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On the Underlying Mechanisms of the Low Observed

Nitrate Selectivity in Photocatalytic NOx Abatement

and the Importance of the Oxygen Reduction Reaction

Julia Patzsch,a Andrea Folli,b Donald E. Macpheec and Jonathan Z. Bloh∗a

Semiconductor photocatalysis could be an effective means to combat air pollution, especially

nitrogen oxides, which can be mineralized to nitrate. However, the reaction typically shows poor

selectivity, releasing a number of unwanted and possibly toxic intermediates such as nitrogen

dioxide. Up to now, the underlying principles that lead to this poor selectivity were not understood

so a knowledge-based catalyst design for more selective materials was impossible. Herein, we

present strong evidence for the slow oxygen reduction being one the causes, as the competing

back-reduction of nitrate leads to the release of nitrogen dioxide. Consequently, engineering the

photocatalyst for a better oxygen reduction efficiency should also increase the nitrate selectivity.

1 Introduction

Nitrogen oxides (NOx), especially nitric oxide (NO) and nitrogen

dioxide (NO2), play a major role in atmospheric chemistry and

air pollution. Despite the presence of some natural emission pro-

cesses, the majority of NOx emissions are formed anthropogeni-

cally in high-temperature processes such as internal combustion

engines, gas- or oil-fired heating and industrial furnaces.1 They

constitute a major environmental and health concern as they are

toxic compounds and also facilitate the formation of ozone and

acid rain.2,3 As a consequence, increasingly stronger regulations

and policies are in place enforcing actions to reduce emissions

and to lower the overall pollutant levels.4 However, recent stud-

ies and events have shown that in many European cities emission

standards are frequently exceeded as well as emission treatment

systems not being as efficient as they are claimed to be.5–7

Apart from reducing the emissions directly at the emission

source, which appears to be more difficult than anticipated, semi-

conductor photocatalysis presents an appealing alternative capa-

ble of removing NOx and other air pollutants from the air once

they have already been released and dispersed.8 Additionally,

photocatalysis needs neither maintenance nor external reagents,

since the only requirements are sunlight, water and molecular

oxygen, which are already present in outdoor conditions.

Nitrogen monoxide can be oxidized over illuminated titanium
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b University of Aberdeen, Department of Chemistry, Meston Walk, Aberdeen AB24 3UE,
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dioxide by hydroxyl radicals which are formed by water oxidation

or by hydroperoxyl radicals, eqns. 2,3 and 10. The products of

this oxidation, nitrous acid (HONO) or nitrogen dioxide (NO2),

can be further oxidized to eventually form nitric acid or nitrate

(HONO2/NO –
3 ), eqns. 4-5. The nitrate will remain on the pho-

tocatalyst until it is washed off during the next rainfall.

TiO2
hν
−−→ e −

cb +h +
vb (1)

H2O+h +
vb −−→ H++ ·OH (2)

NO+ ·OH −−→ HONO (3)

HONO+ ·OH −−→ NO2 +H2O (4)

NO2 + ·OH −−→ HONO2 (5)

On the other hand, the photo-generated conduction band elec-

trons typically react with the ubiquitous molecular oxygen, form-

ing superoxide radicals and hydroperoxyl radicals after subse-

quent protonation, eqn. 6. The so formed hydroperoxyl radi-

cal may either take up an additional conduction band electron,

eqn. 7, or react with NO, eqn. 10, forming hydrogen peroxide or

hydroxyl radicals, respectively. In the latter case, the oxidation of

NO to NO2 constitutes two oxidation equivalents. The peroxide

can subsequently be reduced in two steps to a hydroxyl radical,

eqn. 8, and then water, eqn. 9. Hydrogen peroxide can also di-

rectly oxidize nitrogen oxides, eqn. 11, serving as an oxidation

equivalent and also releasing an additional hydroxyl radical in

the process. Overall, in the optimal case the reductive pathway

of photocatalysis can yield up to 3 oxidation equivalents per re-
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active photon, effectively quadrupling the oxidation rate. This is

expected to mainly take place when the overall generation rate of

charge carriers is low and the concentration of nitrogen oxides is

high, so that unproductive consecutive reduction events are less

likely. In the worst case, molecular oxygen takes up 4 conduction

band electrons to convert to water, yielding no oxidation equiv-

alents. This highlights the immense importance of the reductive

pathway in the photocatalytic NOx abatement.

