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ON THE UBIQUITY OF THE BAYESIAN PARADIGM IN

STATISTICAL MACHINE LEARNING AND DATA SCIENCE

ERNEST FOKOUÉ

Abstract. This paper seeks to provide a thorough account of the ubiquitous nature
of the Bayesian paradigm in modern statistics, data science and artificial intelli-
gence. Once maligned, on the one hand by those who philosophically hated the
very idea of subjective probability used in prior specification, and on the other
hand because of the intractability of the computations needed for Bayesian esti-
mation and inference, the Bayesian school of thought now permeates and pervades
virtually all areas of science, applied science, engineering, social science and even

liberal arts, often in unsuspected ways. Thanks in part to the availability of pow-
erful computing resources, but also to the literally unavoidable inherent presence

of the quintessential building blocks of the Bayesian paradigm in all walks of life,
the Bayesian way of handling statistical learning, estimation and inference is not
only mainstream but also becoming the most central approach to learning from the
data. This paper explores some of the most relevant elements to help to the reader
appreciate the pervading power and presence of the Bayesian paradigm in statistics,
artificial intelligence and data science, with an emphasis on how the Gospel accord-
ing to Reverend Thomas Bayes has turned out to be the truly good news, and in
some cases the amazing saving grace, for all who seek to learn statistically from the

data.

1. Introduction

One of the quintessential building blocks of any data science activity is the ex-
plicit or implicit consideration of a dataset, Dn = {(x1, y1), (x2, y2), · · · , (xn, yn)}

where (xi, yi) are realizations of (Xi, Yi)
iid
∼ pxy(x, y), with Xi ∈ X and Yi ∈ Y,

for i = 1, · · · , n. The probability density function pxy(x, y) defined on X ×Y gov-
erns the stochastic mechanism (typically unknown in practice) assumed to have
generated the realized data set. Now, given the dataset Dn, one of the over-
arching goals of machine learning consists of estimating (learning) the patterns
of dependencies/relationships between the input space X and the output space
Y. Learning as meant here essentially consists of constructing (searching for)
mathematical mappings f : X −→ Y, that formally capture and represent the
hypothesized dependencies/relationships between the elements of X and those of
Y. Since it turns out to be untenable in practice to search the whole power space
YX of all possible mappings from X to Y, one typically has to consider a more
realistic and more manageable space H, usually with some specific properties like
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differentiability, or even just continuity or compactness and so on. One typically
ends up with a function space H where members are parameterized and even have
hyperparameters, like

H =

{
f : f(x) := f(x|θ), θ ≡ θγ ∈ Θ,γ ∈ Γ

}
.

One such function space is the space of univariate polynomials of some degree p,

H =

{
f : ∃θ = (θ1, · · · , θp) ∈ R

p | ∀x ∈ [a, b], f(x) = 〈θ,x〉 =

p∑

j=1

θjx
j

}
.

An overwhelming number of other function spaces exist, some of which will be
mentioned in subsequent paragraphs. However, before we even elaborate any
further on function spaces, let’s recall that the goal of this paper is to draw the
attention of the reader on the ubiquity in data science and statistical machine
learning, of the Bayesian paradigm and the Bayesian school of thought. The
prime reason for such a prevalence of the Bayesian machinery throughout statistical
machine learning, resides in the fact that when a mathematical object like f(X|θ)
is under consideration, the Bayesian scientist appropriately treats both X and θ as
random variables by virtue of the fact that they are both unknown, and therefore
need to be handled and treated with appropriately (suitably) specified probability
distributions. And as we will see throughout this paper, the mechanism that ends

up allowing the scientifically rigorous treatment of the quantities of interest in

statistical machine learning turns out to be the famous Bayes’ Theorem or Bayes’

formula. In its most generic and canonical form, Bayes’ theorem is used to connect
the conditional and marginal probabilities of two events.

Theorem 1.1. Let A and B be two events with nonzero probabilities such that

Pr(A) > 0 and 0 < Pr(B) < 1, then the conditional probability of B given that A
has occurred, is given by

Pr(B|A) =
Pr(B) Pr(A|B)

Pr(A)
=

Pr(B) Pr(A|B)

Pr(B) Pr(A|B) + Pr(Bc) Pr(A|Bc)
. (1.1)

An extension deals with a collection B1, · · · ,BK ∈ Ω of mutually exclusive events,
and their probabilistic relationship with some event A ∈ Ω.

Theorem 1.2. Let A ∈ Ω be an event with nonzero probability such that

Pr(A) > 0, and consider the collection of mutually exclusive events B1, · · · ,BK ∈

Ω such that Bk ∩Bj = ∅, j 6= k and
∑K

k=1 Pr(Bk) = 1, i.e.
⋃
Bk = Ω, then the

conditional probability of Bk given that A has occurred, is given by

Pr(Bj |A) =
Pr(Bj) Pr(A|Bj)

Pr(A)
=

Pr(Bj) Pr(A|Bj)∑K

k=1 Pr(Bk) Pr(A|Bk)
. (1.2)

The central tenant of the Bayesian paradigm is the concept of posterior probability
of an event. For instance, Pr(Bj |A) in (1.2) is the posterior probability of event
Bj given A, which measures the probability that Bj will occur, given that A has
occurred. This concept of posterior probability provides a powerful mechanism for
formulating, modelling and computing prediction and predictive quantities of all
kinds. It is important however to emphasize that prediction here is not forecasting,
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nor is it meant in the sense of causation. Prediction here is meant in the sense of
dependent arising. In Bayesian parlance, Pr(Bj) represents the prior belief in Bj

