
 Open access Journal Article DOI:10.1017/S0960129507006251

On the ubiquity of certain total type structures — Source link

John Longley

Published on: 01 Oct 2007 - Mathematical Structures in Computer Science (Cambridge University Press)

Related papers:

 The Effective Topos

 On Weak and Strong Termination

 On limits of systems of groups

 A Note on Various Classes of Compatible-Type Pairs of Mappings and Common Fixed Point Theorems

 Restricted monotonicity

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-ubiquity-of-certain-total-type-structures-
2xngxppzhe

https://typeset.io/
https://www.doi.org/10.1017/S0960129507006251
https://typeset.io/papers/on-the-ubiquity-of-certain-total-type-structures-2xngxppzhe
https://typeset.io/authors/john-longley-5wr4wl3f8i
https://typeset.io/journals/mathematical-structures-in-computer-science-1hi82pc3
https://typeset.io/papers/the-effective-topos-29slgn095e
https://typeset.io/papers/on-weak-and-strong-termination-1nohc9fdx5
https://typeset.io/papers/on-limits-of-systems-of-groups-3k73glfd20
https://typeset.io/papers/a-note-on-various-classes-of-compatible-type-pairs-of-4z7kp8kx4j
https://typeset.io/papers/restricted-monotonicity-4266vpyrwy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-ubiquity-of-certain-total-type-structures-2xngxppzhe
https://twitter.com/intent/tweet?text=On%20the%20ubiquity%20of%20certain%20total%20type%20structures&url=https://typeset.io/papers/on-the-ubiquity-of-certain-total-type-structures-2xngxppzhe
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-ubiquity-of-certain-total-type-structures-2xngxppzhe
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-ubiquity-of-certain-total-type-structures-2xngxppzhe
https://typeset.io/papers/on-the-ubiquity-of-certain-total-type-structures-2xngxppzhe

Under consideration for publication in Math. Struct. in Comp. Science

On the ubiquity of certain total type

structures

John Longley

Received 3 April 2007

It is a fact of experience from the study of higher type computability that a wide range

of approaches to defining a class of (hereditarily) total functionals over N leads in

practice to a relatively small handful of distinct type structures. Among these are the

type structure C of Kleene-Kreisel continuous functionals, its effective substructure C
eff,

and the type structure HEO of the hereditarily effective operations. However, the proofs

of the relevant equivalences are often non-trivial, and it is not immediately clear why

these particular type structures should arise so ubiquitously.

In this paper we present some new results which go some way towards explaining this

phenomenon. Our results show that a large class of extensional collapse constructions

always give rise to C, C
eff or HEO (as appropriate). We obtain versions of our results for

both the “standard” and “modified” extensional collapse constructions. The proofs make

essential use of a technique due to Normann.

Many new results, as well as some previously known ones, can be obtained as instances

of our theorems, but more importantly, the proofs apply uniformly to a whole family of

constructions, and provide strong evidence that the above three type structures are

highly canonical mathematical objects.

1. Introduction

This paper presents some new results on computability at higher types. Loosely speaking,

we will be working with various collections of objects of finite type, in which some set

of type 0 objects (such as the natural numbers) is taken as basic, and the set of type

k + 1 objects is some set of “operations” mapping type k objects to type 0 objects. The

operations in question might be ordinary mathematical functions, or more intensional

objects such as algorithms or programs of some kind.

The general problem of trying to identify reasonable definitions of computability for

objects of finite type has a long history, which we have reviewed in our survey paper

(Longley 2005a). As argued there, it is far from clear a priori what one ought to mean by

computability in the higher type setting, but it is a pleasing fact of experience that a wide

range of plausible approaches leads in practice to a relatively small handful of distinct

notions of computability. For example, if we restrict attention to classes of functions

(that is, extensional operations) of finite types over the natural numbers, it appears that

practically all known plausible definitions lead to one of six classes of functionals, giving

us two notions of “total computable functional”, and four notions of “partial computable

John Longley 2

functional”. The situation is summarized at the end of (Longley 2005a), and will be

expounded more fully in two sequel papers.

Each of these six notions admits a wide range of different mathematical character-

izations, and in each case we have a clutch of theorems asserting that these various

characterizations all lead to the same class of functionals. (This is rather analogous to

the situation in ordinary first order computability theory, where definitions via Tur-

ing machines, lambda calculus, recursion schemes etc. all give rise to the same class of

computable first order functions.) In the higher type setting, many of these theorems

are non-trivial and surprising, since they often relate constructions which appear totally

different in character.

In this paper we will concentrate in particular on certain classes of hereditarily total

functionals (that is, total functionals acting on total functionals acting on total function-

als . . . and so on down to ground type). A class of such functionals can be conveniently

embodied by a total type structure over the set N of natural numbers (we will define this

notion precisely in Section 4). Several natural ways of constructing type structures of this

kind are surveyed in (Longley 2005a), along with a number of equivalence results relating

such constructions. A consideration of these results leads us to observe that there are

three type structures which seem to arise with remarkable frequency:

1 Constructions based on some idea of “continuous functions acting on continuous data”

tend to lead consistently to the type structure C of Kreisel’s continuous functionals

(Kreisel 1959), or equivalently Kleene’s countable functionals (Kleene 1959b).

2 Constructions based on an idea of “effective functions on continuous data” tend to

lead to the structure C
eff of effective continuous functionals. This can be regarded as

an effective substructure of C.

3 Constructions based on an idea of “effective functions on effective data” tend to lead

to the type structure HEO of hereditarily effective operations, or equivalently to the

structure C
heff of hereditarily effective continuous functionals (Kreisel 1959; Troelstra

1973).†

Since these type structures made their debut in the late 1950s, a large number of equiv-

alent characterizations of them have been obtained, contributing to the impression that

these structures are in some sense natural or canonical objects. (We will review some of

these results in Section 4.2; see (Longley 2005a, Section 3) for a more historical account.)

Note that in the above, the words “continuous” and “effective” can be made precise in

various different ways; the point is that in each of the three cases, all reasonable choices

lead to the same structure.

The structure C is not itself a candidate for a class of “computable” functions (un-

less one allows one’s “programs” to be infinite objects), but it nevertheless plays an

† In much of the earlier literature, the functionals in C
eff are known as the recursive(ly) continuous

functionals, and those in C
heff are known as the hereditarily recursive(ly) continuous functionals (see

e.g. (Troelstra 1973; Beeson 1985)). This terminology was followed in (Longley 2005a), where the
structures C and C

heff were denoted by RC and HRC respectively. In the present paper, however, our
terminology and notation accord with the more modern practice of using the term recursive only in
contexts where the concept of self-invocation is specifically intended — see (Soare 1999).

On the ubiquity of certain total type structures 3

important role in the study of higher type computability. The other two type structures,

C
eff and HEO, represent the two reasonable notions of “total computable functional”

alluded to above.‡ These two notions are quite different in flavour and are in some sense

incomparable: there are functionals in HEO that have no counterpart in C
eff, and vice

versa.

It thus appears that for definitions of a class of total computable functionals, the main

dichotomy is between approaches in which functions defined on arbitrary continuous

objects of the appropriate type, and approaches in which they are defined on just the

computable (i.e. effective) objects of the appropriate type. Other aspects of the definitions

which one might expect to be significant, such as how we choose to represent functions

intensionally and how these intensions are allowed to interact, typically seem not to make

any difference to the resulting class of total functionals. Curiously, this is in diametric

opposition to the situation for notions of partial computable functional, where these

other considerations turn out to be critical, but the distinction between “continuous”

and “effective” is of minor importance.

What we have sketched here is simply an impression that emerges from a number

of individual results connecting up different constructions. It is therefore natural to ask

whether one can give some kind of explanation for why these three type structures arise so

ubiquitously, and whether our observations 1–3 above can be made precise in some way.

The purpose of this paper is to present some results which go some way towards realizing

these objectives. We will obtain some general theorems saying that any construction that

follows a certain pattern will result in the type structure C (respectively C
eff, HEO).

Our theorems are thus of a somewhat more sweeping character than previous results

in the area, and cover many (though not all) of the constructions hitherto considered

in the literature as special cases. Hence, our approach provides a unified explanation

(and indeed a uniform proof) of several of the previously known equivalence results. In

addition, a wealth of new characterizations of these type structures can be obtained as

further instances of our theorems. Perhaps most importantly, by virtue of their generality,

our results will furnish some kind of mathematical explanation for observations 1–3, and

(in the author’s view) provide strong confirmation that the structures C, C
eff and HEO

are highly canonical mathematical objects.

In view of the generality of our results, we will need some general framework for de-

scribing the class of constructions we have in mind. Roughly speaking, our results will

cover a large class of constructions that can be naturally presented as instances of the

extensional collapse construction. In order to articulate our results, we will make use of a

framework from realizability involving typed partial combinatory algebras (TPCAs), first

introduced in (Longley 1999b). As we shall see, many of the known constructions of C

‡ There is also another important notion of total computable functional, more restrictive than either of
these — namely, the one given by Kleene’s schemata S1–S9 (Kleene 1959a). In the author’s view, this
notion is best treated in terms of partial functionals so we count it as one of our four partial notions.
(This point of view was advocated in (Platek 1966), and we hope to develop it further elsewhere.) We
will not say much about S1–S9 computability in this paper, but will briefly allude to how it relates
to our present results in Section 10.2).

John Longley 4

and C
eff, and all known constructions of HEO, are easily seen to be equivalent to con-

structions that fit within this framework (at least if we also admit modified extensional

collapses, which we will discuss towards the end of the paper). A plentiful supply of addi-

tional constructions is also provided by many of the structures considered in denotational

semantics.

On the face of it, the extensional collapse construction does not give a particularly

concrete handle on the resulting type structure, and would seem to be very sensitive to

the choice of TPCA in question. Indeed, examples drawn from the world of partial type

structures show that this construction can sometimes exhibit quite capricious behaviour

(see the discussion following Remark 4.6), and even in the light of the known equivalence

results, there is no particular reason to expect in advance that extensional collapses in

the total setting should be any less erratic in general. However, our main theorems will

show that all constructions that fit within our framework, and satisfy certain technical

conditions, lead to C,Ceff or HEO as appropriate. The technical conditions turn out to

hold in most but not all cases of interest (see Section 10 for a discussion). The proofs of

our theorems make essential use of a technique introduced in (Normann 2000), where it

is used to show that the total computable functionals arising from the standard Ershov-

Scott model are all definable in the language PCF. Normann’s proof is already quite

technical, and ours are even more so, since several further ingredients need to be added

in order to adapt the argument to our more general setting.

The results of this paper were announced in an extended abstract (Longley 2005b).

Readers interested in understanding the statements of our results but not the proofs may

prefer to consult this shorter version, which takes a somewhat more direct route to the

results involving less machinery.§

1.1. Motivations

For the author, the task of mapping out the various reasonable notions of higher type

computability is of intrinsic conceptual interest. However, the results of this paper also

have potential repercussions in other areas; here we briefly mention two possible kinds

of applications which might be seen as providing further motivation for our inquiry.

One kind of motivation comes from the study of formal systems for constructive logic,

such as first order Heyting arithmetic HA or its higher order counterpart HAω (see for

example (Troelstra 1973) and (Beeson 1985)). For metamathematical purposes, one of-

ten considers interpretations of such systems (such as realizability interpretations) that

embody some kind of constructive or computational content. Frequently, these interpre-

tations are based on some notion of a constructive or computable operation of finite type.

In the case of HAω with extensionality, in particular, one is naturally led to consider the

§ The reader is warned that the published version of (Longley 2005b) contains a serious omission, in that
the statements of our main theorems for C and C

eff in (Longley 2005b) lack some technical conditions
which appear to be necessary for our proofs. A corrected version of this extended abstract is available
from the author’s home page. Correct statements of the theorems also appear as Theorems 5.13 and
5.14 below.

On the ubiquity of certain total type structures 5

class of the hereditarily total functionals that arise from such a notion, so in order to

study properties of our interpretation we will surely want to know what this class of func-

tionals is. The results of the present paper will answer this question in a large number of

cases, allowing existing knowledge about the resulting class of functionals to be applied

to the interpretation in question.

A second motivation comes from computer science. In general (as we have argued

in (Longley 2005a, Section 4)), the partial notions of higher type computability are

both intrinsically better behaved than the total notions and also of greater relevance

for computer science. However, there is also some interest in the notion of totality in

various programming languages, as discussed for example in (Plotkin 1997). Although in

principle programming languages allow us to write non-terminating programs, in practice

one mostly wants to write programs that do terminate, and these are certainly easier to

reason about, since we do not have to worry about the possibility of “undefinedness”. It

is therefore of interest to consider the class of total computable operations that a given

programming language supports. As explained in (Plotkin 1997), there are various subtle

issues involved in defining a good notion of totality for programs of higher type, but in

any case, we will certainly be interested in knowing what class of total operations we

obtain from the definitions we adopt. Once again, the results of the present paper will

immediately answer this question in many interesting cases.

1.2. Structure of paper

The remainder of the paper is structured as follows.

Sections 2 to 5 are devoted to setting up the framework within which we shall work

and marshalling all the prerequisites that we need. In Section 2 we present the defini-

tion of typed partial combinatory algebras (TPCAs) and develop some basic theory for

these structures. The material here develops ideas introduced in (Longley 1999b), and

is largely a straightforward adaptation of familiar ideas from the untyped case. In Sec-

tion 3 we illustrate the scope of these ideas with a variety of examples, concentrating

mostly on structures that will play important roles in the rest of the paper. In Section 4

we show how TPCAs give rise to total type structures via the (standard) extensional

collapse construction, and discuss how this fits within the framework of standard real-

izability models. Again, this is mainly a straightforward adaptation of some well-known

ideas. We then mention some instances of the extensional collapse construction that have

been previously considered in the literature — in this way we introduce the three type

structures that will be our main objects of study, and review some of their key properties.

In Section 5 we introduce the key ideas of effective and continuous TPCAs, drawing on

our general framework of applicative morphisms as considered in (Longley 1995; Longley

1999b). Using these ideas, we are at last able to give precise statements of the main

theorems of the paper.

In Section 6 we give a conceptual overview of our proofs of these theorems and their

relationship to Normann’s work — this short section is in some sense the heart of the

paper. We also deal with a minor preliminary issue: the reduction from arbitrary types to

pure types. In Sections 7 and 8 we present the detailed technical proofs of our theorems

John Longley 6

for the continuous and effective cases respectively. In Section 9 we show that our proof

techniques can be adapted to yield analogous results for the modified extensional collapse

construction (corresponding to modified realizability models).

In Section 10 we mention some applications and specific instances of our results, and

tie up a few other loose ends. Finally, in Section 11 we try to assess the significance of

our results, point out some of their limitations, and suggest some problems for further

research.

1.3. Notation

We first fix some notational conventions. We will be considering the simple types σ

generated by the grammar:¶

σ ::= 0 | σ1 × σ2 | σ1 → σ2

We use ρ, σ, τ, υ to range over types, and consider × and → to be right-associative, so

that e.g. ρ → σ → τ means ρ → (σ → τ). We inductively define n+ 1 to be the type

n→ 0, and we refer to the types n as the pure types. For typographical convenience, we

often write n in place of n when it appears as a subscript or superscript.

If r > 0, we write σr for the r-fold product type σ × · · · × σ. We also write σ(r) → τ

for the type

σ → · · · → σ︸ ︷︷ ︸
r

→ τ

In connection with potentially non-denoting mathematical expressions e, we write e↓

to mean “e is defined”; e = e′ to mean “e, e′ are defined and equal” (strict equality);

e ≃ e′ to mean “if either e or e′ is defined then so is the other and they are equal” (Kleene

equality); and e � e′ to mean “if e′ is defined then so is e and they are equal”. All other

predicate symbols are used in a strict sense, implying that their arguments are defined.

Note in particular that e 6= e′ means “e, e′ are defined and unequal”.

We write f : X → Y [resp. f : X ⇀ Y] to mean that f is a (set-theoretic) total [resp.

partial] function from X to Y . We also sometimes write (X → Y) [resp. (X ⇀ Y)] for

the set of all total [resp. partial] functions from X to Y . We often write NN in place of

(N → N).

When working with finite sequences of any kind, we will follow the computer science

convention of indexing the elements by numbers 0, . . . , n − 1 (for example), where n is

some variable giving the length of the sequence. (We allow x0, . . . , xn−1 to mean the

empty sequence when n = 0.) Although this leads to a proliferation of ‘-1’s which may

appear perverse, the author thinks that this convention comes to seem very pleasant if

it is applied consistently.

We write N∗ for the set of finite sequences of natural numbers, and take 〈· · ·〉 to be

¶ Mathematically it makes little essential difference whether product types are included in our system.
Including products tends to add clutter to the basic definitions such as Definition 2.1, but pays off
in the long term since it allows later definitions such as 4.4 and 5.1 to be presented in their natural
form.

On the ubiquity of certain total type structures 7

some fixed primitive recursive encoding N∗ → N, with corresponding primitive recursive

operations cons : N2 → N, length : N → N, proj : N2 → N and tail : N → N satisfying

cons (m, 〈n0, . . . , nr−1〉) = 〈m,n0, . . . , nr−1〉

length (〈n0, . . . , nr−1〉) = r

proj (i, 〈n0, . . . , nr−1〉) = ni if i < r

tail (〈n0, . . . , nr−1〉) = 〈n1, . . . , nr−1〉 if r > 0

tail (〈〉) = 〈〉

For any total function g : N → N, we write g̃ : N → N for the course-of-values function

defined by

g̃(n) = 〈g(0), . . . , g(n− 1)〉.

2. Typed partial combinatory algebras

This section is concerned with setting up the general framework needed to express our

results. We present a variant of the definition of typed partial combinatory algebras (TP-

CAs) which we introduced in (Longley 1999b) (under the name of partial combinatory

type structures). Many of the known constructions giving rise to C, C
eff and HEO involve

structures of this kind. In the following section we will give several concrete examples.

Definition 2.1 (TPCA). (i) A typed partial combinatory algebra (or TPCA) A consists

of

— a set Aσ for each type σ;

— a partial function ·στ : Aσ→τ ×Aσ ⇀ Aτ (known as application) for each σ, τ ,

such that for any types ρ, σ, τ there exist elements

kστ ∈ Aσ→τ→σ

sρστ ∈ A(ρ→σ→τ)→(ρ→σ)→ρ→τ

pairστ ∈ Aσ→τ→(σ×τ)

fstστ ∈ A(σ×τ)→σ

sndστ ∈ A(σ×τ)→τ

satisfying the following conditions for all elements x, y, z of the appropriate types. (Note

that we will frequently omit type subscripts where these can be inferred from the context,

and treat ‘·’ as left-associative, so that x · y · z means (x · y) · z.)

k · x · y = x

s · x · y ↓

s · x · y · z � (x · z) · (y · z)

fst · (pair · x · y) = x

snd · (pair · x · y) = y

John Longley 8

(ii) A TPCA with numerals, or N-TPCA, is a TPCA A in which there are elements

0̂, 1̂, 2̂, . . . ∈ A0

suc ∈ A0→0

recσ ∈ Aσ→(0→σ→σ)→0→σ (for each σ)

such that for all x, f of appropriate types and all n ∈ N we have

suc · n̂ = n̂+ 1

rec · x · f · 0̂ = x

rec · x · f · n̂+ 1 � f · n̂ · (rec · x · f · n̂)

If e is a long mathematical expression denoting a natural number, we will sometimes

write ê or (e)̂ in place of ê when this helps to clarify the span of the ·̂ · · operator.

(iii) A TPCA with numerals and general recursion, or NR-TPCA, is an N-TPCA A

containing elements

yρ ∈ A(ρ→ρ)→ρ (for each type ρ = σ → τ)

such that for all f ∈ Aρ→ρ and x ∈ Aσ we have

y · f ↓

y · f · x � f · (y · f) · x

Strictly speaking, the choice of elements k, s,pair, . . . is not part of the data for a TPCA

— only the existence of such elements is required. A TPCA together with a suitable choice

of the appropriate combinators will be referred to as an explicit TPCA (and similarly for

N-TPCAs and NR-TPCAs).

Note that our equation for y is weaker than the more familiar fixed point equation

y · f = f · (y · f). This extra generality is required for several of the natural examples,

such as the PCA K1 (see Example 3.1). Actually, in the present paper we shall only ever

need the combinators y1 and y2 (see Section 10.2.2).

In this paper we will take the definition of NR-TPCAs as our basic notion of a “model

of higher type computation”. As we shall see shortly, any NR-TPCA has enough structure

to support “general recursive computation” over the natural numbers.

We will also need an appropriate notion of substructure for TPCAs:

Definition 2.2. A sub-TPCA A′ of a TPCA A consists of a family of subsets A′
σ ⊆ Aσ

(one for each σ), such that (for some choice of kστ , sρστ ,pairστ , fstστ , sndστ suitable

for A) we have

— kστ , sρστ ,pairστ , fstστ , sndστ ∈ A′ for all ρ, σ, τ ;

— A′ is closed under application, in the sense that

f ∈ A′
σ→τ ∧ x ∈ A′

σ ∧ f · x↓ =⇒ f · x ∈ A′
τ .

Furthermore, if A is an N-TPCA [resp. NR-TPCA] and A′ contains elements n̂, suc, recσ

[resp. n̂, suc, recσ and yρ] suitable for A, we say A′ is a sub-N-TPCA [resp. sub-NR-

TPCA] of A.

On the ubiquity of certain total type structures 9

2.1. A formal language for TPCAs

Throughout much of this paper we will make use of a formal language for denoting ele-

ments of TPCAs. Our language will be based largely on familiar ideas from combinatory

logic (see e.g. (Barendregt 1984; Beeson 1985)), but incorporates some additional fea-

tures which will facilitate the construction of complex programs. Firstly, we gain finer

control over the evaluation of combinatory expressions by means of what we shall call

protected expressions. Secondly, the possibility of freely extending our language by adding

constants for previously defined programs is built in from the start. Whilst our approach

may appear rather formal, experience shows that there are some subtle pitfalls to be

avoided in connection with TPCAs, and in our view a secure foundation for program-

ming in TPCAs is essential if we are to conduct our main proofs with any real confidence.

Since a clear intuition for how to work with combinators is so crucial for an understand-

ing of the algorithms to be presented in Sections 7 and 8, we include some examples here

to illustrate our formal language in action, and to point out some of the pitfalls.

Definition 2.3. Suppose B is some set of basic constant symbols bσ, each with an

associated type σ.

Let L(B) be the set of well-typed expressions e, each with an associated type σ, built

up inductively as follows:

— Each bσ ∈ B is an expression of type σ.

— For each type σ we have an infinite supply of derived constant symbols cσ, and each

of these is an expression of type σ.

— Likewise, for each type σ we have an infinite supply of variable symbols xσ, and each

of these is an expression of type σ.

— Given expressions e and e′ of types and σ respectively, we have an expression ee′ of

type τ .

— Given an expression e of type σ, we have an expression ⌈e⌉ also of type σ.

We write e : σ to mean “e is a well-typed expression of type σ”. An expression is closed

if it contains no variable symbols.

We use teletype identifiers (e.g. k, f, n) as particular basic constants, derived constants

and variables, and as above use b, c, x respectively as metavariables ranging over these

classes of symbols. We take juxtaposition to be left-associative, so that ee′e′′ means

(ee′)e′′. Expressions of the form ⌈e⌉ will be called protected — the role of such expressions

will be explained shortly.

Definition 2.4. (i) A definition environment ∆ for L(B) is a list of equations

(cσ0
0 ≡ e0, . . . , c

σs−1

s−1 ≡ es−1)

where the ci are distinct derived constant symbols, and each ei is a closed L(B) expression

of type σi containing no derived constants apart from c0, . . . , ci−1. We then write L(B)∆σ
for the set of well-typed expressions e : σ such that all derived constants appearing in e

are among c0, . . . , cs−1, and L(B)∆0
σ for the set of closed such expressions. For the case

where ∆ is empty, we abbreviate these to L(B)σ and L(B)0σ respectively.

John Longley 10

(ii) Let B0 be the set consisting of symbols kστ , sρστ , pairστ , fstστ , sndστ for every

ρ, σ, τ . Let B1 consist of all these together with symbols 0, 1, . . . , suc and recσ for each

σ, and let B2 consist of all the symbols in B1 together with symbols yρ for each type

ρ = σ → τ . All these symbols have associated types as given in Definition 2.1. We now

define languages

Comb = L(B0), NComb = L(B1), NRComb = L(B2)

An explicit TPCA will sometimes be referred to as a model of Comb; likewise, an explicit

N-TPCA will be a model of NComb and an explicit NR-TPCA will be a model of

NRComb. In each of the cases B = B0, B1, B2, a model A of Comb(B) comes with an

interpretation ≪bσ≫∈ Aσ for each basic constant bσ ∈ B.

For the rest of this subsection, suppose L is any one of our three languages Comb,

NComb, NRComb.

Definition 2.5. Let A be a model of L. Given a definition environment ∆ for L, and a

valuation ν assigning elements ν(x) ∈ Aσ to certain variables x : σ, we define the evident

interpretation function ≪−≫∆
ν : L⇀ A to be the smallest partial function such that

— ≪bσ≫∆
ν =≪bσ≫ for each basic constant b of L;

— for each equation c ≡ e in ∆, ≪c≫∆
ν =≪e≫∆

ν if the right hand side is defined;

— for each variable x, ≪x≫∆
ν = ν(x) if ν(x) is defined;

— for any e : σ → τ and e′ : σ, ≪ee′≫∆
ν =≪e≫∆

ν · ≪e′≫∆
ν if the right hand side is

defined;

— for any e : σ, ≪⌈e⌉≫∆
ν =≪e≫∆

ν if the right hand side is defined.

Clearly, if e : σ and ≪e≫∆
ν is defined then ≪e≫ν∈ Aσ. We write ≪e≫∆ for ≪e≫∆

ν

where ν is empty.

Given any expression e ∈ L∆
σ , we can obviously expand out the derived constant

symbols to obtain an expression e† ∈ Comb∅
σ, where ∅ is the empty definition environ-

ment. Clearly e† contains exactly the same variables as e, and for any A and ν we have

≪e†≫∅
ν ≃ ≪e≫∆

ν .

A crucial property of TPCAs is that any operation that may be defined by means of

a formal expression is also representable within the TPCA itself. We may capture this

idea using the following definition. We write iσ as an abbreviation for the expression

sσ(0→σ)σkσ(0→σ)kσ0; note that ≪ie≫ν≃≪e≫ν for any e, ν.

Definition 2.6. Suppose e is any expression of L, and x is a variable symbol of type σ.

Then we write (λ∗x.e) to denote the L-expression defined by induction on the structure

of e as follows.

(λ∗x. x) = iσ

(λ∗x. y) = kτσy if y : τ is any variable other than x

(λ∗x. c) = kτσc if c is a basic or derived constant of type τ

(λ∗x. e′e′′) = sστυ(λ∗x. e′)(λ∗x. e′′) if e′ : τ → υ and e′′ : τ

(λ∗x. ⌈e⌉) = (λ∗x. e) if the variable x appears in e

On the ubiquity of certain total type structures 11

(λ∗x. ⌈e⌉) = kτσe if e : τ and x does not appear in e

If x0, . . . , xr−1 are distinct variables, where r > 1, we may define

(λ∗x0 . . . xr−1. e) = (λ∗x0. (· · · (λ∗xr−1. e) · · ·))

We emphasize that the λ∗ notation is a meta-notation for defining L-expressions, and not

a part of the syntax of L-expressions themselves. Thus, in the above equation, the meta-

expression (λ∗x0. (· · · (λ∗xr−1. e) · · ·)) denotes an L-expression which may be obtained

by translating the λ∗ abstractions “from the inside outwards”.

Clearly, if x : σ and e : τ , then (λ∗x.e) is a well-typed expression of type σ → τ which

contains exactly the same derived constants as e, and exactly the same variables as e

except that x itself does not appear in (λ∗x.e).

Proposition 2.7 (Combinatory completeness). Let e : τ be any expression of L,

and suppose xσ0
0 , . . . , x

σr−1

r−1 are distinct variables, where r > 0. Let V be the set of

variables appearing in e, and V ′ = V ∪ {x0, . . . , xr−1}. Then for any model A of L and

any valuation ν : V ′ → A we have

— ≪(λ∗x0 . . . xr−1. e)x0 · · ·xr−1≫ν � ≪e≫ν

— for any s < r, ≪(λ∗x0 . . . xr−1. e)x0 · · ·xs−1≫ν↓ if for every protected subexpression

⌈e′⌉ of e not containing any of xs, . . . , xr−1, ≪e′≫ν↓.

In particular, if e has no protected subexpressions, then for any s < r we have that

≪(λ∗x0 . . . xr−1. e)x0 · · ·xs−1≫ν↓.

Proof. The first property is proved for the case r = 1 by a routine induction on the

structure of e, bearing in mind that ≪(λ∗x0.e)x0≫ν ≃≪(λ∗x0.e)≫ · ν(x0) and that

≪e′e′′≫ν↓ implies ≪e′≫ν↓ and ≪e′′≫ν↓. We may then establish the first property for

r > 1 by induction on r as follows:

≪(λ∗x0 . . . xr−1. e)x0 · · ·xr−1≫ν

≃ ≪(λ∗x0.(λ
∗x1 . . . xr−1.e)) · x0≫ν · ≪x1≫ν · · · · · ≪xr−1≫ν

� ≪(λ∗x1 . . . xr−1.e)≫ν · ≪x1≫ν · · · · · ≪xr−1≫ν

≃ ≪(λ∗x1 . . . xr−1.e)x1 · · ·xr≫ν � ≪e≫ν

The second property is proved for the case s = 0, r = 1 by an easy induction on the

structure of e. We now consider the case s = 0, r > 1. Let d = (λ∗x1 . . . xr−1.e). We first

note that if d contains a protected subexpression ⌈e′⌉, then the subexpression ⌈e′⌉ also

appears within e itself and does not contain any of x1, . . . , xr−1 (the proof is an easy

induction on r). Now suppose ≪e′≫ν↓ for every ⌈e′⌉ occurring in e and not containing

any of x0, . . . , xr−1. Then, for any ⌈e′⌉ occurring in d and not containing x0 we have

≪e′≫ν↓, since ⌈e′⌉ also occurs in e and does not contain x0 or any of x1, . . . , xn. Thus,

using the special case s = 0, r = 1 established above, we have ≪(λ∗x0.d)≫ν↓ as required.

The second property for the case s > 0 now follows, since by the first property we have

≪(λ∗x0 . . . xr−1. e)x0 · · ·xs−1≫ν � ≪(λ∗xs . . . xr−1. e)≫ν

The statement for the case of no protected subexpressions is now immediate.

John Longley 12

We will frequently invoke combinatory completeness to define complex formal expres-

sions which it would be impractical to write out in full. As a convention, a defining

equation of the form

c x0 . . . xr−1 ≡ e

will abbreviate the corresponding definitional equation

c ≡ (λ∗x0 . . . xr−1. e)

When interpreting L expressions in an NR-TPCA, we will in practice omit reference to

the definition environment, writing simply ≪e≫ν and understanding all interpretations

to be given relative to the “current definitional environment”, consisting of all equations

of the above form that have been introduced at that point. This will allow us to write

cumulative sequences of definitions much as one would do in a programming language

such as Haskell or Standard ML.‖

To avoid an unsightly proliferation of ≪ ≫ brackets, we shall systematically adopt a

convention of using the italic counterparts of teletype identifiers to stand for the elements

obtained by interpreting derived constants in a given TPCA A. For example, we can

define a predecessor combinator by the equation

pre x0 ≡ rec 0 k00 x

and without further apology we may then write pre for the element ≪pre≫∈ A1 (where

the implicit definitional environment of course includes the equation just given, and A

is determined by the context). In this instance, it is easy to verify that pre · 0̂ = 0̂ and

pre · n̂+ 1 = n̂.

For constants c defined using combinatory completeness, this convention works well

since it is automatic that in any TPCA the interpretation ≪c≫ is defined. Some extra

caution is required if we wish to define constants directly — that is, via a definitional

equation c ≡ e with no parameters — since we have to check that ≪e≫ is defined before

we can refer to the italic counterpart of c.

The following example illustrates some further subtleties associated with derived con-

stants.

Example 2.8. Suppose we define

one ≡ suc 0

applyToOne f1 ≡ f one

This is equivalent to defining

applyToOne f1 ≡ f ⌈suc 0⌉

in the sense that the expanded expression applyToOne† in either case is si(k(suc 0))

(and hence the denotation applyToOne in any model is the same in either case). However,

‖ Usually the implicit “order of definition” here will coincide with the order in which definitions are
actually presented in the text. On the rare occasions where we present definitions out of sequence, we
will explain what we are doing.

On the ubiquity of certain total type structures 13

these definitions are not equivalent to

applyToOne f1 ≡ f (suc 0)

Nor, indeed, does this last definition lead to the same element applyToOne ∈ A2 as the

previous ones in general, since in the latter case, the application of suc to 0 is delayed

until an argument f ∈ A1 has been supplied.††

In the present paper, care is often needed over distinctions of this kind. Indeed, the

possibility of making such distinctions is one reason why we have introduced the ma-

chinery of derived constants into our language. If we simply used one as the name of a

previously defined expression rather than as a constant symbol, the two definitions of

applyToOne would yield exactly the same formal expression (and hence the same value

in any NR-TPCA).

On the other hand, we could have adopted the more familiar practice of regarding

combinatory equations as directly defining elements of A rather than formal expressions,

and including in our language a constant symbol for each element of A. However, this

would make our formal language dependent on a choice of A, and would make it harder

to express the idea that the definition of some operation is “uniform in A”. For our

purposes, a clean separation between the language and its models seems preferable.

We now explain more fully the role of the protected expressions ⌈e⌉ in our language. The

purpose of these expressions is to give us some additional control over the evaluation of

subexpressions when writing definitions of the above form. As is clear from Definition 2.5,

protecting a subexpression e′ in an expression e has no effect on the denotation of e in any

environment, but it does have an effect on the way (λ∗x0 . . . xr−1. e) is defined. Informally,

in the course of the inside-outwards translation of this meta-expression to an expression

e′ of L, protected subexpressions will be kept together for as long as possible. This

means that, conversely, when the corresponding element ≪e′≫ is successively applied

to arguments x0, . . . , xr−1, the protected subexpression will be evaluated as early as

possible.

Example 2.9. Consider the defining equations

E x0 f1 g1 ≡ g (f x)

E′ x0 f1 g1 ≡ g ⌈f x⌉

The first of these definitions binds E to the expression denoted by (λ∗xfg. g(fx)). Ap-

plying Definition 2.6 to the innermost λ∗ abstraction, we see that this is the expression

denoted by (λ∗xf. si(s(kf)(kx))). (Of course, by expanding the other two λ∗ abstrac-

tions we could obtain a much longer concrete expression.) Now suppose A is a model of

†† Strictly speaking, throughout the entire paper we will consider NRComb from a static (denotational)
rather than a dynamic (operational) perspective, and there is nothing at all in our framework that
obliges us to construe evaluation as a “process in time”. However, the dynamic view of computation
is often the more intuitive, and we shall frequently appeal to dynamic concepts for motivational
purposes. For example, we will sometimes say (somewhat loosely) “e evaluates to bn”, where strictly
speaking it would suffice to say “e = bn”.

John Longley 14

L and x ∈ A0, f ∈ A1. Then by Proposition 2.7 we have

E · x · f � ≪si(s(kf)(kx))≫ν

where ν(x) = x and ν(f) = f . Note that the expression appearing on the right hand

side does not involve an application of f to x; in fact, using the axiom ‘s · x · y ↓’ from

Definition 2.1, we see that E · x · f is always defined, even if f ·x is undefined. Of course,

in this case, E · x · f · g will typically be undefined for any g ∈ A1.
‡‡ Intuitively, the

application of f to x is “delayed” until the argument g is supplied.

By contrast, the second definition binds E′ to the expression denoted by (λ∗xf. si(fx)).

In this case, we have

E′ · x · f � ≪si(fx)≫ν

and so E′ · x · f is typically undefined if f · x is undefined; intuitively, the application of

f to x occurs as soon as both x and f are available. However, this “disadvantage” of E′

over E is offset by an important advantage: if f · x = f ′ · x′ = y ∈ A0, then E′ · x · f and

E′ · x′ · f ′ will denote exactly the same element s · i · y ∈ A1 (where i =≪i≫). This is

not the case for E, since in general the element E · x ·f =≪si(s(kf)(kx))≫ν will depend

on the particular elements x and f chosen.

2.2. Some representable operations

We now collect some useful examples of operations that are representable in any N-TPCA

[resp. NR-TPCA]. We will leave the explicit construction of these operations using the

languages NComb,NRComb as a simple exercise.

Firstly, we will often wish to represent operations involving booleans. We will adopt

the convention that 0 represents “true”, and any number n ≥ 1 represents “false”. Ac-

cordingly, in any N-TPCA A, we take T = {0̂} and F = {1̂, 2̂, . . .}; For convenience we

also define tt ≡ 0 and ff ≡ 1, so that in any N-TPCA we have tt = 0̂ and ff = 1̂.

It is straightforward to define NComb constants ifσ : 0 → σ → σ → σ such that, in

any N-TPCA A, for x ∈ A0 and y, z ∈ Aσ we have

ifσ · x · y · z = y if x ∈ T

ifσ · x · y · z = z if x ∈ F

Note that the expression ifσ e e0 e1 will be defined in A only if e, e0, e1 are all defined.

However, in practice we will often wish to write a conditional expression that is defined

whenever e ∈ T ∪F and the chosen branch (e0 or e1 as appropriate) is defined, regardless

of whether the other branch is defined.

We may achieve this effect using a trick known in computer science as thunking. That

is, we represent a potentially undefined expression ei : σ by means of an expression

ti : 0 → σ (called a thunk) which is itself guaranteed to be defined, and from which the

value of ei (if any) may be extracted by applying t to some dummy argument (say 0̂).

‡‡ The appearance of � in Proposition 2.7 allows for the possibility that E · x · f · g might be defined,
but the point is that we have no right to expect it to be.

On the ubiquity of certain total type structures 15

We may then apply the conditional if0→σ to suitable thunks t0, t1 : 0 → σ representing

the branches of the conditional. The thunk for the selected branch can then be applied

to the dummy argument; in this way the evaluation of a branch is delayed until after the

branch is chosen.

Example 2.10. Suppose we have some derived constant g : 1 such that g · n̂+ 1 is

known to be defined in A for each n, but g · 0̂ is not known to be defined. It is natural to

want to check whether a given argument x is non-zero before passing x to g: One might

first try to define a “safe” version g′ of g by

g′ x0 ≡ if0 x 0 (g x)

However, this will not have the desired effect, since if0 · 0̂ · 0̂ · (g · 0̂) is only guaranteed to

be defined if g · 0̂ is defined.

The problem can be solved by defining

thunk f1 x0 z0 ≡ f x

g′ x ≡ if0→0 x (k 0)(thunk g x) 0

To see this at work, we note that

thunk ≡ (λ∗fx. s(kf)(kx))

so that in A we have

thunk · g · 0̂ � s · (k · g) · (k · 0)

and in particular thunk · g · 0̂ ↓. Hence

g′ · 0̂ � if0→0 · 0̂ · (k · 0̂) · (thunk · g · 0̂) · 0̂

� (k · 0̂) · 0̂

� 0̂

Again, care will often be needed over such issues in the present paper, since the issue

of “evaluation time” for potentially undefined expressions is often a delicate one.

Using the constant if0, we may define constants corresponding to the familiar boolean

operators as follows:

and x0 y0 ≡ if0 x y ff

or x0 y0 ≡ if0 x tt y

not x0 ≡ if0 x ff tt

It is also easy to define constants eq, leq : 0
(2)

→ 0 which represent the relations =,≤

on natural numbers relative to the above representation of the booleans.

Next we consider which first order numerical functions we can represent. For r ≥ 1,

let us say a partial function φ : Nr ⇀ N is represented in an N-TPCA A by an element

φ̇ ∈ A0
r
→0 if for all n0, . . . , nr−1 ∈ N we have

φ̇ · n̂0 · · · · n̂r−2 ↓

φ̇ · n̂0 · · · · n̂r−1 � (φ(n0, . . . , nr−1))̂

John Longley 16

(Note that if φ(n0, . . . , nr−1) is undefined, nothing is said about the value, if any, of

φ̇ · n̂0 · · · · n̂r−1.) If L is either NComb or NRComb, we say an expression e of L uniformly

represents φ : Nr ⇀ N if ≪ e≫ represents φ in every model of L; we also say φ is

uniformly representable in L if there is some L-expression e with this property.

We have already seen that the functions uniformly representable in any N-TPCA

include the usual repertoire of basic functions, and it is easy to show that they are also

closed under composition and primitive recursion. Furthermore, using the combinator

y1, it is easy to define a constant min : 2 corresponding to the minimization operator, so

that in any NR-TPCA we have

min · f = n̂ if f · 0̂, . . . , f · n̂− 1 ∈ F and f · n̂ ∈ T

(We do not require the converse.) In view of these facts, we have:

Proposition 2.11. (i) Every primitive recursive function Nr → N is uniformly repre-

sentable in NComb.

(ii) Every partial computable function Nr ⇀ N is uniformly representable in NRComb.

As an example, we may introduce a derived constant proj : 0 → 0 → 0 of NComb

which uniformly represents the primitive recursive function proj from Section 1.3. As a

mild convenience, we also introduce further constants

proj0 ≡ proj 0, proj1 ≡ proj 1, proj2 ≡ proj 2

We may also introduce a derived NComb constant make-pair : 0 → 0 → 0 of NComb

which uniformly represents the primitive recursive function (n0, n1) 7→ 〈n0, n1〉. In any N-

TPCAA, we therefore have elements proj, make-pair ∈ A0→0→0 and proj0 , proj1 , proj2 ∈

A0→0.

We now consider the representation of second order operations in an NR-TPCA. Given

a total function α : N → N, a partial function φ : Nr ⇀ N is partial computable uniformly

in α if φ can be defined from α plus the basic functions via composition, primitive

recursion and minimization. Clearly, any definition of such a function by these means

can be regarded as specifying a function NN → (Nr ⇀ N), by allowing α to vary over NN.

The functions F : NN → (Nr ⇀ N) obtained in this way will be called the type 2 partial

computable functionals; they were first described in (Kleene 1952).

From our discussion of partial computable functions, it is clear that any definition of a

partial function φ : Nr ⇀ N from a function α ∈ NN by means of composition, primitive

recursion and minimization can be translated into a Comb expression e : 0
(r)

→ 0

involving (at most) a single variable a1, such that if ν(a) represents α then ≪ e≫ν

represents φ. Allowing α now to vary over NN, by combinatory completeness we may

then obtain an element Ḟ ∈ A such that for all α̇ ∈ A1, Ḟ · α̇ �≪ e≫ν whenever

ν(a) = α̇. We thus have:

Proposition 2.12. Every type 2 partial computable functional F : NN → (Nr ⇀ N) is

uniformly representable in NRComb, in the sense that there is an NRComb expression

e : 1 → 0
r
→ 0 such that in any NR-TPCA A, for any α̇ ∈ A1 representing any α ∈ NN,

On the ubiquity of certain total type structures 17

and for any n0, . . . , nr−1, we have

≪e≫ · α̇ · n̂0 · · · n̂r−1 � (F (α)(n0, . . . , nr−1))̂

Finally, we introduce an example of a type 2 operator that will be useful later. We

may define an NComb constant

all-in-list : 1 → 0 → 0

for testing whether a given predicate holds for all numbers in some finite sequence. More

precisely, in any N-TPCA, all-in-list will denote an element all-in-list such that for

any n0, . . . , nr−1 ∈ N and f ∈ A1 we have

all-in-list · f · 〈n0, . . . , nr−1〉̂ = tt if f · n̂i ∈ T for all i < r

all-in-list · f · 〈n0, . . . , nr−1〉̂ = ff if for some i < r, f · n̂0, . . . , f · n̂i−1 ∈ T

but f · n̂i ∈ F

The existence of a suitable definition for all-in-list is not strictly an instance of the

foregoing proposition, since f here is not constrained to represent a total function α

(and also because we here wish to use NComb rather than NRComb). Nevertheless, it is

easy to see how a suitable definition of all-in-list may be given in NComb, since the

functions associated with the encoding 〈· · ·〉 in Section 1.3 are all primitive recursive.

