t) = y(σ ) and u1(t) = u(σ ).
As an example, think of a system that can be steered exactly to y(σ ) at the time tmin

with the control function u1|(a,tmin) and where the state remains equal to y(σ ) = yd if
for t ≥ tmin a constant control u(σ ) is chosen. (For examples, see Sect. 4).

Since t+1 ∈ I λ+ and t−1 ∈ I λ− due to (1.3) we have the inequality

I0 :=
(1+λ)T /2∫
λ T /2

ω(ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)) ds

≤
t−1∫

t+1

ω(ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)) ds.

With (1.12) and (3.7) this yields

I0 ≤ v(t+1 , t−1 , ŷε(0, T , y0, yd)(t+1 ), ŷε(0, T , y0, yd)(t−1 )) + ε

≤ μ0α
(
‖ŷε(0, T , y0, yd)(t+1 ) − y(σ )‖Y

)

+μ0α
(
‖ŷε(0, T , y0, yd)(t−1 ) − y(σ )‖Y

)
+ ε.

With the upper bounds for

α
(
‖ŷε(0, T , y0, yd)(t±1 ) − y(σ )‖Y + ‖ûε(0, T , y0, yd)(t±1 ) − u(σ )‖X

)
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that we have derived above this yields

I0 ≤ 4
μ2
0

[
α

(‖y0 − y(σ )‖Y
) + α

(‖yd − y(σ )‖Y
)] + μ0 [2 MS + ε]

λ0 T
+ ε (3.8)

where MS denotes an upper bound for |S(yε(0, T , y0, yd)(·))|.
Thus we obtain an upper bound for the part of the objective function (3.1) that

comes from the subinterval (λ T /2, (1+λ)T /2). Note that the point λ T is contained
in this interval. More generally, by an inductive procedure where for n ∈ {2, 3, 4, ...}
we consider the nested sequence of subintervals

In(λ, T ) =
(

(λ − λ

2n−1 ) T , (λ + 1 − λ

2n−1 ) T

)
(3.9)

of [0, T ] that all contain the point λ T .With the special choice λ = 1
2 the intervals have

the mindpoint T /2. We obtain an upper bound for the part of the objective function
that comes from these subinterval. For T → ∞, upper bound decays as 1/T n−1. This
is our main turnpike result that is stated in the following theorem.

Theorem 3.3 Assume that the abstract exact controllability assumption (3.7) holds
for all t0 > a with t0 − a ≥ tmin and all initial states z0 ∈ Y and all terminal states
zd ∈ Y . Let λ ∈ (0, 1) be given. Define λ0 = min{λ, (1 − λ)}. Let a natural number
n ≥ 2 and ε ≥ 0 be given.

For all real numbers T such that

λ0 T ≥ 2n tmin

define g2 = 4μ0
λ0 T and for k ∈ {2, 3, 4...} let

gk+1 = 2k+1 μ0
λ0 T (gk + 2) .

Then we have the inequality

λ T +(1−λ) 1
2n−1 T∫

λ(1− 1
2n−1 ) T

ω
(
ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)

)
ds

≤ μ0 2
(n+2)(n−1)

2

(
μ0

λ0 T

)n−1 [
α

(
‖y0 − y(σ )‖Y

)
+ α

(
‖yd − y(σ )‖Y

)]

+ gn [2 MS + ε] + ε.

Remark 3.4 We have g3 = 25
(

μ0
λ0 T

)2 + 24 μ0
λ0 T and

g4 = 29
(

μ0
λ0 T

)3 + 28
(

μ0
λ0 T

)2 + 25 μ0
λ0 T .
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Note that for all k ≥ 2 we have gk → 0 for T → ∞.