before the dependent event A occurs, and in that sense, the posterior Pr(Bj |A)
updates the belief in Bj given that A has occurred. Pr(A) is referred to as the
evidence by many in the Bayesian community, enjoys that appellation most appro-
priately in settings like Bayesian hypothesis testing where Pr(H0| data) measures
the probability that the null hypothesis is true given the evidence provided by the
data. Indeed this concept of evidence is key for a variety of reasons. The seminal
and posthumously published work of Reverend Thomas Bayes, of which a recog-
nizable simplified form is given in Equations (1.1) and (1.2), permeates virtually
every aspect of scientific analysis involving the doctrine of chance and probabil-
ity. It is so rich indeed in positively transformative concepts that it won’t be an
exaggeration to refer to it as the gospel according to Reverend Thomas Bayes,
judging by the sheer plurality of its applications to literally all areas of statistical
and probabilistic modelling. As a matter of fact, both explicitly and implicitly, an
overwhelmingly large number of the so-called learning machines in artificial intel-
ligence, statistical machine learning or data science, admit a Bayesian formulation
often directly or after simple transformations. The multiplicity of such occurrences
leads one to recognize the quasi-centrality of the Bayesian paradigm in science in
general. The Bayesian paradigm appears ubiquitous, permeating and pervading
every scientific activity involving the doctrine of chance and statistical learning
from the data. In an era marked by the resurgence of artificial intelligence and the
firm establishment of statistical machine learning as a force to reckon with, along
with the meteoric rise to prominence of the emerging field of data science, all of
which have to deal with uncertainty at their core, it makes sense the statistics,
the natural language (along with sister probability) for dealing with uncertainty,
should permeate the very fabric of epistemology, theory, methodology, computa-
tion and application. Interestingly, as we will see later, the famous Bayes’ theorem
(Bayes’ rule or Bayes’ formula as some call it) stands prominently and firmly at
the very core, providing a versatile, rich and powerful paradigm for modelling
both the simplest and the most complex of phenomena. From the fundamental
algebra of finite sets of events to the estimation of model parameters to infinite
dimensional function approximation and estimation, the Bayesian paradigm seems
to find a way to emerge (sometimes almost miraculously) as the de-facto flexible
modelling framework for formulating and/or solving the task at hand. The goal of
this paper is not to preach the Gospel according Reverend Thomas Bayes, not is it
aimed at reviewing the sophisticated technical niceties of some seminal Bayesian
fundamental results. Instead, our goal is to provide a general bird’s eye view of
the manifold incarnations of the Bayesian machinery in artificial intelligence, sta-
tistical machine learning and data science. The question still remains: What then

are some of the ways in which the Bayesian paradigm and its machinery ubiqui-

tously permeate the landscape of statistical machine learning? All the subsequent
sections will provide detailed and elaborate answers to this question.
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2. Bayes’ impact in statistical learning theory

As will become clearer in the subsequent paragraphs, statistical machine learning
brings with it the need to extend Bayes’ theorem from events to random variables,
especially with concepts of marginal density, conditional density and conditional
expectation. We will see throughout that the Bayesian paradigm provides the per-
fect mechanism for the most fundamental results in pattern recognition, regression,
hypothesis testing, signal detection, parameter estimation, function estimation and
statistical learning in general.

2.1. Bayes learner in classification and regression

It turns out that one of the first blessings of the Bayesian gospel comes in the
form of a mechanism for setting the gold standard in supervised learning, namely
providing the definition and characterization of the theoretical best learning ma-
chines in both classification and regression. Specifically, upon choosing the desired
loss function L(·, ·), for measuring the discrepancy between the true output Y and
the predicted output f(X), the expected loss or theoretical risk or generalization
error or true error of any function f ∈ YX is given by

R(f) = E[L(Y, f(X))] =

∫

X×Y

L(y, f(x))pxy(x, y)dxdy,

and can be interpreted as the expected discrepancy between f(X) and Y , and
indeed a measure of the predictive strength of f . Ideally, one seeks to find the
minimizer f⋆ of R(f) over all measurable functions f ∈ YX , specifically,

f⋆ = arginf
f∈YX

{
R(f)

}
= arginf

f∈YX

{
E[L(Y, f(X))]

}
.

For classification learning under the so-called zero-one loss defined as

L(Y, f(X)) = ✶(Y 6= f(X)),

the universal best classifier f⋆ is appropriately called the Bayes’ classifier because
it is defined via the posterior probability of class membership. Specifically, ∀x ∈ X ,

f⋆(x) = argmax
c∈Y

{Prob(Y = c|x)} = argmax
c∈Y

{
Prob(Y = c)p(x|c)

p(x)

}
.

This result, namely that the Bayes classifier achieves the universal (global) min-
imum (infimum) error over all measurable classifiers, is a fundamental result in
pattern recognition and statistical learning. The probability theory for pattern
recognition is made up of multiple results featuring learning machines whose per-
formance are compared to the performance of the Bayes’ classifier [7, 39]. A similar
fundamental statistical learning result exists for regression, namely that under the
so-called squared error loss, the universal best function is the conditional expec-
tation of Y given X. Specifically, consider functions f : Rp → R, and the squared
theoretical risk functional

R(f) = E[(Y − f(X))2] =

∫

X×Y

(y − f(x))2pxy(x, y)dxdy.
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Then the best function f⋆ = arginf
f

{R(f)} is given by the conditional expectation

of Y given X, so that ∀x ∈ X ,

f⋆(x) = E[Y |X = x] =

∫

Y

y p(y|x)dy.