3. Examples of TPCAs

We now illustrate our general framework by means of some examples. These serve both

to indicate the scope of the above definitions and to introduce some particular TPCAs

that will play a role later on. In the following section we will review some known results

concerning the extensional collapses of these models.

3.1. Untyped PCAs

Any ordinary (untyped) partial combinatory algebra can be viewed as a TPCA. Recall

that a partial combinatory algebra (or PCA) consists of a set A equipped with a partial

function · : A × A ⇀ A, such that there exist elements k, s ∈ A satisfying the first

three conditions given in Definition 2.1. We may regard any PCA A as an NR-TPCA,

by setting Aσ = A and ·σ,τ = · for all σ, τ . In the untyped setting, suitable pairing and

projection combinators, a system of numerals and a recursor y can be constructed from

k, s by well-known means (see e.g. (Barendregt 1984; Longley 1995)).§§

Furthermore, we may say A′ is a sub-PCA of A if A′ ⊆ A contains some k, s suitable

for A and is closed under application in the sense of Definition 2.2. Clearly, if A′ is a

sub-PCA of A, then considering A,A′ as typed structures, A′ is a sub-NR-TPCA of A.

§§ In many expositions, including (Longley 1995), the definition of PCA includes the axiom s · x · y · z ≃

(x · z) · (y · z). However, the weaker definition using � will suffice for our purposes; moreover, the
constructions of suitable combinators pair, fst, snd, bn, rec,y given in (Longley 1995, Chapter 1) also
work in the present setting (note that y is called Z in op. cit.).

John Longley 18

The following two examples are particularly important for our purposes:

Example 3.1. Kleene’s first model, denoted K1. Here the underlying set is N, and appli-

cation is defined by m • n ≃ φm(n), where φ0, φ1, . . . is some fixed effective enumeration

of the unary partial computable functions. (The symbol • will be reserved for application

in K1.) The existence of suitable combinators k, s in K1 is an easy consequence of the

S-m-n theorem. Although a system of numerals in K1 exists for general reasons, it is of

course more convenient (and equivalent for our purposes) to take n̂ = n.

Example 3.2. Kleene’s second model, denoted K2. Here the underlying set is NN, the

set of all total functions N → N. To define application in K2, we need some auxiliary

notation. Define a partial function − | − : NN × NN ⇀ N by

f | g ≃ f(g̃(r)) − 1,where r is the least number such that f(g̃(r)) > 0.

where g̃ is the course-of-values function defined in Section 1.3. (For the motivation behind

this definition, see e.g. (Longley 2005a, Section 3.3).) Next, given g ∈ NN and m ∈ N,

we may define gm ∈ NN by gm(0) = m, gm(n + 1) = g(n). Thus, from any f, g we may

obtain a partial function Λm. f | gm : N ⇀ N. (We use the meta-lambda notation Λx.e

to mean the partial function h defined by ∀x. h(x) ≃ e.) The application operation for

K2 is now defined by

f ⊙ g =

{
Λm. f | gm if this is a total function,

undefined otherwise.

(The symbol ⊙ will be reserved for application in K2.) The functions NN → NN that are

representable in K2 (i.e. that are of the form Λg. f ⊙ g for some f ∈ K2) are precisely

the continuous functions with respect to the Baire topology on NN.

A curious feature of K2 is that the definedness of application is not semidecidable:

more precisely, the set {(f, g) | f ⊙ g↓} is not open in the Baire topology, because of the

infinitary nature of the condition that the function Λm. f | gm is total. This curiosity

will have mild repercussions in Section 5.4.

The structure (K2,⊙) can be shown to be a PCA — see e.g. (Kleene and Vesley 1965).

A convenient choice of numerals k̂ in K2 may be given by defining k̂(0) = k, k̂(j+1) = 0.

Moreover, by restricting to the total computable functions N → N, we obtain a sub-

PCA Keff
2 of K2. (In this paper we will uniformly use the superscript eff to indicate an

effective substructure of some given structure.)

Other PCAs, whose definition will not be required in this paper, include: Scott’s D∞

models (Scott 1972); his graph model Pω (Scott 1976); Plotkin’s Tω (Plotkin 1978); van

Oosten’s B (van Oosten 1999); the effective sub-PCAs of all these; and various term

models of untyped lambda calculi, such as Λ0/β, the set of closed lambda terms modulo

β-equivalence (Barendregt 1984). Several of these PCAs are discussed e.g. in (Longley

1999a).

On the ubiquity of certain total type structures 19

3.2. CCC models

Many cartesian closed categories naturally give rise to interesting TPCAs. Start with a

cartesian closed category C, with a chosen object N̄ . Define objects Aσ by

A0 = N̄ , Aσ×τ = Aσ × Aτ , Aσ→τ = AAσ
τ .

and consider the family of sets Aσ = Hom(1,Aσ), with total functions ·στ induced by the

evaluation morphisms AAσ
τ ×Aσ → Aτ . It is easy to check that these data constitute a

total TPCA A; the existence of suitable k, s,pair, fst, snd follows from the fact that C

is cartesian closed.

Now suppose N̄ comes equipped with an inclusion N →֒ Hom(1, N̄), and C contains

successor and recursor morphisms in an obvious sense. (This will be true if N̄ is a natural

number object in C, for instance.) Then A will contain suitable elements suc, rec and

will hence be an N-TPCA. Finally, if C contains a suitable “fixed point” morphism in an

obvious sense, then A will be an NR-TPCA.

Many categories based on order-theoretic structures (e.g. continuous lattices (Scott

1972), stable domains (Berry 1978)) give rise to NR-TPCAs in this way, as do many

“intensional” categories such as the Berry-Curien sequential algorithms model (Berry

and Curien 1982), and many of the categories of games considered by Abramsky, Hyland

et al (Abramsky and McCusker 1999; Hyland 1997). (Loosely speaking, any category

that provides a “model of PCF” will yield an NR-TPCA.) Typically, in all these models,

we take N̄ to be the object playing the role of the domain N⊥. In addition, many of these

models have evident “effective subcategories” which give rise to sub-TPCAs.

A further class of examples (not technically required for this paper) may be obtained

by considering monads on any of the above categories, such as the monads corresponding

to various computational effects as considered in (Moggi 1991). If C is a CCC with chosen

object N̄ , and (T, η, µ) is a commutative strong monad on C such that each ηX is mono,

we may define objects Bσ by

B0 = N̄ , Bσ×τ = Bσ × Bτ , Bσ→τ = (TBτ)Bσ .

These come equipped with evaluation morphisms ǫστ : Bσ→τ ×Bσ → TBτ . Now consider

the family of sets Bσ = Hom(1,Bσ), with partial application functions ·στ defined by

f ·στ x = y iff ǫστ ◦ 〈f, x〉 = η ◦ y

One can check that these data constitute a TPCA B; again, this will be an NR-TPCA

if C contains suitable successor, recursor and fixed point morphisms.

3.3. The partial continuous functionals

One very important example of a TPCA arising from a CCC is the so-called “Ershov-

Scott model” for the simple types — that is, the TPCA of partial continuous functions

over N⊥ (Scott 1969; Ershov 1972a). We will write P for this TPCA, and P
eff for its

effective submodel. Since these structures will play such a major role in this paper, we

will review the definitions of these structures and their basic properties here. The material

of this subsection is mostly standard domain theory (see e.g. (Stoltenberg-Hansen et al.

John Longley 20

1994; Amadio and Curien 1998) for further details), but we shall also take the opportunity

to fix on some notational conventions of our own which we shall need later.

Given a poset (X,⊑), a subset D ⊆ X is called directed if it is non-empty and for all

x, y ∈ D there exists z ∈ D with x ⊑ z, y ⊑ z. We say (X,⊑) is a directed-complete

partial order, or DCPO, if every directed D ⊆ X has a supremum (i.e. a least upper

bound) in X, written
⊔
D. We write N⊥ for the DCPO N⊔ {⊥} with the ordering ⊑N⊥

defined by

x ⊑N⊥
y iff x = ⊥ ∨ x = y

Suppose (X,⊑X) and (Y,⊑Y) are DCPOs. A function f : X → Y is continuous if

wheneverD ⊆ X is directed, the set f(D) ⊆ Y is directed and
⊔
f(D) = f(

⊔
D). Clearly,

any continuous function f is also monotone: that is, x ⊑X x′ implies f(x) ⊑Y f(x′). Let

[X ⇒ Y] denote the set of continuous functions from X to Y , and let ⊑pt
Y denote the

pointwise ordering on [X ⇒ Y] defined by

f ⊑pt
Y g iff ∀x ∈ X. f(x) ⊑Y g(x)

It is routine to check that ([X ⇒ Y],⊑pt
Y) is itself a DCPO; indeed, DCPOs and contin-

uous functions form a cartesian closed category in which the exponential (Y,⊑Y)(X,⊑X)

may be taken to be ([X ⇒ Y],⊑pt
Y).

We may now define a DCPO (Pσ,⊑σ) for each type σ by induction as follows:

(P0,⊑0) = (N⊥,⊑N⊥
),

(Pσ×τ ,⊑σ×τ) = (Pσ × Pτ ,⊑σ × ⊑τ),

(Pσ→τ ,⊑σ→τ) = (Pτ ,⊑τ)(Pσ,⊑σ)

The sets Pσ constitute an NR-TPCA which we shall call P (note that application in P

is true function application). We will use Gothic identifiers (e.g. a, f, u,G) to range over

elements of P and write ⊥σ for the evident least element of Pσ. We say that u, v ∈ Pσ are

consistent if there exists w ∈ Pσ with u ⊑ w, v ⊑ w (we will often omit type annotations

when they can be inferred from the context).

An element a of Pσ is called compact if whenever D ⊆ Pσ is directed and a ⊑
⊔
D,

there is some w ∈ D such that a ⊑ w. We write P
comp
σ for the set of compact elements

of (Pσ,⊑σ), and given u ∈ Pσ, we write Cu for the set {c ∈ P
comp
σ | c ⊑ u}.

It can be shown that the DCPOs (Pσ,⊑σ) all enjoy the following pleasant properties:

— The set P
comp
σ is countable.

— (Pσ,⊑σ) is algebraic: for any u ∈ Pσ, the set Cu is directed and u =
⊔
Cu.

— (Pσ,⊑σ) is coherent : a set A ⊆ Pσ has a supremum
⊔
A in Pσ iff the elements of A

are pairwise consistent.

As a special case of the last condition, we have that if u, v ∈ Pσ are consistent then they

have a supremum u ⊔ v ∈ Pσ.

We can be more explicit about what the compact elements of Pσ are. In P0, every

element is compact, and at product types, the compact elements are precisely those

whose components are compact elements. Given a ∈ P
comp
σ and b ∈ P

comp
τ , we write

On the ubiquity of certain total type structures 21

a ⇒ b for the “step function” defined by

(a ⇒ b)(u) =

{
b if a ⊑ u,

⊥ otherwise

Then a ⇒ b is a compact element of Pσ→τ , and it can be shown that the compact

elements of Pσ→τ are precisely the finite suprema of such elements that exist in Pσ→τ .

Furthermore, a simple criterion for the existence of such a supremum can be given: the

supremum
⊔

i<r(ai ⇒ bi) exists if and only if for all i, j < r such that ai, aj are consistent,

bi, bj are also consistent.

This characterization suggests the possibility of an effective enumeration of the com-

pact elements of P. We will fix on an enumeration which is similar in essentials to those

given in e.g. (Plotkin 1977; Stoltenberg-Hansen et al. 1994), but for our purposes it will

be convenient to build in a few additional hygiene conditions on our representations of

compact elements.

Definition 3.3. Define a function ζ0 : N → P
comp
0 by ζ0(0) = ⊥, ζ0(n + 1) = n. Given

partial functions ζσ : N ⇀ P
comp
σ and ζτ : N ⇀ P

comp
τ , let ζσ×τ : N ⇀ P

comp
σ×τ be the

smallest partial function such that

ζσ×τ (n) = (ζσ(a), ζτ (b)) if n = 〈a, b〉 and ζσ(a), ζτ (b) are defined

and let ζσ→τ : N ⇀ P
comp
σ→τ be the smallest partial function such that

ζσ→τ (n) =
⊔

i<r

(ζσ(ai) ⇒ ζτ (bi)) if

n = 〈〈a0, b0〉, . . . , 〈ar−1, br−1〉〉,

the ζσ(ai), ζτ (bi) are all defined,

none of the ζτ (bi) are ⊥τ , and

the join
⊔

i<r(ζσ(ai)⇒ζτ (bi)) exists in Pσ→τ

The following facts can be shown for each type σ: the domain of ζσ is primitively recur-

sively decidable; the range of ζσ is precisely the set of compact elements of Pσ; the

relations “ζσ(m) ⊑ ζσ(n)”, “ζσ(m) = ζσ(n)” and “ζσ(m), ζσ(n) are consistent” are

primitively recursively decidable in m,n; and there is a primitive recursive function

joinσ : N2 → N such that ζσ(joinσ(m,n)) = ζσ(m)⊔ζσ(n) whenever ζσ(m), ζσ(n) are con-

sistent. Moreover, for each σ, τ , there is a primitive recursive function applyστ : N2 → N

such that for all m ∈ dom ζσ→τ and n ∈ dom ζσ we have

ζσ→τ (m)(ζσ(n)) = ζτ (applyστ (m,n)).

By definition, the basic compact elements of P0 are the elements of N, the basic compact

elements of Pσ×τ are pairs (a, b) where a, b are basic compact in Pσ,Pτ respectively, and

the basic compact elements of Pσ→τ are those of the form a ⇒ b, where a is compact

in Pσ and b is basic compact in Pτ . For any u ∈ Pσ, we write Bu for the set of basic

compact elements b ⊑ u. If n = 〈〈a0, b0〉, . . . , 〈ar−1, br−1〉〉 ∈ dom ζσ→τ , it is easily

shown that ζσ→τ (n) is basic compact iff there is some i < r such that ζσ(ai) ⊑ ζσ(aj)

and ζτ (bj) ⊑ ζτ (bi) for all j < r, and moreover ζτ (bi) is basic compact; in this case we

have ζσ→τ (n) = ζσ(ai) ⇒ ζτ (bi). It follows that for each σ, the unary relation “ζσ(n) is

basic compact” is primitively recursively decidable.

We also have a syntactic notion of what it means to be a basic code for a compact

John Longley 22

element. The basic codes for type 0 are simply the numbers n+1, the basic codes for type

σ× τ are the numbers 〈a, b〉 where a, b are basic codes for types σ, τ respectively, and the

basic codes for type σ → τ are the numbers 〈〈a, b〉〉 where a ∈ dom ζσ and b is a basic

code for type τ . Clearly, if n is a basic code for type σ then ζσ(n) is basic compact, and

in view of the characterization above, for each σ there is a primitive recursive function

basicσ : N → N such that whenever ζσ(n) is basic compact, basicσ(n) is a basic code for

type σ and ζσ(basicσ(n)) = ζσ(n).

For the purpose of writing codes for compact elements, we will often write a 7→ b to

mean 〈a, b〉, so that if a codes a compact element and b codes a basic compact element

then ζ(a 7→ b) = ζ(a) ⇒ ζ(b). We will also write m̆ for m + 1 considered as the ζ0-code

for m ∈ P0, and ⊥̆ for 0. Together these notations give us a useful way of writing codes:

e.g. if mi, ni, p ∈ N, the code

〈〈m̆0 7→ n̆0, . . . , m̆r−1 7→ n̆r−1〉 7→ p̆〉

codes the type 2 basic compact element (
⊔

i(mi ⇒ ni)) ⇒ p.

A set A ⊆ P
comp
σ is computably enumerable (c.e.) if there is a c.e. set RA ⊆ dom ζσ such

that A = {ζσ(n) | n ∈ RA}. Since the relations “n ∈ dom ζσ” and “ζσ(m) = ζσ(n)” are

both decidable, this is the same as saying that the relation “ζσ(n) ∈ A” is c.e. in n. An

element u ∈ Pσ is effective if there is a c.e. set A ⊆ P
comp
σ with

⊔
A = u. Equivalently, u

is effective if Cu is c.e., or if Bu is c.e. We write P
eff
σ for the set of effective elements of Pσ;

obviously P
comp
σ ⊆ P

eff
σ . One can check that if f ∈ P

eff
σ→τ and u ∈ P

eff
σ then f(u) ∈ P

eff
τ , and

indeed that the sets P
eff
σ constitute a sub-NR-TPCA of P. Furthermore, any f ∈ Pσ→τ

is completely determined by its restriction to P
eff
σ (or even to P

comp
σ), so we may, if we

prefer, consider each P
eff
σ→τ to be simply a set of functions from P

eff
σ to P

eff
τ .

3.4. Syntactic models

Another class of TPCAs are those arising as term models for various syntactic calculi or

“programming languages” for operations of finite type, such as PCF (Plotkin 1977) and

various extensions thereof. We shall concentrate here on the term model for the language

NRComb defined in Section 2.1, and its infinitary counterpart. These models will play an

important conceptual role within the present paper, as will be explained in Section 6.1;

however, technically these models will not feature in our proofs, so the reader is advised

that a quick glance through this section will probably be all that is necessary.

In order to define this model, we introduce a simple calculus of “provable formulae”

for NRComb. The formulae of our calculus will be of two kinds:

— If e is a closed term of NRComb in the empty definition environment, then e ↓ is a

formula.

— If e, e′ are closed terms in the empty definition environment of the same type σ, then

e ≃ e′ is a formula.

The set of provable formulae is now defined via the following set of axioms and inference

rules. We write ⊢ ϕ to mean “the formula ϕ is provable”. If n ∈ N, we write ⌈n⌉ to mean

the basic constant corresponding to n, so that ⌈0⌉ = 0, etc.

On the ubiquity of certain total type structures 23

— ⊢ b↓ for each basic constant b of NRComb.

— If ⊢ e0e1↓ then ⊢ e0↓ and ⊢ e1↓.

— If ⊢ e↓ and ⊢ e ≃ e′ then ⊢ e′↓.

— If ⊢ e1↓ then ⊢ k e0 e1 ≃ e0.

— If ⊢ e0↓ and ⊢ e1↓ then ⊢ s e0 e1↓.

— If ⊢ (e0e2)(e1e2)↓ then ⊢ s e0 e1 e2 ≃ (e0e2)(e1e2).

— If ⊢ e1↓ then ⊢ fst (pair e0 e1) ≃ e0.

— If ⊢ e0↓ then ⊢ snd (pair e0 e1) ≃ e1.

— ⊢ suc⌈n⌉ ≃ ⌈n+ 1⌉ for each n ∈ N.

— If ⊢ e1↓ then ⊢ rec e0 e10 ≃ e0.

— If ⊢ e1⌈n⌉(rec e0 e1⌈n⌉)↓ then ⊢ rec e0 e1⌈n+ 1⌉ ≃ e1⌈n⌉(rec e0 e1⌈n⌉).

— If ⊢ e0↓ then ⊢ y e0↓.

— If ⊢ e0(y e0)e1↓ then ⊢ y e0 e1 ≃ e0(y e0)e1.

— ⊢ e ≃ e for any e.

— If ⊢ e ≃ e′ then ⊢ e′ ≃ e.

— If ⊢ e ≃ e′ and ⊢ e′ ≃ e′′ then ⊢ e ≃ e′′.

— If ⊢ e0 ≃ e′0 and ⊢ e1 ≃ e′1 then ⊢ e0e1 ≃ e′0e
′
1.

We now define a structure NRC by taking NRCσ to be the set of terms e : σ such that ⊢ e↓,

modulo the equivalence relation given by ⊢ e ≃ e′. It is easy to check that juxtaposition

of terms induces well-defined partial functions ·στ : NRCσ→τ ×NRCσ ⇀ NRCτ , and that

the resulting structure NRC is an NR-TPCA. Furthermore, if A is any explicit NR-TPCA

then any provable formula e ↓ or e ≃ e′ holds true under the interpretation in A given

by ≪−≫ (this is shown by an easy induction on proofs), so we obtain a homomorphism

h : NRC → A — that is, a family of total functions hσ : NRCσ → Aσ such that

∀f ∈ NRCσ→τ , x ∈ NRCσ. hσ→τ (f) · hσ(x) � hτ (f · x)

We may therefore think of NRC as computationally the “weakest” of all NR-TPCAs.

We say an element a ∈ Aσ is NRComb-definable if a =≪e≫ for some closed NRComb

term e : σ, and that a is properly NRComb-definable if a =≪e≫ for some term e with

⊢ e ↓. In the latter case, the same term e is guaranteed to define an element in any

NR-TPCA whatever.

We may also obtain an “infinitary” version of this model as follows: extend the defini-

tion of NRComb by adding a new basic constant cf : 1 for every set-theoretic function

f : N → N, and extend the above proof system with the clause:

— ⊢ cf ⌈n⌉ ≃ ⌈f(n)⌉ for every f : N → N and n ∈ N.

The effect of this is to add an oracle for every function N → N. We refer to this extended

language as “infinitary NRComb” or NRComb∞. Clearly, the corresponding term model

NRC
∞ is an NR-TPCA which admits a homomorphism into any NR-TPCA A in which

all functions N → N are representable.†

A minor variation on our construction also allows us to define a “term model for

† The existence of such a homomorphism requires the axiom of choice in general, but can be more
constructively defined in the cases we shall consider; cf. Definition 5.5.

John Longley 24

PCF” (again, this will feature in our conceptual discussion in Section 6.1 but is not

formally required for our proofs). Suppose we extend the above proof system (in its

finitary version) with the rule

— ⊢ e↓ for every e.

(this of course allows the whole system to be simplified considerably). The effect of

this rule is not to say that every program terminates, but merely that non-terminating

programs are concretely represented by elements of the term model. We denote the corre-

sponding syntactic model by PCF; it may be regarded as a term model for a presentation

of PCF similar to the combinatory version of (Milner 1977). Likewise, by adding the

above rule to the definition of NRComb+, we obtain a term model PCF
∞ for “infinitary

PCF”. Clearly the application operations in these structures are total.

Actually, these structures are not particularly natural ones from a mathematical point

of view, as they are somewhat dependent on our choice of presentation of PCF. A much

more canonical pair of structures to consider are their “observational quotients” Q
eff =

PCF/≈obs and Q = PCF
∞/≈obs, where for a, a′ ∈ PCFσ we define

a ≈obs a
′ iff ∀f ∈ PCFσ→0. ∀n ∈ N. (f · a = n̂ ⇔ f · a′ = n̂)

All presentations of sequential, call-by-name PCF appearing in the literature give rise

to this same structure Q
eff, which we may regard as the “partial type structure of PCF-

definable functionals”. For a review of known results concerning Q and Q
eff, see e.g.

(Longley 2005a).

In the present paper, the language NRComb will play the role played by PCF in

(Normann 2000). We may think of NRComb as a slightly weaker language than PCF, in

that all provably defined terms of NRComb are immediately terms of PCF but not vice

versa. Nevertheless, we will show that NRComb is sufficient to support the construction

of Normann’s programs and the variants of them that we will consider.

Term models for many interesting extensions of PCF may also be obtained in a similar

manner by adding further operators to the definition of NRComb. See e.g. (Longley 2003)

for a selection of such languages.

4. The extensional collapse construction

Certain special TPCAs can be regarded as consisting essentially of total functionals of

finite type over the natural numbers:

Definition 4.1. (i) A total type structure (or TTS) is an N-TPCA A equipped with a

choice of numerals 0̂, 1̂, . . . ∈ A0, such that

— every element of A0 is a numeral n̂ for some n ∈ N, and n̂ = m̂ implies n = m;

— A is total, i.e. for any f ∈ Aσ→τ , x ∈ Aσ we have f · x↓;

— A has surjective pairing, i.e. for any z ∈ Aσ×τ we have

z = pair · (fst · z) · (snd · z)

— A is extensional, i.e. for any f, g ∈ Aσ→τ we have

(∀x ∈ Aσ. f · x = g · x) =⇒ f = g

On the ubiquity of certain total type structures 25

(ii) A TTS is canonical if A0 = N (with n̂ = n for all n), Aσ×τ = Aσ × Aτ with

pairστ · x · y = (x, y), and Aσ→τ is some set of functions Aσ → Aτ with f ·στ x = f(x).

Clearly, every TTS A is isomorphic to a unique canonical one (which we will denote

by Can(A)), and the isomorphism A ∼= Can(A) is itself unique. We will write βA for the

isomorphism A→ Can(A); however, to simplify notation we will often blur the distinction

between A and Can(A) when there is no danger of confusion.

It is easy to see that no TTS can ever be an NR-TPCA, since one can construct

elements of type 1 → 1 with no pointwise fixed point.

Any NR-TPCA A gives rise to a total type structure by means of the following standard

construction. Recall that a partial equivalence relation or PER on a set X is just a

symmetric, transitive relation on X (that is, an equivalence relation on a subset of X). If

∼ is a PER on X, we write X/∼ for the set of equivalence classes for ∼, and [x]∼ (or [x]

if ∼ is evident) for the equivalence class (if there is one) containing a particular x ∈ X.

Definition 4.2 (Extensional collapse). Let A be any TPCA, and ∼ any PER on A0.

(i) Define partial equivalence relations ∼σ on the sets Aσ as follows:

— ∼0 = ∼

— z ∼σ×τ w iff fst · z ∼σ fst · w and snd · z ∼τ snd · w.

— f ∼σ→τ g iff for all x, y ∈ Aσ, x ∼σ y implies f · x ∼τ g · y.

The family of PERs ∼σ is called the logical relation on A induced by ∼.

(ii) We now define EC(A,∼), the extensional collapse of A with respect to ∼, to be the

family of sets EC(A)σ = Aσ/∼σ, with application operations ·στ defined by [f]·[x] = [f ·x].

(iii) If moreover A is an N-TPCA and ∼ is defined by x ∼ y iff x = y = n̂ for some n,

the family of PERs ∼σ is called the standard logical relation on A, written as ∼A, and

EC(A,∼) is called the standard extensional collapse of A and denoted simply by EC(A).

In this case, we also write Tot(Aσ) for the set {x ∈ Aσ | x ∼σ x} of total elements of A.

It is routine to verify the following:

Proposition 4.3. For any non-trivial N-TPCA A, EC(A) is a total type structure.

We may therefore define the canonical extensional collapse EC
C(A) of A to be the total

type structure Can(EC(A)).

A categorical perspective on these ideas will also be useful. The following definition

(in essence) appears in (Longley 1999b; Lietz and Streicher 2002):

Definition 4.4. Let A be any TPCA. The category Asm(A) of assemblies over A is

defined as follows:

— An object X is a triple (|X|, ρX ,X) where |X| is a set, ρX is a type, and X⊆

AρX
×|X| is a relation such that for each x ∈ |X| there is some a ∈ AρX

with a X x.

— A morphism f : X → Y is a function f : |X| → |Y | that is tracked by some

t ∈ AρX→ρY
, in the sense that for any x ∈ |X| and a ∈ AρX

, if a X x then

t · a Y f(x).

An assembly X is a modest set if we have a X x and a X x′ only when x = x′. We

write Mod(A) for the full subcategory of Asm(A) consisting of modest sets.

John Longley 26

If X is an assembly, we will often write x ∈ X to mean x ∈ |X|, and write “a realizes

x ∈ X” to mean a X x.

Any modest set X gives rise to a PER ∼X on AρX
: take a ∼X b iff a, b both realize

the same x ∈ X. Conversely, any PER ∼ on any Aσ may be identified with the modest

set (Aσ/∼, σ,∈).

The following facts are routinely checked. The proofs are straightforward adaptations

of the proofs for the untyped case given e.g. in (Longley 1995); see also (Lietz and

Streicher 2002).

Proposition 4.5. Let A be any TPCA.

(i) The category Asm(A) is well-pointed (that is, the functor Hom(1,−) is faithful)

— indeed, for any object X we have Hom(1, X) ∼= |X|.

(ii) Asm(A) is cartesian closed — indeed, for any objects X,Y we may define Y X by

|Y X | = Hom(X,Y), ρY X = ρX → ρY , t ⊢Y X f iff t tracks f : X → Y

Moreover, the subcategory Mod(A) is closed under exponentiation.

(iii) If A is an N-TPCA, Asm(A) has a natural number object N given by: |N | = N,

ρN = 0, a N n iff a = n̂. This object is modest if A is non-trivial.

In general, let us say a category C has a standard natural number object if it has a

natural number object N together with a canonical bijection Hom(1, N) ∼= N. Suppose

C has finite products and a standard natural number object N . By an internal total type

structure T in C we mean a family of objects Tσ in C together with an isomorphism

T0
∼= N and “application” morphisms Tσ→τ ×Tσ → Tτ , such that the sets Hom(1,Tσ)

constitute a TTS denoted by Hom(1,T) (with the canonical choice of numerals, and with

application functions induced by the application morphisms). If C is also well-pointed and

cartesian closed, there is a standard choice of an internal TTS in C, given by

T0 = N, Tσ→τ = TTσ
τ

with application given by the evaluation morphisms. In the case C = Asm(A), we write

EC(A) for this internal TTS; we may also write |EC| ∼= Hom(1,EC) for the evident

total type structure given by |EC|σ = |ECσ|. It is easy to see that |EC(A))| = EC
C(A);

indeed, the object EC(A)σ may be explicitly described as follows:

|EC(A)σ| = EC
C(A)σ, ρEC(A)σ

= σ, a EC(A)σ
βEC(A)([x]) iff a ∈ [x]

If A is non-trivial then EC(A) lies entirely within Mod(A).

Since Asm(A) is often called a “standard realizability model” over A, we may think

of EC(−) as the standard realizability construction of a TTS over a given N-TPCA.

In general, knowing that two TPCAs are related in some way does not imply any

particular relationship between their extensional collapses, except in rather trivial cases.

For instance, it may happen that A is a sub-TPCA of B and ∼ is a PER on A0, but that

EC(A,∼) is smaller than, or incomparable with, EC(B,∼). Even if A is a submodel of

B, B a submodel of C and EC(A,∼) ∼= EC(C,∼), it may happen that EC(B,∼) is larger

On the ubiquity of certain total type structures 27

than, smaller than or incomparable with EC(A,∼).‡ Moreover, even when two extensional

collapses do coincide, it is frequently non-trivial to prove this. All these phenomena stem

from the fact that the construction EC(−) is highly non-functorial (that is, it does not

interact well with morphisms between TPCAs in the sense of (Longley 1999b; Lietz and

Streicher 2002)). The root of this problem is of course the fact that the relation ∼σ→τ

depends contravariantly on ∼σ.

Seen in this light, the fact that several known models give rise the same extensional

collapse would not in itself seem to provide particularly strong evidence that all TPCAs

in some natural class would do so. Indeed, the fact that results to this effect can sometimes

be obtained came as a considerable surprise to the author, and it is this possibility of

establishing the extensional collapse of a whole class of models at once which constitutes

the main contribution of this paper.

We now comment briefly on two apparent generalizations of our definitions.

Remark 4.6. (i) A superficially more general definition of an N-TPCA might allow a

non-empty set of encodings for each natural number k rather than just a single element

k̂. In other words, in place of the k̂ we could take a PER ≈0 on any A0 together with

a bijection A0/≈0
∼= N, such that the successor and recursor operations were realizable

in A in a suitable sense. This would then induce PERs ≈σ at higher types as above;

we would obtain a type structure EC(A,≈) and a corresponding internal type structure

EC(A,≈) in Asm(A).

However, any such PER ≈0, considered as a modest set, is in fact isomorphic in

Asm(A) to a PER ∼0 arising from a choice of numerals n̂ as in Definition 4.2. Specifi-

cally, for 0̂ take any realizer for 0 in A0, and inductively define n̂+ 1 = suc′ · n̂, where

suc′ ∈ A1 is a realizer for the successor operation with respect to ≈0. Now let x ∼0 y iff

x = y = n̂ as above. Clearly, each n̂ is a realizer for n with respect to ≈0, so the obvious

mapping A0/∼0→ A0/≈0 is realized by the identity combinator. Conversely, if rec′ re-

alizes the appropriate recursor operation with respect to ≈0 and z is any ≈0-realizer for

n then

rec′ · 0̂ · (s · k · (k · suc′)) · z = n̂

so we have a realizer for the inverse mapping. Thus ≈0
∼=∼0 in Asm(A).

It follows easily that ≈σ
∼=∼σ at all types σ, and hence that EC(A,≈) coincides with

EC(A) as given by Definition 4.2.

(ii) Another, even more superficial, generalization could be obtained by allowing the

natural numbers to be represented by a PER ≈ at a type υ other than 0. Such a PER

would not necessarily be isomorphic to any PER on 0. However, we may define a type

σ[υ] for each type σ as follows:

0[υ] = υ, (σ × τ)[υ] = σ[υ] × τ [υ], (σ → τ)[υ] = σ[υ] → τ [υ]

‡ Many examples of this kind may be obtained by considering term models for the languages considered
in (Longley 1999a) and mild variations on them, taking ∼ to be the evident PER corresponding to
N⊥. The inclusions between these languages illustrate a variety of pathological possibilities; details
may appear elsewhere.

John Longley 28

We may then define an N-TPCA A[υ] just by setting A[υ]σ = Aσ[υ], and ≈ would then

give a natural number object in Asm(A[υ]) as above.

Thus, neither of these generalizations would enlarge the class of type structures that

we are able to obtain via the extensional collapse construction.

4.1. A relative version

In the definition of TPCAs above, operations of higher type are treated as entities of

the same kind as the data they act on: both are simply elements of A. Thus, TPCAs

are a suitable framework for notions such as “continuous operations acting on continu-

ous data”, or “effective operations acting on effective data”. However, some refinements

to this framework are needed if we wish to consider hybrid notions such as “effective

operations acting on continuous data” — or, more generally, a notion of operations of

some restricted class acting on data in some wider class. We may capture such notions

by means of a relative version of the extensional collapse construction, which we now

introduce.

Definition 4.7 (Relative extensional collapse). (i) A substructure T ′ of a type

structure T is simply a sub-N-TPCA of T (with respect to the standard choice of numerals

in T).

(ii) If A′ is a sub-N-TPCA of A, we define EC(A;A′), the relative extensional collapse

of A and A′, to be the substructure of EC(A) consisting of those elements t that are

realized by at least one element of A′.

It is easy to check that EC(A;A′), so defined, is indeed a substructure of EC(A). We

also write EC
C(A;A′) for the substructure of EC

C(A) corresponding to EC(A;A′). Again,

these ideas have a natural categorical formulation:

Definition 4.8. Let A be any TPCA, A′ a sub-TPCA of A. The category Asm(A;A′)

is defined as follows: objects are objects of Asm(A), and morphisms are morphisms of

Asm(A) that are tracked by some t ∈ A′.

The category Asm(A;A′) is cartesian closed, and in fact has precisely the same exponen-

tials as Asm(A). If A′ is a sub-N-TPCA of A then Asm(A;A′) has an evident natural

number object N , and as before we may define a family of objects EC(A;A′)σ by

EC(A;A′)0 = N, EC(A;A′)σ→τ = EC(A;A′)EC(A;A′)σ
τ

It is easy to see that Hom(1,EC(A;A′)σ) may be canonically identified with EC(A;A′)σ.

The category Asm(A;A′) is often called the relative realizability model over A with

respect to A′ (see e.g. (Awodey et al. 2002)). As a trivial point, note that EC(A;A) =

EC(A).

Note also that EC(A;A′) is itself an N-TPCA, but need not be a type structure in

its own right since it might not be extensional. That is, there might be two elements

f, g ∈ EC(A;A′)σ→τ which are distinct as functions EC(A)σ → EC(A)τ , but which restrict

to the same function EC(A;A′)σ → EC(A;A′)τ . However, in the main examples of interest

On the ubiquity of certain total type structures 29

in this paper, EC(A;A′) will be the substructure C
eff of C. As we shall shortly see, this

structure is in fact extensional, and so can be considered as a type structure in itself.

4.2. Known constructions of total type structures

We next review some known results concerning the extensional collapse of some of the

models considered in Section 3. These will give us several possible definitions of the three

type structures that are our primary objects of interest.

The type structure C of continuous functionals is a canonical TTS which may be

specified in many equivalent ways. The following two characterizations will play a central

role in this paper:

— C ∼= EC(P). This characterization appeared in (Ershov 1972b; Ershov 1974), and can

be seen as a cleaned-up version of Kreisel’s original definition in (Kreisel 1959). This

is the construction that is usually favoured as the definition of C in the more recent

literature (see e.g. (Normann 1999)); here we shall adopt it as our official definition of

C. Since all the relevant domains Pσ are known to be retracts of Plotkin’s Tω (Plotkin

1978), it follows easily from this characterization that also C ∼= EC(Tω).

— C ∼= EC(K2). This is essentially Kleene’s original definition of C via associates (Kleene

1959b). Modulo unimportant details, an associate for a functional is essentially a

realizer in K2. The equivalence between this and the P characterization is non-trivial

and was first explicitly proved in (Hinata and Tugué 1969); see also (Hyland 1975;

Bauer 2002). An alternative proof of the equivalence will be given under Theorem 5.10

below.

The following characterizations are not technically required for this paper, but reinforce

the impression that C is a mathematically natural structure.

— C ∼= EC(L), where L is the TPCA arising from the category of continuous lattices

(taking N̄ to be the “flat” lattice of natural numbers with a bottom and top element).

This characterization is due to Scott (Scott 1976), and is quite close to Ershov’s

characterization via P. Since all countably-based continuous lattices are known to be

retracts of Scott’s Pω (Scott 1976), it follows easily that C ∼= EC(Pω).

— In (Bergstra 1978), C is characterized as the maximal TTS closed under Kleene’s

S1–S9 computability and not containing 2E, the existential quantifier for predicates

on the natural numbers.

— In (Normann et al. 1999), C is characterized as a certain extensional collapse of the

product over n of the full set-theoretic type structures over {0, . . . , n}. This is an

example of an extensional collapse construction using an N-TPCA that is not an

NR-TPCA.

— Most of the other known constructions of C are of a topological or semi-topological

character: for instance, one obtains C as the type structure over N in the cartesian

closed category of compactly generated Hausdorff spaces, or of filter spaces, limit

spaces, etc. (see e.g. (Hyland 1979; Escardó et al. 2004)). These characterizations do

not fit into the realizability framework considered here.

Many of the above constructions can be effectivized in a natural way, and hence allow

John Longley 30

us to define an “effective” substructure of C. In fact, all reasonable effectivizations seem

to lead to the same effective substructure C
eff ⊂ C of effective continuous functionals.

Thus:

— C
eff ∼= EC(P;Peff) (Ershov 1972b). We adopt this as our official definition of C

eff.
— C

eff ∼= EC(K2;K
eff
2) (Kleene 1959b).

— C
eff ∼= EC(L; Leff) ∼= EC(Pω;Pωeff) (Scott 1976; Beeson 1985).

— Some of the topological models, such as the category of filter spaces, have a natural

effective submodel, and these too give rise to C
eff (Hyland 1979).

Now suppose that for each of these models we consider the effective submodel as a

TPCA in its own right, so that we are only considering “effective operations acting on

effective data”. In this case, the extensional collapse construction yields a third class

of functionals: the type structure C
heff of the so-called hereditarily effective continuous

functionals. Here, a purely topological characterization is not available, but instead we

have an additional realizability characterization.

— C
heff ∼= EC(Peff) (Ershov 1976a). We adopt this as our official definition of C

heff.
— Most remarkably, C

heff coincides with the type structure HEO of hereditarily effec-

tive operations, defined as EC(K1). This non-trivial result is known as the generalized

Kreisel-Lacombe-Shoenfield (KLS) theorem. The ordinary KLS theorem, first proved

in (Kreisel, Lacombe and Shoenfield 1959), essentially says that C
heff
2 = HEO2. The

generalization to higher types was noted in (Kreisel 1959); the first complete proofs

appeared in (Hyland 1975; Ershov 1976a). The treatment in (Berger 1993) is partic-

ularly well adapted to our present purposes.
— C

heff ∼= EC(Keff
2). A proof of the equivalence HEO ∼= EC(Keff

2) appears in (Troelstra

1973, §2.6).
— C

heff ∼= EC(Leff) ∼= EC(Pωeff) (Beeson 1985).

For our purposes, the characterizations via K1 and via P
eff will be the most important

ones. We will henceforth tend to use the name HEO for this type structure, except in

contexts that pertain specifically to the characterization via P
eff.

As noted in the Introduction, HEO is “incomparable” with C
eff and indeed with C. For

instance, the Kleene tree functional is present in HEO2 but has no counterpart in C
eff or

C, whilst the fan functional in C
eff
3 has no counterpart in HEO. These facts will not be

required for this paper, but we refer the interested reader to (Longley 2005a) for further

information.

The above is not an exhaustive list of the known characterizations of our type struc-

tures, and we shall have occasion to mention a few others below. The characterizations

via P and P
eff are of particular significance, since the finite elements of P give rise to

“neighbourhood systems” on our total type structures which will play an important role.

For any c ∈ P
comp
σ , let us define

UC
c = {β([u]) | u ∈ Tot(Pσ), c ⊑ u} ⊆ Cσ

URC
c = {β([u]) | u ∈ Tot(Pσ) ∩ P

eff
σ , c ⊑ u} ⊆ C

eff
σ ⊂ Cσ

UHRC
c = {β([u]) | u ∈ Tot(Peff

σ), c ⊑ u} ⊆ C
heff
σ

We write simply Uc when it is clear which type structure we are talking about. If T is

one of C,Ceff,Cheff, we may refer to the sets UT
c as Ershov neighbourhoods within T .

On the ubiquity of certain total type structures 31

An important fact about our three type structures is the Kleene-Kreisel density theo-

rem (Kleene 1959b; Kreisel 1959). In its simplest form, this states that all of the above

neighbourhoods are in fact inhabited. For our purposes we will require a stronger “effec-

tive” form of the theorem, similar to the one appearing in (Kleene 1959b, §2.1). Since

our version of this theorem is slightly idiosyncratic in some respects, we include a proof,

which is modelled on the concise argument given in (Normann 1999).

Theorem 4.9 (Effective density theorem). Let σ be any type. Then for each code

c ∈ N of type σ, there exist an element xc ∈ Tot(Pσ) ∩ Tot(Peff
σ) and an associated total

function ξσ,c : N → N, computable uniformly in c, such that

(1) each ξσ,c(i) is a basic ζσ code, and ξσ,c enumerates the basic compacts below xc (i.e.,

{ζσ(ξσ,c(i)) | i ∈ N} = Bxc
),

(2) if c ∈ dom ζσ then ζσ(c) ⊑ xc,

(3) each basic compact below xc appears infinitely many times in ξσ,c.

Thus, if c = ζσ(c) then xc represents an element in each of UC
c , U

RC
c , UHRC

c .

Proof. We will prove the theorem for the pure types (which is actually all that we shall

require); the adaptation to arbitrary types is then straightforward. We first establish the

theorem without condition (3).

If σ = 0 or σ = 1 then the result is trivial, so suppose σ = k where the result holds

for type k − 2. Take c ∈ N; we will construct a suitable element xc together with an

enumeration ξσ,c (computable uniformly in c) of the basic compacts below xc.

