
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 1

On the Understandability of Temporal Properties
Formalized in Linear Temporal Logic, Property
Specification Patterns and Event Processing

Language
Christoph Czepa and Uwe Zdun

Abstract—Temporal properties are important in a wide variety of domains for different purposes. For example, they can be used to
avoid architectural drift in software engineering or to support the regulatory compliance of business processes. In this work, we study
the understandability of three major temporal property representations: (1) Linear Temporal Logic (LTL) is a formal and well-established
logic that offers temporal operators to describe temporal properties; (2) Property Specification Patterns (PSP) are a collection of
recurring temporal properties that abstract underlying formal and technical representations; (3) Event Processing Language (EPL) can
be used for runtime monitoring of event streams using Complex Event Processing. We conducted two controlled experiments with 216
participants in total to study the understandability of those approaches using a completely randomized design with one alternative per
experimental unit. We hypothesized that PSP, as a highly abstracting pattern language, is easier to understand than LTL and EPL, and
that EPL, due to separation of concerns (as one or more queries can be used to explicitly define the truth value change that an
observed event pattern causes), is easier to understand than LTL. We found evidence supporting our hypotheses which was
statistically significant and reproducible.

Index Terms—Controlled Experiment, Understandability, Temporal Property, Linear Temporal Logic, Property Specification Patterns,
Complex Event Processing, Event Processing Language

F

1 INTRODUCTION

T EMPORAL properties focus on the execution of a sys-
tem, which usually involves changing states at different

points in time during system execution. They play a major
role in many domains, such as satellite systems (cf. Esteve
et al. [1]), health care (cf. Rovani et al. [2]), banking (cf.
Bianculli et al. [3]), automotive (cf. Post et al. [4]), to name
a few. They are used in the context of verification and
validation activities, both at design time (cf. Kherbouche
et al. [5], Czepa et al. [6], Morimoto [7], and Bucchiarone
et al. [8]) and at run time (cf. Mulo et al. [9], Knuplesch et
al. [10], Ly et al. [11], and de Silva & Balasubramaniam [12]).

In this study, we consider a representative set of estab-
lished approaches for the specification of temporal proper-
ties, namely:

• Linear Temporal Logic (LTL; cf. Pnueli [13]),
• Property Specification Patterns (PSP; cf. Dwyer et

al. [14]), and
• Event Processing Language (EPL; cf. EsperTech

Inc. [15]).

Linear Temporal Logic (LTL) is a widely used and estab-
lished language for the specification of temporal properties.
It is a logic-based approach that supports not only logical
but also temporal operators. Many existing model checkers
leverage LTL as a specification language (cf. Cimatti et

• The authors are with the Research Group Software Architecture, Faculty
of Computer Science, University of Vienna, Währingerstraße 29, 1090
Vienna, Austria
E-mail: christoph.czepa@univie.ac.at, uwe.zdun@univie.ac.at

al. [16] for NuSMV1, Blom et al. [17] for LTSmin2, Holz-
mann [18] for SPIN3). Originally developed for reasoning
on infinite traces, LTL can also be applied for reasoning on
finite traces (cf. De Giacomo & Vardi [19]). The LTL2NFA
algorithm (cf. De Giacomo et al. [20]) describes the transfor-
mation of an arbitrary LTL formula to a non-deterministic
finite automaton (NFA), which can be executed for runtime
checking of LTL-based temporal properties.

The Property Specification Patterns (PSP) are a collection
of recurring temporal patterns. The relevance of the patterns
discovered by Dwyer et al. [14] was confirmed even 13 years
after the original study took place by a survey by Bianculli
et al. [3] based on 104 scientific case studies. Each pattern
represents a specific intent with a mapping to underlying
formal representations, most notably LTL and CTL (Com-
putation Tree Logic; cf. Clarke et al. [21]). Many existing
approaches reuse PSP or extend the original pattern cata-
log with more specific context-dependent patterns. Among
them are the DecSerFlow language for declarative service
descriptions (cf. van der Aalst & Pesic [22]), the declara-
tive workflow approach Declare (cf. Pesic et al. [23]), the
Compliance Request Language (abbrev. CRL; cf. Elgammal
et al. [24]), and the PROPOLS approach for the verification
of BPEL service composition schemes (cf. Yu et al. [25]).

Event Processing Language (EPL) can be used to encode
specific event patterns in queries that cause the firing of

1. http://nusmv.fbk.eu/
2. http://fmt.cs.utwente.nl/tools/ltsmin/
3. http://spinroot.com/

http://nusmv.fbk.eu/
http://fmt.cs.utwente.nl/tools/ltsmin/
http://spinroot.com/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 2

event listeners once the pattern is observed in the event
stream of a Complex Event Processing (CEP) environment
(cf. Wu et al. [26]). EPL is part of the open source CEP
engine Esper4. Numerous studies make use of EPL (cf. Awad
et al. [27], Holmes et al. [28], Boubeta-Puig et al. [29],
Kunz et al. [30], Adam et al. [31], Aniello et al. [32], to
name but a few). EPL is well-suited as a representative for
CEP query languages as it supports common CEP query
language concepts, such as leads-to (sequence, followed-by) and
every (each) operators, that are present in many CEP query
languages and engines (e.g., Siddhi5 and TESLA [33]).

1.1 Problem Statement
Despite the long existence of many major temporal property
specification approaches (e.g., Linear Temporal Logic was
first proposed in 1977, the Property Specification Patterns
exist since 1999), the core focus of most researchers has been
on the formal/technical perspective of those approaches,
whereas studying the usage point of view from an empirical
perspective has not drawn much attention from researchers.
Indeed, we are not aware of any existing work that provides
an empirical study on the understandability of different
representative temporal property specification approaches.
Gaining more insights into the understandability of tempo-
ral property representations is crucial for evaluating their
suitability for practical use and finding potential ways for
their improvement with regards to understandability.

LTL, PSP, and EPL are all powerful approaches for au-
tomated temporal property verification and validation, but
very little is known about the understandability of these
approaches. Intuitively, we might hypothesize that the tem-
poral pattern-based approach PSP is more understandable
than the temporal logic-based approach LTL because the
former is abstracting the latter, but scientific evidence is re-
quired to back up such claims. In this article, we investigate
this and similar hypotheses by applying suitable statistical
methods on the gathered empirical data.

Studying the currently existing empirical research gaps
in this field is not only interesting from a purely scientific
point of view, but it is also important for industrial applica-
tions. For example, from the cooperation with our industry
partners (see e.g., [34]), their customers and other company
representatives at conferences and workshops, we realized
that industry has a huge demand for, and shows a strong
interest in, temporal property specification approaches that
are applicable in practice by supporting a comprehensible,
fast and accurate adoption of compliance requirements as
well as their automated enactment and verification. All
representative temporal property specification approaches
that we study in this article are well-suited for automated
computer-aided checking, but BPM vendors are still often
reluctant to expose their customers to such approaches,
and our discussions with industry partners (see e.g. [35],
[36]), that indicate uncertainty regarding how understand-
able temporal property representations are, are among the
reasons for this.

The application of temporal property specifications
for supporting software architecture compliance in the

4. http://www.espertech.com/esper
5. https://github.com/wso2/siddhi

SWE & SWA domain faces a similar issue: Architecture
descriptions and design decisions (cf. Medvidovic et al. [37],
Zdun et al. [38]) must be documented in a comprehensible
manner for different stakeholders in the software develop-
ment process. Nowadays this is still often done in natural
language, which cannot be directly used (i.e., without semi-
automatic natural language processing; cf. Czepa et al. [39])
for automated software architecture compliance checking.
By using a temporal property language for capturing archi-
tectural descriptions and decisions, we can directly leverage
those architectural descriptions for automated architecture
compliance checking.

Empirical research on temporal property understand-
ability has the potential to influence practitioners in making
the decision for adopting a specific existing temporal prop-
erty language and in designing future industrial temporal
property specification approaches. Consequently, one of the
goals of this empirical study is to pave the way for industrial
or practical exploitation of temporal property specification
approaches.

1.2 Research Objectives
This empirical study has the objective to investigate the
understandability of representative temporal property rep-
resentations. The understandability construct focuses on
how well (in terms of correct understanding) and fast (in
terms of the response time) a participant understands a
given temporal property representation.

We state the experimental goal using the GQM (Goal
Question Metric) goal template (cf. Basili et al. [40]) as
follows:

Analyze the LTL, PSP, and EPL temporal property ap-
proaches
for the purpose of their evaluation
with respect to their understandability
from the viewpoint of the novice and moderately advanced
software architect, designer or developer
in the context (environment) of the Distributed System
Engineering Lab and the Advanced Software Engineering
Lab courses at the Faculty of Computer Science of the
University of Vienna.

1.3 Context
The study consists of two controlled experiments with 216
participants in total:

• The first run was carried out with 70 computer sci-
ence students who enrolled in the course “Advanced
Software Engineering Lab (ASE)” (mandatory part
of the master in computer science curricula) at the
University of Vienna in the winter term 2015/2016.

• The second run was carried out with 92 computer
science students who enrolled in the course “Dis-
tributed System Engineering Lab (DSE)” (optional
part of the bachelor and master in computer sci-
ence curricula) at the University of Vienna and
54 computer science students who enrolled in the
course “Advanced Software Engineering Lab (ASE)”
(mandatory part of the master in computer science

http://www.espertech.com/esper
https://github.com/wso2/siddhi

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 3

curricula) at the University of Vienna in the winter
term 2016/2017.

Consequently, we can differentiate between DSE and
ASE participants. While the former are used as proxies for
novice to moderately advanced software architects, design-
ers or developers, the latter are used as proxies for moder-
ately advanced software architects, designers or developers.
According to Kitchenham et al. [41], using students “is not
a major issue as long as you are interested in evaluating the
use of a technique by novice or nonexpert software engineers.
Students are the next generation of software professionals and,
so, are relatively close to the population of interest”. Besides,
a number of our students work while studying and some
have even some years of industry experience (cf. Electronic
Appendix A.2.1). Several existing studies take it even a step
further by suggesting that students can be representatives
for professionals under certain circumstances (cf. Höst et
al. [42], Runeson [43], Svahnberg et al. [44], and Salman et
al. [45]).