Remark 3.5 For ε = 0, the assumptions of Theorem 3.3 imply that the measure turn-
pike property with interior decay defined in Sect. 2 holds. In fact we have the following
more concise theorem:

Theorem 3.6 As throughout the section, assume that for all (a, b) ⊂ (0, T ) and all z0,
z1 ∈ F the problems P(a, b, z0, z1) are strictly dissipative at (y(σ ), u(σ )) ∈ F × U
and that for the storage function S there exists a constant Ls such that for all y ∈ F
with α(‖y − yσ ‖Y ) sufficiently small we have

|S(y) − S(yσ )| ≤ L S α(‖y − yσ ‖Y ).

Assume that the abstract exact controllability assumption (3.7) holds for all t0 > a
with t0 − a ≥ tmin and all initial states z0 ∈ Y and all terminal states zd ∈ Y .

Then problem P(0, T , y0, yd) enjoys the measure turnpike property with interior
decay at (y(σ ), u(σ )) ∈ F × U.

Proof For the proof of Theorem 3.6, we first point out that in the setting of [17] it
has been shown that strict dissipativity implies the measure turnpike property. In our
framework, the measure turnpike properties follows using the exact controllability to
show the uniform boundedness (with respect to T ) of the objective function (3.1).
Moreover, in the definition of the measure turnpike property with interior decay in
(2.3), with a derivation similar as for (3.8), we can choose λ1 = 1

2 and

C1 = 4(μ0 + L S) μ0

[
α

(
‖y0 − y(σ )‖Y

)
+ α

(
‖yd − y(σ )‖Y

)]
+ 8(μ0 + L S) MS .

�	

Remark 3.7 If MS = 0, Theorem 3.3 implies that for a minimizing sequence, that is a
sequence of εk–optimal solutions with limk→∞ εk = 0, the members of the sequence
come closer and closer to an exponential turnpike structure.

Remark 3.8 It is also possible to state a variant of Theorem 3.3 for the case that no
terminal constraint (1.6) is present. In this case, in the bound on the right–hand side
λ0 can be replaced with λ. Actually, the proof is easier in this case since as an upper
bound for the subintervals that appear in the integral we can always take T .

Proof of Theorem 3.3 For n = 2 we have already shown the assertion in the inequality
(3.8) with I0 on the left-hand side. More precisely we have shown that for n = 2 there
exist

t+n−1 ∈ ((λ − 1/2n−2 λ) T , (λ − 1/2n−1λ) T ) (3.10)

and
t−n−1 ∈ ((λ + 1/2n−1(1 − λ)) T , (λ + 1/2n−2(1 − λ)) T ) (3.11)
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such that

(λ+1/2n−1(1−λ)T∫

(λ−1/2n−1λ) T

ω
(
ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)

)
ds

≤
∫ t−n−1

t+n−1

ω
(
ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)

)
ds

≤ v(t+n−1, t−n−1, ŷε(0, T , y0, yd)(t+n−1), ŷε(0, T , y0, yd)(t−n−1)) + ε

≤ 2n−1 · 2
(

n(n−1)
2

)
μ0(

λ0 T
μ0

)n−1

[
α

(
‖y0 − y(σ )‖Y

)
+ α

(
‖yd − y(σ )‖Y

)]

+ gn [2 MS + ε] + ε. (3.12)

Moreover, Lemma1.1 implies that the restrictionof the control–state pair (ûε(0, T , y0,
yd), ŷε(0, T , y0, yd)) to the interval (t+n−1, t−n−1) is an ε–optimal control–state pair
for the optimal control problem

P(t+n−1, t−n−1, ŷε(0, T , y0, yd)(t+n−1), ŷε(0, T , y0, yd)(t−n−1)).