If c 6∈ dom ζσ, we may take xc to be the constant zero function, and ξσ,c to be an

effective enumeration of all codes 〈b 7→ 0̆〉 where b ∈ dom ζk−1. Otherwise, we may write c

as 〈b0 7→ n̆0, . . . , br−1 7→ n̆r−1〉, where bi = 〈ai0 7→m̆i0, . . . , ai(si−1) 7→m̆i(si−1)〉 ∈ dom ζk−1

and each aij ∈ dom ζk−2. Let R = {((i, j), (i′, j′)) | ζk−2(aij), ζk−2(ai′j′) are consistent}.

Note that R is a finite set which may be effectively computed from c. For each r =

((i, j), (i′, j′)) ∈ R, let dr be a code for ζk−1(aij) ⊔ ζk−1(ai′j′) computed by some stan-

dard procedure; then by the induction hypothesis we have elements xdr
∈ Tot(Pk−2) ∩

Tot(Peff
k−2) and enumerations ξk−2,dr

computable uniformly in r and satisfying conditions

(1) and (2) of the theorem.

Now let Tc = {G ∈ Pk−1 | G(xdr
) ∈ N for all r ∈ R}; note that both Tot(Pk−1) ⊆ Tc

and Tot(Peff
k−1) ⊆ Tc. Let us say that G ∈ Tc is semiconsistent with (i, bi) if for all i′ < r

and ((i, j), (i′, j′)) ∈ R we have that G(xr) = ζk−1(bi)(xdr
). Note here that ζk−1(bi)(xdr

) ∈

N since ζk−2(aij) ⊑ xdr
; hence there is a continuous function Tc,i : Pk−1 → P0 such that

Tc,i(G) =

0 if G ∈ Tc is semiconsistent with (i, bi),

1 if G ∈ Tc is not semiconsistent with (i, bi),

⊥ if G 6∈ Tc

Moreover, an enumeration of Tc,i may be constructed effectively in c and i.

Next, if G ∈ TC is semiconsistent with both (i, bi) and (i′, bi′), then ζk−1(bi) and

ζk−1(bi′) will themselves be consistent, since given any j, j′ such that ζk−2(aij), ζk−2(ai′j′)

are consistent, we must have mij = G(xdr
) = mi′j′ where r = ((i, j), (i′, j′)). Moreover,

if ζk−1(bi) ⊑ G ∈ Tc then Tc,i(G) = 0.

John Longley 32

We may now define xc by

xc(G) =

ni if ζk−1(bi) ⊑ G or Tc,i(G) = 0 for some i,

0 if Tc,i(G) = 1 for all i,

⊥ otherwise

Clearly ζσ(c) ⊑ xc, and xc ∈ Tot(Pσ) ∩ Tot(Peff
σ) since Tot(Pk−1) ∪ Tot(Pk−1) ⊆ Tc.

Moreover, an enumeration ξσ,c of basic codes for the basic compacts below xc may be

given effectively in c.

Finally, given a family of elements xc and enumerations ξσ,c satisfying all the required

properties except condition (3), we may obtain an enumeration ξ′σ,c for xc satisfying all

required conditions simply by defining ξ′σ,c(i) = ξσ,c(proj (0, i)).

Condition (3) is not a standard part of the theorem, but is a minor technical conve-

nience for our purposes, as is the fact that ξσ,c enumerates a total element even when

c 6∈ dom ζσ. The purpose of condition (3) is to ensure that for any t, the supremum⊔
i≥t ζσ(ξσ,c(i)) is still xc.

An easy consequence of the density theorem is that if f, g ∈ Cσ→τ and f · x = g · x

for all x ∈ C
eff
σ , then f = g. This means that C

eff is itself an extensional structure, so as

noted at the end of Section 4.1, it can be seen as a TTS in its own right.

Clearly, any code c for type σ determines an Ershov neighbourhood UT
ζσ(c) in Tσ.

However, there is another way in which a code may be seen as defining a subset of Tσ

without any reference to P. Suppose T is either C or C
heff; then for any σ and any code

c for type σ, we may define a set OT
σ,c ⊆ Tσ as follows. Let OT

0,⊥̆
= N, OT

0,n̆ = {n}; if

c = 〈a, b〉 then let OT
σ×τ,c = OT

σ,a ×OT
τ,b; and if c = 〈a0 7→b0, . . . , ar−1 7→br−1〉 then let

OT
σ→τ,c = {f ∈ Cσ→τ | ∀i < r. ∀x ∈ Tσ. x ∈ OT

σ,ai
⇒ f(x) ∈ OT

τ,bi
}

We may also define ORC
σ,c = OC

σ,c∩C
eff
σ . We refer to the sets OT

σ,c as Kreisel neighbourhoods

within T ;§ again, we write simply Oσ,c if it is clear what T is, or even Oc if σ is also

apparent.

A pleasing fact is that the Ershov and Kreisel notions of neighbourhood coincide. This

result is surely folklore, though we have been unable to find an explicit statement of it

in the literature.¶

Proposition 4.10. Let T be one of C,Ceff,Cheff, and σ any type.

(i) For any c, c′ ∈ P
comp
σ , UT

c ∩ UT
c′ is inhabited iff c, c′ are consistent.

(ii) If c = ζσ(c) then UT
c = OT

σ,c.

Proof. Let A denote P if T is C or C
eff, and P

eff if T is C
heff. In addition, let A′ denote

§ Kreisel’s definition in (Kreisel 1959) did not feature a neighbourhood corresponding to ⊥̆; moreover,
Kreisel’s approach was to construct the elements of C from the neighbourhood structure rather than
vice versa. The only justification for our terminology is that Kreisel’s neighbourhoods were considered
as properties of total objects without reference to the partial ones.

¶ Some closely related facts appear in (Hyland 1975, §1.3), though the proof given there only applies
to the case T = C.

On the ubiquity of certain total type structures 33

P if T is C, and P
eff if T is C

eff or C
heff. Let Wσ = Tot(Aσ) ∩ A′

σ; we will say x ∈ Wσ

represents x ∈ Tσ if x = βEC(A)([x]).

(i) If c, c′ are consistent then c ⊔ c′ exists and is ζσ(c′′) for some c′′. Take xc′′ ∈ Wσ

with xc′′ ⊒ c ⊔ c′ as in Theorem 4.9; then clearly β([xc′′]) ∈ Uc ∩ Uc′ .

Conversely, suppose f ∈ Uc ∩ Uc′ , and take f ⊒ c, f′ ⊒ c′ both representing f . To

show that c, c′ are consistent, it suffices to show that if b ⊑ c and b′ ⊑ c′ are basic

compacts then b, b′ are consistent. Write σ as σ0 → · · · → σn−1 → 0; then any such b

has the form a0 ⇒ · · · ⇒ an−1 ⇒ n where n ∈ N; likewise any such b′ has the form

a′0 ⇒ · · · ⇒ a′n−1 ⇒ n′. Suppose ai and a′i are consistent for every i, otherwise the

consistency of b, b′ is trivial. Using Theorem 4.9, for each i choose some yi ∈ Wσ with

yi ⊒ ai ⊔ a′i, so that yi represents yi ∈ Tσi
. Then f(y0) · · · (yr−1) = f(y0) · · · (yr−1) = n,

and similarly f(y0) · · · (yr−1) = n′, whence n = n′ and b, b′ are consistent.

(ii) By induction on types. The cases for 0 and for product types are easy, so assume the

result for σ and τ , and suppose c = ζσ→τ (c) where c = 〈a0 7→b0, . . . , ar−1 7→br−1〉. First,

suppose f ∈ Uc; then there is some f ∈Wσ→τ representing f . To show that f ∈ Oσ→τ,c,

suppose x ∈ Oσ,ai
for some i < r; we wish to show that f(x) ∈ Oτ,bi

. By the induction

hypothesis we have Oσ,ai
= Uai

where ai = ζσ(ai), so there is some x ∈Wσ representing

x with x ⊒ a. But now f(x) ⊒ c(ai) ⊒ bi = ζτ (bi) and f(x) represents f(x), so f(x) ∈ Ubi
.

So by the induction hypothesis again, f(x) ∈ Oτ,bi
.

Conversely, suppose f ∈ Oσ→τ,c, and take any f ∈Wσ→τ representing f . It will suffice

to show that f and c are consistent, for then f ⊔ c ∈ Wσ→τ , so f ⊔ c also represents

f and witnesses that f ∈ Uc. In fact, it is enough to show that any basic compact

(a ⇒ b) ⊑ f is consistent with each ai ⇒ bi, where ai = ζσ(ai), bi = ζτ (bi). Suppose

a and ai are consistent, otherwise a ⇒ b and ai ⇒ bi are trivially consistent. Using

Theorem 4.9, take some x ∈ Wσ with x ⊒ a ⊔ ai, and suppose x represents x ∈ Tσ. Then

f(x) represents f(x) and f(x) ⊒ b, so f(x) ∈ Ub. But also f ∈ Oσ→τ,c and x ∈ Uai
= Oσ,ai

,

so f(x) ∈ Oτ,bi
= Ubi

by the induction hypothesis. Thus Ub ∩ Ubi
is inhabited, and so

b, bi are consistent by (i). Hence a ⇒ b and ai ⇒ bi are consistent as required.

5. Continuous and effective N-TPCAs

The pattern that emerges from the foregoing results is that the type structure obtained

from an extensional collapse construction appears to depend solely on whether the NR-

TPCA or NR-TPCAs in question are “full continuous” or “effective”. This leads us to

look for precise notions of full continuous NR-TPCA and effective NR-TPCA that will

allow us to obtain theorems of roughly the following kind:

— If A is a full continuous NR-TPCA, then EC(A) ∼= C.

— If A is a full continuous NR-TPCA and A′ an effective sub-NR-TPCA of A, then

EC(A;A′) ∼= C
eff.

— If A is an effective NR-TPCA then EC(A) ∼= HEO.

We now propose some such definitions, which seem to us to capture the intuitive

notions we have in mind, and which moreover fit well into the general framework of

applicative morphisms as presented in (Longley 1999b; Longley 2007?). This will allow

John Longley 34

us, in Section 5.4, to give precise statements of our main results. A discussion of specific

instances of these results will be postponed to Section 10.1.

5.1. Realizations of N-TPCAs

We will start with the following general notions:

Definition 5.1. Suppose A and B are N-TPCAs, with 0̂, 1̂, . . . a choice of numerals in

A, and 0̃, 1̃, . . . a choice of numerals in B.

(i) A realization of A over B consists of a mapping σ 7→ [σ] from types to types,

plus a family of relations σ⊆ B[σ] ×Aσ (one for each σ) with the following properties:

— For all a ∈ Aσ there exists b ∈ B[σ] such that b σ a.

— For each σ, τ , there is an element aστ ∈ B[σ→τ]→[σ]→[τ] such that for all a ∈ Aσ→τ ,

a′ ∈ Aσ, b ∈ B[σ→τ] and b′ ∈ B[σ],

b σ→τ a ∧ b′ σ a
′ ∧ a · a′↓ =⇒ aστ · b · b′ τ a · a

′

(Informally, “aστ tracks ·στ”.)

— There is an element d ∈ B[0]→0 such that for all n ∈ N and b ∈ B[0],

b 0 n̂ =⇒ d · b = ñ.

We say A is realizable over B if there exists a realization of A over B.

(ii) A realization is called discrete if b σ a ∧ b σ a
′ =⇒ a = a′.

(iii) is single-valued if b σ a ∧ b′ σ a =⇒ b = b′.

(iv) is type-respecting if [σ] = σ for all σ, and each aστ may be taken to be

(λ∗fσ→τxσ.fx).

(v) is untyped if B is an untyped PCA (construed as an N-TPCA). In this case we

necessarily have B[σ] = B for all σ, and we may suppress mention of [σ].

In fact, all the realizations we need to consider in this paper will be either type-respecting

or untyped, but our more general definition allows us to treat these two situations uni-

formly. (An untyped realization need not be type-respecting, since the canonical choice

for aστ might not be appropriate.)

We will sometimes use letters γ, δ, ǫ for realizations when we wish to consider them

more abstractly as “morphisms of N-TPCAs”. In this case we will write [−]γ for the

mapping on types associated with γ, and will often use the infix notation a
γ
σ b in place

γσ(a, b). We write γ : A−−⊲B to mean “γ is a realization of A over B”.

A realization of A over B can be informally thought of as a “copy” of A within

the category Asm(B) (or Mod(B) if is discrete). We will make this precise below

in the case where A is a total type structure. Alternatively, the above definition can be

phrased concisely using the framework of (Longley 1999b): a realization of A over B is

an applicative morphism γ : A −→| B which moreover respects the natural numbers up

to realizable isomorphism.

The condition involving d ensures that the representation of numerals in A is in some

sense “standard”. To see why this condition is needed, let A = KT
1 for T some non-

trivial Turing degree, and B = K1. Intuitively, we do not expect A to be realizable over

On the ubiquity of certain total type structures 35

B. However, it turns out that there is an applicative morphism KT
1 −→| K1 (see (Longley

1995, Chapter 3)), since in some sense we can simulate non-effective computations in K1

(informally, by means of thunks which are waiting for an oracle to be supplied). This is

of no use in practice, though, because we have no effective way of “decoding” the result

of the computation to obtain its value as a natural number, and this deficiency precisely

corresponds to the absence of a suitable element d.

The following facts are easily checked. Detailed proofs of (i) and (iv) for the untyped

setting are given in (Longley 1995, Chapter 2).

Proposition 5.2. (i) Given γ : A−−⊲B and δ : B−−⊲C, there is a realization δ ◦ γ :

A−−⊲C defined by

[σ]δ◦γ = [[σ]γ]δ, c
δ◦γ
σ a iff ∃b ∈ B[σ]γ . c

δ
[σ]γ

b ∧ b
γ
σ a

(ii) For any non-trivial N-TPCA A, there is a canonical discrete, type-respecting real-

ization ǫA : EC
C(A)−−⊲A given by

a
ǫA

σ x iff a ∼σ a and β([a]) = x

Moreover, if A′ is a sub-N-TPCA of A, ǫA restricts to a realization ǫA;A′

of EC
C(A;A′)

over A′.

(iii) For any NR-TPCA B, there is a canonical single-valued, type-respecting realiza-

tion αB : NRC−−⊲B defined by

b
αB

e iff b = ≪e≫

(iv) Any realization γ : A−−⊲B induces a functor γ∗ : Asm(A) → Asm(B) defined by

|γ∗(X)| = X, b γ∗(X) x ⇐⇒ ∃a ∈ AρX
. b

γ
ρX

a ∧ a X x,

γ∗(f : X → Y) = f

The functor γ∗ preserves finite products and the natural number object (up to isomor-

phism). Moreover, if γ is discrete, γ∗ restricts to a functor Mod(A) → Mod(B).

In connection with part (iv), it is worth observing why γ∗ preserves the natural number

object. Suppose 0̂, 1̂, . . . and 0̃, 1̃, . . . are choices of numerals in A and B respectively,

and NA, NB are the corresponding natural number objects in Asm(A),Asm(B). Then

the canonical map γ∗(NA) → NB is realized by the element d of Definition 5.1, and its

inverse by the element

rec0 · zero · (k00 · (a00 · suc)) ∈ B0→0

where zero ⊢γ
0 0̂ and suc ⊢γ

1 suc.

We now propose the following definition:

Definition 5.3. An effective N-TPCA is an N-TPCA A equipped with a realization

A−−⊲K1.

In view of the foregoing proposition, the notion of an effective N-TPCA is quite robust:

for example, if B is any PCA realizable over K1 (such as Keff
2), then an N-TPCA is

John Longley 36

effective iff it is realizable over B. It is easy to check that all the “effective models”

mentioned earlier — P
eff, Leff,Tωeff,Pωeff,Keff

2 and of course K1 itself — are effective

N-TPCAs.

In addition, if L is any effective extension of NRComb or PCF as in Section 3.4, any

term model of the form L/∼ is an effective N-TPCA, since a Gödel-numbering of terms

yields a realization for this N-TPCA in a standard way.

As a notational convention, we will reserve the symbol ⊢ (and decorated variants

thereof) specifically for realizations over K1, using the symbol in all other contexts.

We will write ⊢K2eff for the standard realization Keff
2 −−⊲K1 defined by

m ⊢K2eff g iff g = φm

A particular standard realization ⊢Peff of P
eff−−⊲K1 will be introduced in Section 5.2

below.

It is perhaps not so immediately clear what the definition of a continuous N-TPCA

ought to be. We propose the following:

Definition 5.4. A continuous N-TPCA is an N-TPCA A equipped with a realization

A−−⊲K2.

The intuition is that in a continuous N-TPCA, each object embodies only a countable

amount of information (and hence can be coded by an element of K2); moreover all the

relevant operations must act continuously with respect to this information content (and

hence be realizable within K2). In fact, the continuous N-TPCAs are precisely those that

can be represented within the framework of Type Two Effectivity (Weihrauch 2000); the

connections between this framework and realizability over K2 are explained in (Bauer

2002).

A little experimentation reveals that all the familiar examples of “continuous PCAs”

(e.g. Pω,Tω,B) are realizable over K2, as are the N-TPCAs P, L. Indeed, our notion of

continuous N-TPCA seems to cover all the examples we have in mind. Moreover, this

notion is robust, in that the same class of N-TPCAs would arise if we replaced K2 in the

definition by any other PCA A such that A and K2 are realizable over each other (for

instance, A = Pω).

As a slightly less obvious example, the NR-TPCA NRC
∞ of Section 3.4 is realizable

over K2. Likewise, it can be shown that the structure Q of Section 3.4 is a continuous

NR-TPCA. We omit the proofs of these facts, which are not technically required for our

purposes.

We say a continuous N-TPCA is full continuous if, informally, it contains all set-

theoretic functions N → N in a “standard” way. More formally:

Definition 5.5. Suppose A is a continuous N-TPCA, with realization : A−−⊲K2. We

say A is full continuous if

— for every f : N → N, there is some a ∈ A1 that represents f ;

— moreover, a realizer for some such element a may be computed from f within K2.

More precisely, there is an element h ∈ K2 such that for all f ∈ NN, we have h⊙f 1 a

for some a ∈ A1 representing f .

On the ubiquity of certain total type structures 37

The second half of the condition says that the first half holds constructively “inside K2”;

this appears to be essential for the proofs of our theorems.‖ It is easy to check that

the examples of continuous N-TPCAs mentioned above, including NRC
∞, are all full

continuous N-TPCAs according to the above definition.

We also need the notion of an effective sub-N-TPCA of a full continuous N-TPCA.

Recall here that we have a sub-PCA Keff
2 of K2, whose carrier set is the set of total

computable functions.

Definition 5.6. Suppose A is a full continuous N-TPCA with realization : A−−⊲K2,

and aστ ,d,h are as in Definitions 5.1 and 5.5. Suppose too that A′ is a sub-N-TPCA of

A. We say A′ is an effective sub-N-TPCA of A (with respect to) if

— for all a ∈ A′
σ, there exists f ∈ Keff

2 with f σ a;

— for all σ, τ , the elements aστ ,d,h may be taken to be in Keff
2 .

The notion of an effective sub-NR-TPCA is defined analogously.

Suppose A′ is an effective sub-N-TPCA of a full continuous A with respect to : A−−⊲K2.

Then restricts to a realization A′−−⊲Keff
2 , which we denote by ↿A′ . Since Keff

2 is itself

an effective PCA, it follows that A′ is an effective N-TPCA in its own right. In addition,

the induced functor ∗: Asm(A) → Asm(K2) restricts to a functor ∗: Asm(A;A′) →

Asm(K2;K
eff
2), which again preserves finite products and the natural number object.

5.2. Some realizations of P and P
eff

We now introduce some particular realizations of the NR-TPCAs P and P
eff that will

play an important role in later sections. Here we make heavy use of the concepts and

notation introduced in Section 3.3.

Using this machinery, we may give a continuous realization of P as follows:

Definition 5.7. Define a realization
P: P−−⊲K2 by

g
P

σ u iff ∀i. g(i) ∈ dom ζσ and {ζσ(g(i)) | i ∈ N} = Cu

That is, a realizer for u is any function that enumerates precisely the set of compacts

c ⊑ u. We call
P the standard realization of P.

To see that the application operations in P are indeed tracked by elements of K2, first

note that (by standard domain theory) for any f ∈ Pσ→τ , u ∈ Pσ, Cf(u) coincides with

the set {a(b) | a ∈ Cf, b ∈ Cu}. Hence, for any σ, τ , using the function applyστ it is

straightforward to construct an element aστ ∈ Keff
2 such that if g

P
σ→τ f and h

P
σ u,

then aστ · g · h
P
τ f(u). Moreover, it is easy to define an element d ∈ Keff

2 as required by

Definition 5.1, so
P is indeed a realization as claimed.

Furthermore, an element of P is effective iff it has at least one effective
P-realizer.

Since the elements aστ and d above are effective,
P restricts to a realization

Peff:

‖ More abstractly, the fullness condition says that, in Asm(K2), the evident morphism ∗ (EC(A))1 →

NN has a right inverse, making NN a retract of ∗ (EC(A))1.

John Longley 38

P
eff−−⊲Keff

2 . We may now define a standard effective realization of P
eff as promised

earlier: let ⊢Peff = ⊢K2eff ◦
Peff.

5.3. Realizations of type structures

Since every total type structure is an N-TPCA, we immediately have the notion of a real-

ization of a TTS over an N-TPCA. Examples include the realizations ǫA : EC
C(A)−−⊲A

given by Proposition 5.2(ii). It is easy to see that any realization of a TTS T over a

non-trivial N-TPCA B must be discrete: the element d from Definition 5.1 shows that

it is discrete at type 0, and the extensionality condition in the definition of TTS then

implies discreteness at all types.

A realization γ of a total type structure T over an N-TPCA B corresponds exactly

to an internal total type structure Tγ in Asm(B) (in the sense of Section 4) such that

|Tγ | = T (where |Tγ |σ = |Tγ
σ|, etc.). In the case γ = ǫB , Tγ is precisely the structure we

have called EC(B). The formulation in terms of internal TTSs makes particularly clear

the notion of an isomorphism between realizations:

Definition 5.8. (i) Suppose C has finite products and a standard natural number object,

and T,T′ are internal TTSs in C. We say T,T′ are isomorphic if there is a (necessarily

unique) family of isomorphisms Tσ
∼= T′

σ in C that commute with the given isomorphisms

T0
∼= N ∼= T′

0 and the projection and application morphisms.

(ii) Suppose γ, γ′ are realizations of TTSs T, T ′ in B respectively. We say γ, γ′ are iso-

morphic (γ ∼= γ′) if the corresponding internal TTSs Tγ ,Tγ′

are isomorphic in Asm(B).

In the situation of (ii), clearly T, T ′ are isomorphic as ordinary TTSs. In the case where

T = T ′, the above definition may be rephrased concretely as follows: γ, γ′ are isomorphic

if for each σ there are elements uσ ∈ B[σ]γ→[σ]γ′ and vσ ∈ B[σ]γ′→[σ]γ such that

b
γ
σ x =⇒ uσ · b

γ′

σ x, b
γ′

σ x =⇒ vσ · b
γ
σ x

Isomorphisms of this kind are also examples of applicative isomorphisms in the framework

of (Longley 1999b).

Note that if T is an internal TTS in Asm(B) and we have a realization δ : B−−⊲C, then

since by Proposition 5.2(iv) the induced functor δ∗ : Asm(B) → Asm(C) preserves finite

products and the natural number object, we obtain an internal TTS δ∗(T) in Asm(C).

If γ is a realization of T over B then clearly δ∗(T
γ) = Tδ◦γ .

The internal TTS formulation also leads us naturally to “relative” versions of these

concepts. Suppose B′ is a sub-N-TPCA of B. A realization γ of T in B is called a realiza-

tion relative to B′ if the corresponding internal TTS Tγ in fact lies within Asm(B;B′)

(that is, the application morphisms are tracked by elements of B′). If γ, γ′ are realiza-

tions of T, T ′ respectively in B relative to B′, we say γ, γ′ are isomorphic relative to B′ if

Tγ ,Tγ′

are isomorphic in Asm(B;B′) in the sense of Definition 5.8(i). Finally, if B′ is an

effective sub-N-TPCA of a full continuous B with respect to some δ : B → K2, then any

internal TTS T in Asm(B;B′) gives rise to an internal TTS δ∗(T) ∈ Asm(K2;K
eff
2).

Our three type structures have the following natural realizations, which we may regard

as the “standard” ones:

On the ubiquity of certain total type structures 39

Definition 5.9. (i) The standard realization
C of C is ǫK2 : EC(K2)−−⊲K2. We write

C for the corresponding internal TTS EC(K2) in Asm(K2).

(ii) The realization
RC of C

eff is ǫK2;K
eff
2 : EC(K2;K

eff
2)−−⊲Keff

2 . We write Ceff for

the corresponding internal TTS EC(K2;K
eff
2) in Asm(K2;K

eff
2).

(iii) The realization ⊢HEO of HEO or C
heff is ǫK1 : EC(K1)−−⊲K1. We write HEO for

the corresponding internal TTS EC(K1) in Asm(K1).

The fact that these are indeed realizations of C, C
eff, C

heff respectively depends on the

equivalences between the relevant presentations of these type structures. This and more

is given by the following theorem, which we shall require for our main proofs.

Theorem 5.10. (i) The realization
P ◦ ǫP : EC(P)−−⊲K2 is isomorphic to

C.

(ii) The isomorphism in (i) holds relative to Keff
2 , and restricts to an isomorphism over

Keff
2 between

Peff ◦ ǫP;Peff
and

RC.

(iii) The realization ⊢Peff ◦ ǫP
eff

: EC(Peff)−−⊲K1 is isomorphic to ⊢HEO.

Part (iii), which corresponds to a strengthened version of the generalized KLS theorem,

appears in (Berger 1993). Parts (i) and (ii) do not seem to have appeared explicitly in

the literature, although a closely related fact, with L in place of P, can be read off from

the results of (Bauer 2000; Bauer 2002). We include our own proof here, which is of some

independent interest in that it seems to offer a relatively direct and perspicuous proof of

the isomorphism EC(P) ∼= EC(K2).

Proof of Theorem 5.10. (i) We wish to prove that
P
∗ (EC(P)) ∼= EC(K2) in Asm(K2).

We will construct the isomorphism for the pure types; the result for arbitrary types may

be obtained similarly, or else by an appeal to Theorem 6.6 below.

For type 0, recall from Example 3.2 that each n ∈ N is represented in K2 by the

function n̂ : 0 7→ n, i + 1 7→ 0, and from Definition 5.7 that n ∈ N ⊂ P0 is
P-realized

by h ∈ K2 iff range(h) = {⊥̆, n̆}. It is easy to construct realizers α0, β0 ∈ K2 such that

α0 ⊙ h = n̂ whenever h
P n, and β0 ⊙ n̂

P n, showing that
P
∗ (EC(P))0 ∼= EC(K2)0.

For the induction step, suppose ık−1 is an isomorphism
P
∗ (EC(P))k−1 → EC(K2)k−1

realized by αk−1 ∈ K2, with inverse k−1 realized by βk−1 ∈ K2. To construct ık, note

that we have a morphism

ı0 ◦ appk−1 ◦ (id × k−1) :
P

∗ (EC(P))k × EC(K2)k−1 −→ EC(K2)0

whose exponential transpose gives us a morphism ık :
P
∗ (EC(P))k −→ EC(K2)k which

commutes with application.

To construct k, consider an arbitrary morphism Φ : EC(K2)k−1 → N in Asm(K2)

realized by some h ∈ K2. We wish to show that Φ corresponds to a continuous function

Phi : Pk−1 → P0 such that Phi ∈ Tot(Pk), and moreover that an enumeration ν of

the compacts below Phi may be computed from h within K2. We will give an informal

account of the construction of ν from h, from which it will be sufficiently clear that the

construction could be performed within K2 itself.

Given h
C

k Φ, we may search for numbers n and finite sequences p0, . . . , pr−1 such

that h(〈0, p0, . . . , pr−1〉) = n + 1 for some n, but h(〈0, p0, . . . , pt−1〉) = 0 for all t < r.

John Longley 40

For any such n, p0, . . . , pr−1, if g ∈ K2 satisfies g(i) = pi for all i < r and h ⊙ g ↓ then

(h⊙g)(0) = n. Next, for each such n, p0, . . . , pr−1 discovered, we may (in parallel) search

for a sequence q0, . . . , qs−1 such that:

— each qj is a ζk−1 code and the elements ζk−1(q0), . . . , ζk−1(qs−1) are consistent;

— for each i < r there exists si ≤ s such that αk−1(〈i, q0, . . . , qsi−1〉) = pi + 1, but

αk−1(〈i, q0, . . . , qt−1〉) = 0 for all t < si.

For any such q0, . . . , qs−1, if µ ∈ K2 satisfies µ(j) = qj for all j < s and αk−1 ⊙ µ↓ then

(αk−1 ⊙ µ)(i) = pi for all i < r.

For each such n, p0, . . . , pr−1, q0, . . . , qs−1 discovered, we output 〈〈q0, . . . , qs−1〉 7→ n̆〉

as an element of the set enumerated by ν. We also (in parallel) output codes for all

consistent finite joins of elements previously output, as well as codes for all compact

elements below these. Finally, we may periodically output a code for ⊥k in order to

ensure that the output is indeed an infinite sequence of codes.

We claim that if n, p0, . . . , pr−1, q0, . . . , qs−1 are as above and b =
⊔

j<s ζk−1(qj), then

for any G ∈ UC

b we have Φ(ık−1(G)) = n. Indeed, given any such G, by definition of UC

b

there exists some G ∈ Tot(Pk−1) representing G with b ⊑ G; thus there is some µ
P

k−1 G

with µ(j) = qj for all j < s. But now µ realizes G ∈
P
∗ (EC(P))k−1; hence αk−1 ⊙ µ is

defined and realizes ık−1(G) ∈ EC(K2)k−1. Hence h⊙ (αk−1 ⊙ µ) is defined and realizes

Φ(ık−1(G)). But by the above observations, we have (αk−1⊙µ)(i) = pi for i < r, whence

(h⊙ (αk−1 ⊙ µ))(0) = n, so Φ(ık−1(G)) = n.

It is now easy to see that the basic codes 〈〈q0, . . . , qs−1〉 7→ n̆〉 arising from the above

construction are all consistent. For if 〈b 7→n〉 and 〈b′ 7→n′〉 are two such codes and ζk−1(b),

ζk−1(b
′) are consistent, then by the density theorem we may take G ⊒ ζk−1(b)⊔ ζk−1(b

′)

representing some G ∈ Ck−1, and then n = Φ(ık−1(G)) = n′. It now follows that all

the compact elements enumerated by ν are consistent, so that
⊔

i ν(i) defines an element

Phi ∈ Pk.

It remains to check that Phi ∈ Tot(Pk) and that Phi agrees with Φ. Take any G ∈

Tot(Pk−1) representing some G ∈ Ck−1, and consider any µ
P

k−1 G. As before, we

have αk−1 ⊙µ
C

k−1 ık−1(G) and h⊙ (αk−1 ⊙µ)
C
0 n = Φ(ık−1(G)). So by continuity of

application inK2, there exist p0, . . . , pr−1 and q0, . . . , qs−1 satisfying the above conditions

with pi = (αk−1⊙µ)(i) for i < r and qj = µ(j) for j < s. Thus, the code 〈〈q0, . . . , qs−1〉 7→

n̆〉 will turn up in ν, and since µ
P

k−1 G it follows that Phi(G) = n as desired.

For part (ii), it suffices to note that the constructions in the above proof are effective,

so that the realizers αk, βk may all be chosen from Keff
2 .

Part (iii) is proved in (Berger 1993) in the form we require. The key ingredients of a

proof of (iii) will also appear in the proof of Proposition 8.4 below.

We conclude this section with a technical observation that will simplify our work later

on: it is harmless to replace our realizations of P, P
eff with ones that involve only basic

compact elements. Define relations
P
Bσ ⊆ K2 × Pσ by

g
P

Bσ u iff each g(i) is a basic ζσ-code and {ζσ(g(i)) | i ∈ N} = Bu

In this situation, we will say that g basically enumerates u. (For example, in the context

of Theorem 4.9, the function ξσ,c basically enumerates xc.)

On the ubiquity of certain total type structures 41

Note that
P
B is not quite a realization of P over K2, since there is nothing to realize

the elements ⊥σ ∈ Pσ; we will call
P
B a near-realization of P over K2. However, we can

see that
P
Bσ is “isomorphic” to

P
σ if we discount the bottom elements:

Proposition 5.11. For each σ, there are elements uσ,vσ ∈ Keff
2 such that for all g ∈ K2

and u ∈ Pσ with u 6= ⊥,

g
P

Bσ u =⇒ uσ · g
P

σ u, g
P

σ u =⇒ vσ · g
P

Bσ u

Proof. From any enumeration g of Bu we may obtain an enumeration g of Cu by

computing all existing finite joins of elements of Bu. Conversely, if g enumerates Cu where

u 6= ⊥, let k be the least number such that ζσ(g(k)) ∈ Bu, and define an enumeration g̃

of Bu by

g̃(i) =

{
basicσ(g(i)) if ζσ(g(i)) is basic,

basicσ(g(k)) otherwise

Clearly the mappings g 7→ g and g 7→ g̃ are both representable within Keff
2 .

It follows easily from this that the composition
P
B ◦ ǫP (defined exactly as in Propo-

sition 5.2(i)) is a genuine realization of EC(P) over K2 which is isomorphic to
P ◦ ǫP.

Moreover,
P
B restricts to a near-realization

Peff
B of P

eff over Keff
2 , and

Peff
B ◦ ǫP;Peff

is

then a genuine realization of EC(P;Peff) over Keff
2 which is isomorphic to

Peff ◦ ǫP;Peff
.

Finally, we may define a near-realization ⊢Peff
B = ⊢K2eff ◦

Peff
B of P

eff over K1, and then

⊢Peff
B ◦ ǫP

eff
is a genuine realization of EC(Peff) over K1 which is isomorphic to ⊢Peff ◦ ǫP

eff
.

Thus, Theorem 5.10 also holds with
P,Peff,⊢Peff replaced by

P
B,

Peff
B ,⊢Peff

B respec-

tively.

5.4. The main theorems

We are now at last able to give precise statements of our main results. For technical

reasons, all three of our theorems require certain hygiene conditions (which in the case of

C and C
eff were missing in (Longley 2005b)). These conditions make the statements of our

theorems less elegant than we would like, and exclude some interesting examples, but we

cannot at present see how to prove our theorems under significantly weaker hypotheses.

It is convenient to state the theorem for the effective case first:

Theorem 5.12 (Ubiquity of HEO). Let A be an effective NR-TPCA, with γ a real-

ization of A over K1 satisfying the following conditions:

(A) If m ⊢γ

σ→0
a, n ⊢γ

σ b and aσ0 •m •n ⊢γ
0 c (where aσ0 tracks ·σ0 as in Definition 5.1),

then a · b = c.

(B) The set {m | m ⊢γ
0 0̂} is c.e.

Then γ∗(EC(A)) ∼= HEO in Asm(K1). (That is, EC(A) ∼= HEO, and the realizations

γ ◦ ǫA and ⊢HEO over K1 are isomorphic.)

Condition (A) here is very mild, and in all naturally arising models that we know, it can

be arranged to hold simply by choosing the realizers aσ0 suitably. Condition (B) holds

John Longley 42

in most of the known models, including the term models for all reasonable deterministic

programming languages extending NRComb, and the effective substructures of all rea-

sonable domain-theoretic models in which the type of natural numbers is modelled by the

usual domain N⊥. Unfortunately, it rules out a few important models such as Keff
2 and

Pωeff, although in these cases the conclusion is already known to hold anyway. It also

excludes the term models for certain non-deterministic programming languages, and the

effective Nakajima tree model of the untyped lambda calculus (see (Barendregt 1984)).

We have so far been unable to prove a version of the above theorem that embraces these

additional models.

Clearly, conditions (A) and (B) taken together imply the following somewhat more

artificial condition:

(AB) For any type σ, element a ∈ Aσ→0 and realizer m ⊢γ

σ→0
a, there is a c.e. set R ⊆ N

such that whenever n ⊢γ
σ b, we have a · b = 0̂ if and only if n ∈ R.

In order to state the corresponding theorem for C, we have to use the analogue of condition

(AB) rather than of (A) and (B) separately. (This is because of the annoying fact that

the definedness of application in K2 is not semidecidable — see Example 3.2). We also

require a further condition (C) which we shall explain below.

In order to formulate (AB) in the continuous setting, we replace the notion of com-

putable enumerability by the topological notion of openness. A set R ⊆ NN is open if for

any f ∈ R there exists i such that for any f ′ ∈ NN, if f̃ ′(i) = f̃(i) then f ′ ∈ R.

Theorem 5.13 (Ubiquity of C). Let A be any full continuous NR-TPCA, with γ a

realization of A over K2 satisfying the following conditions:

(AB) For any type σ and any f
γ

σ→0
a, there is an open subset R ⊆ NN such that

whenever g
γ
σ b, we have a · b = 0̂ if and only if g ∈ R.

(C) There is an element norm ∈ A1→1 (called a normalizer for type 1 elements) such

that whenever ḟ , ḟ ′ ∈ A1 both represent some f : N → N, the element norm · ḟ also

represents f and norm · ḟ = norm · ḟ ′.

Then γ∗(EC(A)) ∼= C in Asm(K2). (That is EC(A) ∼= C, and the realizations γ ◦ ǫA

and
C over K2 are isomorphic.)

The same conditions also suffice for the theorem for C
eff. We recall the notion of an

effective sub-NR-TPCA from Definition 5.6.

Theorem 5.14 (Ubiquity of C
eff). Let A be any full continuous TPCA, with γ a

realization of A over K2, such that conditions (AB) and (C) of Theorem 5.13 hold, and

let A′ be an effective sub-NR-TPCA of A with respect to γ, which also contains the

element norm from condition (C). Then γ∗(EC(A;A′)) ∼= Ceff in Asm(K2;K
eff
2).

Once again, the condition (AB) holds in most of the settings of interest, but excludes

the models K2, Pω and the full Nakajima tree model.

Condition (C) says that the representation of type 1 functions in A is not too inten-

sional: although many elements of A1 may represent the same type 1 function f , we may

On the ubiquity of certain total type structures 43

pass to a canonical representative of f within A itself.†† This property typically holds

in any moderately denotational setting, but fails in some “syntactic” models such as

NRC
∞. Although one might prefer to dispense with this condition, it is perhaps not too

surprising that it should play a role when the realizing objects are themselves extensional

type 1 functions (elements of K2). It seems to us that condition (C) would be much less

acceptable in the effective setting, where it would rule out the term models for many

programming languages of interest. (For further discussion of the scope and limitations

of our theorems, see Section 10.1.)

In the presence of condition (C), the element h witnessing the fullness of A (see Defini-

tion 5.5) may be chosen so that for any f ∈ K2, h⊙f realizes a normalized element of A1.

Indeed, if h ∈ K2 is any realizer satisfying the condition of Definition 5.5, and norm ∈ K2

is any realizer for norm, then we may take h′ ∈ K2 such that h′⊙f � a11⊙norm⊙(h⊙f)

for all f ∈ K2; then h′ ⊙ f realizes an element a ∈ A1 such that a represents f and

norm · a = a. We will say a realizer h is normal if it satisfies this additional property.

We also write f ♯ for the canonical representative of f in A1, so that norm · f ♯ = f ♯.

6. Preliminaries to the main proofs

The proofs of our main theorems are rather long and technical, and make essential use

of a technique developed in (Normann 2000). We begin with an informal overview of our

method of proof, in order to highlight certain conceptual aspects which do not stand out

so clearly from the proofs themselves.

6.1. Conceptual overview

We start by recalling Normann’s theorems from (Normann 2000), glossing over a few

subtleties for the sake of the broad picture. Normann’s results were given in both a

“continuous” and an “effective” version, and were presented in terms of the language

PCF and its interpretation in the type structures P and P
eff. As in Section 3.4, we

will write PCF∞ for the language obtained by extending PCF with a constant cf for

every f : N → N. The relevant parts of Normann’s theorems may then be stated in our

terminology as follows:

Theorem 6.1 (Normann). (i) For every Φ ∈ Cσ, there is a PCF∞-definable element

Φ̇ ∈ Tot(Pσ) such that [Φ̇] = Φ.

(ii) For every Φ ∈ HEOσ, there is a PCF-definable element Φ̇ ∈ Tot(Peff
σ) such that

[Φ̇] = Φ.

To prove these theorems, it suffices to restrict attention to the pure types k (see Sec-

tion 6.2). At the heart of Normann’s proofs is the construction of a PCF program which,

given a basic enumeration ν for some Φ̈ ∈ Tot(Pk) representing Φ, “simulates” this

functional so as to yield an element Φ̇ also representing Φ. Very crudely, the idea is

†† More abstractly, condition (C) says that, in Asm(A), the object EC(A)1 is projective.

John Longley 44

as follows: given some Ġ ∈ Tot(Pk−1) corresponding to G ∈ Ck−1, to compute Φ(G)

we search through the codes enumerated by ν, testing each code c 7→ q̆ in turn to see

whether G ∈ Ok−1,c, and when such a code is found we simply return the number q. The

evident problem is how to do this in such a way that each individual test is guaranteed

to terminate, and this problem is overcome in Normann’s proofs by an ingenious use of

recursion. (An informal explanation of Normann’s method at a more detailed level will

be given in Section 7.5.)

At first sight, Normann’s theorems seem quite specific to the models P and P
eff. How-

ever, we can “detach” the theorem from these models to some extent by concentrating

on the PCF∞ or PCF terms that define the elements Φ̇. Let PCF and PCF
∞ denote the

term models for PCF and PCF∞ respectively as in Section 3.4. Then (concentrating on

the continuous case) the familiar interpretation map [[−]] gives us a single-valued, type-

respecting realization α : PCF
∞−−⊲P, and Normann’s proof associates to each Φ ∈ C a

corresponding set of PCF∞ terms, giving rise to a realization η : C−−⊲PCF
∞. The idea is

that PCF
∞ contains a “copy” of C which can in principle be defined purely syntactically

without reference to P. We may therefore view the situation in terms of a sequence of

realizations

C
η

−−−−−⊲ PCF
∞ α

−−−−−⊲ P
P

B
−−−−−⊲ K2

where
P
B is the realization of P via basic enumerations (see Section 5.3).

Expressed in these terms, Normann’s theorem tells us that if Φ̇
α◦η Φ then Φ̇

ǫP Φ

(we may naturally express this by writing α◦η ⊆ ǫP). Clearly the converse does not hold,

since not every element of Tot(P) is PCF∞-definable, and in fact the realizations α ◦ η

and ǫP are not even isomorphic. However, these realizations are equivalent at the level

of K2 realizers — in fact, the three realizations
P
B ◦ α ◦ η,

P
B ◦ ǫP and

C: C−−⊲K2 are

all isomorphic. The point is that a
P
B-realizer for a general Φ̈ ∈ Tot(P) is just a basic

enumeration of Φ̈, and Normann’s program gives us an effective way to pass from such

an enumeration to a suitable PCF∞-definable element Φ̇.

Actually, it is only a short step from here to show that the extensional collapse of PCF
∞

itself is C (the argument essentially appears in (Plotkin 1997)). This fact is helpful for

motivating what we are going to do, although technically our proof does not proceed via

quite this route.

The situation for the effective case is exactly analogous, and the above discussion

applies mutatis mutandis to the sequence of realizations

HEO
η

−−−−−⊲ PCF
α

−−−−−⊲ P
eff

⊢
Peff
B

−−−−−⊲ K1

Having seen how Normann’s results fit into our framework of N-TPCAs and realiza-

tions, we now explain the two main respects in which our setting in the present paper is

different from Normann’s.