Far more detailed accounts are found in both [11] and [14] that clearly show the
paramount importance of the Bayesian paradigm in statistical machine learning.
We see that for both regression and classification, the Bayesian paradigm pro-
vides the best mechanism, at the very least in theory, and that is indeed very
important. It is worth mentioning that for most people, the Bayesian school of
thought is typically not introduced through results like the ones we just described,
but instead through Bayesian estimation and inference in parametric families of
models. It is our view that both the Bayes’ classifier and the Bayes regressor are
just as valuable members of the Bayes’ heritage as are the vastly studied results in
both parametric and nonparametric Bayesian estimation, inference and prediction.
Although the results described earlier were in their purely theoretical forms, ap-
plications abound that are based on those foundational results. Studying pattern
recognition and regression with a solid knowledge of both the Bayes’ classifier and
the Bayes regressor which provide the best in both cases is of vital importance.
I deem it necessary here to further clarify the premises of my argumentation in
favor of the ubiquity of the Bayesian paradigm: Most people think of the Bayesian

paradigm solely in sensu stricto whereby there is a very involved and often complex

and sometimes controversial topic of prior specification. Our perception and view

of the Bayesian school of thought in the context of statistical machine learning is

definitely in sensu lato, and encompasses all modelling situations where the poste-

rior density or the posterior probability is part of the modelling mechanism. Our

intention is not to trigger an epistemological debate, quite far from it. Personally,
it is my view that in sensu lato, all statistical learning methods are offshoots of
the Bayesian machinery, in the sense that the Bayes learner under the two most
commonly used loss functions is always the optimal, and indeed the gold standard.
In that sense, at the very least, most so-called non-Bayesians or anti-Bayesians are
inherently Bayesians at their core (unknowingly I might add), at least in the most
quintessential sense of those universal optimality results that all learning machines
essentially attempt to attain.

2.2. Bayesian tools for assessing binary classifiers

Binary pattern recognition plays a central role in classification learning, and the
Bayesian framework once again provides a convenient language for the assessment
of any binary classifier f : X → Y. Specifically, the so-called True Positive Rate
(TPR) and False Positive Rate (FPR) which are the ingredients for constructing the
visually compelling graphical tool known as the Receiver Operating Characteristics
(ROC) curve, are both defined using the Bayesian concept of posterior probability.
Indeed, the True Positive Rate (TPR) of f is given by

TPR(f) = Pr(f(X) = 1|Y = 1) =
Pr(f(X) = 1 andY = 1)

Pr(Y = 1)
,
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and the False Positive Rate (FPR) of f is given by

FPR(f) = Pr(f(X) = 1|Y = −1) =
Pr(f(X) = 1 andY = −1)

Pr(Y = −1)
.

False positive rate
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Figure 1. Comparative ROC Curves of three learning machines on the NFL Playoffs prediction
data. Gaussian Discriminant Analysis Methods are shown to be far superior to the Nearest

Neighbors Learning Machine, judging by their relatively larger area under the curve (AUC).

As one can see on the ROC curve example of Figure (2.2) featuring the perfor-
mances of different learning machines on the prediction of the playoffs appearance
of NFL teams, the visually compelling graphical summary helps compare several
learning machines intuitively and readily.

3. Bayes’ impact in statistical estimation and inference

The practical construction of the ROC curves mentioned earlier relies heavily on

the ability to practically construct the empirical function f̂ in the first place.
The history of statistics and machine learning is adorned with pearls of human
creativity in the form of a wide variety of approaches to estimating a function f
empirically from the data.

3.1. Bayesian parameter estimation

In the case where the function is fully defined and represented by a finite collection
of parameters, a wide variety of methods have been developed over the years
in statistical estimation and inference. Indeed, the best known setup where the
richness of the Bayesian paradigm is practically and more directly revealed, is
encountered when we assume that the task of learning the function f , is associated
with the estimation of a parameter θ ∈ Θ ⊆ R

p such that, when treated as
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a random variable, the probability density function of θ is given by p(θ). This
is encountered for models involving (a) Parametric density estimation along with
elements of prediction; (b) Parametric function estimation along with prediction,
when f(x) = f(x; θ). In both cases, a key quantity is the posterior density of the
parameter θ given the data, namely

p(θ|Y) =
p(θ)p(Y|θ)

p(Y)
,

where p(Y|θ) is the likelihood of θ, and p(Y) is the evidence, sometimes referred
to as the marginal likelihood of the underlying model. Recall that the likelihood
of θ is the joint density of the data vector Y given the unknown parameter θ, i.e.
Likelihood(θ) = p(Y|θ). The maximum likelihood principle is arguably the most
commonly used method/approach in statistical analysis because of the central
role the likelihood plays in statistical modelling. Now, the maximum likelihood

estimator θ̂(MLE) of θ is given by

θ̂(MLE) = argmax
θ∈Θ

{Likelihood(θ)} = argmax
θ∈Θ

{p(Y|θ)} ,

while the Bayesian estimator θ̂(Bayes) of θ under the squared error loss, is

θ̂(Bayes) = argmin
a∈Θ

{
E[(θ − a)2|Y]

}

= E[θ|Y] =

∫

Θ

θp(θ|Y)dθ.

A very nice property of both Maximum Likelihood and Bayesian Estimators is
that for all continuous functions g(·),

ĝ(θ)
(Bayes)

= E[g(θ)|Y] =

∫

Θ

g(θ)p(θ|Y)dθ.

Now, as far as inference is concerned, the Bayesian paradigm offers: (a) Interval
estimation via the construction of credible sets; (b) Bayesian hypothesis testing;
(c) Bayesian posterior predictive density specification. All these are seamless off-
shoots of the quintessential Bayesian learning machinery. For α ∈ (0, 1), the set
given by CSα(θ) = [LBα,n(θ), UBα,n(θ)] such that

∫ UBα,n(θ)

LBα,n(θ)

p(θ|Y)dθ = α,

is referred to as the α× 100% Bayesian credible set for the unknown parameter θ,
which is one of the Bayesian inferential mechanisms for θ, one of the other related
mechanisms being Bayesian hypothesis testing. The most common choices are
LBα,n(θ) as the (1− α)/2 quantile of p(θ|Y) and UBα,n(θ) as the (1 + α)/2 quan-
tile of p(θ|Y). It is important to remember that the parameter θ herein studied
can be a scale or a vector governing the form of a very complex function. The
interpretation of the Bayesian credible set, unlike the arcane and often convoluted
interpretation of the Frequentist confidence interval, is straightforward and intu-
itively clear. Thanks to the Bayesian rigorous and appropriate handling of the
unknown random variable θ via the language of probability, one can write

Prob
(
θ ∈ [LBα,n(θ), UBα,n(θ)] | Dn

)
= α.
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Given the data Dn, the probability is α that θ ∈ [LBα,n(θ), UBα,n(θ)], which is
uniquely only possible with the Bayesian paradigm, since θ being random is aptly
and appropriately spoken of via the powerful language of probability. Note that
this intuitive interpretation is not possible in the Frequentist setting. In hypothesis
testing, the null and the alternative hypotheses are tested using evidence from
the data and theoretical properties inherent in the hypothesized models. The
hypotheses are given as:

H0 : θ ∈ Θ0 vs Ha : θ /∈ Θ0.

