1

On the UEP Capabilities of Several LDPC

Construction Algorithms

Neele von Deetzen and Sara Sandberg

Abstract

This paper analyzes construction algorithms for low-dgnmarity-check (LDPC) codes with respect
to their unequal error protection (UEP) capabilities. Wevgtthat the choice of code construction
algorithm highly affects the performance and UEP properté LDPC codes with identical degree

distributions. Our results provide an explanation to disagients in earlier research.

Index Terms

LDPC, unequal error protection, parity-check matrix, AGEEG

I. INTRODUCTION

Unequal error protection (UEP) low-density parity-chetlOPC) codes that provide more
protection for certain bits within the codeword are impottéor applications where the source
bits have different sensitivities to errors. The desiredPUgtoperties are a low bit-error rate
(BER) or frame-error rate (FER) within one or several classkbits, while the performance of
the remaining classes should be comparable to non-UEP .c8deb codes can, for example,

be constructed by an algebraic method based on Plotkindggpstructions [1]. However, since

To appear in IEEE Transactions on Communicatiq@®2008 IEEE. Personal use of this material is permitted. Pesiom
from IEEE must be obtained for all other uses, including irgprg/republishing this material for advertising or protional
purposes, collecting new collected works for resale orsteifiution to servers or lists, or reuse of any copyrightechgonent

of this work in other works.
N. von Deetzen is with the School of Engineering and Scient@;obs University Bremen, Germany (e-mail:

n.vondeetzen@jacobs-university.de).
S. Sandberg is with the Department of Computer Science agxtrigial Engineering, Lulea University of Technology, &ien

(e-mail: sara.sandberg@ltu.se).

October 1, 2009 DRAFT

it is widely observed that the connection degree of a vagialnlde affects its BER, at least for
a limited number of decoding iterations, it is typical to id@sthe variable and/or check node
degree distribution of the code in an irregular way usingsdgrevolution [2]—[4]. It should be
noted though, that the results of papers on irregular UEPCRodes disagree. For example,
[4] shows significant UEP capabilities aftef0) message-passing iterations, while [1] argues
that no UEP gradation can be detected for irregular UEP-LD&d&s after 50 iterations. In this
paper we explain the reasons behind the disagreeing rdgulisalyzing different construction
algorithms with respect to how the graph properties of theesponding codes affect the UEP
capabilities.

This paper focuses on LDPC codes, originally presented Hia@a in [5]. They exhibit a
performance very close to the capacity for the binary symmetemoryless channel [6]. LDPC
codes are block codes with a sparse parity-check méfriaf dimension(n — k) x n, where
k andn are the lengths of the information word and the codewordgaetively, andR = k/n
denotes the code rate. An LDPC code can be represented byaditeigraph, called Tanner
graph [7], which facilitates a decoding algorithm known hs message-passing algorithm [8].
The graph consists of two types of nodes, variable nodes hadkcnodes, which correspond
to the bits of the codeword and to the parity-check condsairespectively. A variable node
is connected to a check node if the bit is included in the patieck constraint. The number
of a node’s connections to other nodes is called the degreecdfsider irregular LDPC codes
with variable node and check node degree distributions el@éfby the polynomials [6)\(x) =
S fvmar N2l and p(z) = Y 0emes pait, whered,,,, andd
and check node degree of the code. The coefficients of theeelatjstributions describe the

are the maximum variable

Umax Cmax

proportion of edges connected to nodes with a certain dedt&® is usually obtained by
assigning important bits to high-degree variable nodes lasg important bits to the lower-
degrees. Good degree distributions are commonly compwteaelans of density evolution using
a Gaussian approximation [9]. For a given codeword length@wen degree distributions, the
ensemble of codes is defined by random permutation of theseidgihne graph. One instance
of the ensemble (a specific code) is identified by a partico&amutation. If the permutations
are chosen randomly, all codes in an ensemble are equigeobidbwever, to ensure good
performance of the code, some instances (for example coiflesaviow girth) are not allowed.