1.4 Guidelines
This work follows and respects existing guidelines for
conducting and reporting empirical research in software
engineering: Jedlitschka et al. [46] propose guidelines and
a structured approach for reporting experiments in software
engineering, which had a strong influence on the general
structure and contents of this article. Those guidelines
integrate (among others) the “Preliminary guidelines for
empirical research in software engineering” by Kitchenham
et al. [41] and standard books on empirical software en-
gineering (cf. Wohlin et al. [47], Juristo & Moreno [48]).
Moreover, we considered and applied the “Robust Statistical
Methods for Empirical Software Engineering” by Kitchen-
ham et al. [49] for the statistical evaluation of the acquired
data.

2 BACKGROUND ON TEMPORAL PROPERTY REP-
RESENTATIONS

In this section, we discuss the general properties of the
temporal property representations that are the focus of this
study. Readers already familiar with one (or more) of the
discussed temporal property representations may consider
skipping (parts of) this section.

2.1 Linear Temporal Logic (LTL)
Propositional logic is not expressive enough to describe the
behavior of systems (i.e., the ordering of events in time),
so the notion of temporal logic has been introduced in
1977 (cf. Pnueli [13]). In particular, a logic called Linear
Temporal Logic (LTL) for reasoning over linear traces with
the temporal operators G (or �) for “globally” and F (or ♦)
for “finally” is proposed. Additional temporal operators are
U for “until”,W for “weak until”,R for “release”, and X (or
◦) for “next”. Gψ (or �ψ) states that ψ must be true in every
point in time. Fψ (or ♦ψ) states that ψ must be true at some
future point in time. ψ U φ states that ψ remains true at least
until the point in time when φ becomes true. ψ R φ states
that ψ remains true at least until and including the point in

time when φ becomes true. Xψ (or ◦ψ) states that ψ must be
true at the next point in time. LTL formulas are composed of
the aforementioned temporal operators, atomic propositions
(the set AP), and the boolean operators ∧ (for “and”), ∨ for
“or”, ¬ for “not”,→ for “implies” (cf. Baier & Katoen [50]).
The weak-until operator ψW φ is defined as (G ψ)∨(ψ U φ).

An LTL formula is inductively defined as follows: For
every a ∈ AP , a is an LTL formula. If ψ and φ are LTL
formulas, then so are Gψ (or �ψ), Fψ (or ♦ψ), ψ U φ, ψ R φ,
Xψ (or ◦ψ), ψ ∧ φ, ψ ∨ φ, and ¬ψ.

The semantics of LTL over infinite traces is defined
as follows: LTL formulas are interpreted as infinite words
over the alphabet 2AP (i.e., the alphabet are all possible
propositional interpretations of the propositional symbols
in AP). π(i) denotes that state of the trace π at time instant
i. We define π, i � ψ (i.e., a trace π at time instant i satisfies
the LTL formula ψ) as follows:

• π, i � a, for a ∈ AP iff a ∈ π(i).
• π, i � ¬ψ iff π, i 2 ψ.
• π, i � ψ ∧ φ iff π, i � ψ and π, i � φ.
• π, i � ψ ∨ φ iff π, i � ψ or π, i � φ.
• π, i � Xψ iff π, i+ 1 � ψ.
• π, i � Fψ iff ∃j ≥ i, such that π, j � ψ.
• π, i � Gψ iff ∀j ≥ i, such that π, j � ψ.
• π, i � ψ U φ iff ∃j ≥ i, such that π, j � φ, and
∀k, i ≤ k < j, we have π, k � ψ.

• π, i � ψR φ iff ∀j ≥ i, iff π, j 2 φ, then ∃k, i ≤ k < j,
such that π, k � ψ.

In model checking, LTL formulas commonly have two
possible truth value states, namely true (satisfied) and
false (violated). In case of monitoring an LTL spec-
ification in a running system, it might be the case, that
it is not only of interest if a specification is satisfied or
violated but also whether further state changes are possible
that could resolve or cause a violation of a specification.
That is, the state of a specification is either temporary
(i.e., the state may change) or permanent (i.e., the state
may not longer change). Consequently, to enable a more
fine-grained analysis of the participants’ understanding
of LTL in the experiment, we employ the semantics of
Runtime Verification Linear Temporal Logic (RV-LTL; cf.
Bauer et al. [51]) that supports four truth value states. In
particular, an LTL temporal property specification at run-
time is either temporarily satisfied, temporarily
violated, permanently satisfied, or permanently
violated.

The semantics of RV-LTL is defined as follows:

• [u � ψ]RV = > (ψ permanently satisfied by u) if for
each possible finite continuation v of u : uv � ψ.

• [u � ψ]RV = ⊥ (ψ permanently violated by u) if for
each possible finite continuation v of u : uv 2 ψ.

• [u � ψ]RV = >p (ψ possibly/temporarily satisfied
by u) if u � ψ and there exists a possible finite
continuation v of u : uv 2 ψ.

• [u � ψ]RV = ⊥p (ψ possibly/temporarily violated
by u) if u 2 ψ and there exists a possible finite
continuation v of u : uv � ψ.

Several existing studies make use of the concept of four
LTL truth value states (cf. Pešić et al. [52], De Giacomo et

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 4

global

between s1 and s2

after s1 until s2

after s

before s

s1 s2
s1 s2s1 s1

s1 s2
s1 s2s1 s1

s

s

s

s

Fig. 1. Available scopes for Property Specification Patterns (shaded
areas indicate the extent over which the pattern must hold)

al. [53], Maggi et al. [54], Falcone et al. [55], Joshi et al. [56],
and Morse et al. [57]).

2.2 Property Specification Patterns (PSP)
Having been inspired by software design patterns, Dwyer
et al. have proposed the Property Specification Patterns
(PSP) [14], a collection of recurring temporal properties in
software engineering. For each pattern, there exist trans-
formation rules to underlying formal representations (in-
cluding LTL and CTL)6. The patterns are categorized into
Occurrence Patterns and Order Patterns as follows:

• Occurrence Patterns:

– Absence: a never occurs
– Universality: a always occurs
– Existence: a occurs
– Bounded Existence:

a occurs at most n times

• Order Patterns:

– Precedence: a precedes b
– Response: a leads to b
– 2 Cause-1 Effect Precedence Chain:

(a, b) precedes c
– 1 Cause-2 Effect Precedence Chain:

a precedes (b, c)
– 2 Stimulus-1 Response Chain:

(a, b) leads to c
– 1 Stimulus-2 Response Chain:

a leads to (b, c)

Moreover, each pattern has a scope. Figure 1 shows the
available scopes and their area of effect:

• The global scope defines that a pattern must hold
during the entire execution of a system. This scope is
implicitly assumed when no other scope is defined.

• The before scope before s [p] defines that a
pattern p must hold before the first occurrence of s.

• The after scope after s [p] defines that a pat-
tern p must hold after the first occurrence of s.

• The between scope between s1 and s2 [p] de-
fines that a pattern p must hold between every s1

6. http://patterns.projects.cs.ksu.edu/documentation/patterns.
shtml

(i.e., starting the scope) that is followed by s2 (i.e.,
closing the scope).

• The after-until scope after s1 until s2 [p]
defines that a pattern p must hold after every s1 (i.e.,
starting the scope) by no later than s2 (i.e., closing
the scope).

2.3 Event Processing Language (EPL)
In this section, we discuss the Event Processing Language
(EPL; cf. EsperTech Inc. [15]) and how it can be ap-
plied for runtime monitoring of temporal properties. An
EPL-based temporal property specification consists of an
initial truth value (either temporarily satisfied or
temporarily violated) and one or more query-listener
pairs. A query-listener pair causes a truth value change
of the temporal property as soon as a matching event
pattern is observed in the event stream. Consequently, an
EPL-based temporal property specification always consists
of EPL queries that are composed of EPL operators and
listeners that causes truth value changes (to temporarily
satisfied, temporarily violated, permanently
satisfied, permanently violated) to which the state
of the temporal property specification is set to by a positive
match of an expression in the event stream. The semantics
of those EPL operators is given as follows (cf. [15]):

• The and operator e1 and e2 is a logical conjunction
that is matched once both e1 and e2 (in any order)
have occurred.

• The or operator e1 or e2 is a logical disjunction that
is matched once either e1 or e2 has occurred.

• The not operator not e is a logical negation that is
matched if the expression e is not matched.

• The every operator every e not just observes the
first occurrence of the expression e in the event
stream but also each subsequent one.

• The leads-to operator e1 -> e2 specifies that first
e1 must be observed and only then is e2 matched.
Intuitively, the whole expression is matched once e1
is followed by e2 at the occurrence of e2.

• The until operator e1 until e2 matches the expres-
sion e1 until e2 occurs. In practice, this operator is
commonly used in the expression not e1 until e2
that demands the absence of e1 before the occurrence
of e2.

Obviously, further truth value changes are not possible
once a permanent state (i.e., permanently violated or
permanently satisfied) has been reached.

3 EXPERIMENT PLANNING

3.1 Goals
This experiment has the goal of measuring the construct un-
derstandability of temporal property specifications expressed
in different representations, namely Linear Temporal Logic
(LTL), Property Specification Patterns (PSP), and Event Pro-
cessing Language (EPL). The focus is on the correctness and
response time of the answers given by the participants.

http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml
http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 5

3.2 Experimental Units
All participants of the experiment are students of the Faculty
of Computer Science at the University of Vienna, Austria,
who enrolled in the courses “Distributed System Engineer-
ing Lab (DSE)” and “Advanced Software Engineering Lab
(ASE)”. We differentiate between two kinds of participants:

• Participants of DSE are used as proxies for novice to
moderately advanced software architects, designers
or developers.

• Participants of ASE are used as proxies for mod-
erately advanced software architects, designers or
developers.

The first experiment run aims to evaluate the languages
with moderately advanced software architects, designers or
developers, whereas the second experiment run considers
both novice to moderately advanced and moderately ad-
vanced software architects, designers or developers. An-
other difference between the two experiment runs concerns
the incentive for participation, the sampling strategy, and
the setting. In the first experiment run, the experiment was
carried out as a normal course assignment. Consequently,
attendance was mandatory, and the submitted solutions
were graded as an integral part of the course with up to
10 points (10% of the total course points). In the second
experiment run, we changed to optional attendance that
was rewarded by up to 10 bonus points. In both cases,
the participants’ performance in the experiment determined
the achieved points, and the participants were randomly
allocated to the treatments (i.e., the three temporal property
representations).

