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Abstract

A metric basis in a graph G is a smallest possible set S of vertices of G, with the
property that any two vertices of G are uniquely recognized by using a vector of distances
to the vertices in S. A strong metric basis is a variant of metric basis that represents a
smallest possible set S′ of vertices of G such that any two vertices x, y of G are uniquely
recognized by a vertex v ∈ S′ by using either a shortest x − v path that contains y, or a
shortest y−v path that contains x. Given a graph G, there exist sometimes some vertices
of G such that they forcedly belong to every metric basis or to every strong metric basis
of G. Such vertices are called (resp. strong) basis forced vertices in G. It is natural
to consider finding them, in order to find a (strong) metric basis in a graph. However,
deciding about the existence of these vertices in arbitrary graphs is in general an NP-hard
problem, which makes desirable the problem of searching for (strong) basis forced vertices
in special graph classes. This article centers the attention in the class of unicyclic graphs.
It is known that a unicyclic graph can have at most two basis forced vertices. In this
sense, several results aimed to classify the unicyclic graphs according to the number of
basis forced vertices they have are given in this work. On the other hand, with respect
to the strong metric bases, it is proved in this work that unicyclic graphs can have as
many strong basis forced vertices as we would require. Moreover, some characterizations
of the unicyclic graphs concerning the existence or not of such vertices are given in the
exposition as well.
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1 Introduction

Resolving sets and metric bases of graphs, as well as their diverse variants, are well known
in the literature due to their properties of uniquely identifying the vertices of the graph, by
means of distance vectors to the vertices in such structures. Accordingly, their applications
in other areas of science cover a wide range of location or identification issues in fields like
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chemistry, social sciences, computer sciences, and biology, among other ones. For instance,
the recent article [20] presented an interesting relationship between one of these related struc-
tures and the representation of genomic sequences. More information on theoretical results,
applications, and open questions in the area can be found in the fairly complete survey [21].

The metric bases of a graph are those resolving sets which have the smallest possible
number of elements. Thus, while developing some application of these structures, the use
of metric bases is usually requested, since it is natural to desire optimality in the solution.
However, as one can suspect, finding the metric bases of a graph is a difficult problem in
general, and so, we are required to find possible tools that could help us to construct metric
bases for a given graph. Several approaches to this task are known in the literature. One of
such tools consist of detecting some “key vertices” that are always required to be part of a
metric basis. In [7], such vertices were called basis forced vertices. Two variations of this idea,
while considering the ℓ-solid resolving sets and the {ℓ}-resolving sets instead of the metric
basis, were considered earlier in [5, 6], respectively.

The idea of detecting basis forced vertices in a graph significantly contributes to having
some metric bases in the graph. In order to detect them, several issues might be taken
into account. First, one would be interested in knowing on which graphs have basis forced
vertices, i.e., to know (in advance) about families of graphs in which there are or there are
not such vertices. For instance, cycles, complete bipartite graphs, and trees have no basis
forced vertices. Second, it would be also of interest to know several structural properties of
the graphs having (or not having) basis forced vertices, that is, describing properties of such
graphs, like for instance, the maximum (or minimum) possible degree, order, size, diameter,
etc. Third, for those graphs having basis forced vertices, to compute the exact value or at
least to bound the number of such vertices. All these issues were already discussed in [7] for
general graphs. Unfortunately, it was also proved in [7] that deciding whether a given vertex
of a graph is a basis forced vertex belongs to the class of NP-hard problems, which is indeed
a big trouble since then one cannot manage to have an algorithmic solution for an arbitrary
graph in connection with our purposes.

This implies that researches need to focus, among other approaches, on the investigation
for special graphs classes with the goal of dealing with the three aims described above. If
we think about going from the sparsest graphs to the densest ones in order to detect the
existence of basis forced vertices, then we begin with trees. But they have no basis forced
vertices. However, if we just add one edge to a tree, then we get a unicyclic graph, which
already can have basis forced vertices as first shown in [7]. One positive fact in this case is
that unicyclic graphs can have at most two basis forced vertices, which makes the work more
tractable. In this sense, our first aim in this work is to describe those unicyclic graphs that
have either 0, 1, or 2 basis forced vertices.

On the other hand, in the investigation we also consider a variation of the metric bases
(called strong metric bases). The study shows that the behavior in the existence of vertices
that belong to every strong metric basis (these are called strong basis forced vertices) in
unicyclic graphs drastically change with respect to the classical metric bases. That is, while
unicyclic graphs can have at most two basis forced vertices, there are unicyclic graphs that
can have as many strong basis forced vertices as we would require.

