
1

On the UEP Capabilities of Several LDPC

Construction Algorithms

Neele von Deetzen and Sara Sandberg

Abstract

This paper analyzes construction algorithms for low-density parity-check (LDPC) codes with respect

to their unequal error protection (UEP) capabilities. We show that the choice of code construction

algorithm highly affects the performance and UEP properties of LDPC codes with identical degree

distributions. Our results provide an explanation to disagreements in earlier research.

Index Terms

LDPC, unequal error protection, parity-check matrix, ACE,PEG

I. INTRODUCTION

Unequal error protection (UEP) low-density parity-check (LDPC) codes that provide more

protection for certain bits within the codeword are important for applications where the source

bits have different sensitivities to errors. The desired UEP properties are a low bit-error rate

(BER) or frame-error rate (FER) within one or several classes of bits, while the performance of

the remaining classes should be comparable to non-UEP codes. Such codes can, for example,

be constructed by an algebraic method based on Plotkin-typeconstructions [1]. However, since

To appear in IEEE Transactions on Communications.c©2008 IEEE. Personal use of this material is permitted. Permission

from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional

purposes, collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

N. von Deetzen is with the School of Engineering and Science,Jacobs University Bremen, Germany (e-mail:

n.vondeetzen@jacobs-university.de).

S. Sandberg is with the Department of Computer Science and Electrical Engineering, Luleå University of Technology, Sweden

(e-mail: sara.sandberg@ltu.se).

October 1, 2009 DRAFT



2

it is widely observed that the connection degree of a variable node affects its BER, at least for

a limited number of decoding iterations, it is typical to design the variable and/or check node

degree distribution of the code in an irregular way using density evolution [2]–[4]. It should be

noted though, that the results of papers on irregular UEP-LDPC codes disagree. For example,

[4] shows significant UEP capabilities after200 message-passing iterations, while [1] argues

that no UEP gradation can be detected for irregular UEP-LDPCcodes after 50 iterations. In this

paper we explain the reasons behind the disagreeing resultsby analyzing different construction

algorithms with respect to how the graph properties of the corresponding codes affect the UEP

capabilities.

This paper focuses on LDPC codes, originally presented by Gallager in [5]. They exhibit a

performance very close to the capacity for the binary symmetric memoryless channel [6]. LDPC

codes are block codes with a sparse parity-check matrixH of dimension(n − k) × n, where

k andn are the lengths of the information word and the codeword, respectively, andR = k/n

denotes the code rate. An LDPC code can be represented by a bipartite graph, called Tanner

graph [7], which facilitates a decoding algorithm known as the message-passing algorithm [8].

The graph consists of two types of nodes, variable nodes and check nodes, which correspond

to the bits of the codeword and to the parity-check constraints, respectively. A variable node

is connected to a check node if the bit is included in the parity-check constraint. The number

of a node’s connections to other nodes is called the degree. We consider irregular LDPC codes

with variable node and check node degree distributions defined by the polynomials [6]λ(x) =
∑dvmax

i=2 λix
i−1 and ρ(x) =

∑dcmax
i=2 ρix

i−1, wheredvmax and dcmax are the maximum variable

and check node degree of the code. The coefficients of the degree distributions describe the

proportion of edges connected to nodes with a certain degree. UEP is usually obtained by

assigning important bits to high-degree variable nodes andless important bits to the lower-

degrees. Good degree distributions are commonly computed by means of density evolution using

a Gaussian approximation [9]. For a given codeword length and given degree distributions, the

ensemble of codes is defined by random permutation of the edges in the graph. One instance

of the ensemble (a specific code) is identified by a particularpermutation. If the permutations

are chosen randomly, all codes in an ensemble are equiprobable. However, to ensure good

performance of the code, some instances (for example codes with a low girth) are not allowed.