3.3 Experimental Material & Tasks
The temporal property specifications used in the tasks
of this empirical study are based on recurring temporal
property specification patterns (cf. Dwyer et al. [14] and
Bianculli et al. [3]). Each task of the experiment consists of
a temporal property definition and six combinations of an
execution trace and a truth value. To optimize the execution
of the experiment and to be independent from a specific
application domain, the traces only consist of capital letters
that represent surrogates of events (e.g. capital letter A could
represent a task event “Apply for Loan started” in the BPM
domain or a function/method invocation event in the SWA
& SWE domain). For each combination the participant must
evaluate whether it is correct or incorrect (i.e., whether the
truth value is correct for the given trace). For example,
Figure 2 (a) shows a task of the PSP group that is concerned
with the Precedence pattern in the Between scope. In this
task, only the choices b) and f) are correct. The same task
is shown for the LTL group in Figure 2 (b) and for the
EPL group in Figure 2 (c). Obviously, the expression of the
temporal property in each case is changed to the appropriate
formalism. Furthermore, a different set of letters is used as
a preventive measure against cheating (in addition to the
seating arrangements).

The experiment document consisted of 10 tasks in the
first experiment run. We reduced the number of tasks in
the second experiment run to 9 tasks because a relatively
large number of participants could not complete the first

4) Please select the correct answer(s) for the following constraint description:
after Z [M precedes V]

a) At the end of trace [V, H, L, H, M, H, V, H, H, Z] the truth value of the constraint is temporarily
satisfied.
b) At the end of trace [L, V, L, H, V, M, M, V, L, L] the truth value of the constraint is permanently
violated.
c) At the end of trace [M, Z, V, M, M, Z, M, L, H, Z] the truth value of the constraint is permanently
satisfied.
d) At the end of trace [V, Z, L, H, V, V, M, M, V, M] the truth value of the constraint is permanently
satisfied.
e) At the end of trace [Z, L, V, L, H, L, V, V, Z, Z] the truth value of the constraint is temporarily
satisfied.
f) At the end of trace [M, V, M, M, H, H, L, L, L, Z] the truth value of the constraint is temporarily
satisfied.

5) Please select the correct answer(s) for the following constraint description:
after M until Q [S precedes J]

a) At the end of trace [J, L, Q, L, Q, Q, M, J, J, Q] the truth value of the constraint is temporarily
satisfied.
b) At the end of trace [Q, Q, S, L, L, Q, M, J, S, Q] the truth value of the constraint is temporarily
satisfied.
c) At the end of trace [S, Q, S, L, M, S, L, J, J, J] the truth value of the constraint is permanently
violated.
d) At the end of trace [L, J, J, L, M, M, M, Q, L, Q] the truth value of the constraint is permanently
violated.
e) At the end of trace [M, J, J, Q, Q, S, Q, L, Q, Q] the truth value of the constraint is permanently
violated.
f) At the end of trace [L, M, S, Q, S, S, S, Q, J, J] the truth value of the constraint is permanently
violated.

6) Please select the correct answer(s) for the following constraint description:
between Z and M [T precedes S]

a) At the end of trace [S, T, M, M, T, T, M, M, T, L] the truth value of the constraint is permanently
violated.
b) At the end of trace [T, M, S, T, Z, L, L, Z, Z, L] the truth value of the constraint is temporarily
satisfied.
c) At the end of trace [S, L, S, M, Z, L, T, L, L, Z] the truth value of the constraint is permanently
violated.
d) At the end of trace [L, L, Z, Z, L, T, T, Z, S, M] the truth value of the constraint is temporarily
satisfied.
e) At the end of trace [Z, S, L, Z, S, M, M, M, T, L] the truth value of the constraint is temporarily
satisfied.
f) At the end of trace [S, Z, S, M, S, M, T, Z, S, T] the truth value of the constraint is permanently
violated.

(a) PSP group

4) Please select the correct answer(s) for the following constraint description:
(globally not J) or (not J until (J and (not V weak-until S)))

a) At the end of trace [V, K, M, K, S, K, V, K, K, J] the truth value of the constraint is temporarily
satisfied.
b) At the end of trace [M, V, M, K, V, S, S, V, M, M] the truth value of the constraint is permanently
violated.
c) At the end of trace [S, J, V, S, S, J, S, M, K, J] the truth value of the constraint is permanently
satisfied.
d) At the end of trace [V, J, M, K, V, V, S, S, V, S] the truth value of the constraint is permanently
satisfied.
e) At the end of trace [J, M, V, M, K, M, V, V, J, J] the truth value of the constraint is temporarily
satisfied.
f) At the end of trace [S, V, S, S, K, K, M, M, M, J] the truth value of the constraint is temporarily
satisfied.

5) Please select the correct answer(s) for the following constraint description:
globally(J and not T implies (not M weak-until (L or T)))

a) At the end of trace [M, H, T, H, T, T, J, M, M, T] the truth value of the constraint is temporarily
satisfied.
b) At the end of trace [T, T, L, H, H, T, J, M, L, T] the truth value of the constraint is temporarily
satisfied.
c) At the end of trace [L, T, L, H, J, L, H, M, M, M] the truth value of the constraint is permanently
violated.
d) At the end of trace [H, M, M, H, J, J, J, T, H, T] the truth value of the constraint is permanently
violated.
e) At the end of trace [J, M, M, T, T, L, T, H, T, T] the truth value of the constraint is permanently
violated.
f) At the end of trace [H, J, L, T, L, L, L, T, M, M] the truth value of the constraint is permanently
violated.

6) Please select the correct answer(s) for the following constraint description:
globally((V and not K and finally K) implies (not J until (H or K)))

a) At the end of trace [J, H, K, K, H, H, K, K, H, L] the truth value of the constraint is permanently
violated.
b) At the end of trace [H, K, J, H, V, L, L, V, V, L] the truth value of the constraint is temporarily
satisfied.
c) At the end of trace [J, L, J, K, V, L, H, L, L, V] the truth value of the constraint is permanently
violated.
d) At the end of trace [L, L, V, V, L, H, H, V, J, K] the truth value of the constraint is temporarily
satisfied.
e) At the end of trace [V, J, L, V, J, K, K, K, H, L] the truth value of the constraint is temporarily
satisfied.
f) At the end of trace [J, V, J, K, J, K, H, V, J, H] the truth value of the constraint is permanently
violated.

(b) LTL group

4) Please select the correct answer(s) for the following constraint description:
initial truth value: temporarily satisfied
permanently violated query: L leads-to not M until H
permanently satisfied query: L leads-to M

a) At the end of trace [H, K, V, K, M, K, H, K, K, L] the truth value of the constraint is temporarily
satisfied.
b) At the end of trace [V, H, V, K, H, M, M, H, V, V] the truth value of the constraint is permanently
violated.
c) At the end of trace [M, L, H, M, M, L, M, V, K, L] the truth value of the constraint is permanently
satisfied.
d) At the end of trace [H, L, V, K, H, H, M, M, H, M] the truth value of the constraint is permanently
satisfied.
e) At the end of trace [L, V, H, V, K, V, H, H, L, L] the truth value of the constraint is temporarily
satisfied.
f) At the end of trace [M, H, M, M, K, K, V, V, V, L] the truth value of the constraint is temporarily
satisfied.

5) Please select the correct answer(s) for the following constraint description:
initial truth value: temporarily satisfied
permanently violated query: every(K leads-to not T and not M until Z)

a) At the end of trace [Z, L, T, L, T, T, K, Z, Z, T] the truth value of the constraint is temporarily
satisfied.
b) At the end of trace [T, T, M, L, L, T, K, Z, M, T] the truth value of the constraint is temporarily
satisfied.
c) At the end of trace [M, T, M, L, K, M, L, Z, Z, Z] the truth value of the constraint is permanently
violated.
d) At the end of trace [L, Z, Z, L, K, K, K, T, L, T] the truth value of the constraint is permanently
violated.
e) At the end of trace [K, Z, Z, T, T, M, T, L, T, T] the truth value of the constraint is permanently
violated.
f) At the end of trace [L, K, M, T, M, M, M, T, Z, Z] the truth value of the constraint is permanently
violated.

6) Please select the correct answer(s) for the following constraint description:
initial truth value: temporarily satisfied
permanently violated query: every(L leads-to not S and not V until M leads-to S)

a) At the end of trace [M, V, S, S, V, V, S, S, V, T] the truth value of the constraint is permanently
violated.
b) At the end of trace [V, S, M, V, L, T, T, L, L, T] the truth value of the constraint is temporarily
satisfied.
c) At the end of trace [M, T, M, S, L, T, V, T, T, L] the truth value of the constraint is permanently
violated.
d) At the end of trace [T, T, L, L, T, V, V, L, M, S] the truth value of the constraint is temporarily
satisfied.
e) At the end of trace [L, M, T, L, M, S, S, S, V, T] the truth value of the constraint is temporarily
satisfied.
f) At the end of trace [M, L, M, S, M, S, V, L, M, V] the truth value of the constraint is permanently
violated.

(c) EPL group

Fig. 2. Precedence Between task in the three different treatment/group
variants in the second experiment run

experiment run in time. Another difference between the two
experiment runs is the order of tasks and answer choices. In
the first run, the order was randomized between the groups
whereas in the second run there has been no difference
in order between the groups. Randomization has the ad-
vantage that cheating is hampered, but it might introduce
an unwanted variable to the experiment. For example, one
group might have an easy first task, while another group
has a hard one that hinders further progression and/or
frustrates the participant. To avoid such unwanted effects,
we kept the order unchanged in the second experiment run.

For the creation of the tasks of the experiment, we
used an algorithm that generates traces and computes the
correct truth value of a temporal property specification
that corresponds to each trace automatically. This algorithm
leverages both the LTL and EPL specifications used in this
experiment. For checking a trace against an LTL specifica-
tion, the LTL formula is transformed to a non-deterministic
finite automaton (cf. De Giacomo & Vardi [19]). By executing
the automaton and analyzing its accepting states, the truth
value of the LTL formula can be determined. Moreover,
EPL temporal property specifications are enacted in a CEP

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 6

engine to evaluate their truth value. Using either LTL or EPL
would suffice to create the tasks for the experiment. Never-
theless, we used both to double check the correctness of the
temporal property representations. Please note that it is not
possible to use PSP specifications directly for execution (i.e.,
they are an abstraction of formal languages such as LTL and
EPL), so they cannot be used for automated task generation.
After the automated generation, we manually checked each
task for correctness.