Now we proceed inductively. Assume that for some n ≥ 2 there exist
t+n−1, t−n−1 such that (3.10), (3.11) and the chain of inequalities (3.12) hold and
(ûε(0, T , y0, yd), ŷε(0, T , y0, yd)) is ε-optimal for

P(t+n−1, t−n−1, ŷε(0, T , y0, yd)(t+n−1), ŷε(0, T , y0, yd)(t−n−1)). (3.13)

Due to Lemma 3.1 there exist points

t+n ∈ ((λ − 1/2n−1λ) T , (λ − 1/2nλ) T ) (3.14)

and
t−n ∈ ((λ + 1/2n(1 − λ)) T , (λ + 1/2n−1(1 − λ)) T ) (3.15)

such that

α
(
‖ŷε(0, T , y0, yd)(t±n ) − y(σ )‖Y + ‖ûε(0, T , y0, yd)(t±n ) − u(σ )‖X

)

≤ 2n v(t+n−1, t−n−1, ŷ(0, T , y0, yd)(t+n−1), ŷ(0, T , y0, yd)(t−n−1) + ε + 2MS

λ0 T
.

Then t+n ≥ t+n−1 and t−n ≤ t−n−1.
Our assumption on (3.13) and Lemma 1.1 imply that the control–state pair

(ûε(0, T , y0, yd), ŷε(0, T , y0, yd)) is ε-optimal for

P(t+n , t−n , ŷε(0, T , y0, yd)(t+n ), ŷε(0, T , y0, yd)(t−n )). (3.16)
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Then due to (3.7) and λ0 T /2n ≥ tmin we have

(λ+(1−λ)/2n)T∫
(λ−λ/2n) T

ω(ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)) ds

≤
∫ t−n

t+n
ω(ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)) ds

≤ v(t+n , t−1 , ŷε(0, T , y0, yd)(t+n ), ŷε(0, T , y0, yd)(t−n )) + ε

≤ μ0

[
α(‖ŷε(0, T , y0, yd)(t+n ) − y(σ )‖Y )

+ α(‖ŷε(0, T , y0, yd)(t−n ) − y(σ )‖Y )
]

+ ε

≤ μ0
2n+1

λ0 T

[
v(t+n−1, t−n−1, ŷε(0, T , y0, yd)(t+n−1), ŷε(0, T , y0, yd)(t−n−1))

+ ε + 2MS] + ε. (3.17)

By our induction assumption this implies

(λ+(1−λ)/2n)T∫
(λ−λ/2n) T

ω(ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s)) ds

≤ μ0
2n+1

λ0 T

⎡
⎢⎢⎣2n−1 · 2

(
n(n−1)

2

)
μ0(

λ0 T
μ0

)n−1

(
α(‖y0 − y(σ )‖Y ) + α(‖yd − y(σ )‖Y )

)

+ gn[2MS + ε] + ε] + μ0
2n+1

λ0 T
[2MS + ε] + ε

≤ μ0 2
n 2n+ n(n−1)

2

(
μ0

λ0 T

)n (
α(‖y0 − y(σ )‖) + α(‖yd − y(σ )‖Y )

)

+
(

μ0
2n+1

λ0 T
(gn + 2)

)
[2MS + ε] + ε

= μ0 2
n 2

(n+1) n
2

(
μ0

λ0 T

)n (
α(‖y0 − y(σ )‖Y ) + α(‖yd − y(σ )‖Y )

)

+ gn+1 [2MS + ε] + ε. (3.18)

This shows the assertion. �	

Remark 3.9 In order to discuss Theorem 3.3, we consider again the nested inter-
vals In(λ, T ) defined in (3.9). For all n ∈ {1, 2, 3, ...} we have λT ∈ In(λ, T )

and In+1(λ, T ) ⊂ In(λ, T ). The intervals In(λ, T ) have the length l(In(λ, T )) =
T /2n−1 and
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∞⋂
n=1

In(λ, T ) = {λ T }.

Theorem 3.3 gives an upper bound for the average values of the integrand in the

objective functions on the intervals In(λ, T ), namely

1

l(In(λ, T )

∫
In(λ, T )

ω(ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s))

≤ μ0

T
2

(n+4)(n−1)
2

(
μ0

min{λ, 1 − λ} T

)n−1

(
α(‖y0 − y(σ )‖2Y ) + α(‖yd − y(σ )‖Y )

)

+2n−1

T
[gn (2MS + ε) + ε] .