The first step is rather a minor one: we replace PCF by NRComb. As mentioned in

Section 3.4, one may think of NRComb as a slightly weaker language than PCF, though

the gap between the two languages should be thought of as relatively small. It turns out

(as we shall see) that the Normann programs can equally well be expressed in NRComb.

On the ubiquity of certain total type structures 45

In the effective case, we may simply replace the term model PCF in the above discussion

by NRC (see Section 3.4). In the continuous case, we would like to be able to similarly

replace PCF
∞ by NRC

∞. However, so far we have only able to carry out our proofs for

the continuous case using a slightly richer language than NRComb∞ (this corresponds

to the need for condition (C) in Theorem 5.13). Let NRComb+ be the language obtained

from NRComb by adding a new constant norm : 1 → 1, and let NRComb∞+ be the

analogous extension of NRComb∞. We may extend the proof system for NRComb given

in Section 3.4 by adding the infinitary rule:

— If for each n ∈ N we have ⊢ e0 ⌈n⌉ ↓ and ⊢ e0 ⌈n⌉ ≃ e1 ⌈n⌉, then ⊢ norm e0 ↓ and

⊢ norm e0 ≃ norm e1.

We may thence obtain a term model NRC
∞+ as before.

The second step is much more radical: we replace P and P
eff in the above by an ar-

bitrary continuous or effective NR-TPCA A, subject to the conditions of the relevant

theorem. For instance, suppose A is any effective NR-TPCA. Then A comes equipped

with a realization α : NRC−−⊲A simply by virtue of being an NR-TPCA (see Proposi-

tion 5.2(iii)), and a realization γ : A−−⊲K1 by virtue of being effective. Indeed, in terms of

computational power, it is natural to think of NRC as the “weakest” effective NR-TPCA

and K1 as the “strongest”, with A sandwiched between them.

For the continuous case, we must suppose A is a full continuous NR-TPCA satisfying

condition (C) of Theorem 5.13; this means that we can naturally interpret NRComb∞+

in A and so obtain a realization NRC
∞+−−⊲A. The realization A−−⊲K2 comes from the

hypothesis that A is continuous. Once again, we may think of NRC
∞+ and K2 as the

weakest and strongest continuous NR-TPCAs that we are considering.

Moreover, by earlier remarks, NRC
∞+ [resp. NRC] contains a copy of C [resp. HEO]

arising from the Normann programs and embodied by the realization η. In fact, we have

EC(NRC
∞+) ∼= C and η ⊆ ǫNRC

∞+

[resp. EC(NRC) ∼= HEO and η ⊆ ǫNRC]. To summarize

our data, in the continuous case we have realizations

C
η

−−−−−⊲ NRC
∞+ α

−−−−−⊲ A
γ

−−−−−⊲ K2

while in the effective case we have

HEO
η

−−−−−⊲ NRC
α

−−−−−⊲ A
γ

−−−−−⊲ K1

Thus (in the continuous case for example) the realization α◦η shows that a copy of C exists

within Asm(A). Indeed, A is sandwiched between two NR-TPCAs whose extensional

collapse is C, and this already makes it seem plausible that EC(A) = C. Somewhat less

crudely, one might hope to show by an induction up the types that γ∗(EC(A))k
∼= Ck

in Asm(K2) for each k; at each level, the realization α ◦ η would tell us that the set

EC(A)k contains at least the continuous functionals of type k, whilst γ would tell us

that it contains at most these functionals. However, as mentioned in Section 4, there

are examples of similar situations in which the extensional collapse construction behaves

pathologically, and this warns us that we cannot hope for a simple proof of our theorem

in terms of general abstract considerations.

John Longley 46

In fact, an induction of the above kind does go through, and can be used to show that

the internal TTSs EC(K2), γ∗(EC(A)) and (γ◦α◦η)∗(C) are all isomorphic in Asm(K2),

and moreover that α ◦ η ⊆ ǫA. (It is not true in general that EC(A) ∼= (α ◦ η)∗(C) in

Asm(A).) The difficult part is to show the inclusion α◦η ⊆ ǫA at each type level — that is,

to show that if Φ̇ ∈ Ak is the denotation in A of a Normann program for Φ, then Φ̇ acts as

Φ on the whole of Tot(Ak−1), not just the part of Tot(Ak−1) consisting of the denotations

of Normann programs. In other words, we may readily show that our Normann programs

behave as expected when applied to other Normann programs, but why on earth should

Φ̇ behave sensibly when applied to a “non-program” Ġ ∈ Tot(Ak−1), about which we

know nothing at all except that it acts extensionally on elements of Tot(Ak−2)?

Actually, the behaviour of Φ̇ on Ġ will be quite predictable if the Normann program

only “uses” Ġ in certain restricted ways — in particular, if it only ever applies Ġ to total

elements ḣ ∈ Tot(Ak−2) representing known elements of Ck−2. Indeed, in the case k = 2,

this is just what happens and so it is easy to show that the Normann programs behave

correctly (see Section 7.1). In general, however, the way the Normann programs work is

more subtle. At each stage in our search through the enumeration ν, the program will

“test” Ġ by applying it to some ḣ ∈ Ak−2 which (recursively) depends on the result of

searching further down the enumeration. Will this element ḣ be total? The form of the

Normann programs ensures that this will indeed be the case provided that some test

further on in ν succeeds, which would seem to depend on the fact that the elements ḣ′

used in that test are total, and so on. The problem, then, is to find some way of breaking

this apparent infinite regress. Once we have shown that at least one of the tests arising

from ν returns true, we can use reversed induction to show that all previous stages of the

computation are well-behaved, in that the elements ḣ involved are all total so that Ġ · ḣ

yields a meaningful value, and hence that the final result of the computation is indeed

Φ(G).

In Normann’s original proof, the existence of such an “end-stop” in ν was proved by

appealing to the continuity of Ġ in P: at some stage in our search we would encounter a

test element ḣ which, if not a total element, was a sufficiently good approximation to one

that the test involving Ġ · ḣ would succeed. In our more general setting, such an approach

is not directly applicable, since A need not have any kind of CPO structure or any overt

notion of “partial approximation” to a total element. The key to our approach lies with

the realization γ : A−−⊲K2: we can show that simply by virtue of being a continuous

NR-TPCA, A inherits enough “continuity” from K2 that an argument akin to Normann’s

can be used to show the existence of a suitable end-stop. In fact, a substantial portion

of our proof (Sections 7.2–7.4) will be devoted to making this idea work; as we shall see,

the task entails some significant elaborations of the Normann programs themselves. Once

the existence of an end-stop has been established, our argument runs closely parallel to

that of (Normann 2000) (Sections 7.5–7.6).

In the effective case, the strategy is similar, and our task is to show that an effec-

tive NR-TPCA A inherits some kind of continuity from K1. Here we must understand

“continuity in K1” in the sense associated with the Myhill-Shepherdson and Kreisel-

Lacombe-Shoenfield theorems, and indeed, ideas from the proofs of these theorems will

play a vital role in our arguments. In this case, even more work is required to show

On the ubiquity of certain total type structures 47

the existence of an end-stop (Sections 8.1–8.3); once this is done, the argument is again

broadly similar to Normann’s (Sections 8.4–8.5).

Whilst the term models NRC and NRC
∞+ play a key conceptual role, we will not

henceforth refer to them explicitly in the proofs themselves, since to do so would impose

additional notational complications which do not seem to justify themselves. Neverthe-

less, the reader may find it helpful to make the mental connection with the abstract

picture outlined above.

6.2. Reduction to pure types

As with many other results in higher type computability, it will suffice to prove our main

theorems for the pure types, since all other types arise as retracts of these. It is convenient

to dispose of this issue in advance of tackling the main proofs, since it will significantly

lighten our notational burden if we only have to work with pure types.

The encoding of arbitrary types in pure types has been worked out many times over

in the literature (see for example (Troelstra 1973, §1.8)), but unfortunately, the results

still do not seem to appear in quite the form we need. Indeed, it seems to us that the

matter is not quite as simple as is sometimes supposed: one not only has to show that

every type is a retract of a pure type, but also that the corresponding idempotents can

be identified by looking at the pure types alone. Even so, there are no major surprises in

this section, and readers who are already comfortable with these ideas may safely skip

it.

Let T be any total type structure as defined in Section 4. We will show that the whole of

T may be reconstructed from the pure part of T — that is, the family of sets Tk together

with the application operations Tk+1 × Tk → N. Since every TTS is an N-TPCA, it is

convenient to use the language NComb as a notation for uniformly specifying elements

of T .

Recall from Section 2.1 that definition environments for NComb may be built up

by cumulative sequences of defining equations. By a defined constant we shall mean

simply a derived constant together with a definition environment of NComb in which it

appears. Clearly, any defined constant has a canonical interpretation in any TTS. We

shall sometimes refer to defined constants somewhat informally as programs.

One particular definition environment will be of special significance. Let ∆0 be some

environment that defines just three constants make-pair : 0
(2)

→ 0, proj0 : 0 → 0,

proj1 : 0 → 0 as in Section 2.2.

Let us say a type ρ is regular if it is of the form σ0 → · · · → σr−1 → 0 where all the

σi are pure types. A defining equation

f x0 . . . xr−1 ≡ e

is called regular if the variables xi and e itself are all of pure type, and moreover all

subterms of e are of regular type. We say a definition environment ∆ is regular if it

can be built up from ∆0 entirely by means of regular equations, and a defined constant

is regular if its associated definition environment is regular. Clearly, a regular defined

constant must be of regular type.

John Longley 48

Proposition 6.2. (i) For each k there exist regular defined constants

upk : k → k + 1, downk : k + 1 → k

such that for any TTS T and for all y ∈ Tk we have downk · (upk · y) = y.

(ii) For each k there are regular defined constants

Pairk : k → k → k, Fstk : k → k, Sndk : k → k

such that for any TTS T and for all z, z′ ∈ Tk we have Fstk · (Pairk · z · z′) = z and

Sndk · (Pairk · z · z′) = z′.

Proof. (i) By induction on k, define

up0 y0 x0 ≡ y

down0 z1 ≡ z 0

upk+1 yk+1 xk+1 ≡ y (downk x)

downk+1 zk+2 wk ≡ z (upk w)

An easy induction shows that upk, downk have the required property.

(ii) For the case k = 0, let Pair0 ≡ make-pair, Fst0 ≡ proj0, Snd0 ≡ proj1. For

k > 0, define

Pairk zk z′k xk−1 ≡ Pair0 (z x) (z′ x)

Fstk zk xk−1 ≡ Fst0 (z x)

Sndk zk xk−1 ≡ Snd0 (z x)

Again, it is easy to check that these constants have the required property.

For k > 0, let us also define PairFnk : k → k − 1 → k − 1 → 0 by

PairFnk zk uk−1 vk−1 ≡ z (Pairk−1 u v)

Next, define the level of a type by

level(0) = 0

level(σ × τ) = max (level(σ), level(τ))

level(σ → τ) = max (1 + level(σ), level(τ))

and for any type σ define σ to be the pure type level(σ).

Proposition 6.3. (i) For any type σ and any k ≥ level(σ), there exist defined constants

encodek
σ : σ → k, decodek

σ : k → σ, idemk
σ : k → k

such that idemk
σ is a regular defined constant, and (in any TTS T) for all y ∈ Tσ, z ∈ Tk

we have

decodek
σ · (encodek

σ · y) = y, encodek
σ · (decodek

σ · z) = idemk
σ · z

(ii) Moreover, for any types σ, τ there is a regular defined constant

applyστ : σ → τ → σ → τ

On the ubiquity of certain total type structures 49

such that (in any TTS T) for all h ∈ Tσ→τ , z ∈ Tσ we have

applyστ · h · z = encodeτ
τ · ((decodeσ→τ

σ→τ · h) · (decodeσ
σ · z))

Proof. We define the constants encodek
σ, decodek

σ and idemk
σ simultaneously by induc-

tion on the structure of σ, with a subordinate induction on k. We take care to ensure that

the definitions for idemk
σ involve only regular defining equations. The induction cases are

as follows:

— For the case σ = 0 and k = 0, take

encode0
0 y0 ≡ y

decode0
0 z0 ≡ z

idem0
0 z0 ≡ z

— Given encodek
σ, decodek

σ, idemk
σ, define

encodek+1
σ yσ ≡ upk (encodek

σ y)

decodek+1
σ zk+1 ≡ decodek

σ (downk z)

idemk+1
σ zk+1 ≡ upk (idemk

σ (downk z))

— If k = level(σ × τ), define

encodek
σ×τ yσ×τ ≡ Pairk (encodek

σ (fst y)) (encodek
τ (snd y))

decodek
σ×τ zk ≡ pair (decodek

σ (Fstk z)) (decodek
τ (Sndk z))

idemk
σ×τ zk ≡ Pairk (idemk

σ (Fstk z)) (idemk
τ (Sndk z))

— If k = level(σ → τ), define

encodek
σ→τ yσ→τ xk−1 ≡ encodek

τ (y (decodek−1
σ (Fstk−1 x)))

(Sndk−1 x)

decodek
σ→τ zk wσ ≡ decodek

τ (PairFnk z (encodek−1
σ w))

idemk
σ→τ zk xk−1 ≡ idemk

τ (PairFnk z (idemk−1
σ (Fstk−1 x)))

(Sndk−1 x)

It is straightforward to show by induction that these constants have the required prop-

erties. At various points one must appeal to the extensionality of TTSs: that is, we show

f = g by showing f · x = g · x for all x.

(ii) First, for any k ≥ l we may define regular constants Upk
l : l → k, Downk

l : k → l as

follows:

Upl
l u ≡ u

Up
k+1
l u ≡ upk (Upk

l u)

Downl
l u ≡ u

Down
k+1
l u ≡ Downk

l (downk u)

Now suppose k = level(σ → τ), l = level(σ), m = level(τ), and define

applyστ hk zl ≡ idemm
τ (Downk

m (PairFnk h (Upk
l (ideml

σ z))))

John Longley 50

It is easy to verify that applyστ has the required property.

The significance of the regular defined constants is that their interpretations may be

easily determined just by looking at the pure type functionals. Given a TTS T and a

regular definition environment ∆ = (cρ0

0 ≡ e0, . . . , c
ρs−1

s−1 ≡ es−1), where ρi = σi0 →

· · · → σi(ri−1) → 0, we may associate with each ci a function [[ci]] : Tσi0×· · ·×Tσi(ri−1)
→

N in the following way. If ci is one of the constants of ∆0, we simply take [[ci]] to be

the corresponding primitive recursive function. Otherwise, suppose functions [[cj]] have

been defined for all j < i, and suppose that

ci x
σi0
0 · · ·x

σi(r−1)

r−1 ≡ e

is a regular defining equation for ci, where r ≤ ri. For any valuation ν assigning to each

xj (0 ≤ j < r) an element ν(xj) ∈ Tσij
, we may define a number or function [[e]]ν as

follows, by induction on the structure of the regular term e:

— [[cj]]ν = [[cj]]

— [[xj]]ν = ν(xj)

— If e′ : τ0 → · · · → τt−1 → 0 where t > 0 and the τj are pure, and e′′ : τ0, define

[[e′e′′]]ν by

[[e′e′′]]ν(y1, . . . , yt−1) = [[e′]]ν(![[e′′]]ν , y1, . . . , yt−1)

where ![[e′′]]ν denotes the element of Tτ0 corresponding to [[e′′]]ν (see below).

Finally, we define [[ci]] itself by

[[ci]](y0, . . . , yri−1) = [[e]]ν(yr, . . . , yri−1), where ν(xi) = yi for i < r.

Note, crucially, that the definition of [[ci]] depends only on the pure part of T .

The above definitions are provisional in that we need to show that the required elements

![[e′′]]ν always exist (when they do, they are unique by virtue of the extensionality of T).

This and more is given by the following:

Proposition 6.4. Suppose ∆ = (cρ0

0 ≡ e0, . . . , c
ρs−1

s−1 ≡ es−1) is a regular definition

environment. Then for each i < s the above definitions indeed yield a total function [[ci]],

and moreover for any y0 ∈ Tσi0
, . . . , yri−1 ∈ Tσi(ri−1) we have

[[ci]](y0, . . . , yri−1) = ≪ci≫ · y0 · · · · · yri−1

Proof. By induction on i. If ci is a constant of ∆0 this is clear. Otherwise, assume the

claim holds for all cj where j < i, and suppose

ci x
σi0
0 · · ·x

σi(r−1)

r−1 ≡ e

is a regular defining equation for ci. Then it suffices to show that, for any environment ν

with domain x0, . . . , xr−1, the number or function [[e]]ν is well-defined, and ![[e]]ν exists

and is ≪e≫ν . This is shown by an easy induction on the structure of e.

It is now easy to see how the whole of a type structure T may be reconstructed up to

isomorphism from its pure part. For any type σ, define

T ◦
σ = {z ∈ Tσ | [[idemσ]](z) = z}

On the ubiquity of certain total type structures 51

and define application operations ·στ : T ◦
σ→τ × T ◦

σ → T ◦
τ by

h ·στ z = [[applyστ]](h, z)

Then from Propositions 6.3 and 6.4 it is clear that T ◦ ∼= T : the appropriate mappings

Tσ → T ◦
σ are realized by the elements encodeσ, and their inverses by decodeσ. Hence,

by Proposition 6.3(ii), the application operations defined above correspond under these

isomorphisms to the original application operations in T . It follows that two total type

structures are isomorphic if their pure parts are isomorphic.

We also need to consider the corresponding question for internal TTSs. It is convenient

here to formulate the following “obvious” definition explicitly (part (ii) of the definition

will also be useful in Sections 7 and 8).

Definition 6.5. Suppose C has finite products and a standard natural number object N ,

and suppose T,T′ are internal TTSs in C. For each l ∈ N, let appl denote the application

morphism Tl+1 × Tl → T0 for T and app′
l the corresponding morphism for T′.

(i) We say T,T′ are isomorphic at the pure types if there is an isomorphism ıl : Tl → T′
l

for each l, such that ı0 is the composition of the standard isomorphisms T0
∼= N ∼= T′

0,

and at each level l the isomorphisms commute with application:

ı0 ◦ appl = app′
l ◦ (ıl+1 × ıl) : Tl+1 × Tl → T′

0

(ii) We say T,T′ are isomorphic up to level k if there is an isomorphism ıl : Tl → T′
l

for each l ≤ k such that ı0 is standard and the above equation holds for each l < k.

Theorem 6.6. Suppose C is well-pointed, has finite products and a standard natural

number object, and suppose T,T′ are internal TTSs in C which are isomorphic at the

pure types. Then T ∼= T′.

Proof. Assume T,T′ are as given, with isomorphisms ıl : Tl → T′
l as above. Let

T = Hom(1,T), T ′ = Hom(1,T′). For any type σ, the term idemσ
σ defines elements

≪idem≫∈ Tσ→σ and ≪idem≫′∈ T ′
σ→σ. Since the pure parts of T, T ′ are isomorphic

and idemσ
σ is regular, by Proposition 6.4 we have

ıσ ◦ (≪idem≫ · z) = ≪idem≫′ ·(ıσ ◦ z)

for all z ∈ Tσ. Now ≪idem≫ induces a morphism [[idem]] : Tσ → Tσ in C by means of

the application morphism Tσ→σ×Tσ → Tσ, and similarly for T′. Since C is well-pointed,

we deduce that ıσ ◦ [[idem]] = [[idem]]′ ◦ ıσ.

In the same way, the terms encodeσ
σ, decode

σ
σ yield morphisms [[encode]] : Tσ →

Tσ and [[decode]] : Tσ → Tσ respectively, and by Proposition 6.3(i) and the well-

pointedness of C we may deduce that

[[decode]] ◦ [[encode]] = idTσ
, [[encode]] ◦ [[decode]] = [[idem]]

and similarly for T′. Define ıσ = [[decode]]′ ◦ [[encode]]; then it is easy to check that ıσ
is an isomorphism Tσ → T′

σ.

A similar argument now shows that the ıσ commute with the application morphisms,

using Proposition 6.3(ii) and the fact that applyστ is regular.

John Longley 52

In the cases of interest, of course, C will be some category Asm(B), so that internal

TTSs in C correspond to realizations of TTSs over B. In such cases, the above result

may be rephrased as follows: if T, T ′ are type structures with realizations γ, γ′ over B

such that γ, γ′ are isomorphic at the pure types, then γ ∼= γ′.

7. Proof for the continuous case

We are now ready to embark on the proofs of our main theorems. In this section we will

prove the main theorems for C and C
eff (Theorems 5.13 and 5.14); the theorem for HEO

will be proved in Section 8.

Throughout this section, we suppose A is a full continuous NR-TPCA, with a real-

ization γ : A−−⊲K2 and associated elements aστ and d as in Definition 5.1, h as in

Definition 5.5, and norm as in Theorem 5.13, such that conditions (AB) and (C) of

Theorem 5.13 are satisfied. By the remarks at the end of Section 5.4, we may assume

that h is normal.

To establish the main theorem for C, we wish to prove that γ∗(EC(A)) ∼= C in

Asm(K2). To do this, we will first formulate a lemma which asserts the existence of

suitable “Normann programs” for all pure types, and will show that the lemma implies

the desired isomorphism. We will then prove the lemma itself by an induction on the

type level, and this is of course where the hard work comes.

To formulate the lemma, we make use of the model P. Recall from Section 5.3 the

near-realization
P
B of P

eff over K2 given by basic enumerations; this induces a genuine

realization
P
B ◦ ǫP : EC(P)−−⊲K2. We write δ for the corresponding realization C−−⊲K2;

by Theorem 5.10(i) and the remarks at the end of Section 5.3, δ is isomorphic to
C.

The following terminology will be useful throughout the proof. Suppose k ≥ 1, and

suppose that γ∗(EC(A)) and C are indeed isomorphic up to level k−1, with isomorphisms

ıl : γ∗(EC(A))l → Cl for l < k as in Definition 6.5. In this situation, we say an element

ẋ ∈ Al represents some x ∈ Cl if ẋ ∈ Tot(Al) and [ẋ] corresponds to x under the

isomorphism ıl. We may also say that ẋ ∈ Ak represents x ∈ Ck if whenever ẏ ∈ Ak−1

represents y ∈ Ck−1, ẋ · ẏ represents x(y). (It follows from this that x ∈ Tot(Ak).)

Likewise, for any l ≤ k, we will say an element x ∈ Pl represents x ∈ Cl if x ∈ Tot(Pl) and

[x] corresponds to x under the isomorphism EC(P) ∼= C. (Note that these uses of the term

“represents” smoothly extend those of Section 2.2.) In general, if some symbol denotes

an element of C, we will often use its dotted counterpart to denote an element of A that

represents it, and its Gothic counterpart to denote an element of P that represents it.

As mentioned in Section 6.1, we may extend our language NRComb to a language

NRComb+ by adding a new constant norm : 1 → 1. When considering interpretations

of this language, we stipulate that ≪norm≫= norm. We may now state our lemma as

follows:

Lemma 7.1 (Main Lemma). Suppose k ≥ 1, and suppose γ∗(EC(A)) and C are

isomorphic up to level k − 1. Then there is an NRComb+-definable constant nablak :

1 → k denoting an element ∇k ∈ A1→k with the following property: whenever Φ ∈ Ck,

ν
δ
k Φ and ν̇ ∈ A1 represents ν, the element ∇k · ν̇ ∈ Ak represents Φ.

On the ubiquity of certain total type structures 53

An element ∇k satisfying the above condition will be called a Normann operator for type

k in A, and the program of NRComb+ that defines it will be called a Normann program.

Theorem 7.2. Assuming Lemma 7.1, we have γ∗(EC(A)) ∼= C.

Proof. By Theorem 6.6, it suffices to show that γ∗(EC(A)) and C are isomorphic at

the pure types. We will construct suitable isomorphisms ık by induction on k.

For k = 0, we have an isomorphism ı0 : γ∗(EC(A))0 ∼= C0 by virtue of the fact that

γ∗(EC(A)) and C are both internal type structures. (This in turn depends on the fact

that γ∗ preserves the natural number object — see the remark following Proposition 5.2).

For the induction step, suppose γ∗(EC(A)) and C are isomorphic up to level k − 1

via isomorphisms ıl for l < k as above, and let l = ı−1
l for each l. We will construct

morphisms ık : γ∗(EC(A))k → Ck and k : Ck → γ∗(EC(A))k such that

∀f ∈ EC(A)k, x ∈ EC(A)k−1. ık(f) · ık−1(x) = ı0(f · x)

∀f ∈ Ck, x ∈ Ck−1. k(f) · k−1(x) = 0(f · x)

Since both EC(A) and C are extensional, this will imply that ık, k are mutually inverse

isomorphisms.

For ık, we have a morphism

ı0 ◦ γ∗(appk−1) ◦ (id × k−1) : γ∗(EC(A))k × Ck−1 −→ C0

whose exponential transpose gives us a morphism

ık : γ∗(EC(A))k −→ C
Ck−1

0 = Ck

and it is clear by construction that this morphism commutes with application.

We now have to construct k. First, by Theorem 5.10(i) and the remarks at the end

of Section 5.3, there is a realizer r ∈ K2 such that for any Φ ∈ Ck and g
C

k Φ we

have r ⊙ g
δ
k Φ — that is, r ⊙ g is a basic enumeration ν of some total Phi ∈ Pk

representing Φ. Next, using the realizer h from Definition 5.5, we have that h ⊙ (r ⊙ g)

is a γ-realizer for some ν̇ ∈ A1 representing ν. But now, by the main lemma for k, the

element Φ̇ = ∇k · ν̇ ∈ Ak is total and represents Φ; moreover, if nablak ∈ K2 is any

γ-realizer for ∇k then a1k ⊙ nablak ⊙ (h ⊙ (r ⊙ g))
γ
k Φ̇. Thus, by the combinatory

completeness of K2, given a realizer for Φ ∈ Ck we may (within K2) compute a realizer

for Φ ∈ γ∗(EC(A))k, so we have a morphism k : Ck → γ∗(EC(A))k commuting with

application as required.

A similar argument can also be used to establish our main theorem for C
eff. To see

this, suppose that A′ is an effective sub-NR-TPCA of A with respect to γ in the sense of

Definition 5.6, and that norm ∈ A′. (It is still harmless to assume that h is normal when

h is chosen from Keff
2 .) We wish to show that γ∗(EC(A;A′)) ∼= Ceff in Asm(K2;K

eff
2);

again, by Theorem 6.6 it suffices to show that these internal TTSs are isomorphic at the

pure types.

Recall that Asm(K2;K
eff
2) has the same objects as Asm(K2) but fewer morphisms,

and that exponentials in Asm(K2;K
eff
2) are defined exactly as in Asm(K2). Since the

two categories have the same natural number object, it follows that each object Ceff
k in

John Longley 54

Asm(K2;K
eff
2) is identical to the object Ck in Asm(K2), and moreover the application

morphisms correspond. Likewise, the internal TTS EC(A;A′) in Asm(A;A′) is identical

to EC(A) in Asm(A). Since the functor γ∗ : Asm(A;A′) → Asm(K2,K
eff
2) is simply

the restriction of the functor γ∗ : Asm(A) → Asm(K2), it follows that the internal TTS

γ∗(EC(A;A′)) in Asm(K2;K
eff
2) is identical to γ∗(EC(A)) in Asm(K2). So in order to

show that γ∗(EC(A;A′)) ∼= Ceff in Asm(K2;K
eff
2), it only remains to show that the

isomorphisms γ∗(EC(A))k
∼= Ck constructed above exist in Asm(K2;K

eff
2), i.e., are

realizable in K2.

An inspection of the proof of Theorem 7.2 readily confirms that this is indeed the case.

The realizer r may be chosen in Keff
2 by Theorem 5.10(ii). Note also that ∇k ∈ A′,

since the elements k, s, . . . from the definition of NR-TPCA are all in A′, as is the

element norm, and ∇k may be obtained from these via application (see Definition 2.2).

From Definition 5.6, it follows that a realizer nablak for ∇k may be chosen in Keff
2 . The

remaining details are trivial.

We have thus established:

Theorem 7.3. Assuming Lemma 7.1, we have γ∗(EC(A;A′)) ∼= Ceff in Asm(K2;K
eff
2).

To complete the proof of both Theorem 5.13 and Theorem 5.14, it remains to prove

Lemma 7.1 itself. The proof is by a grand induction on k. In Section 7.1 we will establish

the main lemma for the cases k = 1, 2; in Sections 7.2 to 7.5 we will show that the main

lemma holds for k ≥ 3 assuming it holds for k − 2.

7.1. Normann programs for types 1 and 2

The existence of a Normann program for type 1 is straightforward. Let us write f ∈ C1

in place of Φ, and suppose ν ⊢δ
1 f . Then ν ∈ K2 basically enumerates some f ∈ Tot(P1)

which represents f . By the definition of
P
B in Section 5.3, each number in the range of

ν is a type 1 basic code, i.e., a number of the form 〈a 7→ n̆〉. We may therefore simulate

f within A as follows: given m̂ ∈ A0, search ν for a basic code of the form 〈m̆ 7→ n̆〉 or

〈⊥̆ 7→ n̆〉, and return the corresponding numeral n̂.

Formally, we define derived constants of NRComb as follows, bearing in mind that n̆

is simply n+ 1 and m 7→n is 〈m,n〉.

eq-or-zero x0 y0 ≡ or (eq x y) (eq x 0)

matches m0 b0 ≡ eq-or-zero (proj0 (proj0 b)) (suc m)

index-matches nu1 m0 j0 ≡ matches m (nu j)

nabla1 nu1 m0 ≡ pre (proj1 (proj0 (nu (min (index-matches nu m)))))

Let ∇1 ∈ A1→1 be the element defined by nabla1. To see that ∇1 has the property

required for Lemma 8.1, suppose f, ν and f are above, ν̇ represents ν, and m ∈ N.

Recalling the typographical conventions of Section 2.1, for any j we clearly have that

index-matches · ν̇ · m̂ · ĵ is tt if ν(j) is of the form 〈m̆ 7→ n̆〉 or 〈⊥̆ 7→ n̆〉, and ff otherwise.

But since f is total, the range of ν must contain some basic code of one of these forms, and

On the ubiquity of certain total type structures 55

for any such code we must have that n = f(m). It follows easily that ∇1 · ν̇ · m̂ = f̂(m)

as required.

For the type 2 case we will write F ∈ C2 in place of Φ. Suppose ν ⊢δ
2 F ; then ν basically

enumerates some F ∈ Tot(P2) which represents F . By the definition of
P
B in Section 5.3,

each number in the range of ν is a type 2 basic code, i.e., a number of the form

c = 〈〈a0 7→ n̆0, . . . , ar−1 7→ n̆r−1〉 7→ p̆〉

satisfying certain conditions. Such a code c represents the element ζ2(c) ∈ P2 defined by

ζ2(c)(g) =

{
p if g(ζ0(ai)) = ni for each i,

⊥ otherwise

The idea is that we can simulate F within A as follows: given some g ∈ EC(A)1, search

through ν looking for a code

〈〈m̆0 7→ n̆0, . . . , m̆r−1 7→ n̆r−1〉 7→ p̆〉

such that g(mi) = ni for each i. When such a code is found, we return the corresponding

element p̂. This procedure gives us an element of A2 which agrees with F on all total

elements of A1, and so witnesses the fact that F ∈ EC(A2).

A minor problem arises from the fact that the codes enumerated by ν might involve

type 1 codes of the form ⊥̆ 7→ n̆, and it is nonsensical to test whether “g(⊥) = n” in A.

However, the following lemma shows that for the purpose of simulating F we may simply

ignore all such codes:

Lemma 7.4. Suppose ν basically enumerates a total F ∈ P2, and g ∈ EC(A)1. Then

range(ν) contains a code 〈〈m̆0 7→ n̆0, . . . , m̆r−1 7→ n̆r−1〉 7→ p̆〉 such that g(mi) = ni for

each i.

Proof. Since g is total, there is an element g ∈ Tot(P1) defined by g(n) = g(n),

g(⊥) = ⊥. Since F is total, we must have F(g) = p for some p ∈ N. Hence there must be

some basic compact c = (
⊔

i<r′(ai ⇒ n′
i)) ⇒ p ⊑ F such that ai ⇒ n′i ⊑ g and n′i 6= ⊥

for each i. But since g(⊥) = ⊥, we cannot have ai = ⊥ for any i; hence ai ∈ N for each

i. Moreover, c must turn up somewhere in the enumeration ν, and it is easy to see that

any code c for c must have the required syntactic form.

We may now give a formal definition of the Normann program for type 2:

agrees-with g1 b0 ≡ and (not (eq (proj0 b) 0))

(eq (g (pre (proj0 b)))

(pre (proj1 b)))

agrees-with-all g1 b-list0 ≡ all-in-list (agrees-with g) b-list

code-works-for g1 c0 ≡ agrees-with-all g (proj0 (proj0 c))

index-works-for nu1 g1 j0 ≡ code-works-for g (nu j)

index-for nu1 g1 ≡ min (index-works-for nu g)

nabla2 nu1 g1 ≡ pre (proj1 (proj0 (nu (index-for nu g))))

John Longley 56

Let ∇2 ∈ A1→2 be the element defined by nabla2. To see that ∇2 has the property

required for Lemma 8.1, suppose F , F and ν are as above, ν̇ represents ν, and ġ ∈ A1

represents an arbitrary g ∈ EC(A)1 ∼= C1. We have to show that ∇2 · ν̇ · ġ = F̂ (g). It is

easy to see that for any c ∈ N, the element code-works-for · ġ · ĉ is tt if c has the form

〈〈m̆0 7→ n̆0, . . . , m̆r−1 7→ n̆r−1〉 7→ p̆〉 where g(mi) = ni for each i, and ff otherwise. Hence

index-works-for · ν̇ · ġ · ĵ is tt or ff for each j ∈ N, and by Lemma 7.4 there exists j such

that index-works-for · ν̇ · ġ · ĵ = tt. So index-for · ν̇ · ġ = ĵ for some such j, where ν̇ · ĵ = ĉ

for some c of the above form. But now it is easy to see that ∇2 · ν̇ · ġ is the corresponding

numeral p̂, and since (
⊔

i<r(mi ⇒ ni)) ⇒ p ⊑ F, we have that p = F (g).

7.2. A notion of “partial element” in Ak−2

We next set about establishing Lemma 7.1 for an arbitrary k ≥ 3, assuming that it holds

for k − 2, and it is here that the real interest begins. Suppose γ∗(EC(A)) and C are

isomorphic up to level k − 1. Then they are certainly isomorphic up to k − 3, so we

have a Normann program nablak−2 : 1 → k − 2 with the property stated in Lemma 7.1.

As a mild convenience, we may also assume that ∇k−2 · x↓ for all x ∈ A1 (in fact, the

Normann operators that we construct will have this property anyway). Our task is now

to construct a Normann program for type k.

Suppose Φ ∈ Ck and ν
δ
k Φ; then ν ∈ K2 basically enumerates some Phi ∈ Tot(Pk)

which represents Φ. The codes enumerated by ν each have the form

〈〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉 7→ q̆〉

where each bi ∈ dom ζk−2. Our Normann program will ultimately have to operate on

enumerations ν of this kind, in which type k− 2 elements are represented by ζk−2 codes.

However, a crucial auxiliary role will be played by another way of representing type k−2

elements, which we now describe.

First, suppose θ basically enumerates some total element of Pk−2, and define µθ : N →

N by µθ(i) = θ(i) + 1. We call µθ the modified basic enumeration obtained from θ. We

also say µ : N → N is a modified basic enumeration for h ∈ Tot(Pk−2) if µ = µθ for some

basic enumeration θ of h.

Next, if b = 〈b0, . . . , bt−1〉 is a ζk−2-code for some compact element of Pk−2, define a

function µb : N → N by

µb(i) =

{
〈bi〉 + 1 if i < t,

0 if i ≥ t

We call µb the modified basic enumeration obtained from b. We say µ is a modified basic

enumeration for b ∈ P
comp
k−2 if µ = µb for some ζk−2-code b for b.

Clearly, there is a program mod-enum : 0 → 1 such that if b ∈ dom ζk−2 then

mod-enum · b̂ represents µb. Conversely, there is a program code : 1 → 0 such that

if µ̇b ∈ A1 represents µb then code · µ̇b = b̂.

The purpose of these notions is to allow us to express total elements as limits of

compact elements at the level of intensional representations. The problem we are seeking

to address is the following: given an arbitrary Ġ ∈ Tot(Ak−1) representing G ∈ Ck−1,

On the ubiquity of certain total type structures 57

we know how Ġ behaves on total elements of Ak−2, but we have no idea a priori how Ġ

behaves on non-total elements. (This contrasts somewhat with the situation in (Normann

2000), where one at least knew that Ġ was monotone and continuous.) The idea is that

we are going to use modified basic enumerations of compact elements to define certain

“potentially partial elements” of Ak−2. Since the total elements arise as limits of these,

we can use continuity in K2 to gain some purchase on how Ġ behaves on such partial

elements.

In order to construct these potentially partial elements, we will write a program

interpret which, given a modified basic enumeration µb for a compact element b ∈ Pk−2,

yields an element ḃ ∈ Ak−2 which we can loosely regard as a kind of counterpart to the

partial element b.‡‡

The idea is to attempt to “extend” µb to obtain an enumeration for a total element

which we may then pass to ∇k−2. This extension will be constructed with the help of a

program§§

critical-index : k − 1 → 1 → 0

which we shall leave unspecified for the time being (it will be defined in Section 7.5

below). The arguments passed to this program will be the element Ġ in question, and a

representation of a certain function λ : N → N whose role will be explained later. This

program will also have the property that critical-index · Ġ↓ for all Ġ ∈ Ak−1.

First, it is convenient to define a thunked version of critical-index with a further

dummy argument.

critical-index-thunk Gk−1 lam1 dummy0 ≡ ⌈critical-index G⌉ lam

The reason for the protected subexpression on the right hand side (here and in several

later definitions) will emerge in the proof of Lemma 7.11. Note that critical-index-thunk ·

Ġ · λ̇↓ for all Ġ ∈ Ak−1 and λ̇ ∈ A1 by Proposition 2.7.

The next piece of machinery gives us a way of “extending compact elements to total

elements”, whilst leaving total elements as they are. More precisely, if µ is a modified basic

enumeration for some compact or total element h0 of type k− 2, we may try to extend it

to an enumeration of some total element h ⊒ h0, and thence obtain an actual element of

Ak−2. This extension will be constructed using one of the standard enumerations ξk−2,c

from Theorem 4.9. The particular index c that is used will be computed by evaluating a

given thunked index. The value of the thunk is then “filtered” to ensure that the resulting

total element xc is indeed above h0.

In the following definitions, we suppose the defined constant below : 0
(2)

→ 0 uniformly

‡‡ Actually, towards the end of the proof it will emerge that, in the cases of interest, our “potentially
partial elements” are total after all! For motivational purposes, however, it seems best to ignore this
for the time being and loosely think of the element ḃ as being genuinely partial.

§§ Strictly speaking, the constant critical-index and most of the other derived constants we shall
introduce should be annotated with k, since we require separate versions of these programs at each
level of the induction. We shall omit these annotations except in the crucial case of nablak and
nablak−2.

John Longley 58

represents the function

(c, c′) 7→

{
tt if c, c′ ∈ dom ζk−2 and ζk−2(c) ⊑ ζk−2(c

′),

ff otherwise

and xi : 0
(2)

→ 0 uniformly represents the total computable function (c, i) 7→ ξk−2,c(i)

as in Theorem 4.9.

filter b0 c0 ≡ if (below b c) c b

filter-enum mu1 thunk1 i0 ≡ xi (filter (code mu) (thunk 0)) i

pre-fn mu1 i0 ≡ pre (mu i)

extend-enum mu1 thunk1 i0 ≡ if1 (not (eq (mu i) 0))

(pre-fn mu)

(filter-enum mu thunk)

i

partial-elt mu1 thunk1 ≡ nablak−2 (extend-enum mu thunk)

(Note the use of thunking in the definition of extend-enum: the final i serves as a potential

rightmost argument for both branches of the conditional.) The essential properties of

partial-elt are as follows. Here and for the remainder of Section 7, Ub denotes the

neighbourhood UC

b as defined in Section 4.2.

Proposition 7.5. (i) If µ̇ represents a modified basic enumeration of some h ∈ Tot(Pk−2)

representing h ∈ Ck−2, then for any thunk ∈ A1, partial-elt · µ̇ · thunk is an element of

Tot(Ak−2) representing h (whether or not thunk · 0̂ ↓).

(ii) If µ̇ represents a modified basic enumeration of some b ∈ P
comp
k−2 , and thunk · 0̂ = ĉ,

then partial-elt · µ̇ · thunk is an element of Tot(Ak−2) representing some h ∈ Ub.

(iii) If µ̇ represents a modified basic enumeration of some b ∈ P
comp
k−2 , and b′ is any

compact element above b so that Ub′ ⊆ Ub, then there exists c ∈ N such that, whenever

thunk · 0̂ = ĉ, partial-elt · µ̇ · thunk represents some h ∈ Ub′ .

Proof. (i) If µ̇ represents a modified basic enumeration µ of a total element h rep-

resenting h, then not · (eq · (µ̇ · î) · 0̂) = tt for all i. Moreover, for any thunk ∈ A1 we

have filter-enum · µ̇ · thunk↓, and so extend-enum · µ̇ · thunk · î = ̂µ(i) − 1 for all i. That

is, extend-enum · µ̇ · thunk represents an ordinary basic enumeration of h, and so by the

hypothesis for nablak−2, partial-elt · µ̇ · thunk represents h.

(ii) If µ̇ represents a modified basic enumeration µ of a compact element b, and thunk· 0̂

evaluates to some numeral, then clearly filter · (code · µ̇) · (thunk · 0̂) evaluates to a numeral

b̂′ such that b ⊑ b′ where b′ = ζk−2(b
′). Hence, by Theorem 4.9, filter-enum · µ̇ · thunk

represents a basic enumeration ξk−2,b′ of some x ∈ Tot(Pk−2) representing some h ∈ Ub′ ⊆

Ub. Let t be the least number such that µ(t) = 0; then by condition (3) in Theorem 4.9,

we have
⊔

i≥t ζk−2(ξk−2,b′(i)) = x. But also if i < t then ζk−2(µ(i) − 1) ⊑ b ⊑ x, and it

follows that extend-enum · µ̇ · thunk also represents a basic enumeration of x. The result

follows by the hypothesis on nablak−2.

(iii) Given any b′ ∈ P
comp
k−2 above b, let c be any code for b′. Then filter · b̂ · ĉ = ĉ, and

On the ubiquity of certain total type structures 59

as in (ii) it follows that if thunk · 0̂ = ĉ then partial-elt · µ̇ · thunk represents an element

h ∈ Ub′ .

Combining the pieces, the following gives us a way of interpreting a modified basic

enumeration µb as a potentially partial element in Ak−2:

interpret Gk−1 lam1 mu1 ≡ partial-elt mu

(⌈critical-index-thunk G⌉ lam)

Since we do not yet know whether critical-index · Ġ · λ̇↓, there is at present no guarantee

that interpret · Ġ · λ̇ · µ̇b is a total element of Ak−2. However, this element is at least

defined, since critical-index-thunk · Ġ · λ̇↓ and ∇k−2 · x↓ for all x.

Given a basic code 〈b 7→ p̆〉 for type k − 1, the following programs can be regarded as

testing whether Ġ satisfies the condition corresponding to b 7→ p̆. The strange packaging

of the arguments for G-value and satisfies is a mild convenience in order to facilitate

the proof of Proposition 7.6 below.