A slightly adapted version of the algorithm was used for
the second experiment run. For the first run, the truth value
of an answer choice was randomly altered to another truth
value to create both wrong and correct answer choices. That
kind of alteration might affect the results of the EPL group
because the EPL approach explicitly contains truth values in
its specifications. That is, some answer choices can be ruled
out by matching the truth value of an answer choice against
the set of possible truth values in the EPL specification. As
we will discuss later (in the evaluation of the experiments
in Section 5.1), apparently, these answer choices did not
introduce bias that affected the EPL results positively, but
they even had a negative impact on the response times in
the EPL group in the first experiment run. We eliminated
that threat to validity in the second experiment run by
limiting random alterations of truth values in the answer
choices of all groups to the set of possible truth values of a
specification.

The tasks of both controlled experiment runs are avail-
able online (cf. Czepa & Zdun [58]) to support a replica-
tion of the study. In addition, code was released as open
source that supports the automated generation of experi-
ment tasks.7

3.4 Hypotheses, Parameters, and Variables
We hypothesized that PSP, as a highly abstract pattern
language, is easier to understand than LTL and EPL, and
that EPL, due to separation of concerns (as one or more
queries can be used to explicitly define the truth value
change that an observed event pattern causes), is easier
to understand than LTL. Consequently, we formulated the
following hypotheses for the two controlled experiment
runs:

• H0,1 : There is no difference in terms of understand-
ability between PSP and LTL.

• H1,1 : PSP has a higher level of understandability
than LTL.

• H0,2 : There is no difference in terms of understand-
ability between PSP and EPL.

• H1,2 : PSP has a higher level of understandability
than EPL.

• H0,3 : There is no difference in terms of understand-
ability between EPL and LTL.

• H1,3 : EPL has a higher level of understandability
than LTL.

7. https://gitlab.swa.univie.ac.at/christoph.czepa/
experimentgenerator/

In both runs of this controlled experiment, there are two
dependent variables, namely:

• the correctness achieved in trying to mark the correct
answers, and

• the response time, which is the time it took to complete
the 10 tasks in the first experiment run / the 9 tasks
in the second experiment run.

These two dependent variables are commonly used to
measure the construct understandability (cf. Feigenspan et
al. [59] and Hoisl et al. [60]). The independent variable
(also called factor) has three treatments, namely the three
temporal property representations (LTL, EPL, and PSP).

3.5 Experiment Design & Execution
We used a completely randomized design with one alter-
native per experimental unit, which is appropriate for the
stated goal. Through this, we tried to avoid learning effects
of the participants. Moreover, chances of selection bias are
limited by using a computer-aided randomization for the
assignment of participants to groups. The experiment is
designed as a multiple-choice test for automated processing
by the e-learning platform Moodle8 to avoid experimenter
bias in the analysis of the answers submitted. For that
reason, the participants mark the answers in an answer
sheet that will be scanned and evaluated automatically. In
some cases, it was necessary to correct some issues (e.g.,
imprecise markings) manually. To further limit the chances
of experimenter bias, we used the four eyes principle while
performing any such manual actions.

Two weeks before each experiment run, we handed
out preparation material to the participants. This material
consists of two documents: a document that provided a
general introduction to the temporal property language and
slides that represent a kind of quick reference guide with the
important aspects of the temporal property representations
and further examples. The participants were allowed to use
the preparation material also during the experiment session.

The preparation material is based on (informal) natural
language descriptions of the approaches and practical ex-
amples of application. There are two main reasons for this
design of the preparation material: Firstly, we needed to
ensure that all three languages are presented by the same
educational methods at a comparable level of detail to not
introduce unnecessary bias into our experiment. Secondly,
we tried to present the approaches in an approachable man-
ner to the participants as suggested by numerous existing
research on teaching undergraduate students in theoretical
computer science, formal methods, and logic (cf. Habiballa
& Kmeť [61], Knobelsdorf & Frede [62], Carew et al. [63],
Spichkova [64], and Richardson & Suinn [65]).

Please note that the tasks used in the experiment were
randomly generated and not taken from the learning mate-
rial. However, there were similarities between the temporal
properties used in some of the experiment tasks and those
used in the examples discussed in the learning material,
but we could not find any indication of bias introduced
by these similarities in the gathered data. In particular, the
number of possibly affected experiment tasks was almost

8. https://moodle.org

https://gitlab.swa.univie.ac.at/christoph.czepa/experimentgenerator/
https://gitlab.swa.univie.ac.at/christoph.czepa/experimentgenerator/
https://moodle.org

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 7

balanced between the groups, and the measured correctness
of possibly affected tasks was overall similar to those of the
remaining tasks (cf. Electronic Appendix D.1).

Since the first experiment run also involved two quali-
tative questions regarding all temporal property represen-
tations, we made the decision to provide the preparation
materials of all three temporal property representations to
every participant. That is, the participants studied all tempo-
ral property languages, and were unaware to which group
they had been assigned until the start of the experiment ses-
sion. However, having knowledge of all the representations
could have introduced bias. For example, learning a repre-
sentation could lead to a better understanding of another
one, or the languages were mixed up unintentionally. As a
result, we handed out preparation material for each group
individually in the second experiment run.

The preparation material is available online (cf. Czepa &
Zdun [58]) to support a replication of the study.

3.6 Procedure
The first experiment run had a duration of 90 minutes for
working on the 10 tasks plus an additional 10 minutes
for answering the two qualitative questions. The second
experiment run had a total duration of 90 minutes for
working on the 9 given tasks. No qualitative questions
were asked in the second run. Seating arrangements were
made to limit opportunity for misbehavior (i.e., cheating).
At the beginning of each experiment run, the experiment
material was handed out in form of printed documents. Fur-
thermore, we provided copies of the preparation materials
for those participants who did not bring their own. Next,
the participants were informed about the procedure of the
experiment. This involves time tracking and how to mark
answers correctly in the answer sheet for automatic process-
ing. Following this, the participant had to fill out a general
question sheet by which we gathered information about
the previous knowledge and experience of the participants.
Next, the main part of the experiment started, in which
the participants tried to solve the tasks of the experiment.
The experiment runs were carried out following this plan
without known deviations.

4 ANALYSIS

Table 1 contains the number of observations, central ten-
dency measures and dispersion measures of the depen-
dent variables (correctness and response time) per temporal
property representation and experiment run. The second
experiment run consists of measurements in two courses,
namely DSE and ASE (cf. Section 3.2). That is, we tested
our hypotheses three times, namely in the first experiment
run in ASE, and in the second experiment run in DSE and
ASE. In all three cases, the PSP group reached the highest
mean and median correctness (about 70–75%), followed by
the EPL group (about 50–55% correctness) and the LTL
group (about 30–35% correctness). The maximum measured
response time in the first run is the 90 minutes limit in all
groups. In response to this, we reduced the number of tasks
in the second run by one (from 10 to 9). In the second run,
the maximum response time is 88 minutes. Interestingly,

TABLE 1
Number of observations, central tendency and dispersion per group

and experiment run

LTL PSP EPL

1s
t

ru
n

Number of observations 26 20 24

Mean correctness [%] 33.04 69.55 50.70
Standard deviation [%] 15.39 25.46 28.52
Median correctness [%] 31.3 78 48.7
Median absolute deviation [%] 12.79 23.87 42.48
Min. correctness [%] 5 12.7 10.5
Max. correctness [%] 63 100 94.7
Skew (correctness) 0.02 −0.56 0.01
Kurtosis (correctness) −0.83 −1.01 −1.61

Mean response time [min] 69.85 58.25 72.12
Standard deviation [min] 15.25 20.86 21.47
Median response time [min] 73 57.50 78.5
Median absolute deviation [min] 17.05 25.95 17.05
Min. response time [min] 35 28 11
Max. response time [min] 90 90 90

2n
d

ru
n:

D
SE

Number of observations 31 27 28

Mean correctness [%] 32.45 70.55 53.83
Standard deviation [%] 17.23 20.89 23.04
Median correctness [%] 31.7 73.70 54.10
Median absolute deviation [%] 18.09 18.09 23.5
Min. correctness [%] 6.5 16.30 5.6
Max. correctness [%] 70.6 97.20 86.70
Skew (correctness) 0.36 −0.87 −0.37
Kurtosis (correctness) −0.62 −0.11 −0.86

Mean response time [min] 51.03 36.65 43.80
Standard deviation [min] 14.95 14.18 14.71
Median response time [min] 51 33.05 42.76
Median absolute deviation [min] 13.42 15.25 13.2
Min. response time [min] 19 17.35 23
Max. response time [min] 88 63.08 84.63

2n
d

ru
n:

A
SE

Number of observations 16 17 17

Mean correctness [%] 36.42 72.41 54.4
Standard deviation [%] 17.32 18.17 21.06
Median correctness [%] 38.60 71.9 53.70
Median absolute deviation [%] 9.71 18.09 17.35
Min. correctness [%] 3.7 33.50 8.9
Max. correctness [%] 67.6 100 87.6

Mean response time [min] 55.32 39.12 44
Standard deviation [min] 11.51 8.95 15.33
Median response time [min] 53.15 39.5 44.83
Median absolute deviation [min] 11.48 9.64 19.74
Min. response time [min] 35.5 23.47 23
Max. response time [min] 78 52.93 70.5

students in the second run in ASE managed to finish on
the average about 20–40% faster than their colleagues in the
first run which cannot be caused by the removal of a single
task alone as the expected response time reduction would be
only about 10%. We suspect that this difference is caused by
the change from total experiment time recordings in the first
experiment run to per task time recordings in the second
experiment run, and the late assignment of participants to
groups at the beginning of the experiment session in the first
run. Obviously, the time recordings of the participants in
the first experiment run included times such as pauses, task
switching times, and times spent on consulting the accom-
panying documents that are not directly related to solving a
specific task. In the first experiment run the participants had
to be prepared for all three representations, and the experi-
ment group was assigned at the beginning at the experiment

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 8

session. Up to this point in time, the participants did not
know to which experiment group they were assigned to.
That is, once it became clear which of the three approaches
must be applied, the participants revisited the learning
material related to the assigned representation intensely. In
the second experiment run, group assignment was clear
beforehand, so this initial consulting of the info material
did not take place in a comparable intensity. Furthermore,
the mean (72.12 minutes) and median response times (78.5
minutes) of the EPL group are longer than those of the LTL
group (69.85 minutes mean and 73 minutes median) in the
first run. With regard to the hypotheses of this experiment,
the response time measurements in the first experiment run
are an unexpected result since we expected that the response
times in the EPL group would be faster than in the LTL
group. In contrast, the EPL group has a faster response time
than the LTL group in the second run. We suspect that this
effect could have been caused by the task design which
contained truth value states in the answer choices that are
not part of the EPL temporal property definition. Originally
(i.e., at the time the first run was completed, and before the
second run was carried out), we thought that there might
have been a bias present in the first experiment run in favor
of the EPL group, because wrong answer choices could have
been potentially easier to identify by the EPL participants.
However, these answer choices seemingly rather confused
the participants than helped them. During the the first
experiment run, EPL participants repeatedly asked whether
there is an error in the exercise or whether it can be really
that easy to solve it. Due to their confusion, EPL participants
spent considerable more time on solving the tasks in the first
experiment run. For a more detailed descriptive statistics of
the dependent variables, we refer the interested reader to
Electronic Appendix A.2.