This means that the average values of the integrand in the objective functions on the
intervals In(λ, T ) decays for T → ∞ with the order

O

(
min{λ, 1 − λ}

(
μ0

min{λ, 1 − λ} T

)n)
+ O

(
MS

T 2

)
+ O

( ε

T

)
.

For ε > 0, the last term is decisive for the speed of convergence which is only of the
order 1/T . For ε = 0, only we obtain faster convergence of the order 1/T 2.

If also MS = 0, only the first term remains. If λ is close to zero or close to 1, the
convergence to zero in the first term becomes slower than for λ close to 1/2. Hence in
our turnpike result we have the typical situation that sufficiently close to the middle
T /2 of the time interval [0, T ] the convergence to zero is faster than at the boundaries.

Example 3.10 From the inequality in Theorem 3.3, for n = 3 and λ = 1/2, if T ≥
8 tmin, for ε = 0 we obtain

5
8 T∫

3
8 T

ω(ŷε(0, T , y0, yd)(s), ûε(0, T , y0, yd)(s))

≤ 128
μ3
0

T 2

(
α(‖y0 − y(σ )‖Y ) + α(‖yd − y(σ )‖Y )

)
+ 2g3MS .
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For n = 4 if T ≥ 16 tmin we obtain

9
16 T∫
7
16 T

‖û0(0, T , y0, yd)(s) − u(σ )‖2X + ‖ŷ0(0, T , y0, yd)(s) − y(σ )‖2Y ds

≤ 4096
μ4
0

T 3

(
α(‖y0 − y(σ )‖Y ) + α(‖yd − y(σ )‖Y )

)
+ 2g4MS .

This illustrates the typical turnpike behavior:
For every natural number n ≥ 2 if T is sufficiently large the contribution to the

objective function that comes from the interval

In( 12 , T ) =
(

1
2 T − 1

2n
T , 1

2 T + 1

2n
T

)

is less than a constant that is independent of T multiplied by 1/T n−1 plus the term
with MS/T .

4 Examples

In this section we present examples of optimal control problems where Theorem 3.3
is applicable.

Example 4.1 We start with a system similar to the motivating example in [11] that is
governed by an ordinary differential equation. Define F = (−∞, 0] andU = [0,∞).
For T ≥ 1 we consider the problem

(OC)T

⎧⎪⎪⎨
⎪⎪⎩

min
u∈L2(0,T ),u(t)∈U ,y(t)∈F

T∫
0

1
2 |u(t)|2 + |u(t)| + |y(t)| dt subject to

y(0) = −1, y′(t) = y(t) + exp(t) u(t)
y(T ) = 0.

Here the turnpike is zero, that is y(σ ) = 0 and u(σ ) = 0. First we show that the feasible
set is nonempty. Define t0 = 1 and û(t) = e− et ≥ 0 for t ∈ (0, t0) and u(t) = 0 for
t ≥ t0. Then for t ∈ (0, t0) we have

ŷ(t) = et
[
−1 +

∫ t

0
u(τ ) dτ

]
= t et+1 − e2t ≤ 0

and for t ≥ t0 we have ŷ(t) = 0.
All the feasible controls can be characterized by the moment equation

∫ T

0
u(τ ) dτ = 1. (4.1)
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Hence for all feasible controls u ≥ 0 where y ≤ 0 integration by parts yields

J(0,T )(u, y) =
T∫

0

1
2 |u(t)|2 + u(t) − y(t) dt

= 71 +
T∫

0

1
2 |u(t)|2 + et

[
1 −

∫ t

0
u(τ ) dτ

]
dt

= 1 +
T∫

0

1
2 |u(t)|2 dt + et

[
1 −

∫ t

0
u(τ ) dτ

]
|Tt=0 +

T∫
0

et u(t) dt .