G-value Gk−1 lam-mu1×1 ≡ G (⌈interpret G⌉

(fst lam-mu) (snd lam-mu))

satisfies Gk−1 p0 lam-mu1×1 ≡ eq (⌈G-value G⌉ lam-mu) p

satisfies-code Gk−1 lam1 b0 p0 ≡ ⌈satisfies G⌉ p

(pair (norm lam)

(norm (mod-enum b)))

Clearly, if µ̇ represents a modified basic enumeration of some total h representing h ∈

Ck−2, then ḣ = interpret · Ġ · λ̇ · µ̇ also represents h, so satisfies · Ġ · p̂ · (pair · λ̇ · µ̇) will

be tt if G(h) = p, and ff otherwise.

7.3. The “graph” of a total type k − 1 element

Our argument now proceeds roughly as follows. If indeed we are in the scenario just

mentioned and G(h) = p, then by the continuity of K2, it must be possible to replace µ̇

by some µ̇b such that satisfies · Ġ · p̂ · (pair · λ̇ · µ̇b) is still tt. The code b then gives us

some kind of “modulus of continuity” for Ġ at ḣ, with the pair (b, p) serving as a kind

of “partial element” for Ġ. By doing this for every µ corresponding to a total element,

we may obtain a set of such partial elements that comprise a complete graph for some

element G ∈ Pk−1 representing G. We may think of G as embodying the implicit modulus

information that we have extracted from (the γ-realization of) the element Ġ ∈ Ak−1.

Once we have a bona fide element of Tot(Pk−1), our total functional Phi ∈ Tot(Pk)

will surely know what to do with it. Indeed, by scanning the given enumeration ν of Φ

and comparing its elements with those of the graph of G, we will eventually discover

what Phi(G) is, and this will tell us what ∇k · ν̇ · Ġ ought to be.

We now give the detailed argument leading to the construction of G (parametrically

in a function λ : N → N). The following crucial proposition shows how the behaviour of

Ġ on any ḣ ∈ Tot(Ak−2) is in some sense determined by a finite amount of information

John Longley 60

about ḣ. This is the only point in the proof at which condition (AB) of Theorem 5.13 is

used. We also show that, in a certain sense, only a finite amount of information about

the function λ is involved. As a useful piece of notation, for any λ ∈ NN and z ∈ N we

may define the corresponding Baire neighbourhood :

B(λ, z) = {λ′ ∈ NN | ∀i < z. λ′(i) = λ(i)}

Proposition 7.6. Suppose given Ġ ∈ Tot(Ak−1) representing G ∈ Ck−1, h ∈ Tot(Pk−2)

representing h ∈ Ck−2, and λ ∈ NN, and suppose G(h) = p. Then there exist b, z ∈ N

with ζk−2(b) ⊑ h such that

(1) for any λ̇′ ∈ Tot(A1) representing some λ′ ∈ B(λ, z), we have

satisfies-code · Ġ · λ̇′ · b̂ · p̂ = tt

(2) for all h′ ∈ Ok−2,b we have G(h′) = p.

Proof. Let θ be any basic enumeration of h. Recall that µθ♯ is the element of A1

realized by h ⊙ µθ and that norm · µθ♯ = µθ♯; likewise for λ♯. By Proposition 7.5(i),

partial-elt·µθ♯·thunk represents h for any thunk ∈ A1, so ḣ = interpret·Ġ·λ♯·µθ♯ represents

h. Now Ġ·ḣ = Ĝ(h) = p̂, so (satisfies·Ġ·p̂)·(pair·λ̇·µ̇θ) = tt. But pair·λ♯·µθ♯ has a realizer

α = pair′ ⊙ (h⊙λ)⊙ (h⊙µθ), where pair′ is a realizer for the evident pairing operation.

So by condition (AB) of Theorem 5.13 with σ = 1×1, recalling that tt = 0̂, there is some

open set V ⊆ K2 with α ∈ V , such that whenever α′ ∈ V realizes some lam-mu′ ∈ A1×1

we have satisfies ·Ġ · p̂ · lam-mu′ = tt. But the mapping (λ′, µ′) 7→ pair′⊙(h⊙λ′)⊙(h⊙µ′)

is a total continuous function K2 × K2 → K2, so there exist z, t ∈ N such that for all

λ′ ∈ B(λ, z) and µ′ ∈ B(µθ, t) we have pair′ ⊙ (h⊙ λ′)⊙ (h⊙ µ′) ∈ V . Let b be the code

〈proj 0 (θ(0)), . . . , proj 0 (θ(t − 1))〉, so that µb(i) = µθ(i) for i < t and µb(i) = 0 for

i ≥ t. Note that ζk−2(b) ⊑ h.

To see that b and z satisfy condition (1), suppose λ̇′ ∈ A1 represents some λ′ ∈ B(λ, z).

Then norm · λ̇′ = λ′
♯
, and likewise norm · (mod-enum · b̂) = µb♯. Hence

satisfies-code · Ġ · λ̇′ · b̂ · p̂ = satisfies · Ġ · p̂ · (pair · λ′
♯
· µb♯) = tt,

since pair · λ′♯ · µb♯ has the realizer pair′ ⊙ (h ⊙ λ′) ⊙ (h ⊙ µb) ∈ V .

Finally, we show that b satisfies condition (2). Given any h′ ∈ Ok−2,b, by Proposi-

tion 4.10(ii) we may find h′ ∈ Tot(Pk−2) representing h′ with ζk−2(b) ⊑ h′, so we may

choose an enumeration θ′ for h′ such that θ′ ∈ B(θ, t). But now pair′⊙(h⊙λ)⊙(h⊙µθ′

) ∈

V , so satisfies · Ġ · p̂ · (pair · λ♯ · µθ′♯) = tt. But interpret · Ġ · λ♯ · µθ′♯ represents h′ by

Proposition 7.5(i), so G · (interpret · Ġ · λ♯ · µθ′♯) = Ĝ(h′), whence G(h′) = p.

We will say that a pair (b, p) is satisfactory for Ġ relative to λ if b ∈ dom ζk−2 and there

exists z ∈ N such that b, p, z satisfy conditions (1) and (2) of the above proposition. We

write Sλ(Ġ) for the set of all satisfactory pairs for Ġ relative to λ. The next proposition

shows how this set gives rise to a complete “graph” for G.

Proposition 7.7. Suppose given Ġ ∈ Tot(Ak−1) representing G ∈ Ck−1, and λ ∈ NN.

Then the supremum
⊔
{ζk−1(b 7→ p̆) | (b, p) ∈ Sλ(Ġ)} exists and is an element Gλ of

Tot(Pk−1) representing G.

On the ubiquity of certain total type structures 61

Proof. Let S = Sλ(Ġ). We first show that if (b, p), (b′, p′) ∈ S then the elements

ζk−1(b 7→ p̆), ζk−1(b
′ 7→ p̆′) are consistent in Pk−1. Suppose ζk−2(b), ζk−2(b

′) are consistent

in Pk−2. Then by Theorem 4.9 there exists h ∈ Tot(Pk−2) such that ζk−2(b), ζk−2(b
′) ⊑ h.

So if h ∈ Ck−2 is the element represented by h then h ∈ Ok−2,b by Proposition 4.10(ii);

hence G(h) = p since (b, p) is satisfactory for Ġ relative to λ. But similarly G(h) = p′,

so p = p′.

We may therefore define Gλ =
⊔
{ζk−1(b 7→ p̆) | (b, p) ∈ S}. To see that Gλ is total

and represents G, suppose h ∈ Tot(Pk−2) represents h ∈ Ck−2. By Proposition 7.6, there

exists a pair (b, p) ∈ S such that ζk−2(b) ⊑ h and p = G(h). But ζk−1(b 7→ p̆) ⊑ G, so

G(h) = p = G(h).

7.4. Satisfactory representations for type k objects

We now explain the role of the parameter λ. Recall that we are given a basic enumeration

ν, and wish to simulate the corresponding Φ within A. To this end, we first need to convert

ν into an alternative representation of Φ involving the satisfactory pairs discussed above.

A small piece of notation will be useful: given λ : N → N and j ∈ N, define λj : N → N

by λj(i) = λ(j + i).

Definition 7.8. Suppose Φ ∈ Ck. A satisfactory representation of Φ is a total function

λ : N → N such that

(1) for all j, the number λ(j) is either 0 or of the form 2(c 7→ q̆)+1 or 2(c 7→ q̆)+2, where

c ∈ dom ζk−1 and q ∈ N;

(2) whenever λ(j) = 2(c 7→ q̆) + 1, there exists j′ > j such that λ(j′′) = 0 whenever

j < j′′ < j′, and λ(j′) = 2(c 7→ q̆) + 2;

(3) whenever λ(j) = 2(c 7→ q̆) + 1, the basic ζk-code 〈c 7→q〉 is consistent with Φ (that is,

Φ ∈ Ok, 〈c7→q〉);

(4) for any Ġ ∈ Tot(Ak−1), there exists j0 such that λ(j0) has the form

2(〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉 7→ q̆) + 1

where each pair (bi, pi) is satisfactory for Ġ relative to λj0+1.

The numbers appearing in the range of λ will be called tokens. The idea is that given

Ġ, our program will search through the tokens enumerated by λ, looking for a token

λ(j) = 2(c 7→ q̆) + 1 satisfying condition (4) above, which can be used to determine the

value of Φ(G). When this token is tested using satisfies-code, the remaining tail λj+1

is passed as a parameter so that later tokens may be (recursively) tested. The purpose

of the zero tokens is to arrange that λj+1 is (for certain j) indistinguishable from the

constant zero function as far as satisfies-code is concerned, in that all the interesting

information in λj+1 is “hidden out of sight”. The purpose of the tokens 2(c 7→ q̆)+2 is to

allow the current token x = λ(j) to be retrieved from λj+1 — this avoids having to pass

x as a separate parameter, which would cause problems for our notion of satisfactory

pair.

It is not too hard to construct satisfactory representations:

John Longley 62

Proposition 7.9. Every functional Φ ∈ Ck has a satisfactory representation λ : N → N.

Moreover, a satisfactory representation of Φ is computable from a basic enumeration ν

for Φ. That is, there is a type 2 partial computable function satis-rep : NN × N ⇀ N

such that for any Φ ∈ Ck and any ν
δ
k Φ, the function satis-rep(ν,−) is total and is a

satisfactory representation of Φ.

Proof. Given ν
δ
k Φ, we may first construct an enumeration ν′ of all possible basic

codes for all elements enumerated by ν:

range(ν′) = {d a basic ζk-code | ∃j. ζk(ν(j)) = ζk(d)}

Clearly, such a ν′ may be computed uniformly from ν, since the relation “ζk(d) = ζk(d′)”

is decidable. Next, from ν′ we may construct a function λ : N → N with the following

properties:

— For each j, λ(j) is either 0 or of the form 2e+ 1 or 2e+ 2 where 〈e〉 ∈ range(ν′).

— For each 〈e〉 ∈ range(ν′), the value 2e+ 1 occurs as λ(j) for infinitely many j.

— For each 〈e〉 ∈ range(ν′) and z > 0, the zth occurrence of 2e+ 1 in λ is immediately

followed in λ by a sequence of z zeros and then the token 2e + 2. That is, if jz is

the zth natural number such that λ(jz) = 2e + 1, then λ(j′′) = 0 for all j′′ with

jz < j′′ ≤ jz + z, and λ(jz + z + 1) = 2e+ 2.

Again, it is easy to see how a suitable function λ may be computed uniformly from ν′,

and this establishes the computability requirement in the proposition.

It remains to show that λ is indeed a satisfactory representation of Φ. Conditions (1),

(2) and (3) are clear, since every basic type k code has the form 〈c 7→ q̆〉 where c ∈

dom ζk−1, and if ζk(〈c 7→ q̆〉) = ζk(ν(j)) for some j then Φ ∈ Uζk(〈c7→q̆〉), so Φ ∈ Ok, 〈c7→q〉

by Proposition 4.10(ii).

For condition (4), suppose Ġ ∈ Tot(Ak−1) represents G ∈ Ck−1. Let λ0 denote the

constant zero function, and let Gλ0
∈ Tot(Pk−1) be the element obtained from Ġ and

λ0 as in Proposition 7.7. Then Gλ0 represents G and
⊔

j ζk(ν(j)) represents Φ, so we

must have ζk(ν(j))(Gλ0) = Φ(G) for some j. Suppose ν(j) = 〈c 7→ q̆〉 where q = Φ(G);

then ζk−1(c) ⊑ Gλ0
, so there is some finite list of pairs (b0, p0), . . . , (br−1, pr−1) ∈ Sλ0

(Ġ)

such that ζk−1(c) ⊑
⊔

i<r ζk−1(〈bi 7→ p̆i〉). Let c′ = 〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉; then

ζk(c′ 7→ q̆) ⊑ ζk(c 7→ q̆) = ζk(ν(j)), so the compact element ζk(c′ 7→ q̆) must appear

somewhere in the enumeration ν. Hence the code 〈c′ 7→ q̆〉 itself appears somewhere in ν′.

Now for each i < r we may choose zi so that bi, pi, zi satisfy conditions (1) and (2) of

Proposition 7.6 with λ = λ0. Let z be the maximum of the zi, and let j0 be the index of

the zth occurrence of 2(c′ 7→ q̆) + 1 in λ. Then B(λj0+1, z) = B(λ0, z), and so z witnesses

the satisfactoriness of each (bi, pi) relative to λj0+1.

7.5. The Normann search algorithm

Having shown how to compute a satisfactory representation λ of Φ, we now start to

assemble the main program for computing Φ(G) itself. From here on, our proof closely

follows the argument in (Normann 2000).

Some simple pieces of machinery in NRComb will be useful. We assume plus, half,

On the ubiquity of certain total type structures 63

even are defined constants representing the evident arithmetical functions and predicate.

First, a program for the operation mapping λ to λj :

shift′ j0 lam1 i0 ≡ lam (plus j i)

shift j0 lam1 ≡ norm (shift′ j lam)

Given a token x = 2(c 7→ q̆) + 1, the following programs extract the values of c and q:

left-code x0 ≡ proj0 (half (pre x))

result x0 ≡ pre (proj1 (half (pre x)))

We write left-code, result for the corresponding ordinary functions N → N.

The following program lookup is used to retrieve a token x = 2(c 7→ q̆) + 1 from some

“tail” λj+1 where λ(j) = x, using the fact that the first non-zero token appearing in λj+1

is x+ 1.

positive lam1 j0 ≡ not (eq (lam j) 0)

lookup lam ≡ pre (lam (min (positive lam)))

Given ν̇ and Ġ, our main program will search through the tokens enumerated by the

corresponding satisfactory representation λ, looking for a token x = 2(c 7→ q̆) + 1 such

that c is “satisfied” by Ġ. Formally, the program search, defined as follows, returns the

position index of the first such token in λ.

sat Gk−1 lam1 t ≡ ⌈satisfies-code G⌉ lam

(proj0 t) (pre (proj1 t))

sat-all Gk−1 lam1 x ≡ if (even x) ff

(all-in-list (⌈sat G⌉ lam) (left-code x))

sat-all-pos Gk−1 lam1 j0 ≡ sat-all G (shift (suc j) lam) (lam j)

search lam1 Gk−1 ≡ min (sat-all-pos G lam)

Let satis-rep : 1 → 0 → 0 be an NRComb program that uniformly represents

the type 2 partial computable function satis-rep of Proposition 7.9. Then the Normann

program itself for type k may be defined as follows:

nabla′ lam1 Gk−1 ≡ result (lam (search lam G))

nabla nu1 G ≡ nabla′ (satis-rep nu) G

There remain two problems to be solved. Firstly, because of the uncertain effect of

applying Ġ to “partial elements” in A, it is not immediately guaranteed that the relevant

tests sat · Ġ · λ̇ · t̂ will always yield a recognizable truth value (that is, an element of T or

F). If the result of such a test is either undefined or some funny value in A0, the whole

computation is likely to be derailed. Secondly, even if sat · Ġ · λ̇ · t̂ yields “true”, where

t = b 7→ p̆, this does not in itself imply that G(h′) = p for all h′ ∈ Ob — in other words,

it could be that condition (1) of Proposition 7.6 holds, but not condition (2). There is

therefore a danger that sat-all · Ġ · λ̇ · x̂ might yield “true” even though G 6∈ Oc (where

x = 2(c 7→ q̆) + 1), so that the computation as a whole might return a false value q.

John Longley 64

It is precisely these problems that are addressed by Normann’s argument. Recall from

Section 7.2 that the definition of satisfies involved a term

critical-index : k − 1 → 1 → 0

which was left unspecified. We will define this program below in such a way that, in all

relevant instances, the following properties will hold:

(1) The element ḣ = interpret · Ġ · λ̇ · µ̇ is a total element of A1, where µ̇ represents some

µb. This will ensure that Ġ · ḣ is a genuine numeral, and hence that sat · Ġ · λ̇ · t̂ is a

genuine truth value, where t = b 7→ p̆.

(2) If λ(j) = 2(c 7→ q̆) + 1 where c = 〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉, and for each i < r

we have Ġ · (interpret · Ġ · λ̇ · µ̇) = p̂i whenever µ̇ represents µbi , then Φ(G) = q.

Together with (1), this will ensure that whenever sat-all · Ġ · λ̇ · x̂ comes out as true,

the corresponding value q that is returned is indeed the correct result.

However, in the situation of (2), it need not always be true that G ∈ Oc. Thus, in a

certain sense, the Normann program may sometimes return “the right answer for the

wrong reason”.

Let us attempt an informal description of how m̂ = critical-index · Ġ · λ̇ is to be

computed. We refer the reader to (Normann 2000) for further help.

First, recall from Section 7.2 the purpose for which m is to be used. We wish to extend

the modified enumeration µb arising from some b ∈ dom ζk−2 to an enumeration of one

of our standard total elements xm, and thence to obtain a total element ḣb,m ∈ Ak−2

representing some hb,m ∈ Ck−2. This will in turn be passed to G, and the result compared

with some p. If this test succeeds for all pairs (bi, pi) in question (i.e., all the pairs

appearing within some token x = 2(c 7→ q̆) + 1 where c = 〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉), the

whole test sat-all · Ġ · λ̇ · x̂ will succeed.

The computation of m using critical-index consists of two interleaved searches. The

purpose of the first search is to try to find a “worst index” m which will cause the

above test to fail if any will. For simplicity, first suppose the list c contains just one

element b 7→ p̆. Then critical-index will search for an index m such that ζ(b) ⊑ ζ(m) but

G(hb,m) 6= p. If such an m is found, it is returned as the critical index — this will force

the test satisfies-code · Ġ · λ̇ · b̂ · p̂ to fail, so the sat-all test as a whole will fail. Moreover,

this is what we want to happen: the “counterexample” hb,m shows that G 6∈ Oc, so the

token x is not applicable to G anyway.

In the general case where c contains several elements bi 7→ p̆i, critical-index will search

for an index m such that for at least one i we have G(hbi,m) 6= pi. This means that the

corresponding test satisfies-code · Ġ · λ̇ · b̂i · p̂i will fail, so again the sat-all test as a whole

will fail. (Each of the satisfies-code tests will separately discover the same value of m,

and it is enough that this m causes at least one test to fail.) Again, the relevant function

hbi,m provides a counterexample showing that 2(c 7→ q̆) + 1 is not applicable to G.

Of course, this search will be fruitless if no such m exists. However, we interleave

this “first search” with another search, which looks further down λ for another token

which can be used to settle the value of Φ(G) (a tricky recursion is involved here). If

this “second search” reveals that the value of Φ(G) is something other than q, then this

On the ubiquity of certain total type structures 65

too (indirectly) provides evidence that G 6∈ Oc. In this case, we resume the first search

for an index m that provides a counterexample, now with the confidence that we will

eventually find one.

On the other hand, if the second search reveals that Φ(G) = q, we still do not know

whether G ∈ Oc, but this scarcely interests us any more, since we know that q is the final

answer we wish to return. In this case, we may as well choose some value of m that forces

the sat-all condition to come out true, so that q will be returned immediately. (This is the

scenario in which we might sometimes return “the right answer for the wrong reason”.)

Such an m is easy to supply, in view of the presumed failure of the first search so far.

The magic of this algorithm is that it always terminates. The reason has to do with

condition (3) of Definition 7.8, which guarantees that λ eventually produces a “satis-

factory” token which gives rise to the right answer for the right reason (albeit thanks

to the miracle of continuity rather than our programming skills). All paths through the

recursive computation tree will eventually hit this marvellous token, and the resulting

knowledge will then “propagate back” through the entire tree ensuring that all stages of

the computation are correct.

Our computation will (recursively) search through a given satisfactory enumeration λ

until a relevant satisfactory token is found. However, rather than using a position index

j to keep track of our place within λ, we will repeatedly “shift” the function λ as we pass

it around so that all the tokens we have already examined are discarded. At each stage,

the shifted element λ̇1 is renormalized using norm. This is done so that we do not pollute

the argument we are going to pass to G with traces of the implicit value of j — thus,

the value of satisfies-code · Ġ · λ̇ will be quite independent of how far we have progressed

through the original satisfactory representation. (In the effective setting we will meet the

same problem, but will address it in a completely different way — see Section 8.3.)

We now embark on the formal definition of the program critical-index.

First, we need an enumeration of the dense set of standard total elements to be used

in the first search. Using the machinery introduced in Section 7.2, we may define

std-total b0 m0 ≡ partial-elt (mod-enum b) (k m)

By Proposition 7.5, if b ∈ dom ζk−2 then the elements std-total · b̂ · m̂ (m ∈ N) are all

total in Ak−2 and correspond to a dense family of elements of Ob ⊆ Ck−2. We call these

elements the standard total extensions of b.

Given a code t = b 7→ p̆, we may test whether G agrees with t on the standard total

extension of b with index m:

std-satisfies Gk−1 m0 t0 ≡ eq (G (std-total (proj0 t) m))

(pre (proj1 t))

Next, given x = 2(c 7→ q̆) + 1 where c = 〈t0, . . . , tr−1〉, we may test whether the index m

provides a witness that G does not satisfy c (i.e. that there is some ti which G does not

satisfy):

refutes Gk−1 x0 m0 ≡ and (not (even x))

(not (all-in-list (std-satisfies G m)

John Longley 66

(left-code x)))

This gives us all the machinery we need for the “first search”. The following facts will be

useful:

Proposition 7.10. Suppose x = 2(c 7→ q̆) + 1 where c ∈ dom ζk−1, and Ġ ∈ Tot(Ak−1)

represents G ∈ Ck−1. Then

(i) for any m ∈ N, refutes · Ġ · x̂ · m̂ ∈ T ∪ F ;

(ii) if G 6∈ Ok−1,c, there exists m such that refutes · Ġ · x̂ · m̂ ∈ T .

Proof. Suppose c = 〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉. For (i), note that for any m, each

element extend-enum · (mod-enum · b̂i) · (k · m̂) represents a basic enumeration of some

total element xm′ . So by the main induction hypothesis, std-total·b̂i·m̂ represents this total

element, whence Ġ ·(std-total · b̂i ·m) is a numeral. It follows easily that refutes ·Ġ · x̂ ·m̂ ∈

T ∪ F .

For (ii), if G 6∈ Ok−1,c then G 6∈ Ok−1, 〈bi 7→p̆i〉 for some i. That is, there exists some

h ∈ Ok−2,bi
such that G(h) 6= pi. By Proposition 4.10(ii) there exists h ∈ Tot(Pk−2)

representing h with h ⊒ ζk−2(bi), and by considering a representative G ∈ Tot(Pk−1) of

G, we see that there must be some b ⊒ ζk−2(bi) such that G(h′) = G(h) 6= pi for all

h′ ∈ Ub. Let m be a ζk−2-code for b; then clearly std-total · b̂i · m̂ represents xm ∈ Ub, so

Ġ · (std-total · b̂i ·m) is a numeral other than p̂i. It follows that refutes · Ġ · x̂ · m̂ ∈ T .

For the “second search”, the program sat-all defined earlier provides most of the

machinery, since it tests whether a number m is a position index for some token in λ

that can be used to settle the value of Φ(G). It therefore remains to combine the two

searches in the manner described above.

From this point onwards, our definitions involve a crucial use of recursion. For read-

ability, we first present the definitions in a “circular” fashion, making use of the program

sat-all which is supposed to have been constructed from critical-index. We will

then explain how this circular definition may be understood as a well-founded definition

involving the combinator y2.

In the next few definitions, the parameter lam should be understood to refer to the

portion of the satisfactory representation that comes after the current token.

The following program (which invokes sat-all) is used for the “second search” —

it tests whether m is a position index for some token in λ, occurring after the current

position j0, which can be used to settle the value of Φ(G). (The definition is virtually

the same as that of sat-all-pos; we employ both names for the sake of analogy with

the effective case.)

settles Gk−1 lam1 m0 ≡ ⌈sat-all G⌉ (shift (suc m) lam) (lam m)

We achieve the interleaving of the first and second searches with the following, which

applies both tests to the same indices m:

test-index Gk−1 lam1 x0 m0 ≡ or (refutes G x m)

(⌈settles G⌉ lam m)

pre-critical-index Gk−1 lam1 x0 ≡ min (⌈test-index G⌉ lam x)

On the ubiquity of certain total type structures 67

If the index m discovered by the above is a refuter for G and x, we return m as the

critical index. Otherwise, the token λ(m) settles the value of Φ(G). If this value agrees

with the value q given by the current element x, we wish to return a critical index that

is not a refuter for G and x, so we may again return m. If the value disagrees with q, we

restart the first search — this will eventually find a refuter which we then return.

test-pre-critical Gk−1 lam1 x0 m0 ≡ if (or (refutes G x m)

(and (not (even (lam m)))

(eq (result x)

(result (lam m)))))

m (min (refutes G x))

We may now put the pieces together. Note that critical-index does not take the token

x in question as an explicit parameter, but this token has to be retrieved from λ using

the program lookup defined at the beginning of this section.

find-critical Gk−1 lam1 x0 ≡ test-pre-critical G lam x

(⌈pre-critical-index G⌉ lam x)

critical-index* Gk−1 lam ≡ ⌈find-critical G⌉ lam (lookup lam)

The asterisk signals that this is not yet the official definition of critical-index itself.

We next show how to eliminate the circularity from the above definition.

We will introduce variants of the above definitions which carry around an auxiliary

parameter aux : 2. This should be thought of as a candidate for critical-index G, which

we are going to define recursively. (Note that Ġ stays fixed throughout the computation,

and does not actively participate in the recursion.) We start by defining

critical-index′ Gk−1 aux2 ≡ aux

Next, recall the definition of critical-index-thunk from Section 7.2:

critical-index-thunk Gk−1 lam1 dummy0 ≡ ⌈critical-index G⌉ lam

We adapt this definition so as to obtain a corresponding primed variant:

critical-index-thunk′ Gk−1 aux2 lam1 dummy0 ≡ ⌈critical-index′ G aux⌉ lam

We apply a similar procedure to all the other constants dependent on critical-index,

in the order of definition. In general, suppose P : k − 1 → τ is a constant which we

defined earlier by means of an equation

P Gk−1 x0 · · ·xr−1 ≡ E[⌈Q G⌉]

where r > 0, E[−] is a syntactic expression context which abstracts the (unique) oc-

currence of a protected subexpression on the right hand side of the definition of P , and

Q : k − 1 → σ is some constant. Suppose moreover that we have already defined a variant

Q′ : k − 1 → 2 → σ. We may then define the variant P ′ : k − 1 → 2 → τ by means of

the equation

P Gk−1 aux2 x0 · · ·xr−1 ≡ E[⌈Q′ G aux⌉]

John Longley 68

We apply this procedure in turn to the definitions of the following constants:

critical-index-thunk, interpret, G-value, satisfies, satisfies-code,

sat, sat-all, settles, test-index, pre-critical-index, find-critical

Note that for each of these constants P , the definition given earlier has Gk−1 as the

first formal parameter and at least one other parameter x0, and moreover involves only

one occurrence of a previously defined constant Q dependent on critical-index, which

appears as part of a protected subexpression ⌈Q G⌉. Finally, we may define

critical-index′′ Gk−1 aux2 lam1 ≡ find-critical′ G aux

lam (lookup lam)

critical-index Gk−1 ≡ y2 (critical-index′′ G)

Note at once that critical-index · Ġ↓ for all Ġ ∈ Ak−1, as specified in Section 7.2.

Now that we have a well-founded definition of critical-index, the definitions given

earlier for all the non-primed constants listed above (and hence our definition of nablak

itself) may be allowed to stand as the official definitions of these constants. We may now

take ∇k ∈ A1→k to be the element defined by nablak.

7.6. Correctness of the Normann program

It remains to show that ∇k indeed possesses the property required for Lemma 7.1. To

this end, we first establish a useful property of the program find-critical. The proof

makes use of the protected subexpressions appearing in our code, and indeed the purpose

of these protected expressions is to ensure this property.

Lemma 7.11. For any Ġ ∈ Ak−1 and λ̇ ∈ A1 we have

critical-index · Ġ · λ̇ � find-critical · Ġ · λ̇ · (lookup · λ̇)

Proof. Suppose Ġ ∈ Ak−1, and let aux = y2 · (critical-index′′ · Ġ); this is defined since

y2 · f ↓ for any f , and indeed we have critical-index · Ġ = aux. So by the definition of

critical-index′, we have

critical-index′ · Ġ · aux = critical-index · Ġ

We now claim that for each of the constants P listed above, we have

≪P ′≫ · Ġ · aux = ≪P≫ · Ġ

(that is, both sides are defined and they are equal). Suppose the definition of P is of the

form

P Gk−1 x0 · · ·xr−1 ≡ E[⌈Q G⌉]

as above, and assume we already know that ≪Q′≫ · Ġ · aux =≪Q≫ · Ġ. If P ′ is defined

as above, then we have

≪P ′≫ · Ġ · aux � ≪(λ∗x0 . . . xr−1. E[z])≫
z 7→≪Q′≫·Ġ·aux

≃ ≪(λ∗x0 . . . xr−1. E[z])≫
z 7→≪Q≫·Ġ

� ≪P≫ · Ġ

On the ubiquity of certain total type structures 69

where z is a fresh variable. But ≪(λ∗x0 . . . xr−1. E[z])≫
z 7→≪Q≫·Ġ is defined since r > 0,

≪Q≫ · Ġ↓ and E[z] contains no protected subexpressions, so ≪P ′≫ · Ġ·aux =≪P≫ · Ġ

as required.

In particular, we conclude that find-critical ′ · Ġ · aux = find-critical · Ġ.

Now suppose λ̇ ∈ A1. Using the axiom y2 · f · x � f · (y2 · f) · x, we have that

critical-index · Ġ · λ̇ � y2 · (critical-index′′ · Ġ) · λ̇

� critical-index′′ · Ġ · aux · λ̇

� find-critical ′ · Ġ · aux · λ̇ · (lookup · λ̇)

≃ find-critical · Ġ · λ̇ · (lookup · λ̇)

We now tackle the main correctness proof for ∇k.

Proposition 7.12. Suppose Φ ∈ Ck, ν
δ
k Φ, ν̇ ∈ Tot(A1) represents ν, G ∈ Ck−1, and

Ġ ∈ Tot(Ak−1) represents G. Then ∇k · ν̇ ·G = Φ̂(G).

Proof. Let λ̇ = satis-rep · ν̇; then by Proposition 7.9, λ̇ represents a satisfactory repre-

sentation λ of Φ. For any j, we may define λ̇j = shift · ĵ · λ̇, so that λ̇j represents λj . Since

the element shift · ĵ · λ̇ is always normalized, for any j, j′ we have shift · ĵ · λ̇j′

= λ̇j′+j .

By condition (4) of Definition 7.8, there is a position index j0 such that λ(j0) has the

form 2(c 7→ q̆) + 1, where

c = 〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉

and each (bi, pi) is satisfactory for Ġ relative to λj0+1. Now by condition (2) of Propo-

sition 7.6, for each i we have G(h) = pi for all h ∈ Obi
, so G ∈ Oc. So by condi-

tion (3) of Definition 7.8 we have q = Φ(G). Moreover, by condition (1) of Proposi-

tion 7.6, we have satisfies-code · Ġ · λ̇j0+1 · b̂i · p̂i = tt for each i, and it follows easily that

sat-all · Ġ · λ̇j0+1 · λ̂(j0) ∈ T .

Set xj = λ(j) for each j. We will show that the following hold for all j ≤ j0:

(1) sat-all · Ġ · λ̇j+1 · x̂j ∈ T ∪ F .

(2) If sat-all · Ġ · λ̇j+1 · x̂j ∈ T , then qj = result(xj) = Φ(G).

We argue by reversed induction on j. For the case j = j0, both claims are established

above. So suppose j < j0, and assume both claims hold for all j′ where j < j′ ≤ j0. If

xj is even (either 0 or a token 2(cj 7→ q̆j) + 2), then sat-all · Ġ · λ̇j+1 · x̂j = ff so that both

claims are trivial. So suppose xj = 2(cj 7→ q̆j) + 1.

Using the induction hypothesis, for any m ≤ j0 − j − 1 we have

settles · Ġ · λ̇j+1 · m̂ = sat-all · Ġ · λ̇m+j+2 · x̂m+j+1 ∈ T ∪ F

and if m = j0 − j − 1 then settles · Ġ · λ̇j+1 · m̂ ∈ T . Moreover, since cj ∈ dom ζk−1,

using Proposition 7.10(i) we have refutes · Ġ · x̂j · m̂ ∈ T ∪ F for every m ∈ N. It follows

that pre-critical-index · Ġ · λ̇j+1 · x̂j successfully evaluates to some numeral m̂0 where

m0 ≤ j0 − j − 1. Set m′
0 = m0 + j + 1.

We next claim that test-pre-critical·Ġ·λ̇j+1 ·x̂j ·m̂0 successfully evaluates to a numeral.

John Longley 70

Clearly, test-pre-critical · Ġ · λ̇j+1 · x̂j · m̂0 = m̂0 unless we are in the case where settles ·

Ġ · λ̇j+1 · m̂0 ∈ T but qj 6= qm′
0

= result(xm′
0
). In this latter case, we have sat-all · Ġ ·

λ̇m′
0+1 · x̂m′

0
∈ T , so by claim (2) of the induction hypothesis we have qm′

0
= Φ(G),

whence qj 6= Φ(G). But by condition (3) of Definition 7.8, cj 7→ q̆j is consistent with Φ, so

G cannot be consistent with cj . So by Proposition 7.10(ii), there must be some smallest

m1 such that refutes · Ġ · x̂j · m̂1 ∈ T , and then test-pre-critical · Ġ · λ̇j+1 · x̂j · m̂0 = m̂1.

By condition (2) of Definition 7.8, we have that lookup · λ̇j+1 = x̂j . Using Lemma 7.11,

we now have

critical-index · Ġ · λ̇j+1 � find-critical · Ġ · λ̇j+1 · x̂j

� test-pre-critical · Ġ · λ̇j+1 · x̂j ·

(pre-critical-index · Ġ · λ̇j+1 · x̂j)

= test-pre-critical · Ġ · λ̇j+1 · x̂j · m̂0

so critical-index · Ġ · λ̇j+1 evaluates to a numeral, m̂ say. By Proposition 7.5(ii), it follows

that interpret ·Ġ ·λ̇j+1 ·µ̇bi is a total element of Ak−2 for each code bi appearing in cj , and

hence that each Ġ · (interpret · Ġ · λ̇j+1 · µ̇bi) is a numeral, so sat-all · Ġ · λ̇j+1 · x̂j ∈ T ∪F .

This establishes claim (1) for j.

For claim (2), if sat-all·Ġ·λ̇j+1·x̂j ∈ T then we must have Ġ·(interpret·Ġ·λ̇j+1· ˙µbi) = p̂i

for each ti = bi 7→ p̆i appearing in cj . But interpret · Ġ · λ̇j+1 · ˙µbi = std-total · b̂i · m̂, so

std-satisfies · Ġ · m̂ · t̂i = tt for each i. Hence

refutes · Ġ · x̂j · m̂ = ff

So by inspection of the definition of test-pre-critical, we are in the case where settles·

Ġ · λ̇j+1 ∈ T and qm+j+1 = qj . By the definition of settles, this means that sat-all ·

Ġ · λ̇m+j+2 · x̂m+j+1 ∈ T , and by claim (2) of the induction hypothesis, this implies that

qm+j+1 = Φ(G). Hence qj = Φ(G) as required.

To complete the proof, let j1 be the least j such that sat-all ·Ġ · λ̇j+1 · x̂j ∈ T (note that

j1 ≤ j0). Then by claim (1) above, we have that sat-all-pos·Ġ·λ̇·ĵ ∈ F for all j < j1; hence

search · λ̇ ·Ġ = ĵ1. But now by claim (2) above we have that ∇k · ν̇ ·Ġ = result · x̂j1 = Φ̂(G)

and we are done.

The proof of Theorems 5.13 and 5.14 is now complete.

8. Proof for the effective case

We now give the proof of our main theorem for HEO (Theorem 5.12). The proof is in many

ways analogous to the proof for the continuous case, although some additional work is

occasioned by the requirement that certain constructions be performed effectively. More-

over, the two proofs diverge completely at the point where satisfactory representations

are introduced, since the representations in question are entirely different. (It is interest-

ing that neither of the methods we use at this point seems to be applicable in the other

case.) It may be that a more unified approach which abstracts out the common content

of the two proofs is possible, though we shall leave this undertaking for future work.

On the ubiquity of certain total type structures 71

Our account of the proof for the effective case will be technically almost self-contained:

rather than constantly referring the reader to Section 7 we will err somewhat on the side

of repetition, deferring to Section 7 only where the analogy is quite precise for substantial

sections of the proof. However, we will be rather more sparing on motivational remarks

where these only repeat what we said for the continuous case.

Throughout this section, we take A to be an NR-TPCA equipped with a realization

γ : A−−⊲K1, with associated elements aστ and d as in Definition 5.1, such that conditions

(A) and (B) of Theorem 5.12 are satisfied. To establish Theorem 5.12 we wish to prove

that γ∗(EC(A)) ∼= HEO in Asm(K1).

As in the continuous case, we prove this by means of a lemma asserting the existence

of Normann programs for all pure types. In order to formulate the lemma, we make

use of the model P
eff. Recall from Section 5.3 the near-realization

Peff
B of P

eff over

Keff
2 given by basic enumerations. As observed in Section 5.3, this induces a genuine

realization
Peff
B ◦ ǫP

eff
: EC(Peff)−−⊲Keff

2 . We write δ for the corresponding realization

HEO−−⊲Keff
2 ; then by Theorem 5.10(iii) and the remarks at the end of Section 5.3, the

realization ⊢K2eff ◦ δ is isomorphic to ⊢HEO.

If k ≥ 1, and γ∗(EC(A)) and HEO are indeed isomorphic at least up to level k − 1,

then precisely as in the continuous case, for any l ≤ k we may define what it means for

an element ẋ ∈ Al to represent some x ∈ HEOl. Recall that if ẋ represents x, then ẋ is

total in Al. Likewise, in view of the isomorphism EC(Peff) ∼= HEO, we have the notion of

an element x ∈ P
eff
l representing some x ∈ HEOl. As in Section 7, if some symbol denotes

an element of HEO, we will use its dotted counterpart for an element of A that represents

it, and its Gothic counterpart for an element of P that represents it.

The statement of our main lemma is almost identical to that of Lemma 7.1, except

that here we work with the language NRComb rather than NRComb+:

Lemma 8.1 (Main Lemma). Suppose k ≥ 1, and suppose γ∗(EC(A)) and HEO are

isomorphic up to level k−1. Then there is an NRComb-definable constant nablak : 1 → k

denoting an element ∇k ∈ A1→k with the following property: whenever Φ ∈ HEOk,

ν
δ
k Φ and ν̇ ∈ Tot(A1) represents ν, the element ∇k · ν̇ ∈ Ak represents Φ within A.

As before, an element ∇k satisfying the above condition will be called a Normann operator

for type k in A, and the program of NRComb that defines it will be called a Normann

program.

The proof of the following is now analogous to that of Theorem 7.2.

Theorem 8.2. Assuming Lemma 8.1, we have γ∗(EC(A)) ∼= HEO.

Proof. By Theorem 6.6, it suffices to show that γ∗(EC(A)) and HEO are isomorphic

at the pure types. We construct suitable isomorphisms ık by induction on k. As in

Theorem 7.2, the isomorphism ı0 : γ∗(EC(A))0 ∼= HEO0 is given by the fact that

γ∗(EC(A)) and HEO are both internal type structures.

For the induction step, suppose γ∗(EC(A)) and HEO are isomorphic up to level k−1

via isomorphisms ıl : γ∗(EC(A))l → HEOl, and let l = ı−1
l for each l. We will construct

morphisms ık : γ∗(EC(A))k → HEOk and k : HEOk → γ∗(EC(A))k that commute

John Longley 72

with the application morphisms. Since both EC(A) and HEO are extensional, this will

imply that ık, k are mutually inverse isomorphisms.

For ık, the required morphism arises as the exponential transpose of

ı0 ◦ appk−1 ◦ (id × k−1) : γ∗(EC(A))k × HEOk−1 −→ HEO0

and it is clear by construction that this morphism commutes with application. It remains

to construct k. First, by Theorem 5.10(iii), from any e realizing Φ in HEOk we may

effectively compute a realizer e′ ⊢δ
k Φ — that is, a Kleene index for a basic enumeration

ν of some total Phi ∈ P
eff
k representing Φ. From e′ we may then effectively compute

an e′′ such that e′′ ⊢γ
1 ν̇ for some ν̇ ∈ A1 representing ν. Now let Φ̂ = ∇k · ν̇ ∈ Ak;

then using the element a1k and a realizer for ∇k, from e′′ we may effectively compute

a realizer e′′′ ⊢γ
k Φ̂. But by Lemma 8.1, Φ̂ represents Φ in EC(A)k, and so e′′′ is a

realizer for Φ in γ∗(EC(A)k). Putting all this together, from a realizer for Φ ∈ HEOk

we have effectively computed a realizer for Φ ∈ γ∗(EC(A)k), so we have a morphism

k : HEOk → γ∗(EC(A)k) commuting with application as required.

The proof of Lemma 8.1 is by induction on k. For k = 1, 2, the proofs are exactly

analogous to those given in Section 7.1 — just replace C by HEO, K2 by Keff
2 , and P

by P
eff. (Indeed, precisely the same programs nabla1 and nabla2 may be used in the

effective setting.) The remainder of this section is therefore devoted to proving the lemma

for an arbitrary k ≥ 3, assuming the lemma for k − 2.

8.1. A notion of “partial element” in Ak−2

Suppose k ≥ 3, and suppose γ∗(EC(A)) and HEO are isomorphic up to level k−1. Sup-

pose also, as our induction hypothesis, that there is a Normann program nablak−2 : 1 →

k − 2 with the property stated in Lemma 8.1; we wish to construct a similar Normann

program for type k.

Suppose Φ ∈ HEOk and ν ⊢δ
k Φ; then ν ∈ Keff

2 basically enumerates some Phi ∈

Tot(Peff
k) which represents Φ. The codes enumerated by ν each have the form

〈〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉 7→ q̆〉

where each bi is a type k − 2 code of the form 〈ai0 7→ n̆i0, . . . , ai(si−1) 7→ n̆i(si−1)〉. Our

ultimate task is to construct an element ∇k ∈ A1→k which operates on enumerations ν

of this kind. To this end, however, we need to introduce an alternative representation of

type k − 2 and k − 1 compact elements which may appear eccentric at first sight.

Let • denote Kleene application as in Example 3.1, and let bullet : 0 → 0 → 0

be a program that uniformly defines the partial computable function (m,n) 7→ m • n.

Whenever u • 0 is defined, let time(u) be the number of steps taken to compute u • 0 on

some universal Turing machine fixed in advance. We adopt the convention that time(u) =

∞ if the computation of u • 0 diverges, where n < ∞ for all n ∈ N. We write H for the

halting set {u | time(u) <∞}, and H for its complement {u | time(u) = ∞}.