After a thorough evaluation of model assumptions (cf.
Electronic Appendix B), we decided to use Cliff’s delta (cf.
Cliff [66] and Rogmann [67]), a robust non-parametric test
that is unaffected by change in distribution, non-normal-
data and possible non-stable variance. The results of the
test are shown in Table 2 for the first experiment run
and Table 3 for the second experiment run. We consider
FDR (False Discovery Rate) adjusted p-values (cf. Ben-
jamini & Hochberg [68]) due to multiple testing. According
to these FDR adjusted p-values, there is evidence for the
rejection of the null hypotheses of this study (cf. Section 3.4).

In the first experiment run (cf. Table 2), almost all test
results are significant which suggests a rejection of H0,1 and
H0,2. H0,3 can only be rejected on basis of the correctness
variable since the test result does not indicate any significant
difference in the response times of the EPL and LTL group.
Moreover, the results suggest that the difference in terms
of correctness between the PSP and LTL group are highly
significant with a large effect size magnitude. All remaining
significant test results of the first experiment run show a
medium-sized effect.

In the second experiment run (cf. Table 3), the majority
of the test results is significant. Only one test, namely
the PSP/EPL response time with ASE participants, has no
significant result, which means that H0,2 (in ASE) can only
be rejected on basis of the correctness result. All other test
results are ranging from significant (α = 0.05) to highly

TABLE 2
Cliff’s d (first experiment run), one-tailed with confidence intervals
calculated for α = 0.05 (cf. Cliff [66] and Rogmann [67]), adjusted

p-values (cf. Benjamini & Hochberg [68]) [Level of significance: * for
α = 0.05, ** for α = 0.01, *** for α = 0.001], and effect size magnitudes

(cf. Kitchenham et al. [49])

PSP/LTL PSP/EPL EPL/LTL

C
or

re
ct

ne
ss

p1 = P (X > Y) 0.8769 0.7021 0.6715
p2 = P (X = Y) 0 0.0042 0
p3 = P (X < Y) 0.1231 0.2938 0.3285

d −0.7539 −0.4083 −0.343
sd 0.1097 0.1575 0.162
z −6.8699 −2.5933 −2.1157

CI low −0.8847 −0.633 −0.5789
CI high −0.513 −0.1203 −0.0539

p 8.8× 10−9 0.0065 0.0198
FDR adjusted p 5.3× 10−8 0.0195 0.0297

level of significance *** * *
effect size magnitude large medium medium

R
es

po
ns

e
Ti

m
e

p1 = P (X > Y) 0.3115 0.2833 0.564
p2 = P (X = Y) 0.0442 0.0417 0.0577
p3 = P (X < Y) 0.6442 0.675 0.3782

d 0.3327 0.3917 −0.1859
sd 0.1693 0.1641 0.164
z 1.9649 2.3874 −1.1336

CI low 0.0312 0.0931 −0.4376
CI high 0.5787 0.6256 0.0928

p 0.0279 0.0108 0.1313
FDR adjusted p 0.0335 0.0216 0.1313

level of significance * * -
effect size magnitude medium medium -

significant (α = 0.001) which suggests a rejection of the null
hypotheses. Moreover, all significant results show a large or
medium effect size magnitude. It is striking that all PSP/LTL
test results are highly significant with a large-sized effect.

5 DISCUSSION

5.1 Evaluation of Results and Implications
Most results of this study are in accordance with the initial
expectations of this study, but there are some deviations that
must be further discussed. In the first experiment run, H0,3

cannot be rejected for the response time variable. We suspect
that this effect could be related to the experimental tasks
of the first experiment run that offered answer choices with
truth value states that are not part of the EPL temporal prop-
erty specification. Apparently, these answer choices caused
confusion that resulted in longer response times. To avoid
potential bias, the answer choices in the second experiment
run included only truth value states that are mentioned
in the EPL temporal property specification. In the second
experiment run, H0,2 cannot be rejected for the response
time variable. In this case, we could not find any plausible
interpretation other than the sample size of ASE students in
the second experiment run. With 50 participants, the sample
size is borderline, and we cannot rule out disturbing effects.
Nevertheless, aside from that, the statistical inference shows
significant results with medium to large effect size magni-
tudes. Consequently, the controlled experiment runs of this
study clearly indicate that

• PSP specifications provide a higher level of under-
standability than LTL specifications,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 9

TABLE 3
Cliff’s d (second experiment run), one-tailed with confidence intervals

calculated for α = 0.05 (cf. Cliff [66] and Rogmann [67]), adjusted
p-values (cf. Benjamini & Hochberg [68]) [Level of significance: * for

α = 0.05, ** for α = 0.01, *** for α = 0.001], and effect size magnitudes
(cf. Kitchenham et al. [49])

PSP/LTL PSP/EPL EPL/LTL

C
or

re
ct

ne
ss

in
D

SE

p1 = P (X > Y) 0.902 0.709 0.7661
p2 = P (X = Y) 0 0.0053 0.0012
p3 = P (X < Y) 0.098 0.2857 0.2327

d −0.8041 −0.4233 −0.5334
sd 0.0847 0.1388 0.1275
z −9.4883 −3.0494 −4.1823

CI low −0.9053 −0.6238 −0.7107
CI high −0.6163 −0.1706 −0.2924

p 1.5× 10−13 0.0018 5.0× 10−5

FDR adjusted p 8.9× 10−13 0.0027 0.0002
level of significance *** ** ***

effect size magnitude large medium large

R
es

po
ns

e
Ti

m
e

in
D

SE

p1 = P (X > Y) 0.2473 0.3585 0.3502
p2 = P (X = Y) 0.0024 0.0027 0.0023
p3 = P (X < Y) 0.7503 0.6389 0.6474

d 0.503 0.2804 0.2972
sd 0.1345 0.153 0.1452
z 3.7393 1.8324 2.0474

CI low 0.251 0.0135 0.0432
CI high 0.6911 0.51 0.5151

p 0.0002 0.0363 0.0226
FDR adjusted p 0.0004 0.0363 0.0271

level of significance *** * *
effect size magnitude large medium medium

C
or

re
ct

ne
ss

in
A

SE

p1 = P (X > Y) 0.9154 0.7405 0.7427
p2 = P (X = Y) 0 0 0.0037
p3 = P (X < Y) 0.0846 0.2595 0.2537

d −0.8309 −0.481 −0.489
sd 0.0968 0.1691 0.1761
z −8.5879 −2.8448 −2.777

CI low −0.9352 −0.7108 −0.7248
CI high −0.5937 −0.1585 −0.1506

p 5.3× 10−10 0.0038 0.0046
FDR adjusted p 3.2× 10−9 0.0069 0.0069

level of significance *** ** **
effect size magnitude large large large

R
es

po
ns

e
Ti

m
e

in
A

SE

p1 = P (X > Y) 0.125 0.4187 0.2794
p2 = P (X = Y) 0.0037 0 0.0037
p3 = P (X < Y) 0.8713 0.5813 0.7169

d 0.7463 0.1626 0.4375
sd 0.1172 0.2063 0.1814
z 6.3672 0.7883 2.4124

CI low 0.4852 −0.1854 0.0972
CI high 0.8852 0.4744 0.6862

p 2.2× 10−7 0.2 0.011
FDR adjusted p 6.5× 10−7 0.2182 0.0132

level of significance *** - *
effect size magnitude large - large

• PSP specifications provide a higher level of under-
standability than EPL specifications, and

• EPL specifications provide a higher level of under-
standability than LTL specifications.

When it comes to the personal preference of the partici-
pants (cf. Electronic Appendix C), PSP seems to be the most
preferred temporal property representation. This result is in
accordance with the outcome of the controlled experiment
runs as well. In contrast, the personal preference ranking of
the EPL and LTL representations does not seem to match
the results of the controlled experiment runs, since the
EPL representation seems to be less popular among the
participants than LTL. However, the survey on which the
ranking is based must be interpreted with caution, because

the sample size might not be large enough to draw valid
conclusions on the basis of the data. Please note that we
did not replicate the survey in the second experiment run
intentionally to improve the validity of the controlled ex-
periment in the second run (cf. Section 5.2). Moreover, the
constructs “personal preference” and “understandability”
might be inherently different and incomparable. In either
case, this peculiarity is important to report, and it might be
a possible cornerstone for further investigations in future
empirical studies.

Both in terms of understandability and the personal
preference of the participants, the PSP representation out-
performed the other two approaches examined. The pattern-
based, high-level nature of the approach seems to make
it highly appealing as a temporal property representation.
However, a major limitation of the approach is its inflexi-
bility in the case where the set of available patterns does
not fit the purpose. In such a case, the pattern set must be
extended, i.e., the creation of underlying low-level temporal
property representations is required. Both EPL and LTL are
more low-level temporal property representations that can
be used either as underlying temporal property representa-
tions for PSP, or to directly create temporal property spec-
ifications for automated verification. EPL supports runtime
monitoring, whereas LTL can be used for both runtime mon-
itoring by non-deterministic finite automata (cf. De Giacomo
et al. [20]), and design time verification by model checking
(cf. Cimatti et al. [16], Blom et al. [17], Holzmann [18]). If
a temporal property representation is solely used for run-
time monitoring, the study would—based on the measured
understandability—imply a preference for EPL over LTL.
Another scenario is conceivable as well: During the creation
of new PSP patterns, easier to understand EPL temporal
property specifications can be used as plausibility specifica-
tions for harder to understand LTL formulas to countercheck
whether a created LTL formula contains errors (cf. Czepa et
al. [69]). However, an obstacle could be the possibly low
user acceptance of EPL (cf. Electronic Appendix C), which
must be further investigated.