=
T∫

0

1
2 |u(t)|2 + et u(t) dt .

For T > 1, due to the L1-norm that appears in the objective function, the solution
has an extreme turnpike structure where the system is steered to zero in the finite time
t0 = 1 that is independent of T and remains there for t ∈ (T0, T ). This can be seen
as follows. Let u(t) = û(t) + δ(t) with

∫ T
0 δ(τ ) dτ = 0 and δ(t) ≥ 0 for t ≥ t0. Then

we have

J(0,T )(u, y) =
T∫

0

1
2 |û(t) + δ(t)|2 + et (û(t) + δ(t)) dt

≥
T∫

0

1
2 û(t)2 + et û(t) dt +

T∫
0

(
û(t) + et) δ(t) dt

= J(0,T )(û, ŷ) +
1∫

0

e δ(t) dt +
T∫

1

et δ(t) dt .

= J(0,T )(û, ŷ) +
T∫

1

(
et − e

)
δ(t) dt ≥ J(0,T )(û, ŷ).

Thus û is the optimal control.

Example 4.2 Let us consider another system that is governed by an ordinary differential
equation. Let y0, y1 be vectors in R

n and f : Rn → R
n , g : Rn → R

n×m be C2

maps with f (0) = 0. Let C ∈ R
n×n be regular and define the Hilbert space Y with

the norm

‖z‖Y =
(

z� C� Cz
)1/2

.
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In [16], the following problem is considered:

(OCP)T

⎧⎪⎪⎨
⎪⎪⎩

min
u∈L∞(0,T )

T∫
0

‖y(t)‖2Y + ‖u(t)‖2
Rm dt subject to

y(0) = y0, y′(t) = f (y(t)) + g(y(t))u(t)
y(T ) = y1.

Here the turnpike is zero, that is y(σ ) = 0 and u(σ ) = 0. In this case, the exact
controllability assumption (3.7) requires that there is a constant μ0 > 0 and a time
tmin > 0 such that if t0 − a ≥ tmin for all z0, zd ∈ Y we have the inequality

v(a, t0, z0, zd) ≤ μ0

(
‖z0‖2Y + ‖zd‖2Y

)
. (4.2)

If the system is linear, that is of the form y′ = A y + Bu, the exact controllability can
be checked by Kalman’s rank condition.

Our results show that also with additional constraints, for example with

U = {u ∈ L∞(0, T ) : |u(t)| ≤ 1 almost everywhere}

the solution of (OCP)T has a turnpike structure as described in Theorem 3.3.

Example 4.3 Consider the problem of distributed optimal control of thewave equation.
Define Q = (0, T ) × (0, 1). Here we have Y = H1

0 (0, 1) × L2(0, 1), X = L2(0, 1).
Let F = Y and U = X . Let yd ∈ F and ud ∈ U be given.

Consider the optimal control problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
u∈L2(Q)

T∫
0

1∫
0

(y − yd)2 + (u − ud)2 dx dt subject to

y(0, x) = 0, yt (0, x) = 0, x ∈ (0, 1)
y(t, 0) = 0, yx (t, 1) = 0, t ∈ (0, T )

ytt (t, x) − yxx (t, x) = u(t, x), (t, x) ∈ Q,

For an initial state y0 = (yp, yv) ∈ Y and a control u ∈ L2((0, T ), X) the map
�(a, y0, u, t0) is given by the solution y of the initial boundary value problem on the
time interval (a, t0)

⎧⎨
⎩

y(a, x) = yp, yt (a, x) = yv, x ∈ (0, 1)
y(t, 0) = 0, yx (t, 1) = 0, t ∈ (a, t0)
ytt (t, x) − yxx (t, x) = u(t, x), (t, x) ∈ (a, t0) × (0, 1).