We say a number z = 〈d, u〉 pre-signifies a compact element b ∈ P
comp
k−2 if

— time(u) <∞,

On the ubiquity of certain total type structures 73

— for all i < time(u), d • i is defined and is a basic type k − 2 code,

— b =
⊔

i<time(u) ζk−2(d • i).

We may also say that 〈d, u〉 pre-signifies a total element h ∈ Tot(Peff
k−2) if time(u) = ∞

and d is a Kleene index for some basic enumeration of h. (Recall from Section 5.3 that

such an enumeration must include all the basic compacts below h.) In general we write

[z] for the (compact or total) type k − 2 element pre-signified by z when this exists.

We then say a number s = 〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉 signifies an element

c ∈ P
comp
k−1 if for each i < r, 〈di, ui〉 pre-signifies some type k− 2 compact element bi, and

c =
⊔

i<r(bi ⇒ pi). We write [[s]] for the standard type 2 element signified by s when

this exists.¶¶ We will also sometimes say that a number s basically signifies a type k− 1

basic compact c if s is of the form 〈〈d, u, p〉〉 and s signifies c in the above sense.

Clearly, from a pre-signifier for some b ∈ P
comp
k−2 we may effectively compute a ζk−2-code

for b; let code : 0 → 0 uniformly represent a partial computable function that does this.

Likewise, from a signifier for c ∈ P
comp
k−1 we may effectively compute a ζk−1-code for c. It

is also easy to see that the set of all possible pre-signifiers for an element ζk−2(b) is c.e.

uniformly in b, and (hence) that the set of all possible signifiers for an element ζk−1(c)

is c.e. uniformly in c.

The purpose of this “signifying representation” is similar to that of the modified enu-

merations in the continuous setting. We are going to use signifiers 〈d, u〉 with time(u) <∞

to help us to define “partial elements” in Ak−2, so that signifiers with time(u) = ∞ cor-

respond to the limiting total elements. The idea is that we know how Ġ behaves on

the latter, and the undecidability of the halting problem provides us with a kind of

“continuity” which gives us a handle on how Ġ behaves on partial elements.

We next show how type k − 2 pre-signifiers can be interpreted as elements of Ak−2.

We will write a program interpret which, given a pre-signifier z = 〈d, u〉 for a compact

element b, yields an element ḃ ∈ Ak−2 which somehow plays the role of b.

Since we may naturally regard the partial computable function φd as a “partial” basic

enumeration of b, and we already have an operator ∇k−2 which turns basic enumerations

into elements of Ak−2, it might be thought that ∇k−2 · (bullet · d̂) is a suitable candidate

for ḃ. In fact, what we shall pass to ∇k−2 will be an improved function which potentially

extends φd. This extension will be constructed with the help of a program

critical-index : k − 1 → 1 → 0 → 0

which we will shall leave unspecified for the time being (it will be defined in Section 8.4

below). This program takes three arguments Ġ, λ̇, ê, where Ġ is the total element of Ak−1

in question, and the other parameters represent a function λ : N → N and a number e ∈ N

whose roles will be explained later. The program critical-index also has the property

that critical-index · Ġ · λ̇↓ for all Ġ, λ̇.

We first define a thunked version of critical-index as follows.

critical-index-thunk Gk−1 lam1 e0 dummy0 ≡ ⌈critical-index G lam⌉ e

¶¶ Strictly speaking, the meaning of [z] and [[s]] is dependent on k, but we may regard k as being fixed
for the remainder of the proof.

John Longley 74

In contrast to the definition in Section 7.2, here the protected subexpression on the right

hand side includes the argument lam; the reason for this will become apparent in the

proof of Lemma 8.12. Note that critical-index-thunk · Ġ · λ̇ · ê↓ for all Ġ, λ̇, ê.

Let halts-within : 0 → 0 → 0 be a program that uniformly defines the total com-

putable function

(i, u) 7→

{
tt if time(u) ≤ i

ff otherwise

As before, we suppose below : 0
(2)

→ 0 uniformly represents the function

(c, c′) 7→

{
tt if c, c′ ∈ dom ζk−2 and ζk−2(c) ⊑ ζk−2(c

′),

ff otherwise

and xi : 0
(2)

→ 0 defines the total computable function (c, i) 7→ ξk−2,c(i).

By analogy with the definitions in Section 7.2, we now define the programs

filter b0 c0 ≡ if (below b c) c b

filter-enum z0 thunk1 i0 ≡ xi (filter (code z) (thunk 0)) i

extend-enum z0 thunk1 i0 ≡ if1 (halts-within i (proj1 z))

(bullet (proj0 z))

(filter-enum z thunk)

i

partial-elt z0 thunk1 ≡ nablak−2 (extend-enum z thunk)

The essential properties of partial-elt are as follows:

Proposition 8.3. (i) If z pre-signifies some h ∈ Tot(Pk−2) representing h ∈ Ck−2, then

for any thunk ∈ A1, partial-elt·ẑ·thunk is an element of Tot(Ak−2) representing h (whether

or not thunk · 0̂ ↓).

(ii) If z pre-signifies some b ∈ P
comp
k−2 and thunk · 0̂ = ĉ, then partial-elt · ẑ · thunk is an

element of Tot(Ak−2) representing some h ∈ Ub.

(iii) If z pre-signifies some b ∈ P
comp
k−2 , and b′ is any compact element above b so that

Ub′ ⊆ Ub, then there exists c ∈ N such that, whenever thunk · 0̂ = ĉ, partial-elt · ẑ · thunk

represents some h ∈ Ub′ .

Proof. Analogous to the proof of Proposition 7.5.

The following gives us a way of interpreting a pre-signifier z as an element in Ak−2:

interpret Gk−1 lam1 e0 z0 ≡ partial-elt z

(⌈critical-index-thunk G lam⌉ e)

If z pre-signifies some compact element b, we may regard the element ḃ = interpret ·

Ġ · λ̇ · ê · ẑ as a kind of counterpart to b within Ak−2.

We may therefore consider a triple (d, u, p) as providing a test which we can apply

to a total Ġ ∈ Ak−1. Informally, if u ∈ H and 〈d, u〉 signifies b, the intention is to test

whether “Ġ · b = p̂ ”. As it stands this is nonsensical, but we can at least perform an

On the ubiquity of certain total type structures 75

analogous test using ḃ ∈ A1 in place of b. Again, we carry around λ̇ and ê as additional

parameters.

G-value Gk−1 lam1 e0 z0 ≡ G (⌈interpret G lam⌉ e z)

satisfies Gk−1 lam1 e0 p0 d0 u0 ≡ eq (⌈G-value G lam e⌉

(make-pair d u)) p

Clearly, if z = 〈d, u〉 pre-signifies some total h representing h ∈ HEOk−2, then interpret ·

Ġ · λ̇ · ê · ẑ also represents h, and so satisfies · Ġ · λ̇ · ê · p̂ · d̂ · û will be tt if G(h) = p, and

ff otherwise.

8.2. The “graph” of a total type k − 1 element

Our argument now proceeds roughly as in the continuous case, except that in place of

the continuity of K2 we exploit the undecidability of the halting problem, much as in the

proofs of the Myhill-Shepherdson and Kreisel-Lacombe-Shoenfield theorems. If we are in

the scenario just mentioned and G(h) = p, then since H is not semidecidable, it must be

possible to replace u ∈ H by some u′ ∈ H such that satisfies · Ġ · λ̇ · ê · p̂ · d̂ · û′ is still tt.

The signifier 〈d, u′, p〉 then defines a kind of “partial element”. for Ġ, which moreover can

be computed from d (uniformly in the other parameters). By doing this for every total

index d, we may obtain a set of such partial elements that comprise a complete graph

for some element of Pk−1, whose action on total elements of P
eff
k−2 corresponds to that of

G. Furthermore, we can ensure that our graph is itself effectively generated, so that we

obtain an element G ∈ Tot(Peff
k−1) representing G.

Once we have such an element G, our total functional Phi ∈ P
eff
k will know what to do

with it — that is, ν must feature some basic compact c ⇒ q such that c ⊑ G, and this

tells us that Φ(G) = q.

We now give the detailed argument leading to the construction of G (parametrically in

λ̇ and e). The next two propositions show how a suitable element u′ ∈ H may be obtained.

The first of these propositions embodies the essential content of the KLS theorem for type

k − 1; the proof is worthy of some attention since it foreshadows our main argument in

certain respects. The programs introduced in the course of the proof will not be required

in the sequel.

Proposition 8.4. Suppose given Ġ ∈ Tot(Ak−1) and d ∈ N such that φd basically

enumerates some h representing h ∈ HEOk−2. Suppose also that ḣ ∈ Tot(Ak−2) represents

h, and Ġ · ḣ = p̂. Then there exists a number u ∈ H which signifies a KLS modulus of

Ġ at d, p in the following sense: if t = time(u) and b =
⊔

i<t ζk−2(d • i), then for all ḣ′

representing any h′ ∈ UHEO

b we have that Ġ · ḣ′ = p̂.

Moreover, a suitable value for u may be effectively computed from d and any realizer

y ⊢γ
k−1 Ġ.

Proof. Recall from Theorem 4.9 our standard enumeration x0, x1, . . . of a dense subset of

Tot(Peff
k−2), and let xm denote the element of HEOk−2 represented by xm. Also let G be the

John Longley 76

element of HEOk−1 represented by Ġ. We first define a program easy-critical-index

which, given Ġ and d as above and u ∈ H, searches through this dense subset in the hope

of finding some xm ∈ UHEO

b such that G(xm) 6= p. (This can be viewed as a rehearsal for

the program critical-index which we shall eventually define in Section 8.4.)

std-dense z0 m0 ≡ partial-elt z (k m)

is-counterex-for Gk−1 z0 p0 m0 ≡ not (eq (G (std-dense z m)) p)

easy-critical-index Gk−1 z0 p0 ≡ min (is-counterex-for G z p)

We may then define a program which tests whether in fact G(xm) = p for the index

m obtained in this way. Our definition mimics the above definition of satisfies.

easy-crit-ind-thunk Gk−1 z0 p0 dummy0 ≡ easy-critical-index G z p

critical-elt Gk−1 z0 p0 ≡ partial-elt z

(easy-crit-ind-thunk G z p)

easy-sat Gk−1 z0 p0 ≡ eq (G (critical-elt G z p)) p

easy-satisfies Gk−1 p0 d0 u0 ≡ easy-sat G (make-pair d u) p

If u ∈ H then by Proposition 8.3(i) we have that critical-elt · Ġ · 〈̂d, u〉 · p̂ represents h, so

that easy-satisfies · Ġ · p̂ · d̂ · û = tt. We will show using the undecidability of the halting

set that there must also exist some u ∈ H satisfying this equation.

Let Q = easy-satisfies · Ġ · p̂ · d̂; take q ⊢γ
1 Q; let ψ : N → N be total computable such

that ψ(u) ⊢γ
0 û for all u; and let R = {r ∈ N | r ⊢γ

0 tt}, recalling that tt = 0̂. Then for

any u ∈ H we have Q · û = tt and so a00 • q •ψ(u) ∈ R. But the set R is c.e. by condition

(B) of Theorem 5.12, so by the undecidability of the halting problem, there must exist

some u ∈ H such that a00 • q • ψ(u) ∈ R. Now by condition (A) of Theorem 5.12, we

can conclude that Q · û = tt as required. Moreover, since R is c.e., a suitable u ∈ H may

be obtained effectively from d and y by means of a simple search. Note that p may be

readily computed from y and d since p̂ = Ġ · (∇k−2 · (bullet · d̂)).

We now show that any u ∈ H such that easy-satisfies · Ġ · p̂ · d̂ · û = tt signifies a

KLS modulus of Ġ at d, p. Let b be as in the proposition. We first show that for each

xm ∈ UHEO

b we have G(xm) = p. Otherwise, let m0 be the smallest number such that

xm0 ∈ UHEO

b but G(xm0) 6= p. Since G(ξm) is a numeral for every m, the value of m0 will

be found by easy-critical-index: that is, easy-critical-index · ġ · ẑ · p̂ = m̂0, where z = 〈d, u〉.

It follows that critical-elt·Ġ·ẑ·p̂ represents xm0
, and hence that easy-satisfies·Ġ·p̂·d̂·û = ff,

a contradiction.

Now suppose that for some arbitrary h′ ∈ UHEO

b and ḣ′ representing h, we have Ġ · ḣ′ =

p̂′ 6= p̂. Then by the above argument with h′, p′ in place of h, p, we obtain a finite

element b′ with h′ ∈ UHEO

b′ such that G(xm) = p′ whenever xm ∈ UHEO

b′ . But since

h′ ∈ UHEO

b ∩UHEO

b′ , we may takem such that xm ∈ UHEO

b ∩UHEO

b′ . But then p = G(xm) = p′,

a contradiction.

The following proposition is the analogue of Proposition 7.6; it combines the above

proposition with information about the behaviour of the program satisfies.

On the ubiquity of certain total type structures 77

Proposition 8.5. Suppose given e ∈ N, λ̇ ∈ Tot(A1), and Ġ, d, h, h, ḣ, p as in Proposi-

tion 8.4. Then there exists u′ ∈ H such that

(1) satisfies · Ġ · λ̇ · ê · p̂ · d̂ · û′ = tt (that is, “Ġ thinks 〈d, u′〉 is a neighbourhood for the

continuity of G at h”).

(2) u′ signifies a KLS modulus of Ġ at d, p in the sense of Proposition 8.4 (that is, “〈d, u′〉

really is such a neighbourhood as far as total elements of Ak−2 are concerned”).

Moreover, a suitable value for u′ may be effectively computed from e, d, any realizer

w ⊢γ
1 λ, and any realizer y ⊢γ

k−1 Ġ.

Proof. The previous proposition shows how we may effectively obtain a number u

satisfying condition (2). Let t = time(u); then clearly any u′ with time(u′) ≥ t also

satisfies condition (2). It therefore suffices to find u′ ∈ H satisfying (1), ensuring that

time(u′) ≥ t.

The argument is very similar to the one in the preceding proof. For any u ∈ H, using

Proposition 8.3(i) we have that satisfies · Ġ · λ̇ · ê · p̂ · d̂ · û = tt, so as in the preceding proof

one may construct a function χ : N ⇀ N, partial computable uniformly in e, d, w, y, such

that χ(u) ∈ R for all u ∈ H. By condition (B) of Theorem 5.12 and the undecidability

of the halting problem, there must be some u′ ∈ H such that χ(u′) ∈ R and moreover

time(u′) ≥ t, and by condition (A) we then obtain condition (1) of the proposition.

Moreover, a suitable value of u′ may be obtained effectively from e, d, w, y by means of a

simple search. (For the time being at least, one should think of the computation of u′ as

happening “outside A”, since the numerical realizers w and y would not be visible within

A itself.)

Note that Propositions 8.4 and 8.5 are the only places in the proof of Theorem 5.12 where

conditions (A) and (B) are required.

Some terminology and notation associated with the above proposition will be useful.

We will say a type k− 1 basic signifier 〈〈d, u′, p〉〉 is satisfactory for Ġ (relative to λ̇ and

e) if Ġ, λ̇, e, d, u′ and p satisfy conditions (1) and (2) of Theorem 8.5. Given e, d, w, y

as in the proposition, we write u(e, d, w, y) for the corresponding value of u′ computed

from them as in the proof above. We also set b(e, d, w, y) =
⊔

i<t ζk−2(d • i) where

t = time(u(e, d, w, y)). If e, w, y are fixed and b = b(e, d, w, y), we may think of Ub as the

neighbourhood arising from d; by construction, we clearly have that G(h′) = G(h) for all

h′ ∈ Ub.

We have thus shown that there is a plentiful supply of type k−1 basic compacts c that

possess a basic signifier 〈〈d, u, p〉〉 which is satisfactory for Ġ. However, some significant

further work is needed to show that our enumeration ν of Phi must feature a code

〈〈c0, . . . , cr−1〉 7→ q̆〉 such that the elements ζk−1(ci) all have satisfactory signifiers for Ġ.

To establish this, we will show how to generate a complete “c.e. graph” for G consisting

entirely of satisfactory signifiers.

The idea is that by applying the Proposition 8.5 to enough indices d, we can generate

enough satisfactory signifiers 〈d, u, p〉 to specify the whole of G. Obviously we could

achieve this by letting d range over all possible indices for basic enumerations of total

elements, but this will not do since we require our satisfactory signifiers to be effectively

John Longley 78

enumerated. We therefore work with a c.e. family of enumerations that yield a dense set

in HEOk−2, as in Theorem 4.9. However, if this is done in a naive way (e.g. using the

enumerations ξk−2,c of Theorem 4.9), there is no guarantee that the corresponding KLS

neighbourhoods will cover the whole of HEOk−2. We overcome this problem by a more

careful choice of indices d and a further use of the signifying representation.

Let ζ = ζk−2, and consider the sets

I = {(d, v) ∈ N2 | ∀i < time(v). ζ(d • i)↓ ∧

∀i, j < time(v). ζ(d • i), ζ(d • j) are consistent ∧

if time(v) = ∞ then
⊔

i

ζ(d • i) ∈ Tot(Peff
k−2)}

J = {(d, v) ∈ I | time(v) <∞}

Clearly J is c.e. but I is not. For any (d, v) ∈ I, define a total function ηd,v by

ηd,v(i) =

{
d • i if i < time(v)

ξk−2,c(i) if i ≥ time(v)

where c is a code for
⊔

i<time(v) ζ(d • i) computed in an evident way from d and v, and

ξk−2,c is as in Theorem 4.9. If time(v) = ∞ then ηd,v(i) = d • i for all i, so ηd,v basically

enumerates the same total element as does φd. If time(v) < ∞ and c is as above, then

ηd,v and ξk−2,c both basically enumerate the same total element xc, since ζ(d • i) ⊑ ζ(c)

for each i < time(v), and ξk−2,c satisfies condition (3) of Theorem 4.9. So in either case,

ηd,v is a basic enumeration for some total element of P
eff
k−2. Moreover, using the effectivity

part of Theorem 4.9, from any (d, v) ∈ I we may effectively obtain a Kleene index δ(d, v)

for ηd,v.

Let D be the set of all indices δ(d, v) where (d, v) ∈ J . Then D is c.e., and the following

facts show that D suffices to generate a complete graph for G.

Lemma 8.6. Suppose e ∈ N, λ̇ ∈ Tot(A1), Ġ ∈ Tot(Ak−1), w ⊢γ
1 λ̇ and y ⊢γ

k−1 Ġ. Then

for any h ∈ Tot(Peff
k−2) there is some index d ∈ D such that b(e, d, w, y) ⊑ h.

Proof. For any d′ ∈ N indexing a basic enumeration of some h′ ∈ Tot(Peff
k−2), let us

define

Nd′ = {d′′ ∈ N | ∀ i < time(u(e, d′, w, y)). d′′ • i = d′ • i}

Let d0 be a Kleene index for a basic enumeration of h. Then for any v ∈ H, δ(d0, v) is

also an index for this basic enumeration, and obviously d0 ∈ Nδ(d0,v). Moreover, the set

Vd0
= {v ∈ N | d0 ∈ Nδ(d0,v)}

is clearly c.e.: to affirm v ∈ Vd0 , calculate d′0 = δ(d0, v), compute the corresponding

value u = u(e, d′0, w, y), and check that d′0 • i = d0 • i for all i < time(u). So by the

undecidability of the halting problem, there must exist some v0 ∈ H ∩ Vd0 . But now

(d0, v0) ∈ J , so let d = δ(d0, v0). Then d0 ∈ Nd, so setting t = time(u(e, d, w, y)) we have

b(e, d, w, y) =
⊔

i<t ζ(d0 • i) ⊑
⊔

i ζ(d0 • i) = h as required.

In fact, a suitable index d can be effectively computed from e, w, y and d0, but we shall

not require this information.

On the ubiquity of certain total type structures 79

Proposition 8.7. Given e ∈ N, λ̇ ∈ A1 and Ġ ∈ Tot(Ak−1) representing G ∈ HEOk−1,

there is a sequence c0, c1, . . . of basic type k − 1 codes such that

(1) each ζk−1(cj) has a basic signifier 〈〈dj , uj , pj〉〉 that is satisfactory for Ġ relative to

λ̇ and e;

(2) the elements ζk−1(cj) are pairwise consistent;

(3) the element G =
⊔

j ζk−1(cj) is total in P
eff
k−1 and represents G.

Moreover, the codes cj , and suitable associated signifiers 〈dj , uj , pj〉, are computable from

j uniformly in e, w ⊢γ
1 λ̇ and y ⊢γ

k−1 Ġ.

Proof. Suppose e, w, y are as above. Let d0, d1, . . . be a computable enumeration of the

set D, and for each j, set uj = u(e, dj , w, y) and define pj by p̂j = Ġ · (∇k−2 · (bullet · d̂j)).

Then sj = 〈〈dj , uj , pj〉〉 is a satisfactory type k− 1 signifier for Ġ relative to λ̇ and e. Let

cj be a basic code for the element [[sj]], computed in some standard way from dj , uj , pj .

The property (1) above and the uniform computability requirement are then obvious.

To show that the elements ζk−1(cj) are pairwise consistent, note that each cj has the

form bj 7→ p̆j . Suppose ζk−2(bj), ζk−2(bj′) are consistent, otherwise ζk−1(cj), ζk−1(cj′) are

trivially consistent. Let b = ζk−2(bj)⊔ ζk−2(bj′), and take x ∈ Tot(Peff
k−2) with b ⊑ x as in

Theorem 4.9. Suppose x represents x ∈ HEOk−2; then x ∈ Ok−2,bj
by Proposition 4.10(ii).

Hence G(x) = pj since 〈〈dj , uj , pj〉〉 is satisfactory for Ġ relative to e and λ̇. But similarly

G(x) = pj′ , so pj = pj′ and ζk−1(cj), ζk−1(cj′) are consistent.

We may therefore define G =
⊔

j ζk−1(cj). To see that G represents G, suppose h ∈

Tot(Peff
k−2) represents h ∈ HEOk−2. By Lemma 8.6 there is some j such that bdj

⊑ h,

whence ζk−1(cj)(h) = pj = G(h). But ζk−1(cj) ⊑ G, so G(h) = G(h).

The following corollary is what the generated graph of G is needed for, and is all that

needs to be carried forward from this subsection to the remainder of the proof. Recall

that Φ ∈ HEOk and ν ∈ Keff
2 is a basic enumeration of some Phi ∈ Tot(Peff

k) representing

Φ. A number j ∈ N playing the role of an argument to ν will be referred to as a position

index in ν.

Corollary 8.8. For any e ∈ N, λ̇ ∈ Tot(A1) and Ġ ∈ Tot(Ak−1) representing G ∈

HEOk−1, there exist a position index j and a type k − 1 signifier

s = 〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉

such that

(1) ν(j) is a basic code 〈c 7→ q̆〉, where ζk−1(c) = [[s]] and q = Φ(G);

(2) for each i < r, 〈〈di, ui, pi〉〉 is satisfactory for Ġ relative to λ̇ and e.

Moreover, suitable values of j and s, and hence the value q = Φ(G), are computable

from ν ∈ NN, e ∈ N, w ⊢γ
1 λ̇ and y ⊢γ

k−1 Ġ by means of a type 2 partial computable

functional (see Section 2.2).

Proof. Fix e, λ̇, Ġ, w ⊢γ
1 λ̇ and y ⊢γ

k−1 Ġ, and let G and c0, c1, . . . be generated as in

Proposition 8.7. Since Phi(G) = Φ(G) and G =
⊔

j ζk−1(cj), there must be some finite

r such that if c =
⊔

i<r ζk−1(ci) then Phi(c) = Φ(G). In other words, the step function

c ⇒ Φ(G) is a basic compact below Phi, and hence arises as ζk(ν(j)) for some position

John Longley 80

index j. Here ν(j) has the form 〈c 7→ q̆〉, where q = Φ(G) and c is a code for c. Now

each ci comes together with a satisfactory signifier 〈〈di, ui, pi〉〉 as in Proposition 8.7. Let

s = 〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉; then conditions (1) and (2) are clearly satisfied.

To see how j and s may be effectively computed from ν, e, w, y, recall from Section 8.1

that if c is a type 2 code, the set of all signifiers for ζk−1(c) is c.e. uniformly in c.

By interleaving enumerations of signifiers for each ζk−1(cj) (where ν(j) = 〈cj 7→ q̆j〉),

we may enumerate, computably in ν, the set of all pairs (j, s) such that s signifies

ζk−1(cj). Moreover, for any such pair, we can effectively test whether s is of the form

〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉 where the di, ui, pi are as in Proposition 8.7, since

the sequence of such signifiers is computable uniformly in e, y. But by the above, there

exist some j, s for which this is the case, so we can effectively find such a j and s by

means of a simple search. Clearly this j and s will satisfy all the required conditions, and

we can then effectively obtain Φ(G) by extracting qj from ν(j).

8.3. Satisfactory representations for type k objects

We now turn our attention to the problem of computing Φ(G) within A itself, given ν̇

and Ġ as above. To a crude approximation, what we would like to do is to generate from

ν an enumeration of all possible “type k signifiers” 〈s, q〉 for all codes 〈c 7→q〉 appearing

in ν (where ζk−1(c) = [[s]]), and then test these in turn looking for a signifier

〈〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉, q〉

such that each 〈〈di, ui, pi〉〉 is satisfactory for Ġ. When such a signifier is found, we return

q. The idea is that Corollary 8.8 should guarantee that the desired signifier exists.

One problem with this idea has to do with the parameter e. The purpose of e is to

keep track of where we have got to in our search through the signifiers 〈s, q〉, and it is

essential to the way the Normann programs work that this parameter be passed down

to interpret and hence to critical-index (see Section 8.4 below). There is therefore the a

priori possibility that the “partial element” interpret · Ġ · λ̇ · e · 〈di, ui〉 ∈ A1, and hence

that the behaviour of Ġ when applied to this partial element, might depend on e. This

is why we needed to build the dependency on e into the results of Section 8.2.

The situation is therefore somewhat slippery: for any fixed e, the above procedure will

eventually throw up a signifier 〈s, q〉 which is satisfactory for Ġ relative to e, but there is

no obvious guarantee that there is any e such that a satisfactory signifier for Ġ relative

to e will occur at precisely the position in the enumeration specified by e.

We can overcome this problem by arranging for the enumeration of the type k signifiers

〈s, q〉 to be conducted in a special way. This motivates the following definition:

Definition 8.9. A satisfactory representation of Φ is a total computable function λ :

N → N, where λ(j) = 〈ej , sj , qj〉 for each j, such that

(1) any number e ∈ N appears as ej for at most one j;

(2) each sj is a signifier 〈〈dj0, uj0, pj0〉, . . . , 〈dj(rj−1), uj(rj−1), pj(rj−1)〉〉 for some compact

element cj ∈ Pk−1 ;

On the ubiquity of certain total type structures 81

(3) for each j, the basic compact cj ⇒ qj is consistent with Φ, i.e. whenever G ∈ Ucj
we

have Φ(G) = qj ;

(4) for any λ̇′ ∈ Tot(A1) and Ġ ∈ Tot(Ak−1) representing any G ∈ HEOk−1, there exists

a position index j in λ such that for each i < rj , 〈dji, uji, pji〉 is satisfactory for Ġ

relative to λ̇′ and ej .

If λ is a satisfactory representation, we will refer to the numbers λ(j) = 〈ej , sj , qj〉 as

tokens appearing in λ.

The purpose of the ej is to serve as markers allowing us to locate the current position

in λ. Since each e occurs at most once as a marker, given e we may recover our position

in λ simply by searching for j such that ej = e. The reader may wonder why we do

not simply use the position index j to keep track of our position. The answer is that

our more elaborate scheme gives us some extra flexibility which enables us to give an

effective construction of satisfactory representations:

Proposition 8.10. Suppose given Phi ∈ Tot(Peff
k) representing Φ ∈ HEOk, and suppose

ν ∈ Keff
2 is a basic enumeration of Phi. Then a satisfactory representation λν of Φ exists

and is computable from ν via a type 2 partial computable functional.

Proof. Fix Φ and ν. The trick is to use as our place markers e all numbers of the form

〈y, w〉, where y is (potentially) a γ-realizer for some Ġ ∈ Ak−1, and w is (potentially) a

γ-realizer for some λ̇′ ∈ A1. If ej = 〈y, w〉, the corresponding sj and qj will be chosen

specifically to ensure that condition (4) of Definition 8.9 holds at least for the corre-

sponding elements Ġ, λ̇′. By doing this for all possible 〈y, w〉, all elements Ġ ∈ Tot(Ak−1)

and λ̇′ ∈ Tot(A1) will be catered for.

Formally, let θ : NN × N3 ⇀ N3 be the type 2 partial computable function implicit

in the proof of Corollary 8.8, so that whenever e ∈ N, w ⊢γ
1 λ̇

′ and y ⊢γ
k−1 Ġ for some

λ̇′ ∈ Tot(A1) and Ġ representing G, we have that θ(ν, e, y, w) = (j, s, q), where j, s are

as in Corollary 8.8 and q = Φ(G). Now consider the set

Mν = {〈e, s, q〉 | ∃y, w, j. e = 〈y, w〉 ∧ θ(ν, e, y, w) = (j, s, q)}

(It will not matter that this set may feature place markers 〈y, w〉 where y, w do not

realize suitable elements Ġ, λ̇′.) By elementary results of computability theory relative to

an oracle for ν, we may show that Mν is c.e. uniformly in ν. Let λν be a total function

enumerating Mν ; clearly λν may be taken to be computable uniformly in ν. Moreover,

it is clear by construction that λν satisfies conditions (1) and (2) of Definition 8.9. By

inspection of the proof of Corollary 8.8, condition (3) can be seen to hold even when the

jth element in λν is generated using some e not of the form 〈y, w〉 where y, w realize

some Ġ, λ̇′ respectively. For condition (4), note that every Ġ ∈ Tot(Ak−1) has at least

one γ-realizer y and every λ̇′ ∈ Tot(A1) at least one γ-realizer w, and θ(ν, 〈y, w〉, y, w) is

certainly defined for such a y and w, so a suitable token 〈〈y, w〉, s, q〉 will eventually turn

up in λν .

By Proposition 2.12, one may construct an NRComb program satis-rep : 1 → 1 that

represents the type 2 partial computable function (ν, j) 7→ λν(j), so that whenever ν̇ ∈ A1

John Longley 82

represents a basic enumeration ν of some Phi ∈ Tot(Peff
k), the element satis-rep · ν̇ ∈ A1

represents λν .

8.4. The Normann search algorithm

Having shown how to compute the required satisfactory representations of Φ, we may now

start to assemble the main program for computing Φ(G) itself. From here on, our proof

closely shadows the argument in (Normann 2000). We refer to Section 7.5 for further

motivational remarks.

Given ν̇ and Ġ, our main program will search through the tokens enumerated by λν ,

looking for a type 2 signifier s that is “satisfied” by Ġ. The following program search

returns the position index of the first such signifier. The parameter x here stands for a

token 〈e, s, q〉 appearing in λν .

sat Gk−1 lam1 x0 t0 ≡ ⌈satisfies G lam⌉ (proj0 x)

(proj2 t) (proj0 t) (proj1 t)

sat-all Gk−1 lam1 x0 ≡ all-in-list (⌈sat G lam⌉ x) (proj1 x)

sat-all-pos Gk−1 lam1 j0 ≡ sat-all G lam (lam j)

search lam1 Gk−1 ≡ min (sat-all-pos G lam)

The Normann program itself may then be defined as follows:

nablak nu1 Gk−1 ≡ proj2 (search (satis-rep nu) G)

To complete the definition of nablak, it remains to supply the program

critical-index : k − 1 → 1 → 0 → 0

which was left unspecified in Section 7.2. We will define this program in such a way that

in all relevant instances the following properties will hold:

(1) The element ḣ = interpret · Ġ · λ̇ · ê · 〈̂d, u〉 is a total element of A1. This will ensure

that Ġ · ḣ is a genuine numeral, and hence that sat · Ġ · λ̇ ·x · t is a genuine truth value.
(2) If λ(j) = 〈e, s, q〉 where s = 〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉, and Ġ · (interpret ·

Ġ · λ̇ · ê · 〈̂di, ui〉) = p̂i for each i < r, then Φ(G) = q. Together with (1), this will

ensure that whenever sat-all · Ġ · λ̇ · x comes out as true, the corresponding value q

returned is indeed the correct result.

The algorithm behind critical-index is essentially the same as in the continuous

case, so the informal explanation given in Section 7.5 applies mutatis mutandis. Natu-

rally, the details of the implementation need to be adapted to cater for the use of the

signifying representation rather than the modified enumerations used in Section 7, and

also to accommodate the very different notion of “satisfactory representation” used here.

Perhaps the most significant difference is that in the continuous case the satisfactory

representation λ was shifted at each stage so that only the portion not yet inspected was

passed as a parameter, whereas here we keep λ fixed throughout, and instead pass around

the markers e in order to keep track of the current position in λ. (In the terminology of

Section 5.4, this enables us to dispense with condition (C) in the effective case.)

On the ubiquity of certain total type structures 83

We now embark on the formal definition of critical-index. We take care not to use

anything depending on satis-rep, since critical-index itself enters into the definition

of this program.

The machinery required for the first search is very similar that in Section 7.5, the only

variations being matters of coding arising from the different form of tokens:

std-total d0 u0 m0 ≡ partial-elt (make-pair d u) (k m)

std-satisfies Gk−1 m0 t0 ≡ eq (G (std-total (proj0 t) (proj1 t) m))

(proj2 t)

refutes Gk−1 x0 m0 ≡ not (all-in-list (std-satisfies G m)

(proj1 x))

Proposition 8.11. Suppose x = 〈e, s, q〉 where s is a type k − 1 signifier, and Ġ ∈

Tot(Ak−1) represents G ∈ HEOk−1. Then

(i) for any m ∈ N we have refutes · Ġ · x̂ · m̂ ∈ T ∪ F ;

(ii) if G 6∈ U[[s]], there exists m such that refutes · Ġ · x̂ · m̂ ∈ T .

Proof. Exactly analogous to the proof of Proposition 7.10.

We now build up the machinery required for the “second search”. Given a marker e

arising in a satisfactory representation λ, the following programs allow us to compute the

position index at which e occurs in λ, and hence the token 〈e, s, q〉 in which it appears.

eq-proj0 lam1 e0 j0 ≡ eq e (proj0 (lam j))

position lam1 e0 ≡ min (eq-proj0 lam e)

lookup lam1 e0 ≡ lam (position lam e)

Suppose λ is a satisfactory representation of some Φ ∈ HEOk, λ̇ represents λ, and λ(j) =

x = 〈e, s, q〉. Then by condition (1) of Definition 8.9 we have position · λ̇ · ê = ĵ, and

lookup · λ̇ · ê = x̂.

The remainder of the definition involves a crucial use of recursion. As in the continuous

case, we first present the definition in a circular fashion, and then explain how the

circularity may be removed.

The following program (which invokes sat-all) is used for the “second search”; it

tests whether m is a position index for some later token 〈e, s, q〉 in λ that can be used

to settle the value of Φ(G). Here j is the “current position index”. It is important here

that thunking is used so that sat-all · Ġ · λ̇ · ê is not computed when m ≤ j.

settles Gk−1 lam1 j0 m0 ≡ if1 (leq m j)

(k00 false) (⌈sat-all G lam⌉)

(lam m)

We achieve the interleaving of the first and second searches with the following, which

applies both tests to the same index m:

test-index Gk−1 lam1 x0 m0 ≡ or (refutes G x m)

John Longley 84

(⌈settles G lam⌉

(position lam (proj0 x)) m)

pre-critical-index Gk−1 lam1 x0 ≡ min (⌈test-index G lam⌉ x)

If the index m discovered by the above is a refuter for G and x, we return m as the

critical index. Otherwise, the token λ(m) settles the value of Φ(G). If this value agrees

with the value q given by the current element x, we wish to return a critical index that

is not a refuter for G and x, so we may again return m. If the value disagrees with q, by

restarting the first search we will eventually find a refuter which we then return.

test-pre-critical Gk−1 lam1 x0 m0 ≡ if0 (or (refutes G x m)

(eq (proj2 x) (proj2 (lam m))))

m (min (refutes G x))

We may now put the pieces together. Note that the element x in question is retrieved

by looking up the given marker e in λ.

find-critical Gk−1 lam1 x0 ≡ test-pre-critical G lam x

(⌈pre-critical-index G lam⌉ x)

critical-index∗ Gk−1 lam1 e0 ≡ find-critical G lam (lookup lam e)

The asterisk signals that this is not the official definition of critical-index. We next

show how to eliminate the circularity from the above definition. The procedure is similar

to that in Section 7.5, except that here the argument lam is considered as fixed, and the

recursion involves only the parameter e.

We will introduce variants of the above definitions which carry around an auxiliary

parameter aux : 1; this should be thought of as a candidate for critical-index G lam,

which we are defining recursively. (Note that Ġ and λ̇ stay fixed throughout the compu-

tation, and do not actively participate in the recursion.) We start by defining

critical-index′ Gk−1 lam1 aux1 ≡ aux

We now perform the following for all defined constants dependent on critical-index,

in the order of definition. Suppose P : k − 1 → 1 → τ is a constant which we defined

earlier by means of an equation

P Gk−1 lam1 x0 · · ·xr−1 ≡ E[⌈Q G lam⌉]

where E[−] abstracts the unique occurrence of a protected subexpression on the right

hand side of the definition of P , and Q : k − 1 → 1 → σ is some constant. Suppose

moreover that we have already defined a variant Q′ : k − 1 → 1 → 1 → σ. We may then

define the variant P ′ : k − 1 → 1 → 1 → τ by means of the equation

P Gk−1 lam1 aux1 x0 · · ·xr−1 ≡ E[⌈Q′ G lam aux⌉]

We apply this procedure in turn to the definitions of

critical-index-thunk, interpret, G-value, satisfies, sat, sat-all,

settles, test-index, pre-critical-index, find-critical

On the ubiquity of certain total type structures 85

Note that for each of these constants P , the definition given earlier has Gk−1 and lam1

as the first two formal parameters, and at least one other parameter x0. Moreover, the

definition involves only one occurrence of a previously defined constant Q dependent on

critical-index, and this appears as part of a protected subexpression ⌈Q G lam⌉.

Finally, we may define

critical-index′′ Gk−1 lam1 aux1 e0 ≡ find-critical′ G lam aux

(lookup lam e)

critical-index Gk−1 lam1 ≡ y1 (critical-index′′ G lam)

This completes the definition of critical-index, and the definitions given earlier for

all the non-primed constants listed above may now be allowed to stand as the official

definitions of these constants. Our definition of nablak itself is thus complete, and we

may take ∇k ∈ A1→k to be the element defined by nablak.

8.5. Correctness of the Normann program

It remains to show that ∇k possesses the property required for Lemma 8.1. First, we

have the following useful property for find-critical:

Lemma 8.12. For any e ∈ N, µ̇ ∈ A1 and Ġ ∈ Ak−1 we have

critical-index · Ġ · λ̇ · ê � find-critical · Ġ · λ̇ · (lookup · λ̇ · ê)

Proof. Analogous to the proof of Lemma 7.11, setting aux = y1 · (critical-index′′ ·Ġ · λ̇)

and carrying the additional parameter λ̇ through the argument.

The main correctness proof is broadly similar to that of Proposition 7.12, with a few

significant variations arising from the differing treatment of satisfactory representations.

Proposition 8.13. Suppose Φ ∈ HEOk, ν ⊢δ
k Φ, ν̇ ∈ Tot(A1) represents ν, G ∈ HEOk−1

and Ġ ∈ Tot(Ak−1) represents G. Then ∇k · ν̇ ·G = Φ̂(G).

Proof. Let λ̇ = satis-rep · ν̇, so that λ̇ represents the satisfactory representation λ = λν

of Φ.

By condition (4) of Definition 8.9, there is a position index j0 such that λ(j0) has the

form x = 〈e, s, q〉, where

s = 〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉

is a type k − 1 signifier, and each 〈〈di, ui, pi〉〉 is satisfactory for Ġ relative to λ̇, e. By

condition (2) of Proposition 8.5, for each i we have G(h) = pi for all h ∈ U[〈di,ui〉], so by

Proposition 4.10 we have G ∈ U[[s]]. So by condition (3) of Definition 8.9, we have q =

Φ(G). Moreover, by condition (1) of Proposition 8.5, we have satisfies·Ġ·λ̇·ê·p̂i ·d̂i ·ûi = tt

for each i, and it follows easily that sat-all · Ġ · λ̇ · x̂ ∈ T .

Set xj = 〈ej , sj , qj〉 = λ(j) for each j, so that xj0 = x. We will show that the following

hold for all j ≤ j0:

(1) sat-all · Ġ · λ̇ · x̂j ∈ T ∪ F .

John Longley 86

(2) If sat-all · Ġ · λ̇ · x̂j ∈ T , then qj = Φ(G).

We argue by reversed induction on j.

For the case j = j0, both claims are established by the above. So suppose j < j0, and

assume both claims hold for all j′ where j < j′ ≤ j0. Then it is clear that settles · Ġ · λ̇ ·

ĵ · m̂ ∈ T ∪ F for all m ≤ j0, and that settles · Ġ · λ̇ · ĵ · ĵ0 ∈ T . Moreover, each xj is a

well-formed token, so by Proposition 8.11(i) we have that refutes · Ġ · x̂j · m̂ ∈ T ∪F for

every m ∈ N. Since position · λ̇ · (proj0 · x̂j) = j it follows that pre-critical-index · Ġ · λ̇ · x̂j

successfully evaluates to some numeral m̂0 where m0 ≤ j0.

We next claim that test-pre-critical · Ġ · λ̇ · ê · m̂0 successfully evaluates to a numeral.

Clearly, test-pre-critical · Ġ · λ̇ · ê · m̂0 = m̂0 unless we are in the case where j < m0 ≤ j0
and λ(m0) settles Φ(G) (that is, sat-all ·Ġ · λ̇ · x̂m0 ∈ T) but qj 6= qm0 . In this latter case,

by claim (2) of the induction hypothesis we have that qm0 = Φ(G), whence qj 6= Φ(G).

But by condition (3) of Definition 8.9, 〈ej , sj , qj〉 is consistent with Φ, so G cannot be

consistent with [[sj]]. So by Proposition 8.11, there must be some smallest m1 such that

refutes · Ġ · x̂j ·m1 ∈ T , and in this case, test-pre-critical · Ġ · λ̇ · ê · m̂0 = m̂1.

Using Lemma 8.12 and the remarks following the definition of lookup, we have that

critical-index · Ġ · λ̇ · êj � find-critical · Ġ · λ̇ · x̂j

= test-pre-critical · Ġ · λ̇ · ê · m̂0

so critical-index · Ġ · λ̇ · êj evaluates to a numeral, m̂ say. By Proposition 8.3(ii), it follows

that interpret · Ġ · λ̇ · ê · 〈̂di, ui〉 is a total element of Ak−2 for each 〈di, ui, pi〉 appearing

in sj , and hence that sat-all · Ġ · λ̇ · x̂j ∈ T ∪ F . This establishes claim (1) for j.

For claim (2), if sat-all·Ġ·λ̇·x̂j ∈ T then we must have Ġ·(interpret·Ġ·λ̇·ê·〈̂di, ui〉) = p̂i

for each 〈di, ui, pi〉 = ti appearing in sj . But interpret·Ġ·λ̇·ê·〈̂di, ui〉 = std-total·d̂i ·ûi ·m̂,

so std-satisfies · Ġ · m̂ · t̂i = tt for each i. Hence

refutes · Ġ · x̂j · m̂ = ff

So by inspection of the definition of test-pre-critical, we are in the case where j <

m ≤ j0, qm = qj and settles · Ġ · λ̇ · ĵ · m̂ ∈ T . By the definition of settles, this means

that sat-all · Ġ · λ̇ · x̂m ∈ T , and by claim (2) of the induction hypothesis, this implies

that qm = Φ(G). Hence qj = Φ(G) as required.