Once a degree distribution is obtained, a parity-check matrix H has to be constructed according

October 1, 2009 DRAFT



3

to the degree distribution. Many construction algorithms have been developed and we consider

five different algorithms for the construction of the parity-check matrix. All of the obtained

codes belong to the same code ensemble.Random construction, following the approach of [6],

was typically used a few years ago. We consider a random construction where only length-4

cycles between degree-2 variable nodes are avoided. However, several authors have suggested

construction algorithms with better BER performance than the random construction, especially

in the error-floor region, mainly by avoiding small cycles inthe Tanner graph. Theprogressive

edge-growth (PEG) constructionalgorithm is an efficient algorithm for the construction of parity-

check matrices with large girth by progressively connecting variable nodes and check nodes [10].

The zigzag constructionalgorithm connects the edges of degree-two variable nodes in a zigzag

manner, according to [11]. The remaining edges may be connected randomly in the same way as

described for the random algorithm (zigzag-random) or according to the PEG algorithm (zigzag-

PEG). Theapproximate cycle extrinsic message degree (ACE) construction algorithm lowers the

error floor by emphasizing both the extrinsic connectivity of cycles (i.e., the number of edges

from variable nodes in a cycle to nodes in the graph that are not part of the cycle) as well

as the length of cycles [12]. ThePEG-ACE constructionalgorithm is a generalization of the

popular PEG algorithm, that is shown to generate good LDPC codes with short and moderate

block lengths having large girth [13]. If the creation of cycles cannot be avoided while adding

an edge, the PEG-ACE construction algorithm chooses an edgethat creates the longest possible

cycle with the best possible ACE constraint.

In this paper we confirm by simulation that the design of an irregular variable node degree

distribution provides UEP capability for a low number of message-passing iterations regardless of

the construction algorithm used. However, the results alsoshow that the choice of the construction

algorithm is critical when good UEP properties are desired after a moderate or high number of

iterations. UEP capability after many iterations is important since this enables considerably lower

error rates than a low number of iterations. To ensure UEP capability of the code regardless

of the choice of construction algorithm, the decoder must typically be interrupted after only10

iterations, which results in performance losses.

October 1, 2009 DRAFT



4

II. SIMULATION RESULTS

A. Ensemble Design

We consider the UEP-LDPC ensemble design proposed in [3], which is based on a hierarchical

optimization of the variable node degree distribution for each protection class. The algorithm

maximizes the average variable node degree within one classat a time while guaranteeing a

minimum variable node degree as high as possible. The optimization can be stated as a linear

programming problem and can, thus, be easily solved. To keepthe overall performance of the

UEP-LDPC code reasonably good, the search for UEP codes is limited to degree distributions

whose convergence thresholds lie within a certain rangeǫ of the minimum threshold of a code

with the same parameters. We fixǫ to 0.1 dB, which is shown in [3] to give a good trade-off

between the performances of the protection classes.

The UEP-LDPC ensemble design algorithm is initialized witha maximum variable node degree

dvmax, the code rateR, and a check node degree distribution. The bits of the codeword are divided

into protection classesCj according to their protection requirements. We design a rate 1/2 UEP-

LDPC code withNc = 3 protection classes,dvmax = 30 andρ(x) = 0.00749x7 + 0.99101x8 + 0.00150x9,

which is found by numerical optimization in [6] to be a good check node degree distribution

for dvmax = 30. The proportions of the classes are chosen such thatC1 contains20% of the

information bits andC2 contains80%. The third class (C3) contains all parity bits. Therefore,

we are mainly interested in the performances of classesC1 and C2. The resulting variable

node degree distribution is defined by the coefficientsλ
(Cj)
i which denote the fractions of edges

incident to degree-i variable nodes of protection classCj . The overall degree distribution is

therewith given byλ(x) =
∑Nc

j=1

∑dvmax
i=2 λ

(Cj)
i xi−1. Table I summarizes the optimized variable

node degree distribution for the resulting UEP-LDPC code.

TABLE I

VARIABLE NODE DEGREE DISTRIBUTION OF THEUEP-LDPCENSEMBLE.