Similar as in Theorem 1.1 in [8] it can be shown that � maps to the function space
C([a, T ], Y ). In fact, � corresponds to a strongly continuous semigroup of contrac-
tions, see [20], hence (1.2) holds.

The exact controllability of the system with controls u ∈ L2(0, T ), Y ) is shown
for example in [14]. In this case we have tmin = 2. Inequality (3.7) can be shown using
the observability inequality (65) from [14].
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Theorem 3.6 shows that the problem enjoys the measure turnpike property with
interior decay. Moreover, since Theorem 3.3 is applicable with SM = 0, the solution
has a turnpike structure where the contribution of the objective function from time
intervals of the form

[t − t/2n, t + (T − t)/2n]

is of the order 1/min{tn, (T − t)n} if T is sufficiently large.
If F is defined as F = { f ∈ Y : | f | ≤ M almost everywhere } where M > 0

is a given upper bound, we obtain the problem with state constraints from [8]. In
this case it is requires more work to verify (3.7), since it requires to solve a problem
of constrained exact controllability that respects the state constraints. We expect this
property to hold for sufficiently regular initial and terminal states- However, it is out
of the scope of this presentation.

The situation is similar if additional control constraints of the form |u| ≤ M1
with a given bound M1 > 0 are present. Problems of this type with pure homoge-
neous Neumann boundary conditions are considered in [12]. Here the verification of
(3.7) requires to show control-constrained exact controllability. As shown in [12], this
requires additional regularity of the initial state and the desired state.

Example 4.4 Now we consider a problem or optimal torque control for an Euler–
Bernoulli beam.Let y0 ∈ H2(0, 1) and y1 ∈ H1(0, 1)begiven.Westudy the following
optimal control problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u∈L2(0,T )

T∫
0

‖y(t, ·)‖2
L2(0,1)

+ ‖u2(t)‖2 dt subject to

y(0, x) = y0(x), yt (0, x) = y1(x), x ∈ (0, 1)
y(t, 0) = 0, yxx (t, 0) = u(t), t ∈ (0, T )

y(t, 1) = yxx (t, 1) = 0,
ytt (t, x) = −yxxxx (t, x), (t, x) ∈ (0, T ) × (0, 1),
y(T , x) = 0, yt (T , x) = 0, x ∈ (0, 1).

We have Y = L2(0, 1) and y(σ ) = 0, u(σ ) = 0. Note that also the desired terminal
state is zero, so in this case both the objective function and the terminal state drive
the system to the zero state. In this case, the exact controllability assumption (3.7)
requires that there is a constant μ0 > 0 and a time tmin > 0 such that if t0 − a ≥ tmin
for all z0, zd ∈ Y we have the inequality

v(a, t0, z0, zd) ≤ μ0

(
‖z0‖2Y + ‖zd‖2Y

)
. (4.3)

Note that the Euler–Bernoulli beam is exactly controllable in arbitrarily short times
(see [20], Example 11.2.8), so in this case tmin > 0 can be chosen arbitrarily small.
However, for tmin decreasing to zero the constant μ0 has to be chosen larger.
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5 Conclusion

We have shown a turnpike theorem for a problem of optimal control that is stated
in a general framework and allows for state constraints and control constraints. The
control–to–state map can be nonlinear. In the optimal control problem, both the initial
state and the terminal state are prescribed but the results are also applicable in the case
where only initial conditions are prescribed.We have shown that for strictly dissipative
systems that are exactly controllable the optimal control problems enjoy the measure
turnpike property with interior decay which is a stronger property than the classical
measure turnpike property.

The turnpike result shows that regardless of the initial state, for a sufficiently large
time horizon T for the optimal controls the contribution of the objective function that
comes from a sufficiently small neighborhood of themiddle of the time interval decays
faster than 1/T . For ε–optimal state–control pairs a similar estimate holds where in
the upper bound an additional constant that is multiplied by ε appears.
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