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Abstract— Han et.al have applied two SAOR splitting 
formats for solving the linear complementarity problem. 
We improve them by introducing a class of preconditioners 
based on the SAOR methods. The convergences of the 
modified methods have been analyzed. We also show the 
applicability of the methods by numerical example.  
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1. Introduction 
 
The linear complementarity problem Abbreviated as 
LCP(M,q),  is to find a vector nRz∈
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,⎧

≥
+= qMzw
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where , z denotes the transpose of the vector .  z
This problem is fundamental decision and optimization 
problem. It arises in many scientific applications like 
economic equilibrium analysis, fluid flow analysis, game 
theory, and mathematical programming.  
For more details (see [1-3] and the references therein).  
This problem has been intensely studied since 1960s and 
many methods for solving the LCP (M, q) have been 
introduced. Most of these methods originate from those 
for the system of the linear equations where may be 
classified into two principal classes, i.e. direct and 
iterative methods (see [1-3]).  
Various authors recently have suggested different 
models in the frame of the iterative methods for the 
above mentioned problem. 
       For example, Yuan and Song in [4], based on the 
models in [5] proposed a class of modified AOR 
(MAOR) methods to solve LCP (M, q). Also when the 
system matrix M is an H-matrix they proposed some 
sufficient conditions for convergence of the MAOR and 

MSOR methods. 
Under certain conditions, Li and Dai in [6] and Han, 
Yuan and Jiang in [7] also studied GAOR and SAOR for 
solving LCP (M, q) based on [4], respectively (to see that 
other iterative methods for LCP (M, q) see [4-7] and the 
references therein). 
 
       In this paper, we will propose a modification of 
SAOR methods for LCP (M, q). To accomplish this 
purpose, SAOR methods are coupled with the 
preconditioning strategy. We also show that our methods 
for solving LCP are superior to the basic SAOR methods. 
Numerical experiment shows that the new methods are 
feasible and efficient for solving large sparse linear 
complementarity problems. 
  
2.   Prerequisite 
We begin with some basic notation and preliminary 
results which will be refereed later. 
 
Definition 2.1 [8-10]. 
 
(a) The matrix A= [aij] is nonnegative (positive) if        aij ≥ 0 (aij > 0). In this case we write A ≥ 0(A>0). 
Similarly, for n-dimensional vectors x, which are 
n×1,matrices,    
We can also define x ≥ 0 (x>0).     
(b) A matrix A = ( )   is called a Z-matrix if for   

ij n na ×

       any  i j  , 0ija≠ ≤
(c) A Z-matrix is M-matrix, if A is nonsingular, and if   
      .1 0A− ≥

 (d) A square matrix A =   is called M-matrix  ( )ij n na ×

      if  ;  and  ;( we denote  A I Bα= − 0B ≥ ( )Bα ρ>
     the spectral radius of B by ρ (B))  .     
(e) For any matrix A = ( )   the comparison matrix   ij n na ×

     〈    is defined by:
     

 nn
ij RmA ×∈=〉 )(

      
njijiamam ijijiiii ≤≤≠−== ,1,,
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 (f) The Matrix A = ( )  is an H-matrix if and only   ij n na ×
Let the matrix M is split as  

      if  is M-matrix. 〉〈A  
                                      M=D-L-U,            (2.2)                       

where D diagonal, L and U are strictly lower and upper 
triangular matrices of M, respectively. Then by choice of 

and Lemma 2.6 we have 1−= DEα

Definition 2.2 [4-7] For , vector x+ is defined 
such that (x+)j = max{0,xj}, j = 1,2,. . . ,n. Then, for 
any , the following facts hold: 

nRx∈

nRyx ∈,
                                                             1. (x + y)+ ≤  x+ + y+  
                                     (2.3) .))(( 1

+
− +−= qMzDzz2. x+ - y+ ≤ (x - y)+   

3. x  = x+ + (-x)+                                             
 So, in order to solve , SAOR iterative 
methods are defined in [7] as follows 

),( qMLCP4. x ≤ y implies x+ ≤ y+. 
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Also they proposed following model 

Definition 2.3 [8-9] Let A be a real matrix. The splitting 
A=M- N  is , 
(a) convergent if ρ ( 1M N− ) <1  