C1 C2 C3

λ
(C1)
18 = 0.2521 λ

(C2)
3 = 0.0786 λ

(C3)
2 = 0.2130

λ
(C1)
19 = 0.0965 λ

(C2)
4 = 0.2511 λ

(C3)
3 = 0.0141

λ
(C1)
30 = 0.0946

October 1, 2009 DRAFT



5

0 0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 / 

F
E

R

 

 

Random C1

Random C2

Random C3

ACE C1

ACE C2

ACE C3

Fig. 1. FER and BER of the random code and the ACE code as a function of Eb/N0, after 100 iterations. The bold curves

show FER and the thin curves show BER. Both codes show good UEPcapabilities, but the ACE code performs slightly better

than the random code.

B. Performance Comparison

UEP-LDPC codes with lengthn = 4096 are constructed using the different construction

algorithms. All codes belong to the ensemble described above. From each construction algorithm,

we consider one code realization in the following. It shouldbe noted that the differences in

performance between several code realizations constructed with the same construction algorithm

are small. We present simulation results for BPSK transmission over the AWGN channel. Fig. 1

shows the FER and the BER as a function ofEb/N0 for the random and ACE code after100

decoder iterations. They both show good UEP properties, butthe ACE code performs slightly

better than the random code. We also see that the ACE code has alower error-floor than the

random code. Fig. 2 shows the FER and the BER for the zigzag-random and PEG-ACE code

after 100 decoder iterations. The zigzag-random code showsmoderate UEP capabilities, while

the PEG-ACE code does not show any UEP at all in FER and very little in BER. Simulation

results for the PEG code and the zigzag-PEG code are omitted here since they show almost

October 1, 2009 DRAFT



6

0 0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 / 

F
E

R

 

 

Zigzag−random C1

Zigzag−random C2

Zigzag−random C3

PEG−ACE C1

PEG−ACE C2

PEG−ACE C3

Fig. 2. FER and BER of the zigzag-random code and the PEG-ACE code as a function ofEb/N0, after 100 iterations. The

bold curves show FER and the thin curves show BER. The zigzag-random code shows moderate UEP capabilities, while the

PEG-ACE code does not show any UEP at all in FER and very littlein BER.

exactly the same performance and UEP capabilities as the PEG-ACE code. For simplicity, we

will summarize the construction algorithms into the following two groups: non-UEP algorithms

and UEP-capable algorithms. The non-UEP construction algorithms are the PEG, the zigzag-

PEG, and the PEG-ACE construction. The UEP-capable construction algorithms are the random,

the ACE, and the zigzag-random construction.

For standard code design, i.e. without UEP, the PEG-ACE construction has been shown

to lower the error-floor while the loss in the waterfall-region is minimal [13]. The results in

Fig. 2 show the same behavior. Remarkably, the PEG-ACE code shows almost no difference in

performance between the classes. The PEG-ACE constructiondoes not lower the error-floors of

all classes compared to the random construction as may be expected, but it removes the UEP

capability by improvingC2 andC3 while degradingC1. Also, the loss in the waterfall-region is

slightly higher than shown for the standard code design, while the gain in the error-floor region

is substantial since all classes have low error floors.

October 1, 2009 DRAFT



7

The results presented in this section suggest the use of the PEG-ACE code for highEb/N0.

At Eb/N0 = 1.6 dB, all classes of PEG-ACE have the same performance as the best class of

ACE. Good performance of all classes is of course even betterthan UEP capability with only

good performance of the most protected class. However, for low Eb/N0, the PEG-ACE code

performs badly and the ACE code with UEP capability is a better choice.

III. RELEVANT GRAPH PROPERTIES

In this section, we present properties of the Tanner graph which are relevant for the UEP

behavior of the code. These properties concern the amount ofconnections between variable

nodes of different protection classes.