O2 + e −

cb +H+
−−→ HO2 · (6)

HO2 · + e −

cb +H+
−−→ H2O2 (7)

H2O2 + e −

cb +H+
−−→ ·OH+H2O (8)

·OH+ e −

cb +H+
−−→ H2O (9)

HO2 · +NO −−→ NO2 + ·OH (10)

H2O2 +NO −−→ HONO+ ·OH (11)

All of the intermediate species mentioned above, namely ni-

trous acid and nitrogen dioxide, may also be released during the

reaction if they are not converted fast enough. This can be ex-

pressed as the nitrate selectivity of the reaction, i.e., how much of

the nitrogen oxide is directly converted to nitrate and not released

as intermediates. Unfortunately, this selectivity is rather low for

unmodified titanium dioxide photocatalysts, which display values

from only 7 to 39 %, meaning that the majority is released as ni-

trogen dioxide instead of the desired product, nitrate.9 This is a

major problem for the targeted application as air pollution con-

trol as nitrogen dioxide is much more toxic than nitrogen monox-

ide, so the photocatalyst bears the potential to make the situation

worse rather than better.9 For instance, the commonly used P25

photocatalyst shows an net increase in NO2 concentration upon

being illuminated in a 1:1 mixture of NO and NO2, which not

untypical for environmental conditions, cf. Figures S2-S3.

The typical behaviour of a photocatalyst during the NOx abate-

ment is illustrated in Figure 1 on the basis of Evonik Degussa

Aeroxide P25 powder, it has been shown that virtually all unmod-

ified commercial TiO2 photocatalysts behave similarly.9 It can be

seen that the activity of the sample is quite good, almost half

of the supplied NO is converted (γ ≈ 4.4×10−5), however, the

main product of the reaction is not the desired nitrate but NO2

(or HONO as the employed analyzer cannot distinguish between

the two).10–12 At the beginning of the experiment, the selectivity

is already poor at approximately 32 %, followed by a sharp drop

to about 23 % in the first hour of illumination with a continued

less steep but steady decline afterwards. The absolute activity of

NO conversion also decreases with time, while the NO2 formation

seems to be less affected by this with a barely noticeable smaller

decline, resulting in the lower selectivity.

The adsorption capacity for NO2 on TiO2 is much higher than

that for NO and should therefore buffer the NO2 formation to

some extent.13 However, significant NO2 evolution is usually ob-

served immediately upon illumination. This illustrates, that there
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Fig. 1 A representative experiment for the photocatalytic oxidation of

nitric oxide (NO) according to ISO 22197-1 using Aeroxide P25 powder.

Plotted are the relative concentrations of NO (blue), NO2 (red) and NOx

(black) on the left axis as well as the selectivity towards the desired

product nitrate (green) on the right axis.

are two different mechanisms to consider. First there is the intrin-

sic activity of a material which is observed at the very beginning of

an experiment with a clean surface. This intrinsic activity is likely

governed by the individual NO and NO2 reaction rates as well as

their adsorption behaviour on the catalyst. However, if this was

the only mechanism at work, the selectivity should be constant in

prolonged experiments. The only thing changing over time is the

amount of nitrate adsorbed on the surface, which will inevitably

reduce the catalyst’s activity by blocking adsorption sites.

If the activity decrease was solely due to blocked surface ad-

sorption sites by accumulated nitrate, it should affect the respec-

tive reaction rates of NO and NO2 by the same factor, leading to

an overall decrease in activity but still the same selectivity. How-

ever, in the experiments, while the rate of NO oxidation drops

during prolonged experiments, the rate of NO2 evolution stays

nearly constant and is seemingly unaffected by the reduced ox-

idation rate of NO, which should lead to lower NO2 formation.

Also, experiments at different inlet concentrations of NO allow to

create different ratios of NO and NO2 reaction rates as the for-

mer shows mixed zero and first order kinetics while the latter is

ideal first order. For a simple follow-up reaction one would ex-

pect the selectivity to have a strong dependence on the ratio be-

tween the first and second step reaction rates. However, as seen

in Table S1, while this ratio changes from 5 to 15 with lowered

inlet concentration, the observed selectivity stays virtually iden-

tical. This disconnection between NO2 evolution rate and both

the NO oxidation rate and the degree of free surface adsorption

sites leads us to believe that the release of NO2 as an intermediate

species in the oxidation pathway cannot be the sole cause of the

observed NO2 evolution.

There rather seems to be an additional mechanism in place that

leads to a significant decrease in selectivity in the prolonged ex-

periments. As essentially, the only thing changing is the concen-

tration of accumulated nitrate on the surface, this is likely the

cause for the observed phenomenon. This nitrate accumulation
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seems to poison the catalyst in a way that not only reduces its ac-

tivity due to blocked surface sites but also reduces its selectivity.

The latter effect is also much more pronounced and is noticeable

at far lower nitrate coverages. In the present example with P25,

the activity for NO oxidation, expressed as the apparent first order

rate constant, decreases by only 0.4 % from 0.894 s−1 to 0.890 s−1

from 1 hour to 2 hour illumination time. In the same time-frame,

however, the selectivity decreases by 7.9 % from 22.3 % to 20.5 %.