5.2 Threats to Validity
All known threats that might have an impact on the validity
of the results are discussed in Electronic Appendix D.

6 RELATED WORK

To the best of our knowledge, we are not aware of any
existing empirical studies that investigate the differences
in understandability of representative temporal property
languages in a similar way and depth as the presented study
does. However, there exist related empirical studies that
evaluate representations of properties/models in software
engineering. This section will focus on those studies.

The first study we would like to present in the field of
software architecture and engineering is indirectly related
to temporal property specifications as it focuses on archi-
tecture descriptions in general. Heijstek et al. [70] try to
find out whether there are differences in understanding of
textual and graphical software architecture descriptions in
a controlled experiment with 47 participants. Interestingly,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 10

participants who used textual architecture descriptions per-
formed significantly better, which suggests that textual ar-
chitectural descriptions could be superior to their graphical
counterparts.

An eye-tracking experiment carried out by Sharafi et
al. [71] with 28 participants investigates the understandabil-
ity of graphical and textual software requirement models.
They observed no statistically significant difference in terms
of correctness of the two approaches, but the response times
of participants working with the graphical representations
were slower.

Czepa et al. [39] compared the understandability of three
languages for behavioral software architecture compliance
checking, namely the Natural Language Constraint lan-
guage (NLC), the Cause-Effect Constraint language (CEC),
and the Temporal Logic Pattern-based Constraint language
(TLC), in a controlled experiment with 190 participants.
The NLC language is simply using the English language
for software architecture descriptions. CEC is a high-level
structured architectural description language that abstracts
EPL and enables nesting of cause parts, that observe an
event stream for a specific event pattern, and effect parts,
that can contain further cause-effect structures and truth
value change commands. TLC is a high-level structured
architectural description language that abstracts temporal
patterns (such as the Property Specification Patterns by
Dwyer et al. [14]). Interestingly, the statistical inference of
this study suggests that there is no difference in understand-
ability of the tested languages. This could indicate that the
high-level abstractions employed bring those structured lan-
guages closer to the understandability of unstructured nat-
ural language architecture descriptions. Moreover, it might
also suggest that natural language leaves more room for am-
biguity, which is detrimental for its understanding. Overall,
the understandability of all three approaches is at a high
level. However, the results must be interpreted with caution.
Potential limitations of that study are that its tasks are based
on common architectural patterns/styles (i.e., a participant
possibly recognizes the meaning of a constraint more easily
by having knowledge of the related architectural pattern)
and the rather small set of involved behavioral constraint
patterns (i.e., only very few behavioral constraint patterns
were necessary to represent the architecture descriptions).
In contrast, the controlled experiment runs presented in this
article do not focus on software architecture compliance.
Instead, we try to be independent from specific areas of ap-
plication to evaluate the temporal property representations
in a more general context. While the software architecture
compliance constraints in that study wrap only a very few
patterns in high-level structured languages, the empirical
study presented in this article is based on a larger, represen-
tative set of temporal property patterns, and is focuses on
the formalisms’ core features instead of high-level, domain-
specific abstractions of them.

Hoisl et al. [60] conducted a controlled experiment on
three notations for defining scenario based model tests with
20 participants. In particular, they tested a semi-structured
natural language scenario notation, a diagrammatic scenario
notation, and a fully-structured textual scenario notation.
The authors conclude that the semi-structured natural lan-
guage scenario notation is recommended for scenario-based

model tests, because the participants of this group were able
to solve the given tasks faster and more correctly. However,
the validity of the experiment is strongly limited by the
small sample size and the lack of statistical hypothesis
testing.

7 CONCLUSION AND FUTURE WORK

7.1 Summary
This article reports two controlled experiments on the un-
derstandability of temporal property representations with
216 participants in total (70 in the first run and 146 in the
second run). The results of the statistical evaluation suggest
that PSP-based temporal property specifications are signif-
icantly easier to understand than EPL temporal property
specifications, that are based on Complex Event Processing
(CEP), and LTL (Linear Temporal Logic) temporal prop-
erty specifications. Moreover, the results imply that EPL
temporal property specifications are significantly easier to
understand than LTL temporal property specifications. De-
spite the threats to validity listed in Electronic Appendix D,
we consider the validity of our results high because of
the repetition and replication by a second experiment run
with two different populations, the overall large sample
size, the automated generation of the tasks, the automated
evaluation of the given answers, and the thorough statistical
evaluation.

7.2 Impact
This study seems to support the original assumption that
the pattern-based PSP approach is the most user-friendly
temporal property representation for novice and moderately
advanced users. Therefore, if possible (i.e., if the approach
is applicable to the domain), the results suggest that the
pattern-based temporal property approach should be pre-
ferred. Since many existing approaches (e.g., the Compli-
ance Request Language CRL by Elgammal et al. [24] and
the PROPOLS approach for the verification of BPEL service
composition schemes by Yu et al. [25]) reuse PSP or extend
the original pattern catalog (cf. Dywer et al. [14]) with more
specific context-dependent patterns, there is strong evidence
that the results of the study hold for these approaches
as well. However, in contrast to the two other temporal
property approaches tested in this study, the pattern-based
approach is the most limited one in terms of its expressive-
ness. That is, if the set of supported patterns is incompatible
with a specific requirement (e.g., a company internal policy
that must be covered by the IT system), it is necessary to
extend the pattern catalog. Since the pattern-based approach
merely abstracts other temporal property representations
(most often LTL formulas), creating new patterns always
requires the creation of the underlying temporal property
specifications as well. Creating those underlying temporal
property specifications is considered to be difficult and
error-prone. Plausibility checking (cf. Czepa et al. [69]) tries
to alleviate the risk to create incorrect LTL specifications
by leveraging EPL specifications to countercheck if the
LTL formula contains errors. Since EPL temporal property
specifications are more understandable than LTL formulas,
the results of the presented study can be seen as an empirical
evaluation of the plausibility checking approach as well.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 11

7.3 Future Work
The presented study focuses on the understandability of
already given temporal properties. That is, the authoring
of temporal property specifications is not yet sufficiently
covered. It is possible to further investigate the understand-
ability of temporal property languages by running differ-
ent kinds of experiments. In particular, we plan to study
the understandability of temporal property representations
during the authoring process as well. We suspect that cre-
ating correct temporal property specifications from scratch
is more difficult than interpreting already given temporal
property specifications correctly. Moreover, we are curi-
ous whether the measured significant differences in under-
standability of the three temporal property representations
are also present during the creation process of temporal
property specifications. Another interesting opportunity for
future work is studying the understandability of temporal
property specifications with professionals working in the
industry (e.g., senior system administrators and senior soft-
ware architects). Studying whether there exist differences in
understandability between textual and graphical temporal
property representation is another interesting opportunity
for future work. In particular, it would be interesting to
find out whether the results of the studies by Heijstek et
al. [70] and Sharafi et al. [71], that investigated the differ-
ences in understandability of textual and graphical models
in the software architecture and engineering domain with
results in favor of the textual approaches, are transferable to
temporal property specifications. In this context, it might be
interesting as well to compare textual LTL representations
against the graphical NFA representations since NFAs are
often the transformation product of LTL formulas.

ACKNOWLEDGMENTS

We would like to thank all participants. This work was
supported by: FFG (Austrian Research Promotion Agency)
project CACAO, no. 843461; FWF (Austrian Science Fund)
project ADDCompliance: I 2885-N33

REFERENCES

[1] M.-A. Esteve, J.-P. Katoen, V. Y. Nguyen, B. Postma, and
Y. Yushtein, “Formal correctness, safety, dependability, and
performance analysis of a satellite,” in Proceedings of the 34th
International Conference on Software Engineering, ser. ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 1022–1031. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337354

[2] M. Rovani, F. M. Maggi, M. de Leoni, and W. M. van der Aalst,
“Declarative process mining in healthcare,” Expert Syst. Appl.,
vol. 42, no. 23, pp. 9236–9251, Dec. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2015.07.040

[3] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti, “Specification
patterns from research to industry: A case study in service-based
applications,” in 2012 34th International Conference on Software
Engineering (ICSE), June 2012, pp. 968–976.

[4] A. Post, I. Menzel, J. Hoenicke, and A. Podelski, “Automotive
behavioral requirements expressed in a specification pattern
system: A case study at bosch,” Requir. Eng., vol. 17,
no. 1, pp. 19–33, Mar. 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s00766-011-0145-9

[5] O. M. Kherbouche, A. Ahmad, and H. Basson, “Formal approach
for compliance rules checking in business process models,” in 2013
IEEE 9th International Conference on Emerging Technologies (ICET),
Dec 2013, pp. 1–6.

[6] C. Czepa, H. Tran, U. Zdun, T. Tran, E. Weiss, and C. Ruhsam,
“Reduction techniques for efficient behavioral model checking
in adaptive case management,” in The 32nd ACM Symposium on
Applied Computing (SAC 2017), April 2017. [Online]. Available:
http://eprints.cs.univie.ac.at/4879/

[7] S. Morimoto, A Survey of Formal Verification for Business Process
Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 514–522. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-69387-15 8

[8] A. Bucchiarone, H. Muccini, P. Pelliccione, and P. Pierini,
Model-Checking Plus Testing: From Software Architecture Analysis
to Code Testing. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 351–365. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-30233-9 26

[9] E. Mulo, U. Zdun, and S. Dustdar, “Domain-specific language
for event-based compliance monitoring in process-driven soas,”
Service Oriented Computing and Applications, vol. 7, no. 1,
pp. 59–73, 2013. [Online]. Available: http://dx.doi.org/10.1007/
s11761-012-0121-3

[10] D. Knuplesch, M. Reichert, L. T. Ly, A. Kumar, and S. Rinderle-Ma,
“On the formal semantics of the extended compliance rule graph,”
Ulm University, Ulm, Technical Report UIB-2013 - 05, April 2013.
[Online]. Available: http://dbis.eprints.uni-ulm.de/1147/

[11] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, and W. M.
van der Aalst, “Compliance monitoring in business processes,”
Inf. Syst., vol. 54, no. C, pp. 209–234, Dec. 2015. [Online].
Available: http://dx.doi.org/10.1016/j.is.2015.02.007

[12] L. de Silva and D. Balasubramaniam, PANDArch: A Pluggable
Automated Non-intrusive Dynamic Architecture Conformance Checker.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 240–248.
[Online]. Available: https://doi.org/10.1007/978-3-642-39031-9
21

[13] A. Pnueli, “The temporal logic of programs,” in Proceedings of the
18th Annual Symposium on Foundations of Computer Science, ser.
SFCS ’77. Washington, DC, USA: IEEE Computer Society, 1977,
pp. 46–57. [Online]. Available: http://dx.doi.org/10.1109/SFCS.
1977.32

[14] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in
property specifications for finite-state verification,” in Proceedings
of the 21st International Conference on Software Engineering, ser. ICSE
’99. New York, NY, USA: ACM, 1999, pp. 411–420. [Online].
Available: http://doi.acm.org/10.1145/302405.302672

[15] EsperTech Inc., “EPL Reference,” http://www.espertech.com/
esper/release-6.0.1/esper-reference/html/event patterns.html,
2017, last accessed: August 22, 2018.