Once a degree distribution is obtained, a parity-checkimairhas to be constructed according

October 1, 2009 DRAFT

to the degree distribution. Many construction algorithrasénbeen developed and we consider
five different algorithms for the construction of the partiyeck matrix. All of the obtained
codes belong to the same code ensemRBndom constructigrfollowing the approach of [6],
was typically used a few years ago. We consider a random rcmtisih where only length-4
cycles between degree-2 variable nodes are avoided. Howsaxeeral authors have suggested
construction algorithms with better BER performance thas random construction, especially
in the error-floor region, mainly by avoiding small cyclestire Tanner graph. Therogressive
edge-growth (PEG) constructialgorithm is an efficient algorithm for the construction airipy-
check matrices with large girth by progressively connegtiariable nodes and check nodes [10].
The zigzag constructiomlgorithm connects the edges of degree-two variable nodeszigzag
manner, according to [11]. The remaining edges may be coethieandomly in the same way as
described for the random algorithm (zigzag-random) or &ting to the PEG algorithm (zigzag-
PEG). Theapproximate cycle extrinsic message degree (ACE) corigirualgorithm lowers the
error floor by emphasizing both the extrinsic connectivifycpcles (i.e., the number of edges
from variable nodes in a cycle to nodes in the graph that atepad of the cycle) as well
as the length of cycles [12]. ThREG-ACE constructioralgorithm is a generalization of the
popular PEG algorithm, that is shown to generate good LDPdesavith short and moderate
block lengths having large girth [13]. If the creation of B& cannot be avoided while adding
an edge, the PEG-ACE construction algorithm chooses an thdgiereates the longest possible
cycle with the best possible ACE constraint.

In this paper we confirm by simulation that the design of aagular variable node degree
distribution provides UEP capability for a low number of re@ge-passing iterations regardless of
the construction algorithm used. However, the results steov that the choice of the construction
algorithm is critical when good UEP properties are desiriéelr @ moderate or high number of
iterations. UEP capability after many iterations is impattsince this enables considerably lower
error rates than a low number of iterations. To ensure UERImhAty of the code regardless
of the choice of construction algorithm, the decoder mugiclly be interrupted after only0

iterations, which results in performance losses.

October 1, 2009 DRAFT

II. SIMULATION RESULTS
A. Ensemble Design

We consider the UEP-LDPC ensemble design proposed in [3¢hwh based on a hierarchical
optimization of the variable node degree distribution facke protection class. The algorithm
maximizes the average variable node degree within one elasstime while guaranteeing a
minimum variable node degree as high as possible. The gation can be stated as a linear
programming problem and can, thus, be easily solved. To Keemverall performance of the
UEP-LDPC code reasonably good, the search for UEP codemiitedi to degree distributions
whose convergence thresholds lie within a certain rangethe minimum threshold of a code
with the same parameters. We #ixo 0.1 dB, which is shown in [3] to give a good trade-off
between the performances of the protection classes.

The UEP-LDPC ensemble design algorithm is initialized vaithaximum variable node degree
d
into protection classeS’ according to their protection requirements. We designelr&t UEP-
= 30 andp(z) = 0.0074927 + 0.991012® + 0.001502°,

the code raté?, and a check node degree distribution. The bits of the contkeu@ divided

Umax?

LDPC code withN,. = 3 protection classeg,, .
which is found by numerical optimization in [6] to be a goodeck node degree distribution
for d

information bits andC? contains80%. The third class@®) contains all parity bits. Therefore,

wee = 30. The proportions of the classes are chosen such@hatontains20% of the
we are mainly interested in the performances of clagsesand C%. The resulting variable
node degree distribution is defined by the coefficiexfsf) which denote the fractions of edges
incident to degree-variable nodes of protection clag®’. The overall degree distribution is
therewith given by\(z) = Z?’;l Zf:g /\Z(Cj)xi*l. Table | summarizes the optimized variable

node degree distribution for the resulting UEP-LDPC code.

TABLE |

VARIABLE NODE DEGREE DISTRIBUTION OF THEUEP-LDPCENSEMBLE.

