
Research Article

Taekyun Kim*, Dae San Kim, Dmitry V. Dolgy, and Jin-Woo Park*

On the type 2 poly-Bernoulli polynomials
associated with umbral calculus

https://doi.org/10.1515/math-2021-0086

received December 8, 2020; accepted August 5, 2021

Abstract: Type 2 poly-Bernoulli polynomials were introduced recently with the help of modified polyexpo-

nential functions. In this paper, we investigate several properties and identities associated with those

polynomials arising from umbral calculus techniques. In particular, we express the type 2 poly-Bernoulli

polynomials in terms of several special polynomials, like higher-order Cauchy polynomials, higher-order

Euler polynomials, and higher-order Frobenius-Euler polynomials.
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1 Introduction

The poly-Bernoulli polynomials, which are defined with the help of polylogarithm functions, were studied

by Kaneko in [1], while the type 2 poly-Bernoulli polynomials, which are defined with the help of modified

polyexponential functions, were investigated very recently in [2]. We note that the modified polyexponen-

tial functions are inverse to the polylogarithm functions. Thus, it is very natural to replace the polyloga-

rithms by the modified polyexponential functions in the definition of generating function of poly-Bernoulli

polynomials. Indeed, the generating function of type 2 poly-Bernoulli polynomials is obtained in this way

(see (1), (3)), and hence we may say that it arises in a natural manner.

Let k 1≥ be an integer, xEik( ) the modified polyexponential function (see (1)), and let Bn
k( ) be the type 2

poly-Bernoulli numbers (see (3)). In [2], the function η sk( ), for sRe 0( ) > , is defined as
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It was shown that this function can be continued to an entire function on � and its values at non-positive

integers are given by η m B m1 , 0k
m
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k( ) ( ) ( )( )− = − ≥ . In addition, for any integer k 2≥ , the generating func-

tion of the type 2 poly-Bernoulli numbers is given by
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The aim or motivation of this paper is to further derive some properties, recurrence relations, and

identities related to the type 2 poly-Bernoulli polynomials by using umbral calculus techniques. Especially,

those polynomials are represented in terms of some well-known special polynomials. In general, special

polynomials and numbers can be studied by employing various different methods including combinatorial

methods, generating functions, differential equations, umbral calculus techniques, p-adic analysis, and

probability theory.

The outline of this paper is as follows. In Section 1, we give some necessary definitions and some

basic facts about umbral calculus. As to definitions, we recall the definitions of polyexponential functions,

type 2 poly-Bernoulli polynomials, higher-order Bernoulli polynomials, higher-order Cauchy polynomials,

higher-order Euler polynomials, and Stirling numbers of the first and second kinds. As to umbral calculus,

we give very basic facts such as Sheffer sequence, generating functions of Sheffer polynomials, and the

formula for representing one Sheffer polynomial by another. For further details on umbral calculus, we let

the reader refer to [3–5]. In Section 2, we find an explicit expression for the type 2 poly-Bernoulli poly-

nomials involving Bernoulli numbers and Stirling numbers of the first kind, a recurrence relation for them,

and an identity involving the type 2 poly-Bernoulli numbers and Stirling numbers of the first kind. In

addition, we express the type 2 poly-Bernoulli polynomials as linear combinations of higher-order Cauchy

polynomials, higher-order Euler polynomials, and of higher-order Frobenius-Euler polynomials.

It is one of our future projects to continue to work on various special polynomials and numbers by using

umbral calculus, just as we did in the present paper.

Hardy introduced the polyexponential functions [6,7], while Kim-Kim considered the modified poly-

exponential functions which are given by
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From (1), we note that

x eEi 1.x
1( ) = − (2)

The type 2 poly-Bernoulli polynomials, which are defined by using the modified polyexponential functions,

are given by
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For x 0= , B B 0n
k

n
k ( )( ) ( )= are called the type 2 poly-Bernoulli numbers.

For r �∈ , the Bernoulli polynomials xBn
r ( )( ) of order r are given by
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When x 0= , B B 0n
r

n
r ( )( ) ( )= , n 0( )≥ , are called the Bernoulli numbers of order r.

Note that B x xBn n
1 1( ) ( )( ) ( )= , which will be denoted by xBn( ), are the Bernoulli polynomials.

It is well known that the Cauchy polynomials of order r are defined by

t

t
t C x

t

n
r

log 1
1 , see 5 .

r

x

n

n
r

n

0

�
( )

( ) ( ) ( ) ( [ ])( )∑+
+ =

!
∈

=

∞⎛

⎝
⎜

⎞

⎠
⎟ (5)

For r �∈ , the Euler polynomials of order r are defined by
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For n 0≥ , the falling factorial sequence is defined by

x x x x x x n n1, 1 2 1 , 1 .n0( ) ( ) ( )( ) ( ) ( )= = − − ⋯ − + ≥
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Here we note that the Stirling numbers of the first kind are defined by
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As an inversion formula of (7), the Stirling numbers of the second kind are defined by
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Let � be the field of complex numbers and let
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be the algebra of formal power series. For x� �[ ]= , let �∗ denote the vector space of all linear functional

on � . L p x∣ ( )⟨ ⟩ denotes the action of the linear functional L on the polynomial p x( ), and it is well known that

the vector space operations on �∗ are defined by

L M p x L p x M p x cL p x c L p x, ,∣ ( ) ∣ ( ) ∣ ( ) ∣ ( ) ∣ ( )⟨ + ⟩ = ⟨ ⟩ + ⟨ ⟩ ⟨ ⟩ = ⟨ ⟩

where c is a complex constant (see [3–5]).