 (b) regular if   and    1 0M − ≥ 0N ≥

.]))2(
))2(([( 111
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+−+−−=

qww
zUMwwUzDzz kkkk γγ

      (2.5)                          (c) weak regular if   and  ≥0  1 0M − ≥ 1M N−

(d) M-splitting if M is M-matrix and   . 0N ≥
Where  . +∈Rw γ,      Clearly  an M-splitting is regular and a regular   
The operator , is defined such 
that

nn RRf ⎯→⎯:
ξ=)(zf , where ξ  is the fixed point of the system 

      splitting is weak regular. 
 
Lemma 2. 1 [8,10] Let A be a Z-matrix. Then A is M-
matrix if and only if there is a positive vector x such that 
Ax >0 . 

                                                                                                   

                 (2.6)                           
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Lemma 2.2 [8,10] Let A =M − N be an M-splitting of A. 
Then ρ( 1M N− ) < 1 if and only if A is M-matrix. 

 
Let 
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γ               (2.7)                          Lemma 2.3[9] Let A, B are Z-matrix and A is an M-
matrix ,if A≤ B then B is also  an M-matrix .  
  
Lemma 2.4 [9]  If A ≥ 0, then Then in next lemma we have the convergence theorem, 

proposed in [7] for the SAOR methods. (1) A has a nonnegative real eigenvalue equal to its   
      spectral radius, Lemma 2.8 [7] Let nnRM ×∈ be an H-matrix with 

positive diagonal elements and 1≤≤< w0 γ . Then, for 

any initial vector nRz ∈0 , the iterative sequence { } 
generated by the SAOR methods (2.4),(2.5) converges to 
the unique solution z* of the LCP (M, q) and 

 

kz

.1)( 1 <− RQρ

 (2)  An eigenvector x ≥ 0, corresponds to 0)( >Aρ   
 (3) ( )Aρ  does not decrease when any entry of A is     
      increased. 
 
Lemma 2.5 [10]  Let T ≥ 0 . If there exist x > 0 and a 
scalar   > 0 such that α

  i) xTx α≤ ,then αρ ≤)(T  . Moreover, if  
xTx α<  , then αρ <)(T . 

 

 
3. Preconditioned SAOR for LCP (M,q) 

ii)  xTx α≥ ,then αρ ≥)(T  . Moreover, if 
xTx α> , then αρ >)(T . 

   

  
Lemma 2.6[4] can be equivalently 
transformed to a fixed-point system of equations 

),( qMLCP

           .))(( ++−= qMzEzz α                            (2.1)                                                                                        

Preconditioning methods are the most authoritative 
techniques to improve the properties of the basic 
iterative methods. The main aim of preconditioning 
methods is to substitute the original matrix M  with an 
equivalent one i.e, ecM Pr ,which has better properties 
concerning the computation of a solution (generally by a 
certain iterative methods). The two matrices are 
equivalent in the sense that, they have the same solution. 
Simple preconditioners of this type are the left matrix 
preconditioners. The left preconditioned is a nonsingular 

Where α  is positive constant and E is a diagonal matrix 
with positive diagonal elements. 
 
Lemma 2.7 [4-7] Let nnRM ×∈ be an H-matrix with 
positive diagonal elements. Then the LCP (M, q) has a 
unique solution nRz ∈* . 
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Lemma 3.1. Let M be an H-matrix. Then the 
preconditioned MSIM )( += also is H-matrix.  

matrix P  and the preconditioned matrix is defined by 
PMecM =Pr  where 1−≈ MP . 

 
 Proof.  Let M  be an H-matrix .then <M> is M-matrix 

and by Lemma 2.1     In this section, SAOR methods for LCP and the effect of 
preconditioning for these methods are coupled. In the 
literature, various authors have suggested different 
models of (I+S)-type preconditioner for linear systems 
A=I-L-U; where I is the identity matrix and L,U are 
strictly lower and strictly upper triangular matrices of A , 
respectively (see [11-15] and the references therein). 
These preconditioners have reasonable effectiveness and 
low construction cost. For example In 1987 Milaszewicz 
[11] presented the preconditioner  of (I+ S)-type, where 
the elements of the first column below the diagonal of A 
eliminate. Usui  et al.   In [12] considered the alternative 
preconditioner,with the following form                                      

     0.0 >><>∃ xMTSx  . 
  