2 Proposed mechanism of the observed se-

lectivity decline

When considering the mechanism of photocatalytic NOx oxida-

tion, nitrate or nitric acid is often considered to be the inert

end product of the reaction which stays on the photocatalyst sur-

face until it is eventually washed off by rain. However, there

are some experiments which show that a nitrate-rich or nitrate-

saturated photocatalyst surface can release significant amounts of

NO2 upon illumination, even in an NOx free atmosphere.14 Pre-

sumably, this is caused by a photocatalytic reaction with adsorbed

nitrate to nitrogen dioxide, which is subsequently desorbed and

released. Previously, this has been attributed to photocatalytic

oxidation of nitrate to NO3 with subsequent photolysis, leading

to NO, NO2 and O3.12,14 However, in these studies NO3 was

never actually detected and it was observed that the evolution

of NOx during irradiation of a nitrate-saturated TiO2-surface is

much higher in nitrogen than in air atmosphere, which suggests

that oxygen suppresses the mechanism. Also in the former case,

no suitable reduction mechanism was reported in the absence

of oxygen as an electron acceptor. Therefore, we propose here

that nitrate absorbed on TiO2 can also be photocatalytically re-

duced, this will directly yield NO2 via reaction 12. We cannot say

whether the previously proposed oxidation pathway via NO3 also

takes place simultaneously, but from the strong dependence on

the oxygen concentration we suspect the reduction pathway to

be predominant. Nitrogen dioxide formed through these "renox-

ification" processes, rather than as an intermediate in the oxida-

tion pathway, can be a major contributor of the observed nitrogen

dioxide evolution during photocatalytic NO oxidation and is the

likely cause for the drop in selectivity in prolonged experiments.

Studies by Monge et al. have also shown HONO as a minor by-

product of the renoxification, presumably formed by further re-

duction of NO2.12,14

HONO2 + e−+H+
−−→ NO2 +H2O (12)

The adsorbed nitrate on the titanium dioxide will be in con-

stant competition with molecular oxygen for the electrons. Un-

fortunately, as already outlined by Gerischer and Heller in

1991, oxygen reduction on titanium dioxide proceeds slowly

and will often present the rate-determining step of the over-

all reaction unless oxygen reduction promoting co-catalysts are

employed.15 However, if an alternative electron acceptor is

present, titanium dioxide will readily reduce it. At a reduc-

tion potential of +0.80 VRHE
16, nitrate is a much better electron

acceptor than molecular oxygen at −0.05 VRHE (one-electron-

reduction)17. Therefore, the reduction of nitrate is actually ther-

modynamically favoured in comparison with molecular oxygen.

Taking reaction constants obtained in stopped-flow experi-

ments in liquid media as an indication, the reduction of oxygen

and nitrate should proceed with similar reaction rates.18,19 The

situation in the gas phase might be different and might more

closely resemble the respective redox potentials, resulting in a

higher rate for nitrate than for oxygen; the following considera-

tions should therefore be taken as a conservative estimate where

the real behaviour might favour nitrate reduction even more.

While oxygen is usually much more concentrated in ambient air

than the NOx species by 6-8 orders of magnitude, it is already

enriched and immobilized on the photocatalyst surface and does

not have to adsorb first. When considering the surface coverage

as the rate determining element rather than the concentration in

air, the situation looks much more in favour for nitrate. Ignoring

the contribution of other adsorbed species such as NO, NO –
2 or

NO2, since they are expected at relatively low concentrations, the

surface coverage of oxygen and nitrate can be calculated using

known adsorption constants for water (KH2O = 50.7m3 mol−1)20

and oxygen (KO2 = 0.62m3 mol−1)21 and Langmuirian adsorption

behaviour for competitive adsorption. The resulting surface cov-

erage and relative reduction rate of nitrate (assuming identical

reaction constants) for a model case of 50 % relative humidity

can be seen in Figure 2.
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Fig. 2 The calculated relative nitrate reduction rate calculated according

to eqn. 23 assuming 50 % relative humidity. The reaction constant for

nitrate reduction is assumed to be identical (black) as well as ten times

higher (red) or lower (blue) than the oxygen reduction constant,

respectively. Also displayed is the expected regime for saturation if pure

NO gas is used.

Surprisingly, even at a nitrate surface coverage of only a few

percent, a significant amount of electrons ends up reducing ni-

trate instead of oxygen. At 6.1 % coverage, already a third of the

electrons reduce nitrate. The diagram also shows the situation

when the nitrate reduction is ten times faster than oxygen re-

duction, which given the redox potentials is not unrealistic, and

when it is ten times smaller. In the former case, a third of the elec-

trons reduce nitrate already at a nitrate surface coverage of 0.7 %

while in the latter case, it takes a coverage of 40 % to achieve the

same effect. A higher humidity will also further favour nitrate re-
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duction, as adsorption sites for oxygen will be further diminished

by additional adsorbed water, closely resembling the experimen-

tally observed behaviour that the selectivity drops notably with

increasing humidity.22 Note that this calculation is neither accu-

rate nor quantitative, as this would require presently not avail-

able precise data of the reduction constants for both nitrate and

oxygen in the gas phase as well as on the competitive adsorp-

tion behaviour of nitrate, water and oxygen. This calculation can,

however, give a rough estimate of the qualitative behaviour of

the system and illustrate the immense importance of the oxygen

reduction rate.