To complete the proof, let j1 be the least j such that sat-all · Ġ · λ̇ · x̂j ∈ T (note that

j1 ≤ j0). Then by claim (1) above, we have that sat-all · Ġ · λ̇ · x̂j ∈ F for all j < j1; hence

search · λ̇ · Ġ = ĵ1. But now by claim (2) above we have ∇k · ν̇ · Ġ = proj2 · x̂j = Φ̂(G)

and we are done.

This completes the proof of Theorem 5.12.

9. The modified extensional collapse

As we saw in Section 4, the extensional collapse construction gives us a simple and uni-

form way of extracting a total type structure from a general N-TPCA. However, there is

a second such construction which has proved to be of interest in the study of realizability

On the ubiquity of certain total type structures 87

models, and which we call the modified extensional collapse. This arises naturally in con-

nection with Kreisel’s modified realizability interpretation and the associated categorical

models (see (van Oosten 1997) for more information).

Rather pleasingly, it turns out that the proofs in Sections 7 and 8 can be adapted to

yield analogous results for the modified extensional collapse construction. (This answers

a question we posed in (Longley 2005b).) The purpose of this section is to present these

adaptations. We will not give complete self-contained proofs here, but rather explain the

points at which the earlier proofs need to be modified.

We first review the concrete definition of the modified extensional collapse.

In previous parts of the paper we have for brevity referred to the total, extensional

elements of A simply as the “total elements”, but for the purpose of this section we need

to distinguish between the concepts of totality and extensionality.

Given any N-TPCA A, we may define subsets AT
σ ⊆ Aσ as follows:

AT

0 = {n̂ | n ∈ N}

AT

σ→τ = {f ∈ Aσ→τ | ∀x ∈ AT

σ . f · x↓ ∧ f · x ∈ AT

τ }

It is easy to see that this defines a sub-N-TPCA AT of A in which the application

operations are total. For the purpose of this section, we will refer to the elements of AT

as the total elements of A.

Once we have constructed AT, we may of course take its extensional collapse EC(AT),

and we refer to this as the modified extensional collapse of A, written MEC(A). We also

write MEC(A) for the evident internal TTS within Asm(A) arising from this construc-

tion. For the purpose of this section, the elements in the field of the corresponding partial

equivalence relations will be called the extensional elements of A; we write Ext(Aσ) for

the set of such elements at type σ, so that Ext(Aσ) ⊆ AT
σ . Note, however, that in con-

nection with P and P
eff we shall still frequently need to refer to the sets Tot(Pσ) and

Tot(Peff
σ) as defined previously.

We may regard the total elements of Aσ as “potential realizers” for functionals of type

σ, and the extensional elements as “actual realizers”. At types 0 and 1, every potential

realizer is also an actual realizer. At type 2, the actual realizers are the same as for the

standard realizability construction (hence MEC(A)2 = EC(A)2), but the set of potential

realizers is in general larger, since typically there are total type 2 elements that do not

act extensionally on type 1 actual realizers. This means that the set of type 3 functionals

might be smaller in MEC(A) than in EC(A), since actual realizers at type 3 must not only

map actual realizers to actual realizers, but also potential realizers to potential realizers.

At type 4 and above the two TTSs may in general become incomparable.

In some particular instances (such as P) it is fairly easy to show that EC(A) and

MEC(A) coincide. In other instances this can be shown by means of a non-trivial theorem

— for example, the isomorphisms EC(K1) ∼= MEC(K1) and EC(K2) ∼= MEC(K2) were

established in (Bezem 1985).

Our previous theorems as they stand do not apply to AT, since it does not possess

y combinators. However, in both the continuous and effective settings, we are able to

obtain analogous theorems which identify MEC(A) in a wide range of instances. In each

John Longley 88

case, we use the y combinators from A to construct the appropriate Normann programs,

but some further refinements are needed to ensure that these programs return elements

in AT.

9.1. The continuous case

In the continuous case, our theorem for the modified extensional collapse is precisely

analogous to Theorem 5.13:

Theorem 9.1. Suppose A is a full continuous NR-TPCA (with γ : A−−⊲K2) satisfying

conditions (AB) and (C) of Theorem 5.13. Then γ∗(MEC(A)) ∼= C in Asm(K2).

The proof of this theorem is closely parallel to that of Theorem 5.13. We here go through

the proof in outline, elaborating on the points that are different.

As in Section 7 we formulate a lemma asserting the existence of suitable Normann

programs, now understanding the phrase “ẋ represents x ∈ Cl” to mean that ẋ is an

element of Ext(Al) whose action corresponds to that of x. Here, as in Section 7, δ denotes

the realization C−−⊲K2 via basic enumerations.

Lemma 9.2. Suppose k ≥ 1, and suppose γ∗(MEC(A)) and C are isomorphic up to

level k − 1. Then there is an NRComb+-definable constant nablak : 1 → k denoting

an element ∇k ∈ A1→k with the following property: whenever Φ ∈ Ck, ν
δ
k Φ and

ν̇ ∈ Ext(A1) represents ν, the element ∇k · ν̇ ∈ Ak represents Φ within A (in the modified

sense).

The proof that this lemma implies the theorem then goes through as for Theorem 7.2

with only minor changes. Moreover, the proofs of the lemma for types 1 and 2 are

unaffected, since MEC(A)1 = EC(A)1 and MEC(A)2 = EC(A)2.

For a general type level k ≥ 3, we assume the lemma holds for k − 2, and adopt the

machinery of Section 7.2 as it stands, except that we insert a normalization into the

definition of partial-elt:

partial-elt mu1 thunk1 ≡ nablak−2 (norm (extend-enum mu thunk))

This enables us to show, for instance, that if θ is a basic enumeration of some h ∈

Tot(Pk−1) then

interpret · Ġ · λ̇ · µθ♯ = ∇k−2 · θ
♯

for any λ̇ ∈ A1 (where f ♯ denotes the canonical representative within A1 of f : N → N).

The first interesting issue concerns the crucial Proposition 7.6. The proposition as it

stands still applies when Ġ is extensional, but the same proof also yields some information

for total but non-extensional Ġ:

Proposition 9.3. Suppose given Ġ ∈ AT

k−1, h ∈ Tot(Pk−2) representing h ∈ Ck−2, θ a

basic enumeration of h, and λ : N → N. Then Ġ · (∇k−2 · θ♯) is a numeral, say p̂, and

there exist b, z ∈ N with b = 〈b0, . . . , bt−1〉 and ζk−2(b) ⊑ h such that

On the ubiquity of certain total type structures 89

(1) for any λ′ ∈ B(λ, z) and µ′ ∈ B(µb, t), we have

satisfies · Ġ · p̂ · (pair · λ′
♯
· µ′♯) = tt

(so in particular satisfies-code · Ġ · λ′♯ · b̂ · p̂ = tt);

(2) if Ġ ∈ Ext(Ak−1) and Ġ represents G ∈ Ck−1, then for all h′ ∈ Ok−2,b we have

G(h′) = p.

Proof. By the main induction hypothesis, we have ∇k−2 · θ
♯ ∈ Ext(Ak−2) ⊆ AT

k−2, so

Ġ · (∇k−2 · θ
♯) is a numeral, say p̂. Hence interpret · Ġ ·λ♯ ·µθ♯ = p̂, so that satisfies · Ġ · p̂ ·

(pair · λ♯ · µθ♯) = tt, even if Ġ is non-extensional. The construction of suitable b, z, and

the verification that they satisfy condition (1), then work exactly as in Proposition 7.6.

For extensional Ġ, condition (2) of course holds as before.

For any Ġ ∈ AT

k−1, we may say (b, p) is satisfactory for Ġ relative to λ if b ∈ dom ζk−2

and there exists z such that b, p, z satisfy conditions (1) and (2) above (condition (2)

being vacuously true if Ġ 6∈ Ext(Ak−1)). We write Sλ(Ġ) for the set of all satisfactory

pairs for Ġ relative to λ.

We will say an element Ġ ∈ AT

k−1 is quasi-extensional if whenever θ, θ′ are (respec-

tively) basic enumerations for elements h, h′ ∈ Tot(Pk−2) both representing h ∈ Ck−2,

we have

Ġ · (∇k−2 · θ
♯) = Ġ · (∇k−2 · θ

′♯)

Clearly, any extensional element is quasi-extensional. The following proposition gives

some useful equivalents of quasi-extensionality. Here we write filter : N2 → N for the

function defined by the program filter from Section 7.2; as before we also define

std-total b0 c0 ≡ partial-elt (mod-enum b) (k c)

Proposition 9.4. The following are equivalent for any Ġ ∈ AT

k−1 and λ ∈ NN:

(1) Ġ is quasi-extensional.

(2) For all b, c, b′, c′ ∈ dom ζk−2, if filter(b, c) and filter(b′, c′) code the same type k − 2

compact element then

Ġ · (std-total · b̂ · ĉ) = Ġ · (std-total · b̂′ · ĉ′)

(3) The codes 〈b 7→ p̆〉 for (b, p) ∈ Sλ(Ġ) are pairwise consistent.

Proof. (1) ⇒ (2): For any b, c ∈ dom ζk−2 we have

std-total · b̂ · ĉ = ∇k−2 · (norm · (extend-enum · b̂ · (k · ĉ)))

But extend-enum · b̂ · (k · ĉ) clearly represents some basic enumeration θ for xc∗ , where

c∗ = filter(b, c); hence std-total · b̂ · ĉ = ∇k−2 ·θ
♯. We also have a similar scenario involving

b′, c′, c′
∗
, θ′. So if c∗ = c′

∗
and Ġ is quasi-extensional then ∇k−2 · θ

♯ = ∇k−2 · θ
′♯, whence

std-total · b̂ · ĉ = std-total · b̂′ · ĉ′.

(2) ⇒ (3): Suppose given (b, p), (b′, p′) in Sλ(Ġ) where b = 〈b0, . . . , bt−1〉 and b′ =

〈b′0, . . . , b
′
t′−1〉 are consistent. Let b′′ be a code for ζk−2(b)⊔ ζk−2(b

′). Then extend-enum ·

John Longley 90

b̂ · (k · b̂′′) represents some θ ∈ B(µb, t) which basically enumerates xb′′ , so

std-total · b̂ · b̂′′ = ∇k−2 · (norm · (extend-enum · b̂ · (k · b̂′′))) = ∇k−2 · θ
♯

Now Ġ · (∇k−2 · θ
♯) is certainly a numeral, and since (b, p) is satisfactory for Ġ relative

to λ it must be p̂, otherwise we would have

satisfies · Ġ · p̂ · (pair · λ♯ · µθ♯) = eq · (Ġ · (partial-elt · µθ♯ · thunk)) · p̂

= eq · (Ġ · (∇k−2 · θ
♯)) · p̂ = ff

for a certain thunk ∈ A1. Thus Ġ·(std-total· b̂· b̂′′) = p̂, and similarly Ġ·(std-total· b̂′ · b̂′′) =

p̂′. But filter(b, b′′) = filter(b′, b′′) = b′′, so if condition (2) holds then p = p′.

(3) ⇒ (1): Suppose θ, θ′ are basic enumerations for h, h′ which both represent h ∈ Ck−2,

and let p̂ = Ġ · (∇k−2 ·θ
♯), p̂′ = Ġ · (∇k−2 ·θ

′♯). Then by Proposition 9.3 we may find b, b′

such that ζk−2(b), ζk−2(b
′) ⊑ h and (b, p), (b′, p′) ∈ Sλ(Ġ). But b and b′ are consistent,

since h ∈ Ok−2,b ∩Ok−2,b′ . So if condition (3) holds we must have p = p′.

Suppose Ġ ∈ AT

k−1 and λ ∈ NN. Then for any h ∈ Tot(Pk−2), by Proposition 9.3 there

is some (b, p) ∈ Sλ(Ġ) such that ζk−2(b) ⊑ h. Thus, if Ġ is quasi-extensional so that

Sλ(Ġ) is consistent, we have that Gλ =
⊔
{ζk−1(〈b 7→ p̆〉) | (b, p) ∈ Sλ(Ġ)} is an element

of Tot(Pk−1) and so represents some G ∈ Ck−1. It is now easy to see that whenever θ

basically enumerates some h representing h ∈ Ck−2 we have Ġ · (∇k−2 · θ
♯) = Ĝ(h); in

this case we say that Ġ quasi-represents G.

Proposition 7.7 fails badly in the present setting, since in general the set of basic com-

pacts obtained from Sλ(Ġ) will not be consistent. However, salvaging what we can from

the situation, we arrive at the following useful dichotomy: either Ġ is quasi-extensional,

in which case Gλ represents some G ∈ Ck−1 which is also quasi-represented by Ġ; or

there exist (b, p), (b′, p′) ∈ Sλ(Ġ) such that the codes 〈b 7→ p̆〉, 〈b′ 7→ p̆′〉 are inconsistent.

It can now be seen that the Normann program given in Section 7 works as desired

when Ġ is quasi-extensional. More precisely, if Φ ∈ Ck, ν
δ
k Φ, ν̇ ∈ Ext(A1) represents

ν and Ġ ∈ Ext(Ak−1) quasi-represents G ∈ Ck−1, then ∇k · ν̇ · Ġ = Φ̂(G). So in order to

achieve ∇k · ν̇ ∈ Ext(Ak), it remains to modify the Normann programs to ensure that,

additionally, ∇k · ν̇ · Ġ evaluates to some numeral (it does not matter which) when Ġ is

total but not quasi-extensional.

We may achieve this quite easily by combining the existing Normann program with a

search for two inconsistent satisfactory pairs witnessing that Ġ is not quasi-extensional.

That is, we build into our satisfactory representation not only the codes c 7→ q̆ arising

from the enumeration ν, but also all possible “pseudo-codes” 〈b 7→ p̆, b′ 7→ p̆′〉 7→ 0̆ where

〈b 7→ p̆〉, 〈b′ 7→ p̆′〉 are inconsistent:

Definition 9.5. Suppose Φ ∈ Ck. A modified satisfactory representation of Φ is a total

function λ : N → N such that

(1) for all j, the number λ(j) is either 0 or of the form 2(c 7→ q̆) + 1 or 2(c 7→ q̆) + 2,

where either c ∈ dom ζk−1 and q ∈ N, or c is of the form 〈c0, c1〉 where 〈c0〉, 〈c1〉 are

inconsistent basic type k − 1 codes and q = 0;

On the ubiquity of certain total type structures 91

(2) whenever λ(j) = 2(c 7→ q̆) + 1, there exists j′ > j such that λ(j′′) = 0 whenever

j < j′′ < j′, and λ(j′) = 2(c 7→ q̆) + 2;

(3) whenever λ(j) = 2(c 7→ q̆) + 1, if c is a consistent ζk−1-code then the basic type k

code 〈c 7→q〉 is consistent with Φ (that is, Φ ∈ Ok, 〈c7→q〉);

(4) for any Ġ ∈ AT

k−1, there exists j0 such that λ(j0) has the form

2(〈b0 7→ p̆0, . . . , br−1 7→ p̆r−1〉 7→ q̆) + 1

where each pair (bi, pi) is satisfactory for Ġ relative to λj0+1.

Satisfactory representations of the new kind still exist and are computable from the

basic enumerations ν. The construction is virtually identical to that in the proof of

Proposition 7.9, except that we replace the condition “〈e〉 ∈ range(ν′)” everywhere by

“〈e〉 ∈ range(ν′) or e = 〈c0, c1〉 7→0 where 〈c0〉, 〈c1〉 are inconsistent ζk−1-codes”. To see

that condition (4) above is satisfied, we appeal to the dichotomy mentioned earlier: either

Ġ is quasi-extensional or there exist (b, p), (b′, p′) ∈ Sλ0(Ġ) giving rise to inconsistent

codes, where λ0 is the constant zero function. In either case, an argument similar to the

one in the proof of Proposition 7.9 shows that a suitable position index j0 exists.

As before, we take satis-rep : 1 → 1 to be a program that computes a satisfactory

representation λν from a basic enumeration ν.

We now define our Normann programs as in Section 7.5. Only one further change to

the code is needed: at a certain juncture we interleave our “first search” for a refuter for

Ġ and x with a search for a witness that Ġ is “inconsistent” (i.e., not quasi-extensional).

We suppose same-compact : 0
(4)

→ 0 represents a total computable function which, given

b0, c0, b1, c1 ∈ N, tests whether filter(b0, c0) and filter(b1, c1) code the same type k − 2

compact element.

incons4 Gk−1 b00 c00 b10 c10 ≡ and (same-compact b0 c0 b1 c1)

(not (eq (G (std-total b0 c0))

(G (std-total b1 c1))))

incons Gk−1 m0 ≡ incons4 (proj0 m) (proj1 m)

(proj2 m) (proj3 m)

refutes-or-incons Gk−1 x0 m0 ≡ or (refutes G x m) (incons G m)

In the definition of test-pre-critical, we replace the second occurrence of refutes

(only) by refutes-or-incons:

test-pre-critical Gk−1 lam1 x0 m0 ≡ if (or (refutes G x m)

(and (not (even (lam m)))

(eq (result x)

(result (lam m))))

m (min (refutes-or-incons G x))

With these changes in place, we obtain a modified Normann program nablak and the

corresponding operator ∇k ∈ A1→k. It remains to verify that this does what is required:

John Longley 92

Proposition 9.6. Suppose Φ ∈ Ck, ν
δ
k Φ, ν̇ ∈ Ext(A1) represents ν and Ġ ∈ AT

k−1.

Then

(1) ∇k · ν̇ · Ġ evaluates to a numeral;

(2) if Ġ quasi-represents G ∈ Ck−1, then ∇k · ν̇ · Ġ = Φ̂(G).

The formal proof is a mild elaboration of the proof of Proposition 7.12. We content

ourselves here with some informal remarks. It is convenient to consider separately the

cases where Ġ is quasi-extensional and where Ġ is inconsistent.

In the former case, the proof of Proposition 7.12 goes through smoothly (we note

that Proposition 7.10 holds under the weaker hypothesis that Ġ ∈ AT

k−1 quasi-represents

G). The “inconsistent codes” in the satisfactory representation do not get in the way of

the computation, since a quasi-extensional Ġ will never be found to satisfy both of the

corresponding tests (except in cases where Φ(G) is known to be 0 anyway). Likewise, the

tests involving incons do not get in the way, since these tests will always fail.†

In the latter case, by condition (4) of Definition 9.5 there will be some inconsistent

code λ(j0) in the satisfactory representation that will serve as a suitable “end-stop”, so

we merely have to show by reversed induction that the tests sat-all · Ġ · λ̇j+1 · x̂j for

j ≤ j0 all successfully evaluate to some value in T ∪ F . For this, it suffices to show that

critical-index · Ġ · λj+1 successfully evaluates to a numeral. But the search embodied by

pre-critical-index will terminate as it is bounded by the end-stop j0, whilst the search

using refutes-or-incons will terminate since a quadruple (b0, c0, b1, c1) witnessing the

inconsistency certainly exists.

Proposition 9.6 now immediately implies that if ν
δ
k Φ ∈ Ck then ∇k · ν̇ ∈ MECk and

∇k · ν̇ represents Φ. This completes the proof of Theorem 9.1.

9.2. The effective case

For the effective case, we have a theorem analogous to Theorem 5.12. Here it turns out

that a slight strengthening of condition (B) is helpful.‡

Theorem 9.7. Let A be an effective NR-TPCA, with γ a realization of A over K1

satisfying the following conditions:

(A) If m ⊢γ

σ→0
a, n ⊢γ

σ b and aσ0 •m • n ⊢γ
0 c, then a · b = c.

(B′) The relation “m ⊢γ
0 n̂” is c.e. in m,n.

Then γ∗(MEC(A)) ∼= HEO in Asm(K1).

Again the proof closely follows that of Theorem 5.12, and the adaptations that are

needed are rather similar to those used in the continuous case. However, the task of

† Somewhat more formally, under the hypothesis that Ġ ∈ AT
k−1

quasi-represents G, the proof of
Proposition 7.12 goes through line by line, except that at the point where we invoke condition (3) of
the definition of satisfactory representation, we need to say: either cj 7→ q̆j or cj is itself inconsistent,
so in either case, G cannot be consistent with all the bi 7→ p̆i appearing in cj .

‡ It seems likely that our condition (B’) is strictly stronger than (B), although we do not have an
example to prove this.

On the ubiquity of certain total type structures 93

dealing correctly with total but non-extensional realizers in the absence of condition (C)

calls for rather more delicate arguments than any of the preceding proofs.

The early part of the proof (up to the start of Section 8.1) goes through with only

bureaucratic changes. For convenience, we state here the modified version of the main

lemma. Note that δ here denotes the standard realization HEO−−⊲Keff
2 via basic enumer-

ations, and as in Section 9.1, we understand the phrase “ẋ ∈ Al represents x” to mean

that ẋ is an element of Ext(Al) whose action corresponds to that of x.

Lemma 9.8. Suppose k ≥ 1, and suppose γ∗(MEC(A)) and HEO are isomorphic up

to level k − 1. Then there is an NRComb-definable constant nablak : 1 → k denoting

an element ∇k ∈ A1→k with the following property: whenever Φ ∈ HEOk, ν
δ
k Φ and

ν̇ ∈ Ext(A1) represents ν, the element ∇k · ν̇ ∈ Ak represents Φ within A (in the modified

sense).

As before, our task is to prove this lemma for k ≥ 3, assuming that it holds for k − 2.

We import the material in Section 8.1 unchanged. In contrast to the modified contin-

uous case, there is no need for a normalization in the definition of partial-elt.

partial-elt z0 thunk1 ≡ nablak−2 (extend-enum z thunk)

We also define

total-elt d0 ≡ nablak−2 (bullet d)

so that if d is a Kleene index for a basic enumeration of a representative of some h ∈

HEOk−2 then total-elt · d̂ represents h.

As in Section 9.1, all goes smoothly until we reach the crucial continuity property

(Propositions 8.4 and 8.5). At this point some further notation is helpful. As in Sec-

tion 8.2, we take

J = {(d, v) | time(v) <∞ ∧ ∀i < time(v). d • i ∈ dom ζk−2 ∧

∀i, j < time(v). ζk−2(d • i), ζk−2(d • j) are consistent}

We will define a family of basic enumerations to play the role of the functions ηd,v

from Section 8.2, although here we require a larger class of functions so as to yield

representatives of all the standard total elements xc compatible with a given (d, v) ∈ J .

Let b(d, t) denote a ζk−2-code for
⊔

i<t ζk−2(d•i) (when this exists) effectively computed

from d, t in some standard way. For any d, v,m ∈ N, define ηd,v,m : N ⇀ N by

ηd,v,m(i) ≃

{
d • i if i < time(v)

ξc(i) if i ≥ time(v) and c = filter(b(d, time(v)),m)

Note that ηd,v,m is represented in A1 (in the sense of Section 2.2) by extend-enum · 〈̂d, v〉 ·

(k · m̂). Let δ(d, v,m) denote a Kleene index for ηd,v,m obtained effectively from d, v,m.

Now let

M = {(d, v,m) | (d, v) ∈ J, m ∈ N}

Then M is c.e., and for any (d, v,m) ∈ M , ηd,v,m is a basic enumeration for some

element xc ∈ Tot(Pk−2) representing an element of Ok−2,b(d,time(v)). For the purpose of

John Longley 94

this section, define

D = {δ(d, v,m) | (d, v,m) ∈M}

and note that D is c.e.

We may now formulate a modified version of Proposition 8.4:

Proposition 9.9. Suppose given Ġ ∈ AT

k−1 and d ∈ N such that φd basically enumerates

some h representing h ∈ HEOk−2. Suppose also that ḣ = total-elt · d̂ and Ġ · ḣ = p̂.

Then there exists a number u ∈ H which signifies a modified KLS modulus of Ġ at d, p

in the following sense: if Ġ ∈ Ext(Ak−1) and b =
⊔

i<time(u) ζk−2(d • i), then for all

ḣ′ ∈ Ext(Ak−2) representing h′ ∈ UHEO

b we have that Ġ · ḣ′ = p̂. (If Ġ is non-extensional,

any u ∈ H is vacuously considered to signify a modified KLS of Ġ at d, p.)

Moreover, a suitable value for u may be effectively computed from d and any realizer

y ⊢γ
k−1 Ġ. In particular, there is an effective procedure for computing u from d and y

which yields some number u ∈ H even if Ġ is non-extensional.

Proof. The construction of u used in the proof of Proposition 8.4 unfortunately does

not guarantee termination for all y ⊢γ Ġ ∈ AT

k−1. However, a more delicate construc-

tion may be given by adapting Gandy’s proof of the KLS theorem (Gandy 1962), which

involves a seemingly magical appeal to Kleene’s second recursion theorem. Similar argu-

ments also appear in (Bezem 1985).

We start by importing the definition of easy-critical-index from the proof of Propo-

sition 8.4, with one subtle change to the definition of std-dense. (This change is not

required for the proof of the present proposition, but is needed for the proof of Propo-

sition 9.13 below.) Let delta : 0
(3)

→ 0 be a program that uniformly represents the

function δ introduced above, and define

std-dense z0 m0 ≡ total-elt (delta (proj0 z) (proj1 z) m)

is-counterex-for Gk−1 z0 p0 m0 ≡ not (eq (G (std-dense z m)) p)

easy-critical-index Gk−1 z0 p0 ≡ min (is-counterex-for G z p)

We will also need some notation for operations on realizers that mirror various operations

representable in A; these are constructed using the realizers aστ associated with γ. First,

let τ(−) be a total computable function such that τ(d) ⊢γ
1 total-elt · d̂ for any d ∈ N.

Next, using conditions (A) and (B′) of Theorem 9.7, we may define a partial computable

function eval(−,−) such that, whenever Ġ ∈ Ak−1, ḣ ∈ Ak−2, y ⊢γ
k−1 Ġ and x ⊢γ

k−2 ḣ,

we have eval(y, x) = p iff Ġ · ḣ = p̂. We write evaltime(y, x) for the number of steps

taken to compute eval(y, x) on some fixed Turing machine (we set evaltime(y, x) = ∞

if the computation diverges). Likewise, we may construct a partial computable function

ι(−,−,−,−) such that whenever Ġ ∈ Ak−1, y ⊢γ Ġ and d, u, p ∈ N, we have ι(y, d, u, p) =

m iff easy-critical-index · Ġ · 〈̂d, u〉 · p̂ = m̂. As one further piece of notation, we suppose

we have a computable function u(−) such that time(u(t)) = t for any t (it is harmless to

insist that time(−) is defined in such a way that some such function exists).

We now construct a “critical” Kleene index ay,d with certain self-referential properties.

On the ubiquity of certain total type structures 95

The construction involves a use of recursion, for which we temporarily introduce an

auxiliary parameter a.

For any y, d, a ∈ N, define a partial computable function ψy,d,a : N ⇀ N by

ψy,d,a(i) ≃

d • i if i < evaltime(y, τ(a))

d • i if i ≥ evaltime(y, τ(a)) and eval(y, τ(a)) 6= eval(y, τ(d))

ξk−2,c(i) if i ≥ evaltime(y, τ(a)) = t,

eval(y, τ(a)) = eval(y, τ(d)) = p,

m = ι(y, d, u(t), p) and c = filter(b(d, t),m)

(Note that the value of evaltime(y, τ(a)) does not include any time taken to compute

τ(a).) Now let Y denote some fixed point combinator within K1 such that Y • f ↓ and

Y • f • x ≃ f • (Y • f) • x for every f, x ∈ N. For any y, d, define ay,d = Y • (Ψ • y • d),

so that ay,d • i ≃ Ψ • y • d • ay,d • i for all i. The upshot of this is that we have an index

ay,d, computable in y, d, such that for all i ∈ N we have

ay,d • i ≃

d • i if i < evaltime(y, τ(ay,d))

d • i if i ≥ evaltime(y, τ(ay,d)) and eval(y, τ(ay,d)) 6= eval(y, τ(d))

ξk−2,c(i) if i ≥ evaltime(y, τ(ay,d)) = t,

eval(y, τ(ay,d)) = eval(y, τ(d)) = p,

m = ι(y, d, u(t), p) and c = filter(b(d, t),m)

Now let Ġ ∈ AT

k−1, y, d, p be as in the Proposition, so that eval(y, τ(d)) = p. We

claim that eval(y, τ(ay,d)) is defined. Suppose not; then evaltime (y, τ(ay,d)) = ∞ so

ay,d•i = d•i for all i, so bullet ·ây,d represents a basic enumeration of h. Hence total-elt·ây,d

is in Ext(Ak−2) and represents h. Since Ġ ∈ AT

k−1, it follows that Ġ · (total-elt · ây,d) is

a numeral, which implies that eval(y, τ(ay,d)) is defined after all. We may therefore set

t = evaltime(y, τ(ay,d)) and u = u(t), so that u ∈ H; clearly u is computable from y and

d. We will show that u signifies a KLS modulus of Ġ at d, p as required.

Suppose from here on that Ġ is extensional and represents G ∈ HEOk−1. We first

claim that eval(y, τ(ay,d)) = p. Suppose not; then as before we have ay,d • i = d • i

for all i, so that total-elt · ây,d represents h. But now since Ġ is extensional we have

Ġ · (total-elt · ây,d) = Ġ · ḣ = p̂, implying that eval(y, τ(ay,d)) = p after all.

Let b =
⊔

i<time(u) ζk−2(d • i), and for any c ∈ N, let xc ∈ HEOk−2 be the element

represented by the element xc ∈ Tot(Peff
k−2) from Theorem 4.9. We claim that G(xc) = p

whenever ζk−2(c) ⊒ b. First, if ζk−2(c) ⊒ b then c = filter(b(d, t), c), so ηd,u,c basically

enumerates xc; but bullet · (δ(d, u, c))̂ represents ηd,u,c, so std-dense · 〈̂d, u〉 · ĉ = ∇k−2 ·

(bullet ·(δ(d, u, c))̂) represents xc by the main induction hypothesis. So if G(xc) 6= p then

Ġ·(std-dense·〈̂d, u〉·ĉ) 6= p̂. Letm be the smallest number such that Ġ·(std-dense·〈̂d, u〉·m̂)

(which is always a numeral) is not p̂. Clearly easy-critical-index · Ġ · 〈̂d, u〉 · p̂ = m̂, whence

ι(y, d, u, p) = m. It follows that ay,d • i = ηd,u,m(i) for all i; hence total-elt · ây,d and

std-dense·〈̂d, u〉·m̂ represent the same element of HEOk−2. But now since Ġ is extensional

we have Ġ · (total-elt · ây,d) = Ġ · (std-dense · 〈̂d, u〉 · m̂) 6= p̂, which contradicts the fact

that eval(y, τ(ay,d)) = p.

The remainder of the proof is similar to the end of the proof of Theorem 8.4. Suppose

John Longley 96

ḣ′ ∈ Ext(Ak−2) represents some h′ ∈ Ub such that Ġ · ḣ′ = p̂′ 6= p̂. By applying the above

argument to some d′ indexing a basic enumeration of ḣ′, we may obtain an element b′

with h′ ∈ Ub′ such that G(xc) = p′ whenever ζk−2(c) ⊒ b′. Since h′ ∈ Ub ∩ Ub′ , by

Proposition 4.10(i) we have that b, b′ are consistent. So if c is a code for b ⊔ b′ then

p = G(xc) = p′, which is a contradiction.

Using this, we may obtain a correspondingly strengthened version of Proposition 8.5:

Proposition 9.10. Suppose given e ∈ N, λ̇ ∈ Ext(A1), Ġ ∈ AT

k−1, and d, h, h, ḣ, p as in

Proposition 9.9. Then there exists u′ ∈ H such that

(1) satisfies · Ġ · λ̇ · ê · p̂ · d̂ · û′ = tt

(2) u′ signifies a modified KLS modulus of Ġ at d, p in the sense of the previous propo-

sition.

Moreover, a suitable value for u′ may be computed uniformly from e, d, any realizer

w ⊢γ
1 λ, and any realizer y ⊢γ

k−1 Ġ.

Proof. Precisely analogous to the proof of Proposition 8.5. Note that this yields a value

for u′ such that time(u′) ≥ t, where t is the KLS modulus evaltime(y, τ(ay,d)) resulting

from the proof of Proposition 9.9. (This fact will be used in the proof of Proposition 9.13.)

We will write u(e, d, w, y) for the computed value of u′ given by the proof of the above

proposition, and say that a basic signifier 〈〈d, u′, p〉〉 is satisfactory for Ġ ∈ AT

k−1 (relative

to λ̇ and e) if conditions (1) and (2) of the above proposition are satisfied.

A version of Lemma 8.6 goes through under the weaker assumption that Ġ ∈ AT

k−1.

Lemma 9.11. Suppose e ∈ N, λ̇ ∈ Ext(A1), Ġ ∈ AT

k−1, w ⊢γ
1 λ̇ and y ⊢γ

k−1 Ġ. Then for

any h ∈ Tot(Peff
k−2) there is some index d ∈ D such that b(e, d, w, y) ⊑ h.

Proof. As for Lemma 8.6. Note that the set D here is intuitively “larger” than the set

D used in Section 8.

Our set D would certainly suffice for obtaining an analogue of Proposition 8.7, but

later parts of the proof require that we work with a somewhat richer set. Using no-

tation from the proof of Proposition 9.9, let us say a pair (d, y) is acceptable if either

eval(y, τ(ay,d)) 6= eval(y, τ(d)) (both sides being defined), or both eval(y, τ(ay,d)) =

eval(y, τ(d)) and ι(y, d, u(t), p) ↓ where t = evaltime(y, τ(ay,d)) and p = eval(y, τ(d)).

Now let E denote the closure of D under the following rule: if d ∈ E, y ∈ N and (d, y) is

acceptable, then ay,d ∈ E.

It is easy to see by induction that every d ∈ E is an index for a basic enumeration of

some xc. More specifically, any element of E may be described syntactically by a tuple

∆ = (d, v,m, d0, y0, . . . , dr−1, yr−1, dr) (r ≥ 0) with the following properties: (d, v,m) ∈

M , d0 = δ(d, v,m), and for each i < r, (di, yi) is acceptable and di+1 = ayi,di
. Such a

tuple may be regarded as a proof that dr ∈ E. Let L denote the set of all such tuples ∆,

and for ∆ ∈ L, let ǫ(∆) denote simply the last component of ∆. Clearly both L and E are

c.e., and ǫ effectively maps L onto E. Furthermore, we may define a computable function

On the ubiquity of certain total type structures 97

κ : L → N such that κ(∆) is some ζk−2-code c where ǫ(∆) indexes a basic enumeration

of xc. The definition of κ(∆) is by induction on the length of ∆:

— κ((d, v,m, d0)) = filter (b(d, time(v)),m);

— if κ((d, v,m, d0, y0, . . . , dr)) = c and eval(yr, τ(ayr,dr
)) 6= eval(yr, τ(dr))

then κ((d, v,m, d0, y0, . . . , dr, yr, dr+1)) = c;

— if κ((d, v,m, d0, y0, . . . , dr)) = c, eval(yr, τ(ayr,dr
)) = eval(yr, τ(dr)) = p,

evaltime(yr, τ(ayr,dr
)) = t and ι(yr, dr, u(t), p) = m,

then κ((d, v,m, d0, y0, . . . , dr, yr, ayr,dr
)) = filter (b(dr, t),m).

We now give an analogue of Proposition 8.7 as follows:

Proposition 9.12. Given e ∈ N, λ̇ ∈ Ext(A1) and Ġ ∈ AT

k−1, there is a sequence

c0, c1, . . . of basic type k − 1 codes such that

(1) each ζk−1(cj) has some basic signifier 〈〈dj , uj , pj〉〉 that is satisfactory for Ġ relative

to λ̇ and e;

(2) if Ġ ∈ Ext(Ak−1), then the ζk−1(cj) are pairwise consistent;

(3) if the ζk−1(cj) are pairwise consistent, then the element G =
⊔

j ζk−1(cj) is in

Tot(Peff
k−1) and so represents some G ∈ HEOk−1.

Moreover, the codes cj , and suitable associated signifiers 〈〈dj , uj , pj〉〉, are computable

from j uniformly in e, w ⊢γ
1 λ̇ and y ⊢γ

k−1 Ġ.

Proof. Analogous to the proof of Proposition 8.7. We use the c.e. set E rather than

D for reasons that will appear in the proof of Proposition 9.13 below. We construct

the signifiers 〈dj , uj , pj〉 from a computable enumeration d0, d1, . . . of E by taking uj =

u(e, dj , w, y) (using the new definition of the function u) and p̂j = Ġ ·(total-elt · d̂j). Prop-

erty (1) and the uniform computability are then immediate, and the proof of pairwise con-

sistency used in Proposition 8.7 goes through under the assumption that Ġ ∈ Ext(Ak−1).

For property (3), it suffices to show that for any h ∈ Tot(Peff
k−2) there is some cj = bj 7→ p̆j

with ζk−2(bj) ⊑ h. But this is immediate from Lemma 9.11 and the fact that D ⊆ E.

It will be useful to characterize those Ġ for which the elements ζk−1(cj) generated as

above are pairwise consistent. Let us say Ġ is quasi-extensional if for any ∆,∆′ ∈ L

such that κ(∆) = κ(∆′) (on the nose!), setting d = ǫ(∆) and d′ = ǫ(∆′) we have

Ġ·(total-elt·d̂) = Ġ·(total-elt·d̂′). We also say Ġ quasi-represents a functionalG ∈ HEOk−1

if whenever d ∈ E and ḣ = total-elt · d̂ represents h ∈ HEOk−2, we have Ġ · ḣ = Ĝ(h).

Clearly, if Ġ represents G then Ġ quasi-represents G. Furthermore, if Ġ quasi-represents

G then Ġ is quasi-extensional, since for any ∆ ∈ L we have that d = ǫ(∆) ∈ E indexes

a basic enumeration of xκ(∆), so that total-elt · d̂ represents the corresponding element

xκ(∆) ∈ HEOk−2 and Ġ · (total-elt · d̂) = (G(xκ(∆)))̂ .

An important point here is that if Ġ is not quasi-extensional, then since E is c.e. we

will be able to find a counterexample by means of an effective search which may be

performed within A itself (see Proposition 9.17 below). On the other hand, the following

proposition (corresponding roughly to Proposition 9.4) shows that the quasi-extensional

elements are as well-behaved as the extensional ones for our purposes.

John Longley 98

Proposition 9.13. Suppose given Ġ ∈ AT

k−1 and e, w, y ∈ N as in the above proposition.

Then the compact elements ζk−1(cj) generated from e, w, y as above are pairwise con-

sistent iff Ġ is quasi-extensional. Moreover, in this case, Ġ quasi-represents some unique

G ∈ HEOk−1, which is also the functional represented by G =
⊔

j ζk−1(cj).

Proof. First suppose the ζk−1(cj) are pairwise consistent. By Proposition 9.12, the

element G =
⊔
ζk−1(cj) is total and represents some G ∈ HEOk−1; we will show that

Ġ quasi-represents G. Given any element ḣ = total-elt · d̂ where d ∈ E, suppose d arises

as dj in our enumeration of E, and consider the corresponding code cj and signifier

〈dj , uj , pj〉 generated using e, w, y. From the proof of Proposition 9.12, we see that pj

was chosen so that p̂j = Ġ·ḣ, and ζk−1(cj) = bj ⇒ pj where bj =
⊔

i<time(uj)
ζk−2(dj •i).

Now since ζk−1(cj) ⊑ G and G represents G, we have that G(h′) = pj for all h′ ∈ Ubj
.

But the element h represented by ḣ belongs to Ubj
since it is represented in P

eff
k−2 by⊔

i ζk−2(dj • i) ⊒ bj , so G(h) = pj . Thus Ġ quasi-represents G, so Ġ is quasi-extensional.

For the uniqueness, suppose Ġ quasi-represents both G and G′, and consider an arbi-

trary h ∈ HEOk−2. Let Ub, Ub′ be neighbourhoods for the continuity of G, G′ respectively

at h; then b, b′ are consistent and we may find d ∈ E so that total-elt · d̂ represents an ele-

ment of Ub⊔b′ . But now Ġ·(total-elt·d̂) represents both G(h) and G′(h), so G(h) = G′(h).

For the remaining implication, suppose Ġ is quasi-extensional, and that cj = bj 7→ p̆j

and cj′ = bj′ 7→ p̆j′ are among the codes generated from e, w, y. Suppose too that bj =

ζk−2(bj) and bj′ = ζk−2(bj′) are consistent, otherwise ζk−1(cj) and ζk−1(cj′) are trivially

consistent. Let 〈dj , uj〉 and 〈dj′ , uj′〉 be the pre-signifiers for bj , bj′ generated as in Propo-

sition 9.12, and let m be a code for bj ⊔ bj′ . Then (dj , uj ,m), (dj′ , uj′ ,m) ∈ M , and if

d∗j = δ(dj , uj ,m) and d∗j′ = δ(dj′ , uj′ ,m) then κ((dj , uj ,m, d
∗
j)) = κ((dj′ , uj′ ,m, d∗j′)) =

m, so by quasi-extensionality we have Ġ · (total-elt · d̂∗j) = Ġ · (total-elt · d̂∗j′). We will show

that Ġ · (total-elt · d̂∗j) = p̂j ; by symmetry we will then also have Ġ · (total-elt · d̂∗j′) = p̂j′ ,

whence pj = pj′ and the elements ζk−1(cj), ζk−1(cj′) are consistent.

We henceforth write d, d∗, u, p, b for dj , d
∗
j , uj , pj , bj respectively. Recall from the fore-

going proofs that d ∈ E, that p was chosen so that p̂ = Ġ · (total-elt · d̂), and that u

was chosen so that time(u) ≥ time(u−), where u− = u(evaltime(y, τ(ay,d))), borrowing

notation from the proof of Proposition 9.9. Let z− = 〈d, u−〉 and let b− be the ele-

ment pre-signified by z−; note that b− ⊑ b. Note also that (d, u−,m) ∈ M , and setting

d∗− = δ(d, u−,m) we again have κ(d, u−,m, d∗−) = m, so again by quasi-extensionality

we have Ġ · (total-elt · d̂∗) = Ġ · (total-elt · d̂∗−).

Now suppose for contradiction that Ġ ·(total-elt · d̂∗−) = p̂′ 6= p̂. By examining the code

in the proof of Proposition 8.4, we will show that this “counterexample” (or a similar one)

will be detected by the program easy-critical-index, causing Ġ · (total-elt · ây,d) 6= p̂

and contradicting the choice of u−.

First, from the definition of std-dense in the proof of Proposition 9.9, we see that

Ġ ·(std-dense · ẑ− ·m̂) = Ġ ·(total-elt · d̂∗−) = p̂′, so that is-counterex-for · Ġ · ẑ− · p̂ ·m̂ = tt.

Since Ġ · (std-dense · ẑ− · m̂′) is a numeral for every m′, it follows that easy-critical-index ·

Ġ · ẑ− · p̂ yields some m̂0 with Ġ · (std-dense · ẑ− · m̂0) 6= p̂.

On the ubiquity of certain total type structures 99

Now consider the index ay,d as in the proof of Proposition 9.9. Recall that

ay,d • i ≃

d • i if i < evaltime(y, τ(ay,d))

d • i if i ≥ evaltime(y, τ(ay,d)) and eval(y, τ(ay,d)) 6= p

ξk−2,c(i) if i ≥ evaltime(y, τ(ay,d)) = t, eval(y, τ(ay,d)) = p,

m0 = ι(y, d, u(t), p) and c = filter(b(d, t),m0)

and that eval(y, τ(d)) = p and eval(y, τ(ay,d)) is defined. We may now re-run parts of

the proof of Proposition 9.9 using the fact that Ġ is quasi-extensional. We first claim

that eval(y, τ(ay,d)) = p. Suppose not; then the pair (d, y) is acceptable and d ∈ E, so

ay,d ∈ E. Indeed, if d arises as ǫ(∆) for ∆ ∈ L, then ay,d arises as ǫ(∆′) where ∆′ is

obtained by appending y, d to ∆, and moreover κ(∆′) = κ(∆). So by quasi-extensionality

we have Ġ · (total-elt · ây,d) = Ġ · (total-elt · d̂) = p̂, whence eval(y, τ(ay,d)) = p after all.