Since ,)( ><+>=< MSIM  
then 

         0)( >><+=>< xMSIxM . 

Therefore >< M  is M-matrix and the proof is 
completed.   

                                   

Theorem 3.2. Let nnRM ×∈  with positive diagonal 
elements be an H-matrix and MSIM )( +=  is 
preconditioned form of M with preconditioner (3.3). 

                        LIP +=
)

  Generally, we want transform M to (I+S)M. So let M in 
(2.2) is nonsingular. Then preconditioning in M is; Then if  
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we have Where ULD ,, are diagonal, strictly lower and strictly 

upper triangular parts of M , respectively .        .1)()( 11 <≤ −− RQRQ ρρ  
  
Proof. By Lemma 3.1 M  is an H-matrix. 
Hence RQM −>=<  is M-matrix and by Lemma 2.2 

1)~( 1 <− RQρ . Since QM <>< )(  by Lemma 2.3 Q  is 
M-matrix.  Similarly  Q is also  M-matrix .  

 And     
                             )2.3(.)( qSIq +=  
 
We consider Usui et al’s preconditioner as (I+S). 
Therefore we have Thus 
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then by Lemma 2.4 (Perron-Frobenius Theorem) there 
exist a positive vector x such that 
 
        . xRQxRQ )()( 11 −− = ρ
Therefore  
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 Note. We can also consider other (I+S)-type 
preconditioners  but here ,we use Usui et al’s 
preconditioner  ,since convergence rate via using this 
preconditioner slightly  is better than others; (see[13]).    

 

 Also for preconditioner(3.3) we have:  
Thus the preconditioned SAOR methods for LCP are:    

       

{
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 Format I:   
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Format II:  
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    (3.5) therefore
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 and thus, QQ ≤ and in view of the fact that both QQ ,  
are M-matrices we have 

 
Thus from the definition of the preconditioned SAOR 
methods and (3.8) we can write, 

         .)( 111 −−− ≥≥+ QQKIQ i  
                          

 
         

.)()( *1**1 zzRQzvzvzz kkk −≤−=− −+
 Therefore,

     

 
Hence, the iterative sequence {zk } ,k=0,1,…,  converges 
to  if *z 1)( 1 ≤− RQρ  and since by Theorem 
3.2   , )()( 11 RQRQ −− ≤ ρρ we conclude that for solving 
LCP ,the preconditioned SAOR iterative methods  are 
better than of the SAOR methods form point of view of 
the convergence speed. So the proof is completed.  
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And by Lemma 2.5 we have; ).()( 11 RQRQ −− ≤ ρρ  
Therefore by Lemma 2.8 the proof is completed.  
  
Now, following [4-7], we show that in LCP, the 
convergence rate of preconditioned SAOR methods are 
faster than of the SAOR methods. 

 
 
 

 4- NUMERICAL RESULTS 
Theorem3.3. Let nnRM ×∈

0
 with positive diagonal 

elements be an H-matrix, 1≤≤< wγ . Also M  is 
preconditioned form of M with preconditioner (3.3). 
Then convergence rate of preconditioned SAOR 
methods are faster than of the SAOR methods. 

 
In this section, we give an example to illustrate the 
results obtained in the previous sections. This example 
has been computed by using MATLAB7.   
 

  
 Proof.  We only prove FormatI; FormatII can be 
similarly verified. Let, iterative sequence {zi } 
i=0,1,…,generated by (3.4). From the assumption that M 
is an H-matrix, it follows, by Lemma 3.1 M  is an H-
matrix and therefore by Lemma 2.7, the vector 
sequence{zi } is uniquely defined and the  LCP(M, q) 
has a unique solution nRz ∈•

n R⎯→⎯
. Similar to (2.6),we 

define the operator ,  such thatnRv : ξ=)(zv , 
where ξ  is the fixed point of the  following system 

Example4.1. Consider LCP (M, q) with following 
system NNRM ×∈  and    NRq∈
                     

 NNRFIIIFIIIGM ×∈⊗⊗+⊗⊗+⊗⊗=
3

                      .))1(,,1,1( NTn Rq ∈−−= K

 
Where NNRI ×∈  and ⊗ denotes the Kronecker product.  
Also G and F are n n×  tridiagonal matrices given by 
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              (3.7)     Evidently, M is an H-matrix with positive diagonal 
elements. Then LCP (M, q) has a unique solution. Then, 
we solved the n3 × n3   H-matrix yielded by the iterative 
methods, and   Preconditioned forms. 