(& Co Cs
ACY —0.2521 | ALY = 0.0786 | AT = 0.2130
A —0.0065 | AT =0.2511 | ALY = 0.0141
A — 0.0046

October 1, 2009 DRAFT

10

101
10

10

BER / FER

10 3
——Random ¢
10°H - + -Random & |
‘-+-Random &
16l ~HACE c |
-8-ACE C
Ll - ACEC
10 T il |
0 0.5 1.5 2

1
E N, (dB)

Fig. 1. FER and BER of the random code and the ACE code as aidanat £, /Ny, after 100 iterations. The bold curves
show FER and the thin curves show BER. Both codes show good ddB&bilities, but the ACE code performs slightly better
than the random code.

B. Performance Comparison

UEP-LDPC codes with lengthh = 4096 are constructed using the different construction
algorithms. All codes belong to the ensemble describedalfrom each construction algorithm,
we consider one code realization in the following. It shobl noted that the differences in
performance between several code realizations constiwdth the same construction algorithm
are small. We present simulation results for BPSK trangomssver the AWGN channel. Fig. 1
shows the FER and the BER as a function/f/ N, for the random and ACE code aftéf0
decoder iterations. They both show good UEP propertiesfHaitACE code performs slightly
better than the random code. We also see that the ACE code loageaerror-floor than the
random code. Fig. 2 shows the FER and the BER for the zigzadpra and PEG-ACE code
after 100 decoder iterations. The zigzag-random code shnoederate UEP capabilities, while
the PEG-ACE code does not show any UEP at all in FER and vety it BER. Simulation

results for the PEG code and the zigzag-PEG code are omiéexl dince they show almost

October 1, 2009 DRAFT

10 "

BER / FER

—— Zigzag-random &
16°H ~ ¢ - Zigzag-random &
-0~ Zigzag-random &
/| —&—PEG-ACE C

10 - e-pEG-ACE @
[l = PEG-ACE €
10 T L L
0 0.5 15 2

1
E N, (dB)

Fig. 2. FER and BER of the zigzag-random code and the PEG-ARIE as a function of’, /Ny, after 100 iterations. The
bold curves show FER and the thin curves show BER. The ziggadem code shows moderate UEP capabilities, while the

PEG-ACE code does not show any UEP at all in FER and very [ittBER.

exactly the same performance and UEP capabilities as the AREE5code. For simplicity, we
will summarize the construction algorithms into the foliagy two groups: non-UEP algorithms
and UEP-capable algorithms. The non-UEP constructionridiigos are the PEG, the zigzag-
PEG, and the PEG-ACE construction. The UEP-capable cartigtnualgorithms are the random,
the ACE, and the zigzag-random construction.

For standard code design, i.e. without UEP, the PEG-ACE toact®on has been shown
to lower the error-floor while the loss in the waterfall-regiis minimal [13]. The results in
Fig. 2 show the same behavior. Remarkably, the PEG-ACE cohdwssalmost no difference in
performance between the classes. The PEG-ACE construties not lower the error-floors of
all classes compared to the random construction as may lected but it removes the UEP
capability by improvingC? and C?® while degrading”*. Also, the loss in the waterfall-region is
slightly higher than shown for the standard code designleathe gain in the error-floor region

is substantial since all classes have low error floors.

October 1, 2009 DRAFT

The results presented in this section suggest the use ofB@eATE code for highZ,/Ny.
At E,/Ny = 1.6 dB, all classes of PEG-ACE have the same performance as #ieclass of
ACE. Good performance of all classes is of course even bttser UEP capability with only
good performance of the most protected class. However,dior A,/ N,, the PEG-ACE code
performs badly and the ACE code with UEP capability is a Ibettmice.

[1l. RELEVANT GRAPH PROPERTIES

In this section, we present properties of the Tanner grapichware relevant for the UEP
behavior of the code. These properties concern the amounbmifections between variable

nodes of different protection classes.