3 Consequences of nitrate reduction

Each electron reducing a nitrate molecule effectively neutralises

one direct oxidation equivalent and up to three indirect oxida-

tion equivalent by preventing the formation of a superoxide rad-

ical. Consequently, this reaction pathway is very detrimental to

the overall reaction balance and should be prevented as much as

possible. At some point, the chemical potential for nitrate reduc-

tion will be so high that it will completely counteract the oxida-

tive pathway and the net nitrate concentration will be constant

through the reactions 13, 6, 10, 5 and 12, resulting in the net

reaction 14:

NO+3h++2H2O −−→ NO −

3 +4H+ (13)

O2 + e −

cb +H+
−−→ HO2 · (6)

NO+HO2 · −−→ NO2 + ·OH (10)

NO2 + ·OH −−→ HONO2 (5)

HONO2 + e−+H+
−−→ NO2 +H2O (12)

2NO+O2

TiO2,hν
−−−−−→ 2NO2 (14)

This situation will be reached when one third to two thirds of

the electrons end up reducing nitrate instead of oxygen, depend-

ing on the reaction pathway, i.e., how many oxidation equivalents

are generated by the reduced oxygen (0 to 3). Keep in mind that,

according to our previous calculation, this can already happen at

a nitrate surface coverage as low as 6 % (or 0.7 % if the nitrate

reduction rate is ten times higher than estimated). At this point,

the photocatalyst will stop reducing the overall NOx level entirely

and just turn into a very effective converter of NO to NO2. This is

exactly what is being observed when TiO2 films are exposed NO

and irradiated long enough for this equilibrium to occur. Mills

and co-workers reported that TiO2-coated glass slides show this

behaviour already after a couple of hours of illumination under

ISO 22197-1 conditions.23 Similar findings were also reported by

Okho et al. who observed nitrate saturation of a TiO2 thin film

after just an hour of illumination.24

These very thin films are naturally prone to be saturated fast

as they do not have a large surface area and porosity to absorb

a large amount of nitrate. Note that this situation does not rep-

resent full surface coverage with nitrate but merely a situation

where the formation and reduction rates of nitrate are equal.

Complete nitrate coverage can be achieved by using pure NO2

gas in the experiment, as only one oxidation equivalent (as com-

pared to three for NO) is necessary for nitrate formation, thus

keeping the balance with the corresponding electron reducing a

nitrate ion. Under these conditions, roughly four times as much

nitrate can be deposited onto TiO2 when compared to using pure

NO gas.24,25 Saturation does not occur very fast with powders

or thicker layers as the nitrate formed on the exposed surface

can easily diffuse to deeper layers which are photocatalytically

inactive but serve as reservoir to dilute the nitrate coverage on

the photocatalytically active exposed surface.25 Similar effects

can be achieved by mixing the photocatalyst with high surface

area adsorber materials such as activated carbon or cementitious

matrices.26–28 This effect will keep the effective nitrate coverage

relatively constant for a long time while the reservoir is being

filled, leading to the quasi-equilibrium selectivity often observed

on powder samples after some irradiation time.9 This means that

for thicker samples, the nitrate surface coverage on the photo-

catalytically active part will be quasi-stationary for a very broad

operational window where the rate of newly formed nitrate on

the exposed surface is very similar to the transport to deeper lay-

ers. This will likely represent the situation in real world scenarios

for most of the time and should therefore be considered for pho-

tocatalyst evaluation procedures.

If the system is artificially oversaturated, e.g. by adsorbing high

amounts of nitrate on the photocatalyst prior to the experiment,

it will reduce the excess nitrate under illumination and release it

as NO2 until the equilibrium is restored.24

The saturation situation where TiO2 just converts NO to NO2

(eqn. 14) is to be avoided at all costs as if it happens in real

world scenarios as it will lead to an overall increase in ambient

NO2 levels. It is therefore paramount that the photocatalyst never

reaches critical nitrate surface coverage in between regenerating

rainfalls. This allowable period can be extended by just using a

larger amount of photocatalyst or an alternative adsorber so the

adsorption capacity is increased.29,30 However, if this adsorbed

nitrate in deeper layers of the adsorber can be readily washed off

by rainfall and thus regenerated is not certain yet so this might

only lead to a one-time effect that will not matter in the long

term. An alternative or complementary approach is to modify

the photocatalyst in a way that effectively suppresses the nitrate

reduction pathway.

4 Suppressing the nitrate reduction

Suppressing this unwanted side-reaction could be achieved by

lowering the amount of nitrate on the catalyst surface or by mak-

ing the alternative reduction reactions such as oxygen reduction

more favourable. The former seems impossible to achieve as ni-

trate is the ultimate product of the NOx oxidation reaction and

will always be formed on an active catalyst. This leaves making

the oxygen reduction more favourable in comparison to nitrate re-

duction as the only viable option. This can be achieved by produc-

ing specific surface sites or employing co-catalysts which either

directly improve electron transfer to oxygen or unlock the multi-

electron reductions which are normally kinetically hindered on

4 | 1–9
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titanium dioxide. These multi-electron reductions, cf. eqns. 15-

16, feature more positive redox potentials and are thus thermo-

dynamically favoured. The former would be more beneficial in

this context as it would still generate oxidative species (H2O2)

that could participate in the NOx oxidation reactions.