A. Connections Between Protection Classes

Since the degree distributionsλ(x) andρ(x) are equal for all codes, we investigate how the

incident variable nodes of a check node are spread between the classes. Generally, a check node

degree distribution may be defined from the node’s perspective as

ρ̃(x) =

dcmax
∑

i=2

ρ̃ix
i−1 .

The coefficients̃ρi correspond to the fraction of degree-i check nodes. In order to account for

connections to different protection classes, we define detailed check node degree distributions

for the protection classesCj,

ρ̃(Cj)(x) =

dcmax
∑

i=0

ρ̃
(Cj)
i xi−1 , i = 1 . . .Nc . (1)

The coefficients̃ρ(Cj)
i correspond to the fraction of check nodes withi edges connected to class-

Cj variables nodes. Note thati is not the overall degree of the check nodes but only the number

of edges which are connected to class-Cj variable nodes. For example,ρ̃
(C1)
4 is the number of all

check nodes with exactly 4 edges connected toC1, divided byn−k, regardless of the connections

of the remaining edges to the other classes. By definition we have
∑dcmax

i=0 ρ̃
(Cj )
i = 1, j =

1, . . . , Nc . This detailed check node degree distribution is similar tothe detailed representation

described in [14], but we consider the degree distribution from the node’s perspective while

[14] considers the edge’s perspective. The representationin [14] is also more detailed than

October 1, 2009 DRAFT



8

TABLE II

DETAILED CHECK NODE DEGREE DISTRIBUTIONS.

ACE Zigzag-random PEG-ACE Modified PEG-ACE

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

ρ̃
(Cj)
0 0.0410 0.0259 0 0.0425 0.0615 0 0 0 0 0 0.0371 0

ρ̃
(Cj)
1 0.0527 0.1216 0.4819 0.0566 0.1426 0.0420 0 0.0054 0 0.0366 0.1514 0.4829

ρ̃
(Cj)
2 0.1074 0.2358 0.2427 0.1089 0.2319 0.8784 0.0005 0.1211 0.9575 0.1753 0.2334 0.2251

ρ̃
(Cj)
3 0.1480 0.2769 0.1465 0.1475 0.2236 0.0757 0.1050 0.7783 0.0425 0.1621 0.2510 0.1465

ρ̃
(Cj)
4 0.2393 0.2129 0.0645 0.2124 0.1426 0.0034 0.7998 0.0947 0 0.2471 0.1665 0.0591

ρ̃
(Cj)
5 0.2109 0.0859 0.0352 0.2315 0.1069 0.0005 0.0942 0.0005 0 0.2002 0.0767 0.0850

ρ̃
(Cj)
6 0.1445 0.0303 0.0161 0.1426 0.0566 0 0.0005 0 0 0.1294 0.0508 0.0015

ρ̃
(Cj)
7 0.0503 0.0088 0.0054 0.0557 0.0317 0 0 0 0 0.0444 0.0269 0

ρ̃
(Cj)
8 0.0059 0.0020 0.0039 0.0024 0.0024 0 0 0 0 0.0049 0.0064 0

ρ̃
(Cj)
9 0 0 0.0029 0 0 0 0 0 0 0 0 0

ρ̃
(Cj)
10 0 0 0.0010 0 0 0 0 0 0 0 0 0

necessary for our purpose since it defines connections to nodes of certain degrees instead of

certain protection classes. Table II presents the coefficients of the detailed check node degree

distributions for the ACE, the zigzag-random, the PEG-ACE,and a modified PEG-ACE code

that will be discussed in Section IV. Note that the maximum check node degree of all codes is

dcmax = 10.

Most of the coefficients of the ACE code are non-zero for all three protection classes, while

the PEG-ACE code has only a few non-zero coefficients. That is, the PEG-ACE code only has a

few different types of check nodes, and the numbers of connections to the protection classes are

very similar for all nodes: The PEG-ACE coefficientsρ̃
(C1)
4 , ρ̃

(C2)
3 and ρ̃

(C3)
2 are all large, which

shows that most check nodes have 4 edges connected toC1, 3 edges toC2, and 2 edges toC3.