A. Connections Between Protection Classes

Since the degree distributiongx) and p(x) are equal for all codes, we investigate how the
incident variable nodes of a check node are spread betweeriabses. Generally, a check node

degree distribution may be defined from the node’s perspeets

deaz
pla) = pa "
=2
The coefficientsy; correspond to the fraction of degréeeheck nodes. In order to account for

connections to different protection classes, we defineilddtaheck node degree distributions

for the protection classes”,

deam

~(CI ~(CT) i .
A =S AP =1 N, (1)
i=0

The coefficientsﬁf.cj) correspond to the fraction of check nodes widdges connected to class-
(Y variables nodes. Note thats not the overall degree of the check nodes but only the numbe
of edges which are connected to cl@&svariable nodes. For exampl,éf,cl) is the number of all
check nodes with exactly 4 edges connecte@tpdivided byn —k, regardless of the connections
of the remaining edges to the other classes. By definition w&eEfggw /350” =1, 7 =
1,...,N.. This detailed check node degree distribution is similatht® detailed representation
described in [14], but we consider the degree distributimmf the node’s perspective while

[14] considers the edge’s perspective. The representatidd4] is also more detailed than

October 1, 2009 DRAFT

TABLE I

DETAILED CHECK NODE DEGREE DISTRIBUTIONS

ACE Zigzag-random PEG-ACE Modified PEG-ACE
¢ | e | e ¢ | 2 | e c | | e c | e | e
50 1 0.0410] 0.0250] 0 || 0.0425] 0.0615] o 0 0 0 o |oo0371] o

ﬁgcj) 0.0527 | 0.1216| 0.4819| 0.0566 | 0.1426| 0.0420 0 0.0054 0 0.0366 | 0.1514| 0.4829
ﬁécj) 0.1074 | 0.2358| 0.2427| 0.1089 | 0.2319| 0.8784| 0.0005| 0.1211| 0.9575| 0.1753| 0.2334| 0.2251
ﬁgcj) 0.1480 | 0.2769| 0.1465| 0.1475| 0.2236| 0.0757| 0.1050| 0.7783| 0.0425| 0.1621| 0.2510| 0.1465

5 11 0.2393 | 0.2129 | 0.0645 || 0.2124 | 0.1426 | 0.0034 | 0.7998 | 0.0947| 0 0.2471| 0.1665 | 0.0591
5 11 0.2109 | 0.0859 | 0.0352 || 0.2315 | 0.1069 | 0.0005 || 0.0942 | 0.0005| 0 0.2002 | 0.0767 | 0.0850
5 |l 0.1445 | 0.0303 | 0.0161 || 0.1426 | 0.0566| 0 0.0005| 0 0 0.1294 | 0.0508 | 0.0015
5 |l 0.0503 | 0.0088 | 0.0054 || 0.0557 | 0.0317| 0 0 0 0 0.0444| 0.0269| 0
5 11 0.0059 | 0.0020 | 0.0039 || 0.0024 | 0.0024| 0 0 0 0 0.0049 | 0.0064| 0
5 0 0 |00029| o0 0 0 0 0 0 0 0 0
5 0 0 |o0.0010| O 0 0 0 0 0 0 0 0

necessary for our purpose since it defines connections tesnoficertain degrees instead of
certain protection classes. Table Il presents the coeifiief the detailed check node degree
distributions for the ACE, the zigzag-random, the PEG-A@EJ a modified PEG-ACE code

that will be discussed in Section IV. Note that the maximuraathnode degree of all codes is
d,,.. = 10.

Most of the coefficients of the ACE code are non-zero for aleé¢hprotection classes, while
the PEG-ACE code has only a few non-zero coefficients. ThabhésPEG-ACE code only has a
few different types of check nodes, and the numbers of cdiorecto the protection classes are
very similar for all nodes: The PEG-ACE coefficiemg), ﬁ§02) andﬁgcs) are all large, which
shows that most check nodes have 4 edges connectéd, t® edges ta”?, and 2 edges t¢*.
This means that the variable nodes of a protection class exrerglly well connected to other
protection classes through the check nodes. In contrastA@E code exhibits many different
kinds of check nodes. Some of the check nodes are mainly ctathé one protection class,
having only one or two edges going to other protection cks$bere even exist check nodes
having 10 edges to a protection class, which means that they are saelyected to this class.
This property seems to be important for the capability ofvgimg UEP. With more non-zero

coefficients the classes are more isolated and the propagatimessages between the classes

October 1, 2009 DRAFT

will be slower. If most check nodes have several edges toralieption classes, reliable and
unreliable messages from different classes may proceeth&r olasses more easily and affect
their performance.