O2 +2H++2e− −−→ H2O2 E0 =+0.70VRHE
16 (15)

O2 +4H++4e− −−→ 2H2O E0 =+1.23VRHE
16 (16)

If the relative rate of oxygen reduction can be increased by an

order of magnitude, it will have a dramatic effect on the nitrate

reduction reaction, effectively suppressing it until very high ni-

trate surface coverages are reached, cf. Figure 2. Also, at the

same surface coverage, nitrogen dioxide release through nitrate

reduction will be suppressed considerably, resulting in a signifi-

cantly increased apparent selectivity. This might also explain the

different selectivity of the three common titanium dioxide modi-

fications, anatase, rutile and brookite. We recently reported that

brookite (39 %) is the most selective of the three, closely followed

by anatase (25 to 29 %), while pure rutile is very unselective (6 to

7 %).9 This can be readily explained by their different conduction

band potentials, which at −0.4 VRHE, −0.2 VRHE and 0.0 VRHE,

respectively, are increasingly unsuitable for oxygen reduction at

−0.05 VRHE.31–33

To prove that oxygen plays a major role in the selectivity mech-

anism, experiments were performed under both synthetic air

(20 % O2 / 80 % N2) and pure oxygen atmospheres using Aerox-

ide P25 powders. The results for both pure NO and pure NO2

as reactants, both in 1 ppm concentration, yielded the respective

apparent first order reaction constants and the selectivity towards

nitrate, cf. Table 1.

Under oxygen atmosphere the apparent rate constant for NO

oxidation is increased by 55 % compared to synthetic air atmo-

sphere while keeping essentially the same initial selectivity. The

NO2 oxidation rate, on the other hand, is not significantly al-

tered so that the ratio of NO to NO2 reaction rates is increased

by about 50 %. This should promote accumulation of the inter-

mediate, NO2, and should lead to a lower observed selectivity

under oxygen atmosphere, which is not observed - showing yet

again that the slow follow-up reaction of NO2 cannot explain the

observed low selectivity.

The nitrate surface coverage at a specific time can be calculated

from the amount of formed nitrate, eqn. 17:

θ(t) =
V̇ · p ·NA

R ·T ·m ·SA ·θmax
·

∫ t

0
(c(NOx)in(t)− c(NOx)out(t))dt (17)

with the volume flux (V̇ ), pressure (p), Avogadro’s constant

(NA), gas constant (R), absolute temperature (T ), mass of cata-

lyst (m), its specific surface area (SA) and the maximum nitrate

surface coverage (θmax = 2nm−2).25

Based on the idea that the nitrate reduction is the sole reason

for decreasing selectivity with longer reaction times, we devel-

oped a model to describe the relationship between observed se-

lectivity and nitrate surface coverage, eqn. 18. In this equation, S0

represents the initial or intrinsic selectivity of the sample when no

nitrate is yet present, ko is a dimensionless figure for the relative

oxygen reduction rate (cf. eqn. 24) and α is a factor that de-

scribes how soon oxygen reduction switches between four-, two-

and one-electron reduction pathway. A detailed derivation of the

formula is presented in section 8.

S(θ) = S0 −θ ·

(2+S0)(4−3(1− e−αθ ))

4(θ + ko(1−θ))−3θ(1− e−αθ )
(18)

Using this equation, selectivity-nitrate coverage profiles of dif-

ferent catalysts can be analysed to extract intrinsic selectivity and

relative oxygen reduction rates. In order to prove the involvement

of oxygen in the mechanism, experiments in both air and pure

oxygen were conducted. As can be seen in Figure 3, while the ini-

tial selectivity under both conditions is effectively identical, the

selectivity drops about twice as fast with increasing surface cov-

erage under synthetic air compared to under oxygen atmosphere.
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Fig. 3 The observed nitrate selectivity (XNOx/XNO) of a P25 sample with

1 ppm NO under synthetic air (black) and pure oxygen conditions (red),

plotted against the nitrate surface coverage calculated using eqn. 17.

Dotted lines depict the modelling according to eqn. 18.

This illustrates that the higher oxygen reduction rate resulting

from the higher oxygen partial pressure and consequently higher

oxygen surface coverage mitigates the detrimental effect of in-

creasing nitrate surface coverage on the selectivity. After an ini-

tial very fast decay, presumably caused by transient effects such as

adsorption and light induced surface remodelling, the plot shows

the predicted behaviour according to eqn. 18 and can be fit with

good precision. The resulting ko values are 0.095 and 0.203 for

for synthetic air and oxygen atmosphere, respectively, while the

intrinsic selectivity S0 is very similar, 24.6 % and 22.5 %. This is a

very strong indication for the involvement of the oxygen reduc-

tion reaction in the mechanism responsible for the decrease in

selectivity at longer irradiation times. However, the low initial or

intrinsic selectivity of the material could not be altered simply by

increasing the oxygen concentration.
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Table 1 Comparison of apparent first-order rate constants (k), reactive uptake coefficients (γ) and selectivity (S) of NO and NO2 after 2 h of reaction in

both synthetic air and oxygen atmosphere. At this point, most transient effects such as adsorption have worn off while the effect of the nitrate surface

coverage is still negligible (θ < 0.5%).