As far as Bayesian hypothesis testing is concerned, the decision about the null
hypothesis is conveniently made by measuring the posterior probability of H0

given the data, which is given by

Pr(H0|y) =
pY (y|H0) Pr(H0)

pY (y)

where Pr(H0) + Pr(Ha) = 1 and pY (y) = Pr(H0)pY (y|H0) + pY (y|Ha) Pr(Ha)
is the density of the data. It is interesting to note the error of the test is also
conveniently defined and calculated as

Error = Pr(H0 is chosen|Ha) Pr(Ha) + Pr(Ha is chosen|H0) Pr(H0).

Unlike with non-Bayesian inference, the Bayesian paradigm draws conclusions
about the test in a clear and intuitive and straightforward based simply on the
value of the posterior probability Pr(H0|Y = y) ≡ Pr(H0 is true| Data). This
Bayesian decision mechanism aligns far better with human intuition than all other
mechanisms that are marred is technical niceties and subtleties.

3.2. Bayesian posterior predictive density

Besides providing a mechanism for parameter estimation, the Bayesian paradigm
inherently addresses the important need for a predictive density of any new element
ynew ∈ Y, which is given by

p(ynew|Y) =

∫

Θ

p(ynew|θ)p(θ|Y)dθ.

With the posterior predictive density in place, one can perform a whole host of
prediction related activities, including the determination of the quantiles of the
posterior predictive density p(ynew|Y) but also the moments like the expected
value E(Ynew|Y) and the variance variance(Ynew|Y) which play a central role in
the computation of the crucially needed error bars, and prediction bands.

3.3. Maximum a posteriori (MAP) estimator

The so-called Maximum A Posteriori (MAP) Estimator is another type, albeit
sometimes deemed inferior, of Bayesian estimator, given by

θ̂(MAP) = argmax
θ∈Θ

{p(θ|Y)} = argmax
θ∈Θ

{p(θ)p(Y|θ)}

= argmax
θ∈Θ

{log p(θ) + log p(Y|θ)}

= argmax
θ∈Θ

{log Prior(θ) + log Likelihood(θ)} .
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Note that θ̂(MAP) is essentially the mode of the posterior density of θ, which co-
incide with the expected value of the posterior density if the posterior density is
symmetric. Pure statisticians typically tend to avoid the MAP estimator precisely
because on the one hand the mode may not even exist or it may not be the “right”
estimator.

3.4. Bayesian image denoising and image compression

The MAP estimator has been used a lot in image denoising and image compression.
Typically, each image is acquired as an r × c matrix. For mathematical and
computational convenience, each image is represented as a p-dimensional vector
of grayscale values, where p = rc. The observed image y ∈ R

p is assumed to
be a noisy version of the true (noiseless, clean) original image x ∈ R

p, where
dim(x) = dim(y) = p = rc, and y = x + σz where σ > 0 and z ∼ N (0, I). The
goal of image denoising is to recover the clean original image x from the noisy
x, a task the Bayesian machinery accomplishes by specifying a prior density p(x)
and then obtaining a Bayesian estimator of x via Maximum A Posteriori (MAP)
estimation

x̂(MAP) = argmax
x∈X

{
p(y|x)p(x)

p(y)

}

which is typically reduced for mathematical and computational convenience to

x̂(MAP) = argmin
x∈X

{
− log p(y|x)− log p(x)

}
. (3.1)

The image denoising mechanism of Equation (3.1) is just the tip of the iceberg
as there are thousands upon thousands of research papers, bothe theoretical and
applied that have be written featuring several incarnations and variations of that
very same formula. Image compression for instance is an even more complex and
more frequently encountered extension where it is assumed that y = Wx + σz
with dim(x) ≪ dim(y). Once again, these are vast topics, mentioned here only
as evidence of the diverse fields of application of the Bayesian paradigm whose
blessings extend far beyond the scope of this paper.

3.5. Bayesian nonnegative matrix factorization

Nonnegative matrix factorization decomposes a p×nmatrixX ∈ R
p×n
+ into a prod-

uct of a loading matrix W ∈ R
p×q
+ and feature matrix H ∈ R

q×n
+ where q ≪ p

is the reduced rank. The reconstructed version X̃ = WH of X is obtained by
solving a constrained optimization problem

argmin
W≥0,H≥0

{
‖X−WH‖2F

}
,

where the Frobenius norm ‖A‖2F of A is given by

‖A‖2F =

p∑

i=1

n∑

j=1

|aij|
2 =

p∑

i=1

‖Ai·‖
2
2 =

n∑

j=1

‖A·j‖
2
2 = trace(A⊤A).
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The R package rNMF performs nonnegative matrix factorization for feature ex-
traction and image reconstruction. Nonnegative matrix factorization has received
tremendous attention from Bayesian leaning researchers, many of whom have typi-
cally assumed that the matrix X ∈ R

p×n
+ admits the representation X = WH+σZ

where Z ∈ R
p×n is a matrix of standard normal random variables. Assuming σ2

known, the parameter vector in Bayesian NMF is given by θ = {W,H}. Due to
the nonnegativity constraint on W and H, distributions like the exponential and
the gamma are used since that are both defined only for positive numbers. All in
all, Bayesian NMF uses the likelihood defined by

p(X|W,H) =
n∏

i=1

p∏

j=1

φ(xij ; (WH)ij , σ
2),

and proceeds by exploring various aspects of the posterior density

p(W,H|X) =
p(X|W,H)p(W,H)

p(X)
.