The two following subsections are centered into giving formal definitions concerning metric
basis and strong metric basis in graphs that are necessary in our exposition.
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1.1 Classical metric dimension

Given a simple and connected graph G, a vertex x ∈ V (G) resolves or identifies two vertices
u, v ∈ V (G) if dG(v, x) 6= dG(u, x), where dG(y, z) (or simply d(y, z) if G is clear from the
context) stands for the distance between y and z, i.e., the length of a shortest y − z path
in G. It is also said that u, v are resolved or identified by x. A set S ⊆ V (G) is a resolving
set for G if every two vertices of G are resolved by a vertex of S. A resolving set of the
smallest possible cardinality in G is a metric basis and its cardinality is known as the metric
dimension of G, denoted by dim(G).

The concepts above were independently introduced a few decades ago in [8, 19]. The
interest in this topic has exploded over the last two decades, and for instance MathSciNet
database lists nowadays about 280 entries to a query with the terms “metric dimension” and
“graphs”, from which about 270 were published after year 2000. Some significant and recent
works on this topic are for instance [4, 11, 16–18, 22]. Moreover, for more information on
this area we suggest the very interesting (although not yet formally published in a journal)
survey [21].

A vertex v of a graph G is said to be a basis forced vertex if v belongs to every metric
basis of G. Basis forced vertices were first introduced in [7], although one could say they have
some antecedents in the works [1,3] where graphs with a unique metric basis were considered.

1.2 Strong metric dimension

The concepts of strong resolving sets and strong metric dimension were introduced in con-
nection to uniquely distinguish graphs in the following sense. In the article [15], the following
situation was pointed out: “For a given resolving set T of a graph H, whenever H is a sub-
graph of a graph G and the metric vectors of the vertices of H relative to T agree in both H
and G, is H an isometric subgraph of G? In connection with this, the authors claimed that
although the vectors of distances with respect to a resolving set of a graph distinguish every
pair of vertices in the graph, they do not uniquely recognize all distances between vertices
in the graph. In connection with these situations, the strong version of resolving sets was
presented in [15].

For a connected graph G, a vertex w ∈ V (G) strongly resolves two different vertices
u, v ∈ V (G) if dG(w, u) = dG(w, v)+dG(v, u) or dG(w, v) = dG(w, u)+dG(u, v). Equivalently,
there is some shortest w − u path that contains v or some shortest w − v path containing u.
A set S ⊆ V (G) is a strong resolving set for G, if every two vertices of G are strongly resolved
by some vertex of S. The cardinality of a smallest strong resolving set for G is called the
strong metric dimension of G, denoted by dims(G). A strong metric basis of G is a strong
resolving set of cardinality dims(G).

The parameter above was further related to the classical concept of vertex covers in graphs
in [12]. To see this, we say that a vertex u of G is maximally distant from another vertex v
if every vertex w ∈ NG(u) satisfies that dG(v,w) ≤ dG(v, u). The set of all vertices of G that
are maximally distant from some vertex of the graph is called the boundary of the graph, and
is denoted by ∂(G). If a vertex u is maximally distant from other distinct vertex v, and v
is maximally distant from u, then u and v are known to be mutually maximally distant, or
MMD for short.

Now, for a connected graph G, the strong resolving graph of G, denoted by GSR, is a graph
that has vertex set V (GSR) = V (G) and two vertices u, v are adjacent in GSR if and only
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if u and v are mutually maximally distant in G (see [10] for more information on structural
properties of GSR). Clearly, if v /∈ ∂(G), then v is an isolated vertex in GSR. By using this
construction, the following interesting connection was proved in [12], where α(G) represents
the vertex cover number of G.

Theorem 1. [12] For any connected graph G, a set S ⊆ V (G) is a strong resolving set for
G if and only if S is also a vertex cover for GSR. Moreover, dims(G) = α(GSR).

The notion of basis forced vertices for the classical metric dimension can clearly be adapted
to the strong version. That is, from now on a vertex that belongs to every strong metric basis
of a graph is called a strong basis forced vertex. Based on Theorem 1, the existence of
strong basis forced vertices can be reduced to studying vertices that belong to every vertex
cover set of minimum cardinality in GSR, or equivalently (and based on the famous Gallai’s
theorem relating the vertex cover and independence number) vertices that do not belong to
any maximum independent set of GSR. This shows that, in such situation, several classical
topics are involved.

In connection with this last comment, we remark the following. In [2], the core of a graph
G, denoted by core(G), was defined to be the set of vertices of G that belong to all maximum
independent sets of G, and the corona of G, denoted by corona(G), as the vertices that belong
to some maximum independent