Atmosphere kNO / s−1 γNO / - kNO2 / s−1 γNO2 / - Ratio NO/NO2 S / %

20 % O2 / 80 % N2 1.018 4.48×10−5 0.156 8.49×10−6 6.53 19.6
100 % O2 1.586 6.97×10−5 0.164 8.93×10−6 9.67 19.4

5 Examples of more selective catalysts

There are several reported examples of modified photocatalysts

where the observed nitrate selectivity was significantly increased.

These can be taken as case studies to see if the abovementioned

hypothesis holds true. Keep in mind that this can either be in-

creased selectivity from a higher intrinsic selectivity or from a

higher nitrate tolerance, i.e., slower drop in selectivity with in-

creasing illumination time. Which of the two is present is difficult

to say due to the difference in employed reaction conditions.

One way to achieve a higher selectivity is by using platinum as

a co-catalyst. As shown recently, the observed nitrate selectivity

could be improved from 25 % for pristine titanium dioxide to 65 %

by adding 0.4 % of platinum to the material.34 The oxygen reduc-

tion capabilities of the photocatalysts were not directly measured

in this study, however, it is well known that platinum nanoparti-

cles greatly enhance the oxygen reduction rate on TiO2.35–37 In

a similar fashion, a recent study by Fujiwara et al. used palla-

dium as a co-catalyst, another well known oxygen reduction cat-

alyst.36,38,39 Here, by adding 1 wt% of palladium, the nitrate se-

lectivity was increased from 13 % to up to 48 % while at the same

time, the absolute activity also increased significantly. However,

due to their limited production and unfavorable economics, using

platinum-group metals (PGM) even in sub-percent concentrations

would be challenging for large volume applications in building

materials such as concrete.

Recently, we also reported on the properties of W-doped and

W/N-codoped titanium dioxide.9,33,40,41 These materials also

show dramatically enhanced selectivity towards nitrate of more

than 80 % when doped with a least 4.8 at.% of tungsten. Unfortu-

nately, this beneficial property comes at the expense of absolute

NOx abatement activity, which in turn decreases by a factor of 4.

The increased selectivity is also accompanied by improved oxygen

reduction capabilities as determined by oxygen reduction current

measurements.42 Interestingly, these materials do not seem to

evolve any nitrous gases when a nitrate-saturated sample is ex-

posed to UV radiation. This is further evidence for the theory that

enhanced oxygen reduction suppresses competitive nitrate reduc-

tion which in turn leads to higher observed selectivity.

The same procedure can also be applied to other semiconduc-

tors. We recently reported several studies on zinc oxide for NOx

abatement.43,44 While zinc oxide seems to be more selective in-

trinsically, showing 55 % nitrate selectivity as a pristine material,

it can be further improved by decorating the particles with tran-

sition metals that facilitate the oxygen reduction reaction.44 The

selectivity is increased from 55 % to 87 % by just adding 0.1 at.%

of ruthenium.44 Higher concentrations of the metal do not fur-

ther increase activity or selectivity. Interestingly, while the con-

version of NO is decreased for the ruthenium-modified samples,

owing to the higher selectivity, the overall conversion of NOx is

slightly increased.44 These changes are accompanied by an in-

creased oxygen-reduction capability, which is increased by the

factor of 14 in comparison to pristine ZnO.44 Another example

is manganese-modified zinc oxide.43,44. These materials exhibit

very high selectivity towards nitrate of 85 % or higher when mod-

ified with at least 1 at.% of manganese.45 The selectivity increase

is accompanied by a dramatic increase in oxygen reduction ca-

pability, as seen in oxygen reduction current measurements.44,45

Both, the onset of oxygen reduction is shifted anodically, indicat-

ing multi-electron-reduction, as well as the current is higher than

in pristine zinc oxide by a factor of up to ten. However, as in the

case of W-doped TiO2, the absolute NOx-abatement activity of the

samples is lowered when compared to pristine ZnO by a factor of

4.45

Up to now, more selective DeNOx photocatalysts have either

utilized very expensive metal co-catalysts (Pt, Pd, Ru) or the se-

lectivity increase was accompanied by a reduction in absolute ac-

tivity (Mn-modified ZnO, W-doped TiO2). The former are unsuit-

able for the large-scale application in building materials as even

using very low amounts of noble metals will increase the catalysts

price by several orders of magnitude. The latter might be suitable

for large-scale application but their lowered activity will reduce

the overall efficacy of the material.