Many researchers have assumed p(W,H) = p(W)p(H), by virtue of the assumed
prior independence between W and H. Some authors have further resorted to the
Maximum a Posteriori (MAP) treatment

argmin
W≥0,H≥0

{
− log p(X|W,H)− log p(W)− log p(H)

}
,

which is similar in form to the regularized approach used in [4] and [5], namely

argmin
W≥0,H≥0

{
‖X−WH‖2F + αPen1(W) + βPen2(H)

}
.

Many other unsupervised learning methods have been formulated under the Ba-
yesian paradigm. Among those, Bayesian Factor Analysis, Bayesian Principal
Component Analysis, Bayesian Independent Component Analysis, and Bayesian
Analysis of Mixtures of Distributions for model based clustering. Interestingly
though, all those methods admit a formulation in terms of matrix factorization,
hence our choice to feature Bayesian Nonnegative Factorization here without loss
of generality as far as most Bayesian approach to unsupervised learning goes.

3.6. Bayesian paradigm as the extension and generalization of others

It turns out that the Bayesian paradigm is an extension and a generalization of the

maximum likelihood principle, an extension that affords greater modelling flexibil-

ity, and consequently the capability to solve a wider class of problems. For instance,

the maximum likelihood estimator is a special case of the Bayesian estimator. To
see this, note that if the prior density p(θ) is uniform, i.e. p(θ) = c, then we have

θ̂(MAP) = θ̂(Bayes) = argmax
θ∈Θ

{log p(Y|θ)} = argmax
θ∈Θ

{Likelihood(θ)} = θ̂(MLE).

That the Frequentist (non-Bayesian) result is a special case of the Bayesian coun-
terpart should, in my humble opinion, be a motivation for researchers to give the
Bayesian approach another look. This clearly resembles the relationship between
Newtonian physics and Einstein’s relativity theory, the latter being a generaliza-
tion and a more complete extension of the former.
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3.7. Bayesian inherent shrinkage mechanism

Another powerful property inherent in the Bayesian paradigm is its inherent
shrinkage and regularization capability, which turns out to be a powerful rem-
edy that helps circumvent a wide variety of modelling challenges. To gain deeper
insights into this regularization and shrinkage property, we consider the Bernoulli
experiment, with the parameter θ ∈ (0, 1) representing the probability of success,
and Yi ∈ {0, 1} such that

Y1, Y2, · · · , Yn
iid
∼ Bernoulli(θ).

We have

p(yi|θ) = θyi(1− θ)1−yi .

Under the conjugacy principle, the conjugate prior for θ is

p(θ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

It can be shown that the posterior density of θ is given by

p(θ|Dn) =
Γ(a+ b+ n)

Γ(Sn + a)Γ(n− Sn + b)
θSn+a−1(1− θ)n−Sn+b−1

which means that (θ|Dn) ∼ Beta(a+ Sn, b+ Fn). Now we

θ̂(Bayes) = E[θ|Y] =

∫

Θ

θp(θ|Y)dθ =
a+ Sn

a+ b+ n
.

Notice

θ̂(Bayes) =
a+ Sn

a+ b+ n
=

a+ b

a+ b+ n

a

a+ b
+

n

a+ b+ n

Sn/n

a+ b+ n

= wnθ̂0 + (1− wn)θ̂(MLE).

The Bayesian “point” estimator θ̂(Bayes) is therefore a convex combination of the
prior estimate with the maximum likelihood estimator. Indeed, lim

n→∞
wn = 0. As

a result,

lim
n→∞

θ̂(Bayes) = θ̂(MLE),

which means that as more data becomes available, the posterior density is domi-
nated by the likelihood, so that the asymptotically the Bayesian estimator coincide
with the maximum likelihood estimator. In this sense, the prior is bringing to the
estimation (learning) task, items of information that the data from the sampling
process does not contain, and this is crucial. As more data becomes available, the
information brought by the prior is then overwhelmed by the information richly
provided by large amounts of data. This serves as the basis for resorting to the
Bayesian paradigm in situations where there isn’t enough data to carry the mod-
elling task at hand.

4. Bayes’ impact in statistical function estimation

Statistical Function estimation is a very very vast field of statistical science, ma-
chine learning and artificial intelligence.
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4.1. Bayesian multiple linear regression

It suffices to use the space of p-dimensional multiple linear regression models to
help gain insights into some of the ways in which the Bayesian paradigm permeates
statistical function estimation.

H =

{
f : ∃θ = (θ1, · · · , θp) ∈ R

p, |f(x) = 〈θ,x〉 =

p∑

j=1

θjxj

}
.

To better understand this, we consider multiple linear regression under the Gaus-
sian homoscedastic noise model, (Y|X, θ, σ2) ∼ Nn(Xθ, σ2In), for which the like-
lihood of θ is simply

L(θ|X,Y) = p(Y|X, θ, σ2) = φn(Y;Xθ, σ2In)

=
1√

(2πσ2)n
exp

(
−

1

2σ2
(Y −Xθ)⊤(Y −Xθ)

)
.

The maximum likelihood estimator θ̂(MLE) of θ is the well-known

θ̂(MLE) = argmax
θ∈Θ

{L(θ|X,Y)} = (X⊤X)−1X⊤Y.

Combining the fact that θ̂(MLE) ∼ Np(θ, σ
2(X⊤X)−1) with the conjugate prior

θ ∼ Np(θ0, σ
2Λ−1

0 ), the Bayesian estimator θ̂(Bayes) of the vector θ of regression
coefficients, is given by

θ̂(Bayes) = E[θ|Y] = (X⊤X+ Λ0)
−1(X⊤Xθ̂(MLE) + Λ0θ0).

The famous ridge regression estimator θ̂
(ridge)
λ of θ first proposed by [25] and

[24] is shown to be special case of the above Bayesian estimator when Λ0 = λI.
Specifically,

θ̂
(ridge)
λ = argmin

θ∈Θ

{
(Y −Xθ)⊤(Y −Xθ) + λθ⊤θ

}

= (X⊤X+ λI)−1X⊤Y

= E[θ|Y] = θ̂(Bayes).