[16] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2:
An opensource tool for symbolic model checking,” in Proceedings
of the 14th International Conference on Computer Aided Verification,
ser. CAV ’02. London, UK, UK: Springer-Verlag, 2002, pp.
359–364. [Online]. Available: http://dl.acm.org/citation.cfm?id=
647771.734431

[17] S. Blom, J. van de Pol, and M. Weber, LTSmin: Distributed
and Symbolic Reachability. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 354–359. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-14295-6 31

[18] G. J. Holzmann, “The model checker spin,” IEEE Trans. Softw.
Eng., vol. 23, no. 5, pp. 279–295, May 1997. [Online]. Available:
http://dx.doi.org/10.1109/32.588521

[19] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and
linear dynamic logic on finite traces,” in Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence,
ser. IJCAI ’13. AAAI Press, 2013, pp. 854–860. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2540128.2540252

[20] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on
ltl on finite traces: Insensitivity to infiniteness,” in Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, ser.
AAAI’14. AAAI Press, 2014, pp. 1027–1033. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2893873.2894033

[21] E. M. Clarke and E. A. Emerson, Design and synthesis of
synchronization skeletons using branching time temporal logic. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1982, pp. 52–71. [Online].
Available: http://dx.doi.org/10.1007/BFb0025774

[22] W. M. P. van der Aalst and M. Pesic, DecSerFlow: Towards
a Truly Declarative Service Flow Language. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 1–23. [Online]. Available:
http://dx.doi.org/10.1007/11841197 1

http://dl.acm.org/citation.cfm?id=2337223.2337354
http://dx.doi.org/10.1016/j.eswa.2015.07.040
http://dx.doi.org/10.1007/s00766-011-0145-9
http://dx.doi.org/10.1007/s00766-011-0145-9
http://eprints.cs.univie.ac.at/4879/
http://dx.doi.org/10.1007/978-3-540-69387-15_8
http://dx.doi.org/10.1007/978-3-540-69387-15_8
http://dx.doi.org/10.1007/978-3-540-30233-9_26
http://dx.doi.org/10.1007/978-3-540-30233-9_26
http://dx.doi.org/10.1007/s11761-012-0121-3
http://dx.doi.org/10.1007/s11761-012-0121-3
http://dbis.eprints.uni-ulm.de/1147/
http://dx.doi.org/10.1016/j.is.2015.02.007
https://doi.org/10.1007/978-3-642-39031-9_21
https://doi.org/10.1007/978-3-642-39031-9_21
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://doi.acm.org/10.1145/302405.302672
http://www.espertech.com/esper/release-6.0.1/esper-reference/html/event_patterns.html
http://www.espertech.com/esper/release-6.0.1/esper-reference/html/event_patterns.html
http://dl.acm.org/citation.cfm?id=647771.734431
http://dl.acm.org/citation.cfm?id=647771.734431
http://dx.doi.org/10.1007/978-3-642-14295-6_31
http://dx.doi.org/10.1007/978-3-642-14295-6_31
http://dx.doi.org/10.1109/32.588521
http://dl.acm.org/citation.cfm?id=2540128.2540252
http://dl.acm.org/citation.cfm?id=2893873.2894033
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/11841197_1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 12

[23] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst,
“Declare: Full support for loosely-structured processes,” in
Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference, ser. EDOC ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 287–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1317532.1318056

[24] A. Elgammal, O. Turetken, W.-J. van den Heuvel, and
M. Papazoglou, “Formalizing and appling compliance patterns
for business process compliance,” Software & Systems Modeling,
vol. 15, no. 1, pp. 119–146, 2016. [Online]. Available: http:
//dx.doi.org/10.1007/s10270-014-0395-3

[25] J. Yu, T. P. Manh, J. Han, Y. Jin, Y. Han, and J. Wang, Pattern
Based Property Specification and Verification for Service Composition.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 156–168.
[Online]. Available: http://dx.doi.org/10.1007/11912873 18

[26] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” in Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’06.
New York, NY, USA: ACM, 2006, pp. 407–418. [Online]. Available:
http://doi.acm.org/10.1145/1142473.1142520

[27] A. Awad, A. Barnawi, A. Elgammal, R. Elshawi, A. Almalaise,
and S. Sakr, “Runtime detection of business process compliance
violations: An approach based on anti patterns,” in Proceedings of
the 30th Annual ACM Symposium on Applied Computing, ser. SAC
’15. New York, NY, USA: ACM, 2015, pp. 1203–1210. [Online].
Available: http://doi.acm.org/10.1145/2695664.2699488

[28] T. Holmes, E. Mulo, U. Zdun, and S. Dustdar, Model-aware
Monitoring of SOAs for Compliance. Vienna: Springer Vienna,
2011, pp. 117–136. [Online]. Available: https://doi.org/10.1007/
978-3-7091-0415-6 5

[29] J. Boubeta-Puig, G. Daz, H. Maci, V. Valero, and G. Ortiz,
“Medit4cep-cpn: An approach for complex event processing
modeling by prioritized colored petri nets,” Information
Systems, 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0306437917300108

[30] S. Kunz, T. Fickinger, J. Prescher, and K. Spengler, “Managing com-
plex event processes with business process modeling notation,” in
Business Process Modeling Notation, J. Mendling, M. Weidlich, and
M. Weske, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 78–90.

[31] M. Adam, C. Cordeiro, L. Field, D. Giordano, and L. Magnoni,
“Real-time complex event processing for cloud resources,” Journal
of Physics: Conference Series, vol. 898, no. 4, p. 042020, 2017.

[32] L. Aniello, G. A. Di Luna, G. Lodi, and R. Baldoni, “A collaborative
event processing system for protection of critical infrastructures
from cyber attacks,” in Computer Safety, Reliability, and Security,
F. Flammini, S. Bologna, and V. Vittorini, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 310–323.

[33] G. Cugola and A. Margara, “Tesla: A formally defined event
specification language,” in Proceedings of the Fourth ACM
International Conference on Distributed Event-Based Systems, ser.
DEBS ’10. New York, NY, USA: ACM, 2010, pp. 50–61. [Online].
Available: http://doi.acm.org/10.1145/1827418.1827427

[34] T. Tran, E. Weiss, C. Ruhsam, C. Czepa, H. Tran, and
U. Zdun, “Enabling flexibility of business processes by
compliance rules: A case study from the insurance industry,”
in 13th International Conference on Business Process Management
2015, Industry Track, August 2015. [Online]. Available: http:
//eprints.cs.univie.ac.at/4399/

[35] ——, “Embracing process compliance and flexibility through
behavioral consistency checking in acm: A repair service
management case,” in 4th International Workshop on Adaptive
Case Management and other Non-workflow Approaches to BPM
(AdaptiveCM 15), ser. Business Process Management Workshops
2015, August 2015. [Online]. Available: http://eprints.cs.univie.
ac.at/4409/

[36] T. Tran, E. Weiss, A. Adensamer, C. Ruhsam, C. Czepa,
H. Tran, and U. Zdun, “An ontology-based approach for
defining compliance rules by knowledge workers in adaptive
case management,” in 5th International Workshop on Adaptive
Case Management and other Non-workflow Approaches to BPM
(AdaptiveCM 16), 20th IEEE International Enterprise Computing
Workshops (EDOCW 2016), September 2016. [Online]. Available:
http://eprints.cs.univie.ac.at/4753/

[37] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A
language and environment for architecture-based software
development and evolution,” in Proceedings of the 21st International

Conference on Software Engineering, ser. ICSE ’99. New
York, NY, USA: ACM, 1999, pp. 44–53. [Online]. Available:
http://doi.acm.org/10.1145/302405.302410

[38] U. Zdun, R. Capilla, H. Tran, and O. Zimmermann, “Sustainable
architectural design decisions,” IEEE Software, vol. 30, no. 6, pp.
46–53, Nov 2013.

[39] C. Czepa, H. Tran, U. Zdun, T. Tran, E. Weiss, and
C. Ruhsam, “On the understandability of semantic constraints
for behavioral software architecture compliance: A controlled
experiment,” in IEEE International Conference on Software
Architecture (ICSA 2017), April 2017. [Online]. Available:
http://eprints.cs.univie.ac.at/5059/

[40] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question
metric approach,” in Encyclopedia of Software Engineering. Wiley,
1994.

[41] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guidelines
for empirical research in software engineering,” IEEE Trans. Softw.
Eng., vol. 28, no. 8, pp. 721–734, Aug. 2002. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2002.1027796

[42] M. Höst, B. Regnell, and C. Wohlin, “Using students as
subjects—a comparative study of students and professionals
in lead-time impact assessment,” Empirical Software Engineering,
vol. 5, no. 3, pp. 201–214, Nov 2000. [Online]. Available:
https://doi.org/10.1023/A:1026586415054

[43] P. Runeson, “Using students as experiment subjects an analysis on
graduate and freshmen student data,” in Proceedings 7th Interna-
tional Conference on Empirical Assessment and Evaluation in Software
Engineering, 2003, pp. 95–102.