While we do not yet have definite proof of the proposed mech-

anism of increased selectivity, all experimental evidence gath-

ered, both by ourselves and independently by other groups, points

towards enhanced oxygen reduction being the cause of the in-

creased selectivity. If this is the case, it can be achieved with far

easier means than the previously mentioned examples.

It is well known that grafting a photocatalyst with transition

metal ions such as Cu2+ or Fe3+ significantly increases their

oxygen reduction capabilities.46–48 The grafting can easily be

achieved with wet impregnation techniques and only uses very

small amounts of abundant and affordable elements. As an ad-

ditional benefit, the modification is usually accompanied by an

increase in observed activity due to the enhanced charge separa-

tion and as a direct result of improved oxygen reduction as well

as a slight visible light activity. If our theory holds true, these ma-

terials should also exhibit higher nitrate selectivity in NOx abate-

ment experiments, while avoiding all the negative side-effects of

the previously mentioned approaches.

6 Conclusion

The nitrate that is formed during the photocatalytic NOx abate-

ment is not just a non-reactive end-product but leads to nitrate

poisoning of the catalyst, resulting in lower activity but more sig-

nificantly, in greatly reduced selectivity. The latter is likely a result
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from the back-reduction of nitrate, a competitive reaction to the

reduction of molecular oxygen.

This unwanted and extremely detrimental reaction can be ef-

fectively suppressed by making the oxygen reduction more favor-

able in comparison, e.g., by increasing the oxygen partial pres-

sure or by modifying the photocatalyst with oxygen-reduction co-

catalysts. An analysis of reports of more selective photocatalysts

revealed that all of them have improved oxygen-reduction capa-

bilities, as well.

If this is done in a controlled way that does not compromise the

intrinsic photocatalytic activity of the material, such as selectively

doping or grafting the surface with a very small concentration of

co-catalysts, the increased selectivity could probably be achieved

without any negative side-effects. Consequently, these materials

would be much better suited for the application in building mate-

rials for environmental air pollution reduction and should replace

the currently employed first-generation photocatalysts.

Also, research should be devoted to determining the expected

duration the photocatalyst will experience in the field between

regenerating rainfalls and the amount of nitrate surface coverage

that is achieved in that interval. This state will ultimately rep-

resent the real world working conditions and this presently lack-

ing information will help to further optimize the catalyst with re-

spect to minimizing its nitrogen dioxide forming potential. Eval-

uation of photocatalyst materials in the laboratory, which are at

present usually performed on freshly prepared nitrate-free mate-

rials, should also be done at nitrate surface saturation conditions

that better resemble expected real world scenarios.

7 Experimental details

The NOx abatement experiments were performed in a setup ac-

cording to the international standard ISO 22197-1.49 The nitro-

gen oxide gas, either nitrogen monoxide or dioxide, was supplied

as a concentrated test gas mixture and was diluted to 1 ppm and

3 Lmin−1 flow rate by both a dry and wet synthetic air steam

and made up to 50 % relative humidity. This test gas mixture

was then passed through the photocatalytic reactor made out of

PEEK which comprises a sample holder with the dimensions of

5×10 cm2, in which the photocatalyst powder was placed. Ap-

proximately 2.8 g of the photocatalyst powders were uniformly

dispersed on the sample holder and slightly pressed on with a flat

plunger to form a uniform flat surface. The sample holder is illu-

minated from above through a UVA transparent cover glass by a

365 nm UVA-LED-array (Omicron Laserage Laserprodukte GmbH,

Germany) which is calibrated to deliver an irradiance of 10 Wm−2

at the sample surface. The gas steam is passed above the sample

through a 5 mm high slit that is regularly reduced to 1 mm by tur-

bulence barriers, which was reported to improve mass transfer

(see Ifang et al. for details)50. All tubing and connections were

made of polymers to avoid metal surfaces which could catalyt-

ically convert the NOx. The resulting gas steam was analyzed

using an environmental NOx analyzer (Horiba APNA-370). It

should be noted that the used analyzer does not discriminate be-

tween HONO and NO2 but measures both as NO2. Consequently,

all values reported herein for NOx are strictly speaking NOy.

The changes in the concentrations of the pollutants were used

to calculate the conversions (X = 1− c/c0) and the nitrate selec-

tivity (S = XNOx

XNO
). From these, apparent first order rate constants

were calculated according to eqn. 19.50

k =−

ln(c/c0)

τ
(19)

Since the residence time (τ) in the reactor is 0.5 s, the formula

can be rewritten as eqn. 20.

k =−2 · ln(1−X) · s−1 (20)

In order to make the data more comparable and setup-

independent, reactive uptake coefficients (γ) have been calcu-

lated according to eqn. 21, with a surface-to-volume ratio (S/V )

of 200 m−1 for the ISO setup.50 Factors for converting rate con-

stants into reactive uptake coefficients for the given system are

4.397×10−5 s for NO and 5.445×10−5 s for NO2, respectively.