4.2. Bayesian learning as regularized learning

It is easy to verify (check) that the maximum likelihood estimator is a special case

of the Bayesian estimator, in the sense that

lim
λ→0

θ̂
(ridge)
λ = lim

λ→0
(X⊤X+ λI)−1X⊤Y = (X⊤X)−1X⊤Y = θ̂(MLE).

It also easy to see that the ridge estimator is a shrinkage estimator, with the
tendency to shrink all the components of the vector to zero together as λ gets ever
larger. Specifically,

lim
λ→∞

θ̂
(ridge)
λ = 0.

Of great importance to big data analytics is the fact that between the two ex-
tremes of zero λ and infinite λ, lies a value of λ that achieves the trade-off between
bias and variance, and thereby achieves the smallest cross validation error. The
fact that the Bayesian estimator is inherently (by its very design) biased, used to
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be a subject of great debates, until numerous findings revealed that unbiasedness
while a desired property, is not the be all and end all of statistical estimation and
inference, quite far from it. It turns out that most scientific endeavors reveal the
fundamental need for a trade-off between bias and variance. For the regression
example mentioned earlier, when we (a) either have multicollinearity in the design
matrix or (b) the data matrixX is high dimensional but with a very low sample size
(n ≪ p, underdetermined system), the maximum likelihood estimator is theoreti-
cal unbiased but has an ill-conditioned variance matrix that leads to non-existence
or non uniqueness or severe instability. Even in case where a numerical solution
can realized, the variance is inflated because of the near singularity. The Bayesian
approach via ridge regression for instance yields a solution, albeit biased, but with
a reduced variance. In fact, in the n ≪ p it is impossible to have any solution
without a device like the ridge approach. This is the kind of scenarios that make
us say that the Bayesian paradigm is a gospel, meaning good news, as it allows
workable solution where none appears to exist. Solutions like ridge are nowadays
ubiquitous in statistical machine learning and belong to a class of machine learning
approaches known as regularization methods, where all the techniques consist of
adding constraints to an ill-posed problem to hopefully achieve well-posedness in
Hadamard’s sense. All the methods in the regularization framework are centered
around the regularized empirical risk

Rreg(f) =
1

n

n∑

i=1

L(Yi, f(Xi)) + λ‖f‖H

where ‖f‖H is the norm of f in the function space H. For the linear regression
learning task for instance, the ridge regularization mentioned earlier has evolved
(been developed) alongside the Least Absolute Shrinkage and Selection Operator
(LASSO) proposed by [37], which admits a Bayesian formulation using a Laplace
prior on θ, but does not yield a closed-form solution like the ridge estimator

θ̂
(lasso)
λ = argmin

θ∈Θ

{
(Y −Xθ)⊤(Y −Xθ) + λ‖θ‖1

}
.

The well-known greatest strength of the LASSO estimator comes from the fact
that it does achieve sparsity and therefore is used for variable selection. Just like
the ridge solution, the LASSO, through regularization, is inherently able to yield
a solution where the MLE would at best be very unstable. It is interesting to note
that the LASSO estimator both shrinks and selects, whereas the ridge estimator
simply shrinks while maintaining all the initial variables. Combining ridge and
lasso, one gets

Rreg(f) =
1

n

n∑

i=1

L(Yi, f(Xi)) + λPenaltyα(θ),

where Penaltyα(θ) = (1 − α)‖θ‖1 + α‖θ‖2 is the so-called elastic net penalty.
Several implementations exist in R, including [18] and [35].

4.3. Bayesian paradigm in kernel methods

If one were to start conferring awards of excellence to statistical learning ma-
chines, many so-called kernel machines would rack up many medals. Despite the
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popularity of deep learning these days, there has been a resurgence of the near
dominance of kernel machines, partly due to emerging results revealing that ker-
nel machines are just as good if not better than deep neural networks on several
benchmarks tasks, with the added benefit for kernel methods that they rest on
very solid theoretical foundations.

4.3.1. Bayesian formulation of neural networks. Interestingly both neural
networks and kernel learning machines do admit favorable Bayesian formulations
that have led to theoretical and practical breakthroughs. Reference [31] gives
a very detailed account of Bayesian Neural Networks, and even shows that with
a single hidden layer, a neural network with an infinite number of nodes is essen-
tially a Gaussian process which in turn happens to be a kernel learning machine.
For clarity, we are in the presence of the space of kernel learning machines if the
prediction function f : X −→ R comes from a function space H where functions
are such that ∀x ∈ X , the corresponding f(x) is of the form

f̂(x) = f̂n(x) = g

(
n∑

j=1

ŵjK(x,xj)

)
, (4.1)

where K(·, ·), the bivariate function K : X × X −→ R defined on the product
X × X is used to measure the similarities between the members/elements of the
input space X , and finally g(·) is what is usually typically referred to as a link
function. The two crucial and distinguishing choices when it comes to kernel
learning machines are: (a) The choice of the kernel and (b) The way the estimates
ŵj of the weights are formulated and obtained. The so-called Gaussian Radial
Basis Function (RBF) kernel is arguably the most used in practice, and it is
defined as

K(xi,xj) = exp

(
−
‖xi − xj‖

2

2r2

)
.

A more general extension of the Gaussian RBF kernel has been used in practice
and has the form

K(xi,xj) = η exp

(
−
1

2

p∑

k=1

ρk(xik − xjk)
2

)
+ λδij .

There are tons of other kernels (covariance functions) corresponding to the ex-
tremely wide variety of function estimation tasks that arise in classification learn-
ing and regression learning.

4.3.2. Gaussian process learning and Bayesian kernel learning. Gaussian
process learning machines could well be the most natural members in the family of
kernel learning machines, and because of their ubiquity in the resurgence of kernel
methods [6, 34], it makes good sense to give a bit more details about them. For
each xi, let fi = f(xi) be the function value yielded by the underlying function f .
Let f = (f1, f2, · · · , fn)

⊤ be the n-dimensional vector of function values for the
points x1,x2, · · · ,xn. Now, the probability distribution of a function f(x) is said

to be a Gaussian process if for any selection of points x1,x2, · · · ,xn, the density

p(f) of the corresponding n-dimensional vector of function values is Gaussian.