  
 By subtracting (3.6) & (3.7), we get  
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z is  and as a stopping criterion we 
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 In Tables 1,2, with several values we report the CPU 
time (CPU) and number of iterations (Iter) for the 
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corresponding SAOR and preconditioned SAOR 
(PSAOR) methods with different parameters. 

[8] Varga RS. Matrix Iterative Analysis[M ].  second ed., 
Berlin :Springer; 2000. 

  
The results show that the preconditioned SAOR methods 
(both formats) can quickly compute satisfactory 
approximations to the solutions of above problem and 
we can easily see that these preconditioned methods are 
more efficient than the basic SAOR methods. For 
example for N=1000, w =0.2  and γ =0.2 ,When we use 
the preconditioned methods, the iteration steps are 
almost one hundred times less than the basic iterative 
methods and for time-consuming we have, 

[9] Frommer A , Szyld DB. H-splitting and two-stage 
iterative methods[J].  Numer. Math1992,  63:345–356. 
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superior to the basic iterative methods.  
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Table1.The number of iteratins and CPU time for 
SAORI and its preconditioned form. 

Table2.The number of iteratins and CPU time for 
SAORII and its preconditioned form. 

Method SAOR Method I         PSAOR 
Method I  

N        w    γ  CPU          Iter         CPU        Iter 
125    0.2   0.02 
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

0.048064   159        0.015872    105 
0.022187   148        0.015116      99 
0.007537     50        0.004871      32 
0.006558     43        0.004261      28 
0.004372     29        0.002876      19 
0.003975     25        0.002463      16 

512    0.2   0.02 
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

0.628651   304        0.402948    196 
0.572845   281        0.367801    182 
0.207923     96        0.128718      62 
0.172554     82        0.111610      53 
0.113595     57        0.071354      36 
0.094838     46        0.061351      29 

1000  0.2   0.02 
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

2.397730   428        1.535994    276 
2.478125   395        1.398550    256 
0.844936   137        0.538365      88 
0.758608   116        0.520795      75 
0.505762     81        0.351534      52 
0.404629     65        0.228767      41 

2191  0.2   0.02 
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

18.183986  700       11.799977   456
16.727265   645      10.948800   422
  6.045586   232        3.843100   149
  5.078971   196        3.262716   126
  3.553875   137        2.256743     87
  2.829414   109        1.740109     67

Method SAOR Method 
II          

      PSAOR 
Method II 

N        w    γ     CPU      Iter          CPU         Iter
125    0.2   0.02
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

0.023491   159        0.016078    105 
0.023103   148        0.015001      98 
0.007406     50        0.004754      32 
0.006423     43        0.004287      28 
0.004504     30        0.002922      19 
0.003857     25        0.002374      16 

512    0.2   0.02
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

0.629974   304        0.445050    195 
0.578688   282        0.430417    181 
0.199673     96        0.134616      61 
0.164254     82        0.114408      52 
0.116346     57        0.074157      36 
0.110489     47        0.070957      28 

1000  0.2   0.02
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

2.365414   428        1.520182    276 
2.226123   396        1.585317    254 
0.754636   138        0.480856      88 
0.644249   117        0.444339      74 
0.446212     82        0.279290      51 
0.377697     66        0.218460      40 

2191  0.2   0.02
          0.2   0.2 
          0.7   0.3 
          0.7   0.6 
          1.0   0.7 
          1.0   1.0 

18.179740  700       11.874742   456
16.739038   646      10.893500   420
  6.032695   232        3.846774   148
  5.087326   197        3.205456   124
  3.540658   137        2.342892     85
  2.853323   110        1.675702     65
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