γ =
4 · k

v̄ ·S/V
(21)

It should be noted that the kinetic constants for NO oxidation

determined this way are imprecise and likely significantly under-

estimated. The reason for this is twofold. First, for the given sys-

tem the the kinetics are not ideal first order but mixed first and

zero order, cf. Figure S1. Also, for the high conversion values ob-

served, the reaction is significantly influenced by mass transfer.23

Therefore, the data are reported as apparent first order kinetic

constants and should only be taken as a lower limit, the real val-

ues are likely significantly higher. Unfortunately, an accurate de-

termination of the kinetic constants would require both very low

pollutant gas concentration and significantly lowered light inten-

sity to achieve both ideal first order kinetics and a low conver-

sion. This negatively impacts the precision of the measurement

but more importantly, makes the results not readily transferable

to ISO conditions, under which most reported experiments are

performed. We therefore chose this imprecise approach in order

to retain comparability with the majority of the literature.

The above limitation does not hold true for the case of NO2,

which shows ideal first order behavior in the concentration range

studied and also shows low conversion which should not be sig-

nificantly influenced by mass transfer limitations.

8 Model derivation

The surface coverage of oxygen (θO2) as a function of nitrate sur-

face coverage (θNO3−) and relative humidity (kH2O) can be cal-

culated according to eqn. 22 using Langmuir isotherms for com-

petitive adsorption and the respective adsorption constants KO2,

KH2O. Here, it is assumed that only water and molecular oxy-

gen competitively adsorb on the surface and all other gas phase

constituents have negligible influence on the adsorption behavior.

θO2 =
KO2 · cO2

KO2 · cO2 +KH2O · cH2O +1
(22)

Assuming that the respective reaction rates are linearly depen-

dent on the surface coverage, the relative nitrate reduction rate

f can then be calculated according to eqn. 23. This equation

also considers that the oxygen surface coverage decreases from
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its original value θ 0
O2 with increasing nitrate surface coverage due

to the blocking of adsorption sites.

f =
kNO3− ·θNO3−

kNO3− ·θNO3−+ kO2 ·θ
0
O2 · (1−θNO3−)

(23)

For simplicity reasons, θNO3− will be abbreviated as θ and the

oxygen contribution is simplyfied according to eqn. 24, transform-

ing eqn. 23 into eqn. 25:

ko =
kO2 ·θ

0
O2

kNO3−
(24)

f =
θ

θ + ko −θ · ko
(25)

Now we will analyze the different reaction pathways of the

photogenerated holes and electrons. The following reaction rates

are normalized for one reactive electron/hole-pair (molecules

converted per reactive photon), assuming that for each oxidation

also a reduction reduction must occur simultaneously and are di-

mensionless. In these equations, β is a figure for the amount

of oxidation equivalents that are generated from each reduction

of oxygen (0 to 3), as explained in the introduction. For each

reactive photon, the amount of oxidation equivalents generated

equals one (from the holes) plus up to three (from the electrons)

which is further reduced if the electron reduces nitrate instead.

In total this equates to (1+
β ·(1− f )

4−β
). To simplify things and also

because it is not measured directly, HONO will not be considered

as a viable reaction intermediate in the following. Instead, NO

can either be oxidized to NO2 before it is released, which takes

2 oxidation equivalents (eqn. 26), or to nitrate, which takes 3

oxidation equivalents (eqn. 27). The ratio between these two re-

action pathways constitutes the initial or intrinsic selectivity of

the material, S0.

rate(NO−> NO2) = (1+
β − f ·β

4−β
) ·

1−S0

2+S0
(26)

rate(NO−> NO−

3 ) = (1+
β − f ·β

4−β
) ·

S0

2+S0
(27)

rate(NO−

3 −> NO2) = f (28)

The experimentally observed selectivity is the ratio between

net nitrate formation and nitrogen monoxide oxidation, eqn. 29,

which can be rewritten using eqns. 26-28, resulting in eqn. 30.

S =
rate(NO−> NO−

3 )− rate(NO−

3 −> NO2)

rate(NO−> NO2)+ rate(NO−> NO−

3 )
(29)

S = S0 −
f · (2+S0) · (4−β )

4− f ·β
(30)

With eqn. 25 this finally becomes eqn. 31.

S(θ) = S0 −θ ·

(2+S0)(4−β )

4(θ + ko(1−θ))−θ ·β )
(31)

As mentioned in the introduction part, the amount of oxida-

tion equivalents generated through the reduction of oxygen (β)

is likely not constant but will increase with lower reaction rate,

e.g., when the nitrate coverage is higher and less electrons reach

oxygen. Modeling this exactly is beyond this study, instead it will

be approximated by using a simple exponential decay function

with the parameter α, eqn. 32, which transforms eqn. 31 into

eqn. 18.

β = 3(1− e−αθ ) (32)

S(θ) = S0 −θ ·

(2+S0)(4−3(1− e−αθ ))

4(θ + ko(1−θ))−3θ(1− e−αθ )
(18)
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