What we really want is a prior density p(f) over the infinite dimensional function
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space H from where the function f is assumed to originate. Given a new point
xnew ∈ X , it is of interest to study the random variable f(xnew) = fnew and the
random variable Ynew. Assume that a priori the vector f follows a multivariate
Gaussian distribution with zero mean and covariance matrix K, that is

f ∼ Nn(0,K).

Assume that a priori the vector f follows a multivariate Gaussian distribution with
zero mean and covariance matrix K = (Kij) with Kij = cov(fi, fj) = K(xi,xj),
that is

p(f) = φn(f |0,K) =
1√

(2π)n|K|
exp

{
−
1

2
f⊤K−1f

}
.

The posterior obtained leads to an estimated prediction function of the form given
in Equation (4.2), with

ŵj = [(K + σ2I)−1Y ]j .

A detailed derivation of this result can be readily found in [34]. Figure depicts
samples of random functions drawn from a Gaussian process prior with some
specific covariance matrix. Gaussian processes, by allowing prior distributions
over infinite dimensional function spaces, provided one of the earliest forms of
Bayesian nonparametric function estimation.
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Figure 2. Sample functions drawn from a Gaussian process prior. This ability to define dis-
tributions over function spaces without specific parametric forms turns out to be crucial in
nonparametric estimation. The samples depicted here are different, although one could make

the case for an emerging pattern.

4.4. Bayesian paradigm in ensemble learning methods

When it comes to the popularity of predictive analytics in practical applied data
science, random forest and boosting two sister methods in ensemble learning ap-
pear to have claimed the two highest places/seats of honor. Their elevated stature
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seems quite deserved when one realizes that these two methods have continually
and consistently emerged as the most accurate and most precise in most practical
settings. Ensemble learning methods are indeed formidable when it comes to op-
timal prediction maybe in part because of the synergistic nature of the underlying
resulting estimating functions. The most generic form of an ensemble learning
machine is given by

f̂(x) = f̂n(x) = g

(
L∑

ℓ=1

α̂ℓĥℓ(x)

)
, (4.2)

where ĥℓ(·) ∈ H, ℓ = 1, · · · , L are the estimators of L base learners from the
chosen function space H. The base learners are bonafide mappings from X to
Y, and may only exist in pure algorithmic form. Bagging, Boosting and Random
Forest learning machines all admit that very same representation. Interestingly,
and in keeping with the spirit of this paper, the Bayesian school of thought has
also contributed substantially to ensemble learning. Indeed, one of the Bayesian
approaches to ensemble learning is the so-called Bayesian Model Averaging, for
which α̂ℓ is an estimator of αℓ, where

αℓ = Pr(Mℓ|Dn) =
p(Mℓ)p(Dn|Mℓ)

L∑

ℓ′=1

p(Mℓ′)p(Dn|Mℓ′)

with

Pr(Dn|Mℓ) =

∫

Θ

p(Dn|θℓ,Mℓ)p(θℓ|Mℓ)dθℓ

and
hℓ(x) = E[Y |x, θℓ,Mℓ].

R packages dealing with ensemble learning include some purely Bayesian ones like
library(BART), library(mBART, library(BMA), but also some non-Bayesian ones like
library(boosting), library(mboost), library(randomForest), library(ipred), library(ada),
and library(caret), library(bagging).

Once again, the goal of this paper is not to explicate the technical niceties of the
Bayesian paradigm, but instead draw the reader’s attention on its immense mod-
elling potential. As a matter of fact, the above regularization framework based
on the elastic net, helps tackle and solve many predictive analytics task in high
dimension and low sample size situations as arises with DNA Gene Expression Mi-
croarray Data and several other large p small n tasks. It bears repeating that all
the above pearls of statistical modelling, while set up in the so-called regulariza-
tion framework, do inherently admit a Bayesian formulation. Like we said earlier,
“To Bayes or Not Bayes?” is no longer the question, but rather “How am I making
the most of Bayes?”. The key seems to lie in the specification of carefully thought
out prior densities that allow one to isolate precisely the kind of solution desired
out of the multiplicity of solutions. Wherever there is statistical learning, espe-

cially in settings where there is an ill-posedness challenge, the Bayesian paradigm

is forever available as a formidable weapon in the statistical scientist’s modelling