This means that the variable nodes of a protection class are generally well connected to other

protection classes through the check nodes. In contrast, the ACE code exhibits many different

kinds of check nodes. Some of the check nodes are mainly connected to one protection class,

having only one or two edges going to other protection classes. There even exist check nodes

having10 edges to a protection class, which means that they are solelyconnected to this class.

This property seems to be important for the capability of providing UEP. With more non-zero

coefficients the classes are more isolated and the propagation of messages between the classes

October 1, 2009 DRAFT



9

will be slower. If most check nodes have several edges to all protection classes, reliable and

unreliable messages from different classes may proceed to other classes more easily and affect

their performance.

The detailed check node degree distributions of the zigzag-random code have few non-zero

coefficients forC3, while the distributions forC1 and C2 are similar to the ACE code. Many

check nodes have two edges connected toC3, while the number of edges to the other classes

vary. The number of connections between the classes is therefore higher than for the ACE code,

but lower than for the PEG-ACE code. This agrees with the UEP capabilities, since the zigzag-

random code shows less UEP than the ACE code and more than the PEG-ACE code. The detailed

distributions of the other codes are omitted here since the distribution of the random code is very

similar to that of the ACE code and all non-UEP codes have almost the same detailed check

node degree distributions. In order to visualize the observations, Fig. 3 shows the detailed check

node degree distributions of the ACE, the zigzag-random, and the PEG-ACE code.

0 1 2 3 4 5 6 7 8
0

0.5

1
ACE

0 1 2 3 4 5 6 7 8
0

0.5

1

1 2 3 4 5 6 7 8 9
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1
Zigzag−random

0 1 2 3 4 5 6 7 8
0

0.5

1

1 2 3 4 5
0

0.5

1

2 3 4 5 6
0

0.5

1
PEG−ACE

1 2 3 4 5
0

0.5

1

2 3
0

0.5

1

ρ̃
(C1)
i

ρ̃
(C2)
i

ρ̃
(C3)
i

i

i

i

i

i

i

i

i

i

Fig. 3. Detailed check node degree distributions of the ACE,the zigzag-random, and the PEG-ACE code. The UEP-capable

ACE code has many non-zero coefficients, while the non-UEP PEG-ACE code has one large coefficient in each class, which

leads to more connections between the classes.

October 1, 2009 DRAFT



10

B. Detailed Mutual Information Evolution

The effect of the number of connections between the classes on the performance may be ana-

lyzed by calculating the mutual information (MI) functionsof the different codes. By calculating

the theoretical MI functions, the effect of the number of connections is isolated from effects due

to cycles, trapping sets, and codeword length, since the calculation is based on the corresponding

cycle-free graph. Typically, the MI functions are calculated from the degree distributionsλ(x)

andρ(x) of a code. However, in our case all codes have the same overalldegree distributions

λ(x) andρ(x). To observe the differences between codes constructed by the various algorithms,

a detailed computation of MI may be performed by consideringthe edge-based MI messages

traversing the graph instead of node-based averages. This has been done for protographs in [15].

We follow the same approach, but use the parity-check matrixinstead of the protograph base

matrix. See [16], [17] for more details on MI analysis.

Let IAv be thea priori MI between one input message and the codeword bit associatedto

the variable node.IEv is the extrinsic MI between one output message and the codeword bit.

Similarly on the check node side, we defineIAc (IEc) to be thea priori (extrinsic) MI between

one check node input (output) message and the codeword bit corresponding to the variable node

providing (receiving) the message. The evolution is initialized by the MI between one received

message and the corresponding codeword bit, denoted byIch, which corresponds to the channel

capacity. For the AWGN channel, it is given byIch = J(σch), where

σ2
ch = 8R

Eb

N0
(2)

andEb/N0 is the signal-to-noise ratio at which the analysis is performed. The functionJ(·) is

defined by

J(σ) = 1 −

∫ ∞

−∞

1
√

2πσ2
e−

(y−σ2/2)2

2σ2 log2(1 + e−y)dy (3)

and computes the MI based on the noise variance. For a variable node with degreedv, the

extrinsic MI between thes-th output message and the corresponding codeword bit is [15]

IEv|s = J





√

√

√

√

dv
∑

l=1,l 6=s

[J−1(IAv|l)]2 + [J−1(Ich)]2



 , (4)

whereIAv|l is the a priori MI of the message received by the variable node on itsl-th edge.