The detailed check node degree distributions of the zigaagom code have few non-zero
coefficients forC?, while the distributions foilC'* and C? are similar to the ACE code. Many
check nodes have two edges connected'tp while the number of edges to the other classes
vary. The number of connections between the classes isftherieigher than for the ACE code,
but lower than for the PEG-ACE code. This agrees with the U&pabilities, since the zigzag-
random code shows less UEP than the ACE code and more thaB@\RE code. The detailed
distributions of the other codes are omitted here since itelalition of the random code is very
similar to that of the ACE code and all non-UEP codes have sirttte same detailed check
node degree distributions. In order to visualize the olz@ms, Fig. 3 shows the detailed check
node degree distributions of the ACE, the zigzag-randord,the PEG-ACE code.

ACE Zigzag-random PEG-ACE
1 1 1
~(C)
Pi 05 0.5 0.5
012345678 012345678 23456
7 i i
1 1 1
~(C?)
Pi 05 0.5 0.5
012345678 012345678 12345
i 1 i
1 1 1
~(C3)
i 0.5 0.5 0.5
Hﬂﬂm e N
1234'56789 1234_5 23

Fig. 3.

ACE code has many non-zero coefficients, while the non-UEB-REE code has one large coefficient in each class, which

7

leads to more connections between the classes.

October 1, 2009

Detailed check node degree distributions of the ABE, zigzag-random, and the PEG-ACE code. The UEP-capable

10

B. Detailed Mutual Information Evolution

The effect of the number of connections between the clagséiseoperformance may be ana-
lyzed by calculating the mutual information (MI) functionkthe different codes. By calculating
the theoretical MI functions, the effect of the number of mections is isolated from effects due
to cycles, trapping sets, and codeword length, since tleelleion is based on the corresponding
cycle-free graph. Typically, the MI functions are calcelhtfrom the degree distributiongz)
and p(x) of a code. However, in our case all codes have the same odemgiee distributions
A(z) andp(z). To observe the differences between codes constructedebyatipus algorithms,
a detailed computation of Ml may be performed by considethmg edge-based Ml messages
traversing the graph instead of node-based averages. asisden done for protographs in [15].
We follow the same approach, but use the parity-check matstead of the protograph base
matrix. See [16], [17] for more details on MI analysis.

Let 74, be thea priori Ml between one input message and the codeword bit assod@ated
the variable nodelg, is the extrinsic MI between one output message and the cadelib
Similarly on the check node side, we defihe. (/z.) to be thea priori (extrinsic) Ml between
one check node input (output) message and the codewordrbisponding to the variable node
providing (receiving) the message. The evolution is ihied by the M|l between one received
message and the corresponding codeword bit, denotdd, bwhich corresponds to the channel

capacity. For the AWGN channel, it is given By, = J(o.;), where
02, =S8R (2)

and E, /N, is the signal-to-noise ratio at which the analysis is penfed. The function/(-) is
defined by

o 1 (w=0?/2)
Jcrzl—/ e 202 log,(1+e Y)d 3

and computes the MI based on the noise variance. For a varragde with degree,, the

extrinsic Ml between the-th output message and the corresponding codeword bit is [15

I1=1,1#s

dy
I =J JZ T (L) + [T ()2] | (4)

where 4, is the a priori Ml of the message received by the variable node ori-its edge.

October 1, 2009 DRAFT

11

The extrinsic MI for a check node with degréde may be written as

de

Ipgs=1—J SO = L) | (5)
I=1,l#s

wherel,.; is thea priori MI of the message received by the check node or-itsedge. Note
that the MI functions are subject to the Gaussian approxangsee [9]) and are not exact.