arsenal. We see the power of the Bayesian thought directly or indirectly in state
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of the art settings such Latent Dirichlet Allocation (LDA) for Topic Modelling [3].
The forever useful Kalman filter, thanks to the latent space has also benefitted
heavily from the power of the Bayesian paradigm [20, 21] and [22]. Even before
the blessings of affordable computation ushered in the glorious era of the Bayesian
thought, Markov Random Fields were being used for the Statistical Analysis of
Dirty Pictures [2], already anchoring the palpable power of the Gospel according
to Reverend Thomas Bayes. And yes, modern artificial intelligence as also bene-
fitted very immensely from the flexibility that the combination of likelihood with
prior affords the statistical scientists, in [30], we see that the explosion of Neural
Networks as tools for artificial intelligence and learning was quickly found to have
a nice connection to the Bayesian paradigm, and even now works like [17] demon-
strate the great appeal of the Bayesian approach for the now very fashionable and
in vogue Networks as well. Paper [29] gives a detailed account of Bayesian inter-
polation and introduces the now popular and widely used concept of automatic
relevance determination (ARD). As a matter of fact, [38]’s Sparse Bayesian Learn-
ing and the Relevance Vector Machine (RVM) is a nice piece of work inspired
by a combination of [29] and [40]. Interestingly, a little after [38], we get [36]
exploring Bayesian Methods for Support Vector Machines and more recently [23]
with an interesting account of Bayesian Nonlinear Support Vector Machine. The
work on Gaussian process regression in [41] and later in [6] with Efficient Algo-
rithms for Bayesian Gaussian Processes, both ushered in a series of contributions
in machine learning featuring Bayesian Gaussian processes for regression and clas-
sification, later crystalized in [34] which has become one of the main textbook for
the use of Bayesian Gaussian processes in machine learning. [6] explore ideas of
variational mean field approximations featuring efficient Approaches to Bayesian
Gaussian Process Classification. Gaussian Process Priors open the door to a vast
universe of nonparametric statistical modelling in the Bayesian framework. This
use of prior distributions over function spaces central to Gaussian process learning
has recently become mainstream in Bayesian Nonparametric statistical analysis,
anchored by the seminal work on the introduction of the Dirirchlet process prior
by [8] and [9] which has enriched the statistician and data scientist’s modelling
arsenal with a formidably powerful weapon in nonparametric statistical analysis,
especially allowing prior distributions on function spaces and infinite dimensional
spaces in general. The recent years have been marked by what is literally an ex-
plosion of methods which are derivatives of or inspired by the seminal work of
[8] and [9]. With Bayesian nonparametrics providing extra modelling strength
and flexibility to statisticians and data scientists, the vast territory of application
of the Bayesian paradigm just keeps on expanding, further justifying our view
that the Gospel according to Reverend Thomas Bayes is indeed ubiquitous, per-
vading and permeating the whole of science. Statistical Machine Learning from
its very early days both implicit and explicitly gave a prominent platform and a
loud speaking voice to the Bayesian school of thought, Gaussian processes and
Dirichlet processes have increased the volume of the loud speaker. In Bayesian
computation, the 1990 seminal work of [19] introduce the world to the power of
the Gibbs Sampler, and made it possible for Bayesian statisticians to tackle and
successfully solve many statistical modelling problems which had eclipsed them
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until that milestone. After the [19] paper that launched the Bayesian Computa-
tion revolution, software packages like BUGS (Bayesian Inference with the

Gibbs Sampler) began to emerge, making it more and more possible for Bayesians
to actually solve interesting and meaningful real life problems. Implementations
abound that help practitioners experiment and applied the power of the Gibbs
sampler [32]. The statistical software environment R has many packages and an
entire view install.view(Bayesian) that contain various functions for Bayesian analy-
ses of all kinds. As a matter of fact, with the development of Bayesian computation
which marked the birth of a collection of methods known as Markov Chain Monte
Carlo (MCMC) methods, literally every aspect of statistical benefitted from the
modelling power of the Bayesian paradigm. The development of Bayesian compu-
tation also allowed substantial progress in Bayesian model selection and Bayesian
variable selection. Among other contributions, we have Spike and Slab [27] and
more recently work on featuring mixtures of g-Priors for Bayesian variable selec-
tion [28]. The Bayesian Model Averaging for Linear Regression Models by [33] was
later supplemented by a tutorial [26], that further helped put practical BMA on a
firm foundation. Later, [1] provided optimal predictive model selection via the so-
called Bayesian median model. The Estimation of Atom Prevalence for Optimal
Prediction [10] sought to be a flexible and more adaptive counterpart to [1]. As
we said earlier, the intention of this paper is far from any attempt to provide an
exhaustive technical exploration of the Bayesian paradigm. That would be gar-
gantuan and virtually impossible. Instead, we have sought throughout and hope
to have given the reader a visceral sense of the appeal of the Bayesian paradigm
as a statistical machine learning tool for data science. We complete by mention-
ing a few contributions of the Bayesian paradigm to latent variable modelling and
kernel regression, with works like [13] which introduces a stable Radial Basis Func-
tion Selection via Mixture Modelling of the Sample Path, and [15] that extends it
with a fully Bayesian Analysis of the Relevance Vector Machine With Extended
Prior. Paper [12] proposes and develops a Bayesian computation of the Intrin-
sic Structure of Factor Analytic Models, drawing some of its elements from [16]
where mixtures of Factor Analysers featuring Bayesian Estimation and Inference
by Stochastic Simulation.

5. Conclusion and discussion

In this paper, we have provided a general bird’s eye view of the manifold ways
in which the Bayesian paradigm has become one of the main tools in the arsenal
of all statisticians and data scientists. In our experience and observation, human
statistical thought and perception as witnessed in interval estimation and hypoth-
esis testing appears to be inherently and quintessentially Bayesian: indeed when
non statisticians are asked to interpret confidence intervals or p-values, most (if
not all) say things that are essentially credible sets or posterior probabilities of hy-
potheses. It does seem that our human statistical thought quintessentially agrees
with the Bayesian principle. When it comes to decision making under uncertainty,
it is virtually impossible to find a field of study in science or otherwise that has
not been heavily and positively by the power of the Bayesian paradigm. Uncer-
tainty is ideally dealt with using the powerful language of probability, hence the
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appropriateness of the assignment of property to all unknown quantities, including
parameters unfortunately treated by others as fixed. The Bayesian approach is the
only way to properly deal with latent variable models. What other way exists to
properly model a random variable other than specify or estimate its distribution
from the data Penalized Least Squares Estimation turns out to admit a natural
Bayesian formulation with penalties capturing a prior belief about distributional
aspects of the parameters or function class of interest. In sensu lato and senso
stricto, the likelihood principle is a special case (subset) of the Bayesian paradigm.
The inherent capacity of the Bayesian paradigm to extend the likelihood principle
can be likened to the way in which the relativity theory contributed by Albert
Einstein extended, enriched and revolutionized Isaac Newton’s fundamental laws
of physics. The gospel according to Reverend Thomas Bayes lives on and keeps
on gaining more power and transforming more lives through its impact in science,
statistical machine learning and data science From an unpublished manuscript,
the revolutionary idea of Reverend Thomas Bayes has become one of the most
consequential and most pervading transformative concepts in the whole of science
and epistemology. Indeed, wherever there is a bona fide likelihood, there is room
for Bayes.
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