October 1, 2009 DRAFT



11

The extrinsic MI for a check node with degreedc may be written as

IEc|s = 1 − J





√

√

√

√

dc
∑

l=1,l 6=s

[J−1(1 − IAc|l)]2



 , (5)

whereIAc|l is thea priori MI of the message received by the check node on itsl-th edge. Note

that the MI functions are subject to the Gaussian approximation (see [9]) and are not exact.

The a posteriori MI of the check nodes (denoted byIAPPc) at Eb/N0 = 0.7dB is shown in

Fig. 4 for the ACE and PEG-ACE code. An averageIAPPc of each class is calculated as an

averageIAPPc of all edges incident to variable nodes of the correspondingclass. The figure

shows that the averageIAPPc of all classes are almost equal for the PEG-ACE code, while they

differ for the ACE code. This behavior may be explained by theconnections of the check nodes

to the different protection classes described by the detailed check node degree distributions in

Table II.

For the PEG-ACE code, almost all check nodes are connected to4 variable nodes fromC1,

3 variable nodes fromC2 and 2 variable nodes fromC3. Even if the extrinsic information from

the variable nodes (IEv = IAc) differs (due to the irregular variable node degree distribution),

almost all check nodes combine the same number of nodes from each class. This gives almost

equalIEc for all check nodes , which means that the performance of different classes will be

averaged over the whole codeword in this step.

For the ACE code on the other hand, the number of variable nodes from different classes that

are connected to a check node differs much more. This allows for having some check nodes

with higher MI than others and the difference in MI of the check nodes will increase the UEP

capability of the code.

Fig. 5 shows the average variable nodea posterioriMI (denoted byIAPPv) as a function of

the number of decoder iterations. It is shown in [16] that small differences in MI may lead to

significant differences in BER for MI values near to 1. Therefore, the figure shows the distance

of the MI to its maximum value, i.e.1−IAPPv, on a logarithmic scale. Note that the convergence

speeds of the protection classes are farther apart for the ACE algorithm. Protection classC1 of

the ACE code converges faster than that of the PEG-ACE code, while the other classes take

more iterations to converge for the ACE code than for the PEG-ACE code. Theoretically, the

MI may approach1 arbitrarily close and there will still be UEP. The actual amount of UEP

October 1, 2009 DRAFT



12

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

I A
P

P
c

 

 

ACE C1

ACE C2

ACE C3

PEG−ACE C1

PEG−ACE C2

PEG−ACE C3

Fig. 4. Average check nodea posteriori MI (IAPPc) as a function of the number of decoder iterations atEb/N0 = 0.7 dB.

The averageIAPPc of all classes are almost equal for the PEG-ACE code, while they differ for the ACE code.

depends on the convergence speeds of the classes, [3]. In practice, the accuracy is limited by

the numerical precision of the computations and, for example, approximations of the J-function.

However, using the approximation of the error probability based on mutual information from

[16]

Pb ≈
1

2
erfc





√

8R Eb

N0
+ J−1(IAv)2 + J−1(IEv)2

2
√

2



 , (6)

the error probabilities of the protection classes may be estimated. Note that the results are not

exact for finite-length codes and become more inexact with lower error rates. Nevertheless, we

observe significant differences in BER between the classes if their MI values are close to 1 and

only differ in the fifth decimal position. Remember that for all codes we consider here, there

will be some UEP capability strictly depending on the irregularity of the LDPC code. In the first

iteration, allIEc will be almost equal (due to the concentrated check node degree distribution,