The a posterioriMI of the check nodes (denoted Wyipp.) at E,/Ny = 0.7dB is shown in
Fig. 4 for the ACE and PEG-ACE code. An averafg-p. of each class is calculated as an
averagel ,pp. Of all edges incident to variable nodes of the correspondiags. The figure
shows that the average rp. Of all classes are almost equal for the PEG-ACE code, whég th
differ for the ACE code. This behavior may be explained bydbenections of the check nodes
to the different protection classes described by the detatheck node degree distributions in
Table II.

For the PEG-ACE code, almost all check nodes are connectédvésiable nodes front?,

3 variable nodes front’> and 2 variable nodes froi®. Even if the extrinsic information from
the variable nodesif, = 1,.) differs (due to the irregular variable node degree distrdn),
almost all check nodes combine the same number of nodes fasin @ass. This gives almost
equal I, for all check nodes , which means that the performance oérmdifft classes will be
averaged over the whole codeword in this step.

For the ACE code on the other hand, the number of variablesfyden different classes that
are connected to a check node differs much more. This allow$dving some check nodes
with higher MI than others and the difference in Ml of the dhemdes will increase the UEP
capability of the code.

Fig. 5 shows the average variable na@osterioriMI (denoted by/,prp,) as a function of
the number of decoder iterations. It is shown in [16] that Ismhi&ferences in MI may lead to
significant differences in BER for Ml values near to 1. Theref the figure shows the distance
of the MI to its maximum value, i.e.— I 4pp,, ON a logarithmic scale. Note that the convergence
speeds of the protection classes are farther apart for tHe @l@orithm. Protection class! of
the ACE code converges faster than that of the PEG-ACE cotiéde \the other classes take
more iterations to converge for the ACE code than for the PEE- code. Theoretically, the

MI may approachl arbitrarily close and there will still be UEP. The actual ambof UEP

October 1, 2009 DRAFT

12

—=—ACE C
0.9H-8a-ACE
| -= ACEC ,
—e—PEG-ACE ¢

0.7 - e - PEG-ACE @
| -o- PEG-ACE &

0 10 20 30 40 50 60
Iteration

Fig. 4. Average check node posterioriMI (Iapp.) @s a function of the number of decoder iterationsZaf No = 0.7 dB.

The averagd app. Of all classes are almost equal for the PEG-ACE code, whag thiffer for the ACE code.

depends on the convergence speeds of the classes, [3].dticprahe accuracy is limited by
the numerical precision of the computations and, for examgbproximations of the J-function.
However, using the approximation of the error probabiligséd on mutual information from
[16]

VSR + - (La)? + - (L)
2V/2 ’

the error probabilities of the protection classes may benastd. Note that the results are not

P, ~ - erfc (6)

(NN

exact for finite-length codes and become more inexact witlefcerror rates. Nevertheless, we
observe significant differences in BER between the claggbeir Ml values are close to 1 and
only differ in the fifth decimal position. Remember that fdr @odes we consider here, there
will be some UEP capability strictly depending on the irregitly of the LDPC code. In the first

iteration, all /. will be almost equal (due to the concentrated check nodeededistribution,

October 1, 2009 DRAFT

13

10_27 'l\:l\’ -
LR
\ "‘/
AN \ " H
Y _ N
\ Q N
4 \\\ N
& 10 '+ LK) AT
_& &% ‘7\ '\,
‘l| v U \
vy N
6 —a— ACE d' ‘\ ‘| \\I
101 - a-pcEQ !
1
-8- ACE C :
—e— PEG-ACE ¢
108 - e - PEG-ACE @ 1
-0~ PEG-ACE &
0 10 20 30 40 50 60

Iteration

Fig. 5. Distance of average variable nagosterioriMI (14 pp,) to the maximum MI, as a function of the number of decoder
iterations, atk,/No = 0.7 dB. Protection clasg! of the ACE code converges faster than that of the PEG-ACE,cotige
the other classes take more iterations to converge for the édtle than for the PEG-ACE code.

i.e., a majority of the check nodes have the same degree) renartly difference inl,pp,
between the classes will depend on the variable node degrees

The above discussion shows that the number of edges fromck cloele to variable nodes
of different classes, defined by the detailed check nodeegedistribution in Table Il plays an
important role to the UEP capability. However, in comparihg theoretical Ml from above with
the true values obtained by measuring the actual decodirigsl.lwve observe deviations. The
measured MI values are lower than the theoretical ones whidbe to finite-length issues such
as cycles and trapping sets. Nevertheless, the UEP prepente valid for both theoretical and

measured observations.