We now have that eval(y, τ(ay,d)) = eval(y, τ(d)) = p, and also that easy-critical-index·

Ġ · 〈d, u−〉̂ · p̂ = m̂0 where u− = u(t) for t = evaltime(y, τ(ay,d)), so that ι(y, d, u(t), p) =

m0. Thus (d, y) is an acceptable pair and d ∈ E, so ay,d ∈ E. Moreover, if ∆′ ∈ L

represents the generation of ay,d via d, then we have

κ(∆′) = filter (b(d, t),m0) = κ((d, u−,m0, δ(d, u
−,m0)))

So by quasi-extensionality again we have

Ġ · (total-elt · ây,d) = Ġ · (total-elt · (δ(d, u−,m0))̂)

= Ġ · (std-dense · ẑ− · m̂0) 6= p̂

which contradicts the fact that eval(y, τ(ay,d)) = p.

Continuing with our adaptation of the argument of Section 8, we have the following

variant of Corollary 8.8. Here, as before, we suppose that ν ∈ Keff
2 is a basic enumeration

of some Phi ∈ Tot(Peff
k) representing Φ ∈ HEOk.

Corollary 9.14. For any e ∈ N, λ̇ ∈ Ext(A1), w ⊢γ
1 λ̇, Ġ ∈ AT

k−1 and y ⊢γ
k−1 Ġ, there

exist a position index j for ν and a number

s = 〈〈d0, u0, p0〉, . . . , 〈dr−1, ur−1, pr−1〉〉

such that

(1) for each i < r, 〈〈di, ui, pi〉〉 is satisfactory for Ġ relative to λ̇ and e;

(2) either

(2.1) ν(j) is a basic code 〈c 7→ q̆〉, s is a well-formed type k−1 signifier, and ζk−1(c) =

[[s]], or

(2.2) r = 2 and the basic signifiers 〈〈d0, u0, p0〉〉, 〈〈d1, u1, p1〉〉 denote inconsistent

elements of P
comp
k−1 (there is no condition on j in this latter case);

(3) if Ġ quasi-represents G, then we are in case (2.1) with q = Φ(G).

Moreover, suitable values of j and s are computable from ν ∈ NN and e, w, y ∈ N by

means of a type 2 partial computable functional.

John Longley 100

Proof. If Ġ quasi-represents G, the search described in the proof of Corollary 8.8 (using

e, w, y) will yield a pair (j, s) satisfying conditions (1) and (2.1), and in fact we will have

q = Φ(G). We may therefore interleave this search with a search for a pair (i, i′) such

that the generated elements ζk−2(ci), ζk−2(ci′) are inconsistent. If these are found, we

may set j arbitrarily and take s = 〈〈di, ui, pi〉, 〈di′ , ui′ , pi′〉〉, so that conditions (1) and

(2.2) are satisfied. By Proposition 9.13, for any Ġ ∈ AT

k−1 at least one of these searches

will succeed, and if the second succeeds then Ġ is not quasi-extensional.

From this point on, the argument proceeds much as in the modified continuous case. We

modify our definition of satisfactory representation to include all possible “inconsistent

signifiers”, in order to catch all the non-extensional elements Ġ.

Definition 9.15. A modified satisfactory representation of Φ ∈ HEOk is a total com-

putable function λ : N → N, where λ(j) = 〈ej , sj , qj〉 for each j, such that

(1) any number e ∈ N appears as ej for at most one j;

(2) for each j, either

(2.1) sj is a signifier 〈〈dj0, uj0, pj0〉, . . . , 〈dj(rj−1), uj(rj−1), pj(rj−1)〉〉 for some com-

pact element cj ∈ Pk−1, and cj ⇒ qj is consistent with Φ, or

(2.2) sj is of the form 〈〈dj0, uj0, pj0〉, 〈dj1, uj1, pj1〉〉, and the signifiers 〈〈dj0, uj0, pj0〉〉,

〈〈dj1, uj1, pj1〉〉 denote inconsistent elements of P
comp
k−1 , and qj = 0;

(3) for any λ̇′ ∈ Ext(A1) and Ġ ∈ AT

k−1, there exists a position index j for λ such that

each 〈〈dji, uji, pji〉〉 associated with sj is satisfactory for Ġ relative to λ̇′ and ej .

Proposition 9.16. Suppose ν ∈ Keff
2 basically enumerates some Phi representing Φ ∈

HEOk. Then a modified satisfactory representation λν of Φ exists and is computable from

ν by means of a type 2 partial computable functional.

Proof. Similar to the proof of Proposition 8.10. Let θ : NN×N3 ⇀ N2 be the uniformly

partial computable function embodying the composite search for (j, s) in the proof of

Corollary 9.14, so that θ(ν, e, y, w) = (j, s). Having found j and s, a suitable value for q

is given by

q(j, s) =

{
q if s is a consistent signifier and ν(j) = c 7→ q̆ for some c

0 otherwise

Now consider the set

Mν = {〈e, s, q〉 | ∃y, w, j. e = 〈y, w〉 ∧ θ(ν, e, y, w) = (j, s) ∧ q = q(j, s)}

Then as before, Mν is c.e. uniformly in ν, and the rest of the proof proceeds as for

Proposition 8.10. An inspection of the search procedure confirms that even if y, w do

not realize suitable elements Ġ, λ̇′, the value of θ(ν, 〈y, w〉, y, w), if any, will still satisfy

condition (2.1) or (2.2) of Definition 9.15 as appropriate.

As before, we may therefore construct an NRComb program satis-rep : 1 → 1 such

that whenever ν̇ ∈ Ext(A1) represents a basic enumeration ν of some Phi ∈ Tot(Peff
k),

the element satis-rep · ν̇ ∈ A1 represents the modified satisfactory representation λν .

On the ubiquity of certain total type structures 101

Next, we introduce some machinery to allow us to perform a search within A for a

counterexample to the quasi-extensionality of Ġ. If ∆ = (d, v,m, d0, y0, . . . , dr) ∈ L, we

write 〈∆〉 for 〈d, v,m, d0, y0, . . . , dr〉. Suppose L-enum : 0 → 0 represents a computable

enumeration of the set of all 〈∆〉 where ∆ ∈ L, eps : 0 → 0 is such that eps·〈̂∆〉 = (ǫ(∆))̂

for all ∆ ∈ L, and kap : 0 → 0 is such that kap · 〈̂∆〉 = (κ(∆))̂ for all ∆ ∈ L. We now

define:

incons2 Gk−1 Delta00 Delta10 ≡ and (eq (kap Delta0) (kap Delta1))

(not (eq (G (total-elt (eps Delta0)))

(G (total-elt (eps Delta1)))))

incons Gk−1 n0 ≡ incons2 G (L-enum (proj0 n))

(L-enum (proj1 n))

The key property of incons is as follows:

Proposition 9.17. For any Ġ ∈ AT

k−1 and n ∈ N we have incons · Ġ · n̂ ∈ {tt,ff}.

Moreover, Ġ is quasi-extensional iff incons · Ġ · n̂ = ff for all n.

Proof. The first statement follows from the fact that for any n, eps · (L-enum · n̂)

represents an element of E, so that Ġ·(total-elt·(eps·(L-enum·n̂))) evaluates to a numeral,

and moreover proj0, proj1 represent total functions. Moreover, the definition of incons2

is a direct translation of the condition that ∆0,∆1 ∈ L constitute a counterexample to

the quasi-extensionality of Ġ, namely, that κ(∆0) = κ(∆1) but Ġ · (total-elt · (ǫ(∆0))̂) 6=

Ġ · (total-elt · (ǫ(∆1))̂). The second statement then follows easily.

We now define the Normann program nablak just as in Section 8.4, except that we

modify the definition of test-pre-critical as follows:

refutes-or-incons Gk−1 x0 m0 ≡ or (refutes G x m) (incons G m)

test-pre-critical Gk−1 lam1 x0 m0 ≡ if0 (or (refutes G x m)

(eq (proj2 x) (proj2 (lam m))))

m (min (refutes-or-incons G x))

It remains to check that the element ∇k satisfies the properties required by Lemma 9.8:

Proposition 9.18. Suppose Φ ∈ HEOk, ν
δ
k Φ, ν̇ ∈ Ext(A1) represents ν and Ġ ∈

AT

k−1. Then

(1) ∇k · ν̇ · Ġ evaluates to a numeral;

(2) if Ġ quasi-represents G ∈ HEOk−1, then ∇k · ν̇ · Ġ = Φ̂(G).

The proof is a mild elaboration of the proof of Theorem 8.13. As in the modified contin-

uous setting, we argue by cases according to whether or not Ġ is quasi-extensional; the

remarks at the end of Section 9.1 apply here mutatis mutandis.

John Longley 102

10. Commentary on the main theorems

In this section we collect together some technical remarks and observations concerning

our theorems, including some mild generalizations and extensions. We start by surveying

some examples and non-examples of NR-TPCAs to which our theorems can be applied,

in order to give an indication of the scope and limitations of our results.

10.1. Scope and applications of our theorems

As the range of examples of NR-TPCAs in Section 3 makes clear, a large number of new

characterizations of the type structures C, C
eff, HEO flow from our theorems. Several of

these NR-TPCAs have their own intrinsic appeal, and the corresponding characteriza-

tions can thus be seen as having some interest in their own right.

10.1.1. Typed models. Among full continuous NR-TPCAs that satisfy the conditions

Theorem 5.13 are many of the models of an “algebraic” character that are studied in

denotational semantics, such as (the finite type portions of) the Milner model of PCF,

Berry’s stable model, the Bucciarelli-Ehrhard strongly stable model, the Berry-Curien

sequential algorithms model, and most of the game models considered by Abramsky, Hy-

land et al, in both their intensional and extensional manifestations. In all these models,

condition (C) of Theorem 5.13 typically holds because we may take the canonical repre-

sentative of a function N → N to be the strict map N⊥ → N⊥ which represents it, and

there is a strictifying map NN⊥

⊥ → NN⊥

⊥ which plays the role of norm. In addition, it is

worth remarking that our theorems apply equally well to the call-by-name, call-by-value

and lazy variants of the above models.

The kinds of full continuous models for which condition (C) fails are highly intensional

models, often with a syntactic flavour, such as the term model NRC
∞ itself. (Our theorem

does of course apply to NRC
∞+.) Perhaps a more serious shortcoming is that condition

(AB) tends to fail in models in which the numerals are not maximal elements, such as Pω

or the model L given by continuous lattices. We will discuss the prospects for weakening

some of these restrictions in Section 10.4.

For all of the positive examples listed above, one can identify an “effective submodel”,

and in some cases (such as the Milner and strongly stable models), more than one can-

didate for such a structure can be identified. In all these cases, Theorem 5.14 shows that

the corresponding relative extensional collapse is C
eff, and Theorem 5.12 shows that the

extensional collapse of the effective model considered in its own right is HEO.

Also of interest are the term models for various simply-typed programming languages,

such as the models NRC and PCF from Section 3.4. A sample of other models is consid-

ered in (Longley 1999a). In many good cases, these models coincide with the effective

submodels of one of the denotational models listed above, but in other cases no good

denotational counterpart is known. It is intuitively clear that conditions (A) and (B) of

Theorem 5.12 will be satisfied by the term model for any reasonable programming lan-

guage with an effective, deterministic operational semantics. This includes even highly

On the ubiquity of certain total type structures 103

“intensional” languages such as PCF + timeout or PCF + quote (in these cases, the

corresponding infinitary term models fail to satisfy condition (C)).

It is worth pointing out that our results apply even to such mathematically unwieldy

structures as term models for full-scale programming languages. Consider, for example,

the set of “closed” programs of simple type in Standard ML (Milner et al. 1997). (The

notion of closed program that we have in mind requires some elaboration, and we will not

give details here. The idea is to permit local uses of exceptions, state variables and other

non-functional features, but to disallow the manipulation of global state variables.) Under

the congruence generated by the evaluation relation, these clearly form an effective NR-

TPCA, and so without knowing any more about the definition of ML, we may conclude

that the hereditarily total functionals computable in ML are precisely those of HEO.

An interesting test case is provided by term models for non-deterministic languages.

Here it is natural to take the numeral n̂ to correspond to the set of programs that must

evaluate to n under any possible sequence of non-deterministic choices. In the case of

a language with a binary non-deterministic choice operator, we see by König’s Lemma

that the set of such programs is c.e., and so Theorem 5.12 applies. However, this is not

the case for a language with countable non-deterministic choice, and such languages fall

outside the scope of our theorem.

10.1.2. Untyped models. Many untyped PCAs provide pleasing examples of our theo-

rems. However, some of these, such as Plotkin’s Tω (Plotkin 1978) and van Oosten’s B

(van Oosten 1999), are known to be “equivalent” to one of the typed models already

mentioned, and so should not really be counted as distinct instances — see (Longley

1999a). Perhaps the most striking applications in the untyped world are to syntactic

models, such as term models for untyped combinatory logic and various untyped lambda

calculi. The problem of identifying the total type structure arising from the usual un-

typed lambda calculus has occasionally been aired as an open question (see e.g. (Beeson

1985, Section IV.8) or (Longley 1995, page 250)). Prior to obtaining the theorems in this

paper, the author believed that this problem was probably intractable at present. (This

opinion was based largely on his experience of trying to identify the partial type struc-

ture arising from this model — see (Longley 1995, Section 7.4).) However, it now follows

immediately from Theorem 5.12 that EC(Λ0/T) ∼= HEO, where Λ0 is the set of closed

terms of the untyped lambda calculus, and T is any sub-theory of the theory induced

by Böhm tree equality (see (Barendregt 1984)). Similar remarks apply for various other

call-by-value and lazy untyped lambda calculi.

An example which the author finds particularly appealing is the full continuous Böhm

tree model. Somewhat surprisingly, this model satisfies condition (C) — the reason is

explained in (Longley 1995, Section 7.4) — and so Theorem 5.13 applies. A similar ob-

servation probably holds for the “tree models” associated with other untyped lambda

calculi. However, our results unfortunately do not apply to the full [resp. effective] Naka-

jima tree model, since this does not satisfy condition (AB) [resp. condition (B)].

Finally, it is embarrassing that two of the models of primary interest, namely Pω and

K2 (along with their effective submodels) fall outside the scope of our theorems. For Pω,

as mentioned above, the problem is that the numerals are not maximal elements; for K2

John Longley 104

the problem stems from the anomaly explained in Example 3.2. Of course, in both these

cases the relevant results are already known, both for the standard and for the modified

extensional collapse (see Section 4.2 and the remarks at the start of Section 9).

10.2. Mild strengthenings and generalizations

We next consider various directions in which our theorems can be extended. In this

section we mention some immediate observations leading to mild strengthenings.

10.2.1. Retracts of simple types. In this paper we have confined our attention to the

simple types over N. However, it is well known that a rich collection of datatypes may be

obtained as retracts of simple types (much as the simple types were seen to be retracts

of pure types in Section 6.2). This allows us to add not only other base types such as the

booleans, but (positive) inductive types such as lists and trees, and even dependent (sum

and product) types, as well as all higher types over these. For quite general reasons, all

these types can be interpreted in Asm(A) for any N-TPCA A, and our theorems imme-

diately transfer to this richer class of types. (The essential ideas here were introduced in

(Scott 1976); see also (Longley 2003).) Thus, we have robust notions of computability

for total objects of all these types.

10.2.2. Weaker definitions of NR-TPCA. Firstly, whilst our definition of NR-TPCA in

Section 2 seems to us to be a natural one to work with, it is clear that the full strength of

this definition is not needed for our results, since we only require rec and y combinators

at certain low types. In fact, in the effective case we can make do with rec0 and y1; in

the continuous case y2 is also needed. We could therefore formulate our theorems for a

weaker notion of NR-TPCA in which only these recursion operators are required. We

do not know whether this would admit any particularly interesting additional examples,

beyond the obvious term models. However, it is certainly of conceptual interest to know

that such limited computational power suffices for computing total functionals. In the

continuous case, for instance, our result shows that y1 and y2 provide all that is required

over and above Kleene’s schemata S1–S9 (interpreted over C) in order to generate the

whole of C
eff. This suggests that, in some sense, there are probably no natural notions

of computability between the Kleene computable functionals on C and C
eff itself. (For

further information on this intermediate territory, see (Gandy and Hyland 1977; Normann

1981).)

10.2.3. Relative extensional collapses and other realizations. For simplicity we have for-

mulated our theorems for C and HEO in terms of a “simple” extensional collapse con-

struction, but it is clear that the proofs also establish more general “relative versions”.

For instance, if A is an effective NR-TPCA (with realization γ) satisfying conditions

(A) and (B) of Theorem 5.12, then any sub-NR-TPCA A′ of A inherits an effective re-

alization satisfying these conditions, and modulo some cosmetic changes, the proof of

Theorem 5.12 shows that γ∗(EC(A;A′)) ∼= HEO in Asm(K1). The crucial point here is

that the Normann operators ∇k ∈ A1→k are NRComb-definable, and so lie within A′.

On the ubiquity of certain total type structures 105

For the continuous case, suppose A is a full continuous NR-TPCA with realization

γ. We may define a full sub-NR-TPCA of A to be a sub-NR-TPCA A′ such for any

f : N → N we have f ♯ ∈ A′
1 (see Definition 5.5). If A is a full-continuous NR-TPCA

satisfying conditions (AB) and (C) of Theorem 5.13, and A′ is a full sub-NR-TPCA of A

which moreover contains norm, then the proof of Theorem 5.13 goes through and shows

that γ∗(EC(A;A′)) ∼= C in Asm(K2).

Carrying this line of thought a little further, we see that there is no essential reason

to restrict attention to extensional collapses at all. Consider, for example, an arbitrary

type-respecting realization of a total type structure T over a TPCA A — this corre-

sponds to an internal TTS T within Asm(A). Even if T is not of the form EC(A) or

EC(A;A′), our theorems will still apply to T provided T satisfies a certain “complete-

ness condition”. For example, suppose A is an effective TPCA satisfying conditions (A)

and (B) of Theorem 5.12, and suppose T has the following property:

— whenever f : Tk → N is a total function and ḟ is an NRComb-definable element of

Ak+1 such that ḟ · ẋ = f̂(x) whenever ẋ realizes x in Tk, there is an element of Tk+1

which is realized by ḟ .

The idea is that Tk+1 can comprise any class at all of “total computable functionals”

Tk → N , provided it is rich enough to include all computations expressible in NRComb.

(As discussed in Section 10.2.2, we can get away with less than the whole of NRComb

here.) Under these conditions, our construction of the Normann operator ∇k+1 : 1 →

k + 1 goes through, allowing us to conclude that T ∼= HEO. Analogous remarks apply

in the continuous case.

This observation seems to us significantly to reinforce the impression of ubiquity sug-

gested to our theorems, in that it vastly extends the class of realizations to which they

are applicable. Moreover, it seems conceivable that there are natural approaches to con-

structing a total type structure T , using elements of some TPCA A as intensional repre-

sentations, in which the elements of Ak+1 chosen to represent total functionals need not

include all elements of A (or some A′ ⊆ A) that happen to behave extensionally on the

chosen representatives of type k. However, we do not have any convincing examples of

such constructions at present.

10.2.4. Quotients of NR-TPCAs. A further way to extend the scope of our theorems is by

considering quotient maps. As a trivial example, suppose A is the applicative structure

of closed terms of some deterministic simply typed programming language extending

NRComb, and B is the same structure quotiented by some kind of computational equality

(generated by the evaluation relation) making B an NR-TPCA. Even though A is not

in general an N-TPCA, we may define its extensional collapse (relative to the PER ∼ at

ground type, where M ∼ N iff M,N evaluate to the same numeral), and it is clear that

EC(A) and EC(B) coincide. One may therefore directly obtain HEO (for instance) as the

extensional collapse of a raw term model.

More interestingly, suppose A,B are NR-TPCAs with B a quotient of A, where the

quotient map q : A→ B preserves and reflects numerals (that is, x is a numeral for n in

A if and only if q(x) is the numeral for n in B). Again, it is clear that EC(A) and EC(B)

John Longley 106

coincide, so if the conditions of one of our theorems are applicable to either A or B, we

can also deduce the result for the other. In the effective case this does not in fact lead

to any new models, but in the continuous case, there is the possibility that B satisfies

condition (C) while A does not.

In practice, the requirement regarding numerals turns out to be rather strong and

rules out many potential applications (such as passing from the Böhm tree model to

the Nakajima tree model — see Section 10.1). However, we are hopeful that it might be

possible to establish the extensional collapse of the term model NRC
∞ by such means,

by using an intermediate term model of which NRC
∞+ and NRC

∞ are both quotients,

and appealing to normalization theorems for the relevant calculi in order to establish the

numeral property. We have not worked out the details.

10.3. Uniform versions of the Normann programs

Central to our proofs in Sections 7 and 8 was a lemma asserting the existence of Normann

programs nablak that defined suitable operators ∇k in the structure A in question. It is

therefore natural to ask whether the Normann programs can be chosen independently of

A: in other words, can we give a single program nablak which works uniformly for the

whole class of NR-TPCAs under consideration?

For the continuous case, the answer is immediately positive, since the programs we

defined in Section 7 do not depend at all on A or on details of the realization γ. Of course,

we have not been able to do without the constant norm, so in order to say that these

programs work “uniformly”, one should regard the NR-TPCAs in question as equipped

with an explicit choice of an element norm by which norm must be interpreted.

In the effective case, the Normann programs in Section 8 involve a defined constant

satis-rep, which represents a type 2 partial computable function whose definition is

implicit in the proofs of Proposition 8.10 and the preceding results, and which thus

depends essentially on data associated with the realization γ. Specifically, for each type

level k, the function ‘satis-rep’ depends on choices of (a finite number of) realizers aστ

and d ∈ K1, and on an index witnessing the computable enumerability of the set {m |

m ⊢γ
0 0̂}. However, it is clear from our proofs that a suitable function ‘satis-rep’ is

computable uniformly in these data. We may therefore bundle these parameters up into

a single parameter ℘ ∈ N, and modify our programs so that the uniform dependence on

℘ is explicit.

In order to obtain a truly uniform version of the Normann programs, we may extend the

trick involving the place markers e in the proof of Proposition 8.10. Specifically, we use as

place markers all coded triples 〈y, w, ℘〉, where y and w as before, and ℘ is thought of as a

potential code for the data listed above. As in Proposition 8.10, we effectively generate the

tokens 〈e, s, q〉 of the satisfactory representation, now using ℘ as an additional parameter

in a role similar to y and w. We take care to maintain condition (3) of Definition 8.9,

so that even tokens arising from “bad” values of ℘ will be “correct” with respect to Φ.

Moreover, condition (4) of Definition 8.9 will be upheld, since there is some value of ℘

which is right for the model in question, and the tokens generated using this ℘ will suffice

to cover all possible λ̇ and Ġ.

On the ubiquity of certain total type structures 107

It follows from the existence of such uniform Normann programs that for any x ∈ C
eff
σ

[resp. HEOσ], there is some expression ex of NRComb+ [resp. NRComb] which defines

a representative of x uniformly for all models satisfying the conditions of Theorem 5.14

[resp. Theorem 5.12]. In other words, whilst in general the set of expressions that denote

total elements of A might fluctuate wildly as A varies, there exists a “hard core” of

expressions that always denote total elements, and moreover every total functional has a

“robust implementation” of this kind. This contributes further to the impression that our

type structures enjoy a kind of stable existence; one can also imagine that the existence

of these robust implementations might have interesting computer science applications.

10.4. Prospects for further extensions and simplifications

We would very much like to be able to weaken or dispense with the technical condi-

tions involved in our theorems. Besides being something of a blemish from an aesthetic

point of view, they restrict the applicability of our results and, as we have seen, exclude

some important examples. So far we have been unable to prove our theorems under any

significant weakenings of the hypotheses, despite considerable efforts in this direction.

However, neither do we have any counterexamples to show that some such hypotheses

are necessary.

Let us consider the situation for our theorems on the standard extensional collapse

(the situation for the modified collapse being precisely analogous). In the author’s view,

any of the following would represent a significant advance:

— Replacing condition (B) of Theorem 5.12 with “the set of realizers for 0̂ is Π0
2”.

— In condition (AB) in Theorem 5.14, replacing the requirement that R is open with

“R is Π0
2”.

— Dispensing with condition (C) in Theorem 5.13.

We are somewhat hopeful regarding the first and second of these, and have at least some

ideas for possible proof strategies, though we have so far been unable to solve all the

technical problems they generate. These problems seems to us to be worthy of further

attention, not least because the “Π0
2 condition” is satisfied by all the naturally occurring

models of which we are aware.

The third relaxation would seem to be perhaps the hardest to dispense with. It is clear

that our method of proof in Section 7 leans heavily on condition (C), which is used in two

quite distinct roles (three in the modified version!) to eradicate unwanted information.

Even so, there is a feeling that whereas something like condition (B) or (AB) is integral

to our whole approach, condition (C) seems like cheating. At present we have very little

idea how one might dispense with this condition in the continuous setting; however, it

seems likely that any technique which would allow us to do so would also allow us to

eliminate the use of the combinator y2.

The author’s view at present is that a significant new idea would be needed to make

progress on any of the above problems. Nevertheless, there remains the fact that there

are known characterizations of our type structures via extensional collapse constructions

which fall outside the scope of our theorems, which suggests that the “ubiquity” of these

structures extends further than our current theorems account for.

John Longley 108

There is also the question of whether the proofs of our current theorems can be sim-

plified. It is tempting to wonder whether the machinery we use is more complicated than

necessary for the task at hand. However, our experience suggests that our main proofs

are quite delicate and finely tuned constructions — even small changes to some point of

technical detail frequently have deep repercussions for the rest of the proof — so that

finding substantial simplifications is unlikely to be easy. We have repeatedly found that

the syntactic models NRC, NRC
∞ and NRC

∞+ have played a valuable role in showing up

problems with proposed proof strategies, and we would expect them to continue to be

useful in this role for testing out any new ideas for extending or simplifying our proofs.

Even so, one may ask whether the presentation of our proofs might be cleaned up by

means of some more high-level or abstract approach. For instance, since so much of our

work has to do with the “effective content” of various mathematical statements, it is

natural to ask whether parts of our arguments might be couched in the internal logic of

the categories in question (see e.g. (Hyland 1982)). At present, many of our arguments

(e.g. those involving conditions (A) and (B)) are concerned with “low-level” structure

which one would not expect to be visible from within the categories themselves, and the

task of isolating parts of our arguments that are amenable to an internal logic treatment

would appear to be non-trivial.

A more promising possibility for abstraction (to the author’s mind) comes from the

work of Berger on abstract notions of density and totality in domains (Berger 1993;

Berger 2002). Berger has used these ideas to obtain a domain-theoretic generalization

of the KLS theorem, and we are hopeful that they may also help to clarify some of the

arguments of the present paper.

11. Conclusion

We have shown that some large classes of “standard realizability” and “modified realiz-

ability” constructions all give rise to one of the well-known type structures C,Ceff,HEO.

As we have observed, even for individual TPCAs such results often have a non-trivial

character, and so the possibility of obtaining such general results came as a consider-

able surprise to the author. Since our classes include a large number of mathematically

natural constructions (as well as an even larger number of unnatural ones), we regard

our results as providing strong evidence that these type structures are highly canonical

mathematical objects. (Indeed, the interest of our theorems perhaps lies less in the source

of “natural” characterizations of C, C
eff, HEO that they yield, than in the fact that even

artificial or contrived NR-TPCAs cannot avoid giving rise to these structures.) In fact,

our theorems seem to us to go somewhat further and to suggest a kind of definitive sta-

tus for these type structures, in the sense that they make it very difficult to believe that

there are any other rival notions of “continuous functional on continuous data,” etc.,

with comparably good credentials. In the author’s view, this contrasts markedly with

the situation for partial type structures: seemingly, the only evidence that there are no

further interesting notions of computable partial functional awaiting discovery is that we

have not come across them yet. (Cf. (Longley 2005a, Section 7).)

We venture to suggest that our theorems are not merely new results, but in some way

On the ubiquity of certain total type structures 109

represent a new kind of result in the field of higher type computability, in that they

address a whole class of constructions simultaneously. Rather than just considering a

few isolated points or landmarks in the “space of notions of computability”, we are able

to take care of a whole tract of territory in a single swoop. We feel that the possibility

of proving such general results is a positive sign for our overall project of mapping out

the higher type computability landscape. It would be interesting to know whether any

results in a similar vein can be obtained for partial type structures.

The results of this paper make very substantial use of the general framework of TPCAs

and applicative morphisms (here in the guise of realizations) which we have developed

in earlier works (Longley 1995; Longley 1999a; Longley 1999b), and which will be more

fully presented in (Longley 2007?). The present work provides an example of a non-trivial

application of these ideas — we see this as encouraging evidence of the usefulness of this

framework on both a conceptual and a technical level.

Our proofs have also highlighted a curious and unexpected moral: “effective” is some-

times easier than “continuous”. Admittedly, some aspects of the proof are much more

subtle in the effective setting (compare Section 7.3 with Section 8.2); however, a su-

perficial comparison of the two proofs is misleading, since condition (C) gives an unfair

advantage to the continuous case. More telling is that in terms of the actual scope of

our results, we have been able to get further in the effective setting. It seems that the

infinitary nature of data in the full continuous setting creates genuine mathematical ob-

stacles for certain kinds of proofs. It might be interesting to apply this lesson to other

problems for which the full continuous version appears to be difficult, such as the open

question of whether the “intensional” total type structure over the reals coincides with

the “extensional” one (Bauer et al. 2002; Normann 2005). In the light of our experience

it seems conceivable that, contrary to natural expectations, the effective analogue of this

problem might actually turn out to be easier.

Finally, our results seem to have a bearing on a more conceptual issue. For the author,

one of the most important (and nagging) problems in the subject area concerns the status

of the extensional collapse construction. In the context of the present paper, the issue can

be framed as follows: given that an N-TPCA A may in general support realizations of

many different total type structures (and sometimes multiple non-isomorphic realizations

of the same type structure), what, if anything, is special about the one picked out by the

extensional collapse construction, beyond the fact that it is given by this construction?

On the one hand, the type structure EC(A) can be seen as inheriting some kind of

significance from the realizability model Asm(A) (and in the untyped case, the associated

topos), within which EC(A) arises from the cartesian closed structure. These categories

are themselves so abundant in structure, and so rich in connections with other important

ideas, as to compel attention in their own right, and this in itself would seem to be some

reason for being interested in EC(A).

On the other hand, judged on more intrinsic criteria, it is less clear whether EC(A) is

really special at all. In particular, the “greedy” strategy embodied by the EC construction

— at each type level we include as many functionals and realizers as possible — need not

yield the unique maximal TTS realizable over A, and there is no particular reason a priori

to expect it to yield the “best” such TTS. (For instance, it can be argued that within

John Longley 110

Asm(K1), the internal TTS Ceff enjoys much better properties than HEO.) Moreover,

the construction itself has a prima facie anarchic character — at each type level, one

takes all realizers that simply “happen” to act extensionally on realizers of the type

below, and one may feel a suspicion that the resulting structure will be unduly sensitive

to “accidental” properties of the model in question — a feeling which intensifies as one

climbs up the types. The same message is of course reinforced by the non-functoriality of

EC, and by other anomalies such as the fact that extensional collapses do not necessarily

compose — cf. (Honsell and Sannella 1999).

Our present results seem to us to go some way towards exorcising this sense of unease,

in that they show how the wildness of the general EC construction is sometimes tame-

able. In particular, our “robust” NRComb implementations of total functionals (as in

Section 10.3) offer a kind of common skeletal structure running through all the models

in question, giving us a strong grasp on the behaviour of arbitrary extensional realizers.

It is to be hoped that this structural analysis of C, C
eff, HEO and their realizability char-

acterizations will lead to further understanding of the associated computability notions

in the future.

Acknowledgements

I would like to thank Dag Normann, firstly for developing the ideas on which the present

paper is based, and secondly for illuminating correspondence and discussions. I have

also profited from discussions with Andrej Bauer, Ulrich Berger, Mart́ın Escardó, Gor-

don Plotkin and Alex Simpson. At a somewhat earlier stage, Martin Hyland helped me

considerably in my understanding of the structures considered in this paper.

I am also grateful to the editors for their persistence in encouraging me to write

this paper, and their patience in waiting so long for me to do so. The two anonymous

referees took a great deal of care over the paper, spotting numerous minor errors and

offering valuable suggestions for improvement. Finally, I thank Caroline Pilkington (now

Longley) for her unfailing support and encouragement, and for cheerfully tolerating my

daily progress reports from the “mathematical ridge”.

References

Abramsky, S., and G. McCusker, Game semantics, in Schwichtenberg, H., and U. Berger, editors,

“Computational Logic: Proceedings of the 1997 Marktoberdorf Summer School”, Springer

(1999), 1–56.

Amadio, R., and P.-L. Curien, “Domains and Lambda Calculi”, Cambridge Tracts in Theoretical

Computer Science 46, Cambridge University Press (1998).

Awodey, S., L. Birkedal, and D.S. Scott, Local realizability toposes and a modal logic for com-

putability, Mathematical Structures in Computer Science 12 (2002), 319–334.

Barendregt, H.P., “The Lambda Calculus: Its syntax and semantics” (revised), Studies in Logic

and the Foundations of Mathematics 103, North-Holland (1984).

Bauer, A., “The Realizability Approach to Computable Analysis and Topology”, Ph.D. thesis,

Carnegie Mellon University (2000). Available as technical report CMU-CS-00-164.

On the ubiquity of certain total type structures 111

Bauer, A., A relationship between equilogical spaces and Type Two Effectivity, Mathematical

Logic Quarterly 48(1) (2002), 1–15.

Bauer, A., M. Escardó, and A. Simpson, Comparing functional paradigms for exact real-number

computation, in Proceedings of ICALP 2002, Springer LNCS 2380 (2002), 488–500.

Beeson, M., “Foundations of Constructive Mathematics”, Springer-Verlag (1985).

Berger, U., Total sets and objects in domain theory, Annals of Pure and Applied Logic 60 (1993),

91–117.

Berger, U., Computability and totality in domains, Mathematical Structures in Computer Science

12 (2002), 281–294.

Bergstra, J.A., The continuous functionals and 2
E, in Fenstad, J.E., R.O. Gandy, and G.E.

Sacks, editors, “Generalized Recursion Theory II”, North-Holland (1978), 39–53.

Berry, G., Stable models of typed lambda-calculi, in Proceedings of 5th International Colloquium

on Automata, Languages and Programming, Springer LNCS 62 (1978), 72–89.

Berry, G., and P.-L. Curien, Sequential algorithms on concrete data structures, Theoretical Com-

puter Science 20(3) (1982), 265–321.

Bezem, M., Isomorphisms between HEO and HROE, ECF and ICFE , Journal of Symbolic Logic

50 (1985), 359–371.

Bucciarelli, A., and T. Ehrhard, Sequentiality and strong stability, in Proceedings of 6th Annual

Symposium on Logic in Computer Science, IEEE (1991), 138–145.

Ershov, Yu.L., Computable functionals of finite types, Algebra i Logika 11(4) (1972), 367–437.

English translation in Algebra and Logic 11(4), 203–242 (AMS).

Ershov, Yu.L., Everywhere-defined continuous functionals, Algebra i Logika 11(6) (1972), 656–

665. English translation in Algebra and Logic 11(6), 363–368 (AMS).

Ershov, Yu.L., Maximal and everywhere defined functionals, Algebra i Logika 13(4) (1974),

374–397. English translation in Algebra and Logic 13(4), 210–225 (AMS).

Ershov, Yu.L., Hereditarily effective operations, Algebra i Logika 15(6) (1976), 642–654. English

translation in Algebra and Logic 15(6), 400-409 (AMS).

Ershov, Yu.L., Model C of the partial continuous functionals, in Gandy, R.O., and J.M.E. Hyland,

editors, “Logic Colloquium 1976”, North-Holland (1977), 455–467.

Escardó, M., J. Lawson, and A. Simpson, Comparing cartesian closed categories of (core) com-

pactly generated spaces, Topology and its Applications 143 (2004), 105–145.

Gandy, R.O., Effective operations and recursive functionals (abstract), Journal of Symbolic Logic

27 (1962), 378–379.

Gandy, R.O., and J.M.E. Hyland, Computable and recursively countable functions of higher type,

in Gandy, R.O., and J.M.E. Hyland, editors, “Logic Colloquium 1976”, North-Holland (1977),

407–438.

Hinata, S., and S. Tugué, A note on continuous functionals, Annals of the Japan Association

for Philosophy of Science 3 (1969), 138–145.

Honsell, F., and D. Sannella, Pre-logical relations, in Computer Science Logic 1999, proceedings,

LNCS 1683, Springer (1999), 546–561.

Hyland, J.M.E., “Recursion theory on the countable functionals”, Ph.D. thesis, University of

Oxford (1975).

Hyland, J.M.E., Filter spaces and continuous functionals, Annals of Mathematical Logic 16

(1979), 101–143.

Hyland, J.M.E., The effective topos, in Troelstra, A.S. and D. van Dalen, editors, “The L.E.J.

Brouwer Centenary Symposium”, NorthHolland (1982), 165–216.

Hyland, J.M.E., Game semantics, in Pitts, A.M., and P. Dybjer, editors, “Semantics and Logics

of Computation”, Cambridge University Press (1997), 131–194.

John Longley 112

Kleene, S.C., “Introduction to Metamathematics”, Wolter-Noordhoff and North-Holland (1952).

Kleene, S.C., Recursive functionals and quantifiers of finite types I, Transactions of the American

Mathematical Society 91 (1959), 1–52.

Kleene, S.C., Countable functionals, in Heyting, A., editor, “Constructivity in Mathematics:

Proceedings of the Colloquium held at Amsterdam, 1957”, North-Holland (1959), 81–100.

Kleene, S.C., and R.E. Vesley, “The Foundations of Intuitionistic Mathematics”, North-Holland

(1965).

Kreisel, G., Interpretation of analysis by means of functionals of finite type, in Heyting, A.,

editor, “Constructivity in Mathematics: Proceedings of the Colloquium held at Amsterdam,

1957”, North-Holland (1959), 101–128.

Kreisel, G., D. Lacombe, and J.R. Shoenfield, Partial recursive functionals and effective opera-

tions, in Heyting, A., editor, “Constructivity in Mathematics: Proceedings of the Colloquium

held at Amsterdam, 1957”, North-Holland (1959), 290–297.

Lietz, P., and T. Streicher, Impredicativity entails untypedness, Mathematical Structures in Com-

puter Science 12 (2002), 335–347.

Longley, J.R., “Realizability Toposes and Language Semantics,” Ph.D. thesis, University of

Edinburgh, 1995. Available as technical report ECS-LFCS-95-332.

Longley, J.R., Matching typed and untyped realizability, Electronic Notes in Theoretical Com-

puter Science 23(1) (1999).

Longley, J.R., Unifying typed and untyped realizability, Unpublished note, 1999. Available at

http://www.inf.ed.ac.uk/home/jrl/unifying.txt.

Longley, J.R., The sequentially realizable functionals, Annals of Pure and Applied Logic 117(1)

(2002), 1–93.

Longley, J.R., Universal types and what they are good for, In Zhang, G.-Q. et al., editors, “Do-

main theory, Logic and Computation: Proceedings of 2nd International Symposium on Do-

main Theory, Sichuan, China, 2001”, Kluwer (2003), 25–63.

Longley, J.R., Notions of computability at higher types I, in Cori, R., A. Razborov, S.Todorčević

and C. Wood, editors, “Logic Colloquium 2000: Proceedings of the ASL meeting held in

Paris”, Lecture Notes in Logic 200, ASL (2005), 32–142.

Longley, J.R., On the ubiquity of certain total type structures, extended abstract, in “Proceed-

ings of the Workshop on Domains VI, Birmingham, UK”, Electronic Notes in Theoretical

Computer Science 73, Elsevier (2005), 87–109.

Longley, J.R., Notions of computability at higher types II, in preparation.

Milner, R., Fully abstract models of typed λ-calculi, Theoretical Computer Science 4 (1977),

1–22.

Milner, R., M. Tofte, R. Harper, and D. MacQueen, “The Definition of Standard ML (revised)”.

MIT Press (1997).

Moggi, E., Computational lambda-calculus and monads, Information and Computation 93(1)

(1991).

Normann, D., “Recursion on the countable functionals”, Springer Lecture Notes in Mathematics

811 (1980).

Normann, D., The continuous functionals: computations, recursions and degrees, Annals of Pure

and Applied Logic 21 (1981), 1–26.

Normann, D., The continuous functionals, in Griffor, E.R., editor, “Handbook of Computability

Theory”, North-Holland (1999), 251–275.

Normann, D., Computability over the partial continuous functionals, Journal of Symbolic Logic

65 (2000), 1133–1142.

On the ubiquity of certain total type structures 113

Normann, D., Comparing hierarchies of total functionals, Logical Methods in Computer Science

1(2) (2005).

Normann, D., E. Palmgren, and V. Stoltenberg-Hansen, Hyperfinite type structures, Journal of

Symbolic Logic 64 (1999), 1216–1242.

Oosten, J. van, The modified realizability topos, Journal of Pure and Applied Algebra 116 (1997),

273–289.

Oosten, J. van, A combinatory algebra for sequential functionals of finite type, in Cooper, S.B.,

and J.K. Truss, editors, “Models and Computability”, Cambridge University Press (1999),

389–406.

Platek, R., “Foundations of recursion theory,” Ph.D. thesis, Stanford University (1966).

Plotkin, G., Set-theoretical and other elementary models of the λ-calculus, Theoretical Computer

Science 121 (1993), 351–409. First written in 1972 and circulated in unpublished form.

Plotkin, G.D., LCF considered as a programming language, Theoretical Computer Science 5

(1977), 223–255.

Plotkin, G.D., T
ω as a universal domain, Journal of Computer and System Sciences 17 (1978),

209–236.

Plotkin, G.D., Full abstraction, totality and PCF, Mathematical Structures in Computer Science

9(1) (1997), 1–20.

Schwichtenberg, H., Density and choice for total continuous functionals, in Odifreddi, P., editor,

“Kreiseliana: About and around Georg Kreisel”, A.K. Peters (1996), 335–362.

Scott, D.S., A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer

Science 121 (1993), 411–440. First written in 1969 and circulated in unpublished form since

then.

Scott, D.S., Continuous lattices, in Lawvere, F.W., editor, “Toposes, Algebraic Geometry and

Logic”, Springer (1972), 97–136.

Scott, D.S., Data types as lattices, SIAM Journal of Computing 5(3) (1976), 522–587.

Soare, R.I., The history and concept of computability, in Griffor, E.R., editor, “Handbook of

Computability Theory”, North-Holland (1999), 3–36.

Stoltenberg-Hansen, V., I. Lindström, and E.R. Griffor, “Mathematical Theory of Domains”,

Cambridge Tracts in Theoretical Computer Science 22, Cambridge University Press (1994).

Troelstra, A.S., “Metamathematical Investigation of Intuitionistic Arithmetic and Analysis”,

Lecture Notes in Mathematics 344, Springer-Verlag, 1973.

Weihrauch, K., “Computability”, EATCS Monographs on Theoretical Computer Science 9,

Springer-Verlag, 2000.