October 1, 2009 DRAFT



13

0 10 20 30 40 50 60

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

1−
I A

P
P

v

 

 

ACE C1

ACE C2

ACE C3

PEG−ACE C1

PEG−ACE C2

PEG−ACE C3

Fig. 5. Distance of average variable nodea posterioriMI (IAPPv) to the maximum MI, as a function of the number of decoder

iterations, atEb/N0 = 0.7 dB. Protection classC1 of the ACE code converges faster than that of the PEG-ACE code, while

the other classes take more iterations to converge for the ACE code than for the PEG-ACE code.

i.e., a majority of the check nodes have the same degree) and the only difference inIAPPv

between the classes will depend on the variable node degrees.

The above discussion shows that the number of edges from a check node to variable nodes

of different classes, defined by the detailed check node degree distribution in Table II plays an

important role to the UEP capability. However, in comparingthe theoretical MI from above with

the true values obtained by measuring the actual decoding LLRs, we observe deviations. The

measured MI values are lower than the theoretical ones whichis due to finite-length issues such

as cycles and trapping sets. Nevertheless, the UEP properties are valid for both theoretical and

measured observations.

October 1, 2009 DRAFT



14

IV. M ODIFIED PEG-ACE CONSTRUCTION WITH INCREASED UEP CAPABILITY

The above sections discussed the number of edges from check nodes to the protection classes

and differences between the UEP codes and the non-UEP codes were found. In order to verify

that the presented argument indeed is the reason for the differences in UEP capability, we modify

the (non-UEP) PEG-ACE construction algorithm to yield codes with a similar detailed check

node degree distribution as the UEP-capable ACE code. We further demonstrate that codes

constructed by the modified PEG-ACE algorithm have good UEP capabilities.

The algorithm is modified in such a way that it only allows check nodes for the candidate

list which do not violate certain detailed check node degreedistributionsρ̃(Cj )(x). Thereby, the

modified PEG-ACE code is forced to have detailed check node degree distribution similar to

the ACE code instead of its natural distribution. By doing so, the detailed check node degree

distribution given in the three right-most columns of TableII is obtained. Notice that this is very

similar to the detailed distribution of the ACE code. The modified algorithm explained above is

calledmodified PEG-ACEin the following.

Fig. 6 shows the BER and FER of the modified PEG-ACE code in comparison to the original

PEG-ACE code. It shows that by changing the detailed check node degree distribution of the

original PEG-ACE code, it is possible to enhance its UEP capability significantly. Instead of

equal error rates for all classes, the modification has improved the BER ofC1, while slightly

degradingC2 and C3. Compared to the ACE code, the modified PEG-ACE even shows more

UEP capability, since the performance ofC1 is better for the PEG-ACE code whileC2 andC3

perform worse. Furthermore, it should be mentioned that themodified PEG-ACE code is even

capable of increasing the differences in BER betweenC2 andC3 compared to the UEP-capable

codes.

With the modified PEG-ACE algorithm, it is possible to enhance the UEP capability of a code

by modifying its detailed check node degree distribution. Optimization of the detailed check node

degree distribution is outside the scope of this paper. However, the detailed check node degree

distribution may be used as a tool to move between codes with good UEP capability but lower

overall performance and codes with good overall performance but less UEP capability.

October 1, 2009 DRAFT



15

0 0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 / 

F
E

R

 

 

Mod. PEG−ACE C1

Mod. PEG−ACE C2

Mod. PEG−ACE C3

PEG−ACE C1

PEG−ACE C2

PEG−ACE C3

Fig. 6. BER and FER of the modified PEG-ACE code in comparison to the original PEG-ACE code. The modification of the

PEG-ACE code has increased its UEP capability significantly.

V. CONCLUSIONS

We have compared the UEP capabilities of several construction algorithms. Results show

that the considered algorithms may be divided into two groups: UEP-capable codes are those

constructed by the random, the ACE, and the zigzag-random construction algorithm, while the

non-UEP codes are constructed by the PEG, the PEG-ACE and thezigzag-PEG construction

algorithm. These findings explain why earlier literature onirregular UEP-LDPC codes show

disagreeing results.