October 1, 2009 DRAFT

14

IV. MoDIFIED PEG-ACE NSTRUCTION WITHINCREASED UEP CAPABILITY

The above sections discussed the number of edges from cleéels o the protection classes
and differences between the UEP codes and the non-UEP catesfound. In order to verify
that the presented argument indeed is the reason for tlegattfes in UEP capability, we modify
the (non-UEP) PEG-ACE construction algorithm to yield coddth a similar detailed check
node degree distribution as the UEP-capable ACE code. Weefudemonstrate that codes
constructed by the modified PEG-ACE algorithm have good U&pabilities.

The algorithm is modified in such a way that it only allows dhewdes for the candidate
list which do not violate certain detailed check node degﬁetributionsﬁ(c‘j)(x). Thereby, the
modified PEG-ACE code is forced to have detailed check nodgeéedistribution similar to
the ACE code instead of its natural distribution. By doing $e detailed check node degree
distribution given in the three right-most columns of Tables obtained. Notice that this is very
similar to the detailed distribution of the ACE code. The nfied algorithm explained above is
called modified PEG-ACEn the following.

Fig. 6 shows the BER and FER of the modified PEG-ACE code in eris@n to the original
PEG-ACE code. It shows that by changing the detailed chede riegree distribution of the
original PEG-ACE code, it is possible to enhance its UEP b#ipa significantly. Instead of
equal error rates for all classes, the modification has ingetahe BER ofC!, while slightly
degradingC? and C3. Compared to the ACE code, the modified PEG-ACE even showg mor
UEP capability, since the performance @t is better for the PEG-ACE code white? and C?
perform worse. Furthermore, it should be mentioned thatntbedified PEG-ACE code is even
capable of increasing the differences in BER betw€érand C* compared to the UEP-capable
codes.

With the modified PEG-ACE algorithm, it is possible to enhattee UEP capability of a code
by modifying its detailed check node degree distributiopti@ization of the detailed check node
degree distribution is outside the scope of this paper. Hewehe detailed check node degree
distribution may be used as a tool to move between codes wibd EP capability but lower

overall performance and codes with good overall perforradng less UEP capability.

October 1, 2009 DRAFT

15

10 — —— P
SR — A ~~;:\'~,~ L4
10 =B om0 e S 1
S TV -8 el ®<s
& TN RS
D) ~ \\ \v\\ ‘6
_2, ~ SN “0 -
10 <><\\\ \ :
\‘ N , Y S
SUANNE
E 10} By \\Q\ \" % ;
= ¢ \8 =9
U 10, o s N :
—6— Mod. PEG-ACE & 8
1g°l - ¢~ Mod. PEG-ACE ¢ o\,]
)
=0~ Mod. PEG-ACE @ 0
1g9ll >~ PEG-ACE ¢ o ANERAS)
- - PEG-ACE & 3
_[l:-> PEG-ACE C
10 I |
0 0.5 1 1.5
E /N (dB)

Fig. 6. BER and FER of the modified PEG-ACE code in comparisothé original PEG-ACE code. The modification of the
PEG-ACE code has increased its UEP capability significantly

V. CONCLUSIONS

We have compared the UEP capabilities of several construclgorithms. Results show
that the considered algorithms may be divided into two gsolpEP-capable codes are those
constructed by the random, the ACE, and the zigzag-randorstiecction algorithm, while the
non-UEP codes are constructed by the PEG, the PEG-ACE andighag-PEG construction
algorithm. These findings explain why earlier literature ioegular UEP-LDPC codes show
disagreeing results.