For f t( ) ∈ F, let f t x an
n( )∣⟨ ⟩ = , n 0( )≥ . From (9), we note that

t x n δ n k, , 0 see 4,12,13 ,k n
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where δn k, is the Kronecker symbol.

The order o f t( ( )) of the power series f t 0( )( )≠ is the smallest integer k for which ak does not vanish.

If o f t 0( ( )) = , then f t( ) is said to be an invertible series; if o f t 1( ( )) = , then f t( ) is called a delta series.

For f t g t,( ) ( ) ∈ F, we have
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where f t( ) ∈ F and p x �( ) ∈ .

Thus, by (11), we get
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From (12), we note that t p x p xk k( ) ( )( )= , k 0( )≥ . It is not difficult to show that

e p x p x y e p x p y, see 15 ,yt yt( ) ( ) ∣ ( ) ( ) ( [ ])= + ⟨ ⟩ = (13)

where p x �( ) ∈ .

Suppose that f t( ) is a delta series and g t( ) is an invertible series. Then there exists a unique sequence

s xn( ) of polynomials such that g t f t s x n δk
n n k,( )( ( )) ∣ ( )⟨ ⟩ = ! , n k, 0( )≥ . The sequence s xn( ) is called the Sheffer

sequence for g t f t,( ( ) ( )), which is denoted by s x g t f t~ ,n( ) ( ( ) ( )).

For s x g t f t~ ,n( ) ( ( ) ( )), we have
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Thus, by (14), we easily get
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where f t( ) is the compositional inverse of f t( ) with f f t t( ( )) = , and

f t s x ns x n, .n n 1 �( ) ( ) ( ) ( )= ∈− (17)

For s x g t t~ ,n( ) ( ( ) ), we have

s x x
g t

g t
s x ,n n1( )

( )

( )
( )= − ′+

⎛

⎝
⎜

⎞

⎠
⎟ (18)

s x y
n

k
s x y

n

k
s x y n, 0 ,n

k

n

k
n k

k

n

n k
k

0 0

( ) ( ) ( ) ( )∑ ∑+ = = ≥
=

−

=
−⎜ ⎟ ⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
(19)

and

s x
g t

x n
1

, 0 see 15 .n
n( )

( )
( ) ( [ ])= ≥ (20)

We recall here that s xn( ) is called the Appell sequence for g t( ) if s x g t t~ ,n( ) ( ( ) ). For example, the
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2 Some identities of type 2 poly-Bernoulli polynomials arising

from umbral calculus

From (3), (4), and (16), we note that
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Now, we observe that
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From Lemma 1 and (25), we have
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Therefore, by (26), we obtain the following theorem.
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From (27) and (28), we note that
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Therefore, we obtain the following theorem.

Theorem 3. For n 0≥ , k �∈ , we have
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Now, we compute t xEi log 1k
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From (1), (3), and (10), we note that
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On the other hand,
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Therefore, by (31) and (32), we obtain the following theorem.
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Theorem 4. For n 0≥ and k �∈ , we have
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Remark 5. Theorem 4 can be deduced also from Theorem 2. From (21) and Theorem 2, we see that
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Replacing j by n j− , noting
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Now, Theorem 4 follows from (34) by noting that δBj
n n

j j n0
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For the next result, we recall that, for any r �∈ , the Cauchy polynomials C xn
r ( )( ) of order r are given by
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We consider the following two Sheffer sequences.
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From (22), (23), and (36), we have
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Therefore, by (37) and (38), we obtain the following theorem.
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Theorem 6. For n 0≥ , r �∈ , and k �∈ , we have
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where C xm
r ( )( ) are the Cauchy polynomials of order r.
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Here we note that
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Therefore, by (39) and (40), we obtain the following theorem.

Theorem 7. For n 0≥ , r �∈ , and k �∈ , we have
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Let λ �∈ with λ 1≠ . For r �∈ , the Frobenius-Euler polynomials of order r are defined by

λ

e λ
e H x λ

t

n

1
; .

t

r
xt

n

n
r

n

0

( )( )∑−
−

=
!=

∞⎛

⎝
⎜

⎞

⎠
⎟ (41)

From (16) and (41), we note that
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Thus, by (22), (23), and (42), we get
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Thus, by (43) and (44), we obtain the following theorem.

Theorem 8. For k �∈ , r �∈ , and n 0≥ , we have
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