Analysis of the parity-check matrices of the different codes shows that the amount of connec-

tions between the different classes is higher for the non-UEP codes than for the UEP-capable

codes. By introducing the concept of a detailed check node degree distribution, we have shown

that the number of edges from a check node to variable nodes ofdifferent classes affects the UEP

capability. Furthermore, the PEG-ACE construction algorithm has successfully been modified in

October 1, 2009 DRAFT



16

order to construct good UEP-capable codes.

VI. A CKNOWLEDGMENTS

The authors would like to thank Prof. James LeBlanc, Luleå University of Technology, Sweden,

for motivating ideas, discussions, and support.

REFERENCES

[1] V. Kumar and O. Milenkovic, “On unequal error protectionLDPC codes based on Plotkin-type constructions,”IEEE Trans.

Commun., vol. 54, pp. 994–1005, June 2006.

[2] L. Sassatelli, W. Henkel, and D. Declercq, “Check-irregular LDPC codes for unequal error protection under iterative

decoding,” inProc. 4th Int. Symp. on Turbo Codes & Related Topics 2006, Apr. 2006.

[3] C. Poulliat, D. Declercq, and I. Fijalkow, “Enhancementof unequal error protection properties of LDPC codes,”

EURASIP Journal on Wireless Communications and Networking, vol. 2007, pp. Article ID 92659, 9 pages, 2007.

doi:10.1155/2007/92659.

[4] N. Rahnavard, H. Pishro-Nik, and F. Fekri, “Unequal error protection using partially regular LDPC codes,”IEEE Trans.

Commun., vol. 55, pp. 387–391, Mar. 2007.

[5] R. Gallager, “Low-density parity-check codes,”IRE Trans. Inf. Theory, vol. 8, pp. 21–28, Jan. 1962.

[6] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,”

IEEE Trans. Inf. Theory, vol. 47, pp. 619–637, Feb. 2001.

[7] M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, pp. 533 – 547, Sept. 1981.

[8] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,”IEEE Trans. Inf. Theory,

vol. 47, pp. 498 – 519, Feb. 2001.

[9] S.-Y. Chung, T. Richardson, and R. Urbanke, “Analysis ofsum-product decoding of low-density parity-check codes using

a Gaussian approximation,”IEEE Trans. Inf. Theory, vol. 47, pp. 657–670, Feb. 2001.

[10] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular andirregular progressive edge-growth Tanner graphs,”IEEE Trans.

Inf. Theory, vol. 51, pp. 386–398, Jan. 2005.

[11] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth Tanner graphs,” inProc. IEEE Global Telecommu-

nications Conference 2001, vol. 2, pp. 995–1001, Nov. 2001.

[12] T. Tian, C. Jones, D. Villasenor, and R. Wesel, “Selective avoidance of cycles in irregular LDPC code construction,” IEEE

Trans. Commun., vol. 52, pp. 1242–1247, Aug. 2004.

[13] D. Vukobratovic and V. Senk, “Generalized ACE constrained progressive edge-growth LDPC code design,”IEEE Commun.

Lett., vol. 12, pp. 32–34, Jan. 2008.

[14] K. Kasai, T. Shibuya, and K. Sakaniwa, “Detailedly Represented Irregular Low-Density Parity-Check Codes,”IEICE Trans.

on Fundamentals, vol. E86-A, pp. 2435–2444, Oct. 2003.

[15] G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” inProc. IEEE GLOBECOM 2007,

pp. 3250–3254, Nov. 2007.

[16] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,”IEEE Trans. Commun., vol. 49,

pp. 1727–1737, Oct. 2001.

October 1, 2009 DRAFT



17

[17] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,”

IEEE Trans. Commun., vol. 52, pp. 670–678, Apr. 2004.

October 1, 2009 DRAFT