Analysis of the parity-check matrices of the different cogdbows that the amount of connec-
tions between the different classes is higher for the nof-WdBdes than for the UEP-capable
codes. By introducing the concept of a detailed check nodeegedistribution, we have shown
that the number of edges from a check node to variable noddiff@fent classes affects the UEP

capability. Furthermore, the PEG-ACE construction aldyoni has successfully been modified in

October 1, 2009 DRAFT

16

order to construct good UEP-capable codes.

VI. ACKNOWLEDGMENTS

The authors would like to thank Prof. James LeBlanc, Lule#v&rsity of Technology, Sweden,

for motivating ideas, discussions, and support.

(1]

(2]

(3]

(4]

(5]
(6]

(7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

V. Kumar and O. Milenkovic, “On unequal error protectibDPC codes based on Plotkin-type constructiofiSEE Trans.
Commun. vol. 54, pp. 994-1005, June 2006.

L. Sassatelli, W. Henkel, and D. Declercq, “Check-iukg LDPC codes for unequal error protection under iteeativ
decoding,” inProc. 4th Int. Symp. on Turbo Codes & Related Topics 2@(8. 2006.

C. Poulliat, D. Declercq, and I. Fijalkow, “Enhancemeoat unequal error protection properties of LDPC codes,”
EURASIP Journal on Wireless Communications and Networkimy 2007, pp. Article ID 92659, 9 pages, 2007.
doi:10.1155/2007/92659.

N. Rahnavard, H. Pishro-Nik, and F. Fekri, “Unequal erpootection using partially regular LDPC code$ZEE Trans.
Commun. vol. 55, pp. 387-391, Mar. 2007.

R. Gallager, “Low-density parity-check codes$RE Trans. Inf. Theoryvol. 8, pp. 21-28, Jan. 1962.

T. Richardson, M. Shokrollahi, and R. Urbanke, “Desidrcapacity-approaching irregular low-density parity-ckeodes,”
IEEE Trans. Inf. Theoryvol. 47, pp. 619-637, Feb. 2001.

M. Tanner, “A recursive approach to low complexity codd&EE Trans. Inf. Theoryvol. 27, pp. 533 — 547, Sept. 1981.
F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor gina and the sum-product algorithmEEE Trans. Inf. Theory
vol. 47, pp. 498 — 519, Feb. 2001.

S.-Y. Chung, T. Richardson, and R. Urbanke, “Analysissom-product decoding of low-density parity-check codeagis
a Gaussian approximationlEEE Trans. Inf. Theoryvol. 47, pp. 657-670, Feb. 2001.

X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular andegular progressive edge-growth Tanner grapHsEE Trans.
Inf. Theory vol. 51, pp. 386-398, Jan. 2005.

X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressivedge-growth Tanner graphs,” Rroc. IEEE Global Telecommu-
nications Conference 200%¥o0l. 2, pp. 995-1001, Nov. 2001.

T. Tian, C. Jones, D. Villasenor, and R. Wesel, “Selectvoidance of cycles in irregular LDPC code constructitBEE
Trans. Commun.vol. 52, pp. 1242-1247, Aug. 2004.

D. Vukobratovic and V. Senk, “Generalized ACE consieal progressive edge-growth LDPC code desigeEZE Commun.
Lett, vol. 12, pp. 32-34, Jan. 2008.

K. Kasai, T. Shibuya, and K. Sakaniwa, “Detailedly Reggnted Irregular Low-Density Parity-Check CodésJCE Trans.
on Fundamentalsvol. E86-A, pp. 2435-2444, Oct. 2003.

G. Liva and M. Chiani, “Protograph LDPC codes designdohsn EXIT analysis,” inProc. IEEE GLOBECOM 20Q7
pp. 3250-3254, Nov. 2007.

S. ten Brink, “Convergence behavior of iteratively dded parallel concatenated codd&EE Trans. Communvol. 49,
pp. 1727-1737, Oct. 2001.

October 1, 2009 DRAFT

17

[17] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of letensity parity-check codes for modulation and detection,
IEEE Trans. Communvol. 52, pp. 670-678, Apr. 2004.

October 1, 2009 DRAFT