[44] M. Svahnberg, A. Aurum, and C. Wohlin, “Using students
as subjects - an empirical evaluation,” in Proceedings of
the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’08. New
York, NY, USA: ACM, 2008, pp. 288–290. [Online]. Available:
http://doi.acm.org/10.1145/1414004.1414055

[45] I. Salman, A. T. Misirli, and N. Juristo, “Are students
representatives of professionals in software engineering
experiments?” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 666–676. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818836

[46] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, Reporting Experiments
in Software Engineering. London: Springer London, 2008,
pp. 201–228. [Online]. Available: http://dx.doi.org/10.1007/
978-1-84800-044-5 8

[47] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduc-
tion. Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[48] N. Juristo and A. M. Moreno, Basics of Software Engineering Experi-
mentation, 1st ed. Springer, 2010.

[49] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brere-
ton, S. Charters, S. Gibbs, and A. Pohthong, “Robust statistical
methods for empirical software engineering,” Empirical Software
Engineering, pp. 1–52, 2016.

[50] C. Baier and J.-P. Katoen, Principles of Model Checking (Representa-
tion and Mind Series). The MIT Press, 2008.

[51] A. Bauer, M. Leucker, and C. Schallhart, “Comparing ltl
semantics for runtime verification,” J. Log. and Comput.,
vol. 20, no. 3, pp. 651–674, Jun. 2010. [Online]. Available:
http://dx.doi.org/10.1093/logcom/exn075

[52] M. Pešić, D. Bošnački, and W. M. P. van der Aalst, “Enacting
declarative languages using ltl: Avoiding errors and improving
performance,” in Model Checking Software, J. van de Pol and M. We-
ber, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
146–161.

[53] G. De Giacomo, R. De Masellis, M. Grasso, F. M. Maggi, and
M. Montali, “Monitoring business metaconstraints based on ltl
and ldl for finite traces,” in Business Process Management, S. Sadiq,
P. Soffer, and H. Völzer, Eds. Cham: Springer International
Publishing, 2014, pp. 1–17.

[54] F. M. Maggi, M. Westergaard, M. Montali, and W. M. P. van der
Aalst, “Runtime verification of ltl-based declarative process mod-
els,” in Runtime Verification, S. Khurshid and K. Sen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 131–146.

[55] Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and S. Bensalem,
“Runtime verification of component-based systems in the
bip framework with formally-proved sound and complete

http://dl.acm.org/citation.cfm?id=1317532.1318056
http://dx.doi.org/10.1007/s10270-014-0395-3
http://dx.doi.org/10.1007/s10270-014-0395-3
http://dx.doi.org/10.1007/11912873_18
http://doi.acm.org/10.1145/1142473.1142520
http://doi.acm.org/10.1145/2695664.2699488
https://doi.org/10.1007/978-3-7091-0415-6_5
https://doi.org/10.1007/978-3-7091-0415-6_5
http://www.sciencedirect.com/science/article/pii/S0306437917300108
http://www.sciencedirect.com/science/article/pii/S0306437917300108
http://doi.acm.org/10.1145/1827418.1827427
http://eprints.cs.univie.ac.at/4399/
http://eprints.cs.univie.ac.at/4399/
http://eprints.cs.univie.ac.at/4409/
http://eprints.cs.univie.ac.at/4409/
http://eprints.cs.univie.ac.at/4753/
http://doi.acm.org/10.1145/302405.302410
http://eprints.cs.univie.ac.at/5059/
http://dx.doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1023/A:1026586415054
http://doi.acm.org/10.1145/1414004.1414055
http://dl.acm.org/citation.cfm?id=2818754.2818836
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1093/logcom/exn075

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO., 13

instrumentation,” Softw. Syst. Model., vol. 14, no. 1, pp. 173–
199, Feb. 2015. [Online]. Available: http://dx.doi.org/10.1007/
s10270-013-0323-y

[56] Y. Joshi, G. M. Tchamgoue, and S. Fischmeister, “Runtime
verification of ltl on lossy traces,” in Proceedings of the
Symposium on Applied Computing, ser. SAC ’17. New York,
NY, USA: ACM, 2017, pp. 1379–1386. [Online]. Available:
http://doi.acm.org/10.1145/3019612.3019827

[57] J. Morse, L. Cordeiro, D. Nicole, and B. Fischer, “Model checking
ltl properties over ansi-c programs with bounded traces,” Softw.
Syst. Model., vol. 14, no. 1, pp. 65–81, Feb. 2015. [Online].
Available: http://dx.doi.org/10.1007/s10270-013-0366-0

[58] C. Czepa and U. Zdun, “On the Understandability of Temporal
Properties Formalized in Linear Temporal Logic, Property Spec-
ification Patterns and Event Processing Language [Data set],”
http://doi.org/10.5281/zenodo.891007, 2017.

[59] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze,
R. Dachselt, M. Papendieck, T. Leich, and G. Saake, “Do back-
ground colors improve program comprehension in the #ifdef
hell?” Empirical Software Engineering, vol. 18, no. 4, pp. 699–745,
2013.

[60] B. Hoisl, S. Sobernig, and M. Strembeck, “Comparing three nota-
tions for defining scenario-based model tests: A controlled exper-
iment,” in QUATIC’14, Sept 2014, pp. 95–104.

[61] H. Habiballa and T. Kmet, “Theoretical branches in teaching
computer science,” International Journal of Mathematical Education
in Science and Technology, vol. 35, no. 6, pp. 829–841, 2004. [Online].
Available: https://doi.org/10.1080/00207390412331271267

[62] M. Knobelsdorf and C. Frede, “Analyzing student practices
in theory of computation in light of distributed cognition
theory,” in Proceedings of the 2016 ACM Conference on
International Computing Education Research, ser. ICER ’16. New
York, NY, USA: ACM, 2016, pp. 73–81. [Online]. Available:
http://doi.acm.org/10.1145/2960310.2960331

[63] D. Carew, C. Exton, and J. Buckley, “An empirical investigation
of the comprehensibility of requirements specifications,” in 2005
International Symposium on Empirical Software Engineering, 2005.,
Nov 2005, pp. 10 pp.–.

[64] M. Spichkova, ““boring formal methods” or “sherlock holmes
deduction methods”?” in Software Technologies: Applications and
Foundations, P. Milazzo, D. Varró, and M. Wimmer, Eds. Cham:
Springer International Publishing, 2016, pp. 242–252.

[65] F. Richardson and R. M. Suinn, “The mathematics anxiety rating
scale,” vol. 19, pp. 551–554, 11 1972.

[66] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions,” Psychological Bulletin, vol. 114, pp. 494–509, 1993.

[67] J. J. Rogmann, “Ordinal dominance statistics (orddom): An r
project for statistical computing package to compute ordinal, non-
parametric alternatives to mean comparison (version 3.1),” Avail-
able online from the CRAN website http://cran.r-project.org/,
2013.

[68] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 57, no. 1, pp. 289–300, 1995.

[69] C. Czepa, H. Tran, U. Zdun, T. Tran, E. Weiss, and C. Ruhsam,
“Plausibility checking of formal business process specifications in
linear temporal logic,” in 28th International Conference on Advanced
Information Systems Engineering (CAiSE’16), Forum Track, June
2016. [Online]. Available: http://eprints.cs.univie.ac.at/4692/

[70] W. Heijstek, T. Kuhne, and M. R. V. Chaudron, “Experimental
analysis of textual and graphical representations for software
architecture design,” in 2011 International Symposium on Empirical
Software Engineering and Measurement, Sept 2011, pp. 167–176.

[71] Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y. G. Guhneuc,
“An empirical study on the efficiency of graphical vs. textual
representations in requirements comprehension,” in 2013 21st In-
ternational Conference on Program Comprehension (ICPC), May 2013,
pp. 33–42.

Christoph Czepa is a researcher at the Faculty
of Computer Science, University of Vienna, Aus-
tria. His research areas include Business Pro-
cess Management (BPM), Adaptive Case Man-
agement (ACM), software architecture, software
engineering, and the application of machine
learning and formal verification methods in the
aforementioned domains. He received a master
degree in computer science in December 2013
(with distinction). Currently, he is pursuing a PhD
in computer science. Christoph has published

more than 15 peer-reviewed scientific articles, and he participated in
two research projects, namely the CACMTV (Content-Aware Coding for
Mobile TV) project and CACAO (Consistency Checking, Recommenda-
tions, And Visual Modeling For Ad Hoc Changes By Knowledge Workers
In Adaptive Case Management) project.

Uwe Zdun is a full professor for software ar-
chitecture at the Faculty of Computer Science,
University of Vienna. Before that, he worked as
assistant professor at the Vienna University of
Technology and the Vienna University of Eco-
nomics respectively. He received his doctoral de-
gree from the University of Essen in 2002. His re-
search focuses on software design and architec-
ture, empirical software engineering, distributed
systems engineering (service-based, cloud, mo-
bile, and process-driven systems), software pat-

terns, domain-specific languages, and model-driven development. Uwe
has published more than 210 articles in peer-reviewed journals, confer-
ences, book chapters, and workshops, and is co-author of the books
“Remoting Patterns Foundations of Enterprise, Internet, and Realtime
Distributed Object Middleware”, “Process-Driven SOA Proven Patterns
for Business-IT Alignment, and Software-Architektur.” He has partici-
pated in 26 R&D projects. Uwe is editor of the journal Transactions
on Pattern Languages of Programming (TPLoP) published by Springer,
Associate Editor of the Computing journal published by Springer, and
Associate Editor-in-Chief for design and architecture for the IEEE Soft-
ware magazine.

http://dx.doi.org/10.1007/s10270-013-0323-y
http://dx.doi.org/10.1007/s10270-013-0323-y
http://doi.acm.org/10.1145/3019612.3019827
http://dx.doi.org/10.1007/s10270-013-0366-0
http://doi.org/10.5281/zenodo.891007
https://doi.org/10.1080/00207390412331271267
http://doi.acm.org/10.1145/2960310.2960331
http://cran.r-project.org/
http://eprints.cs.univie.ac.at/4692/

	Introduction
	Problem Statement
	Research Objectives
	Context
	Guidelines

	Background on Temporal Property Representations
	Linear Temporal Logic (LTL)
	Property Specification Patterns (PSP)
	Event Processing Language (EPL)

	Experiment Planning
	Goals
	Experimental Units
	Experimental Material & Tasks
	Hypotheses, Parameters, and Variables
	Experiment Design & Execution
	Procedure

	Analysis
	Discussion
	Evaluation of Results and Implications
	Threats to Validity

	Related Work
	Conclusion and Future Work
	Summary
	Impact
	Future Work

	References
	Biographies
	Christoph Czepa
	Uwe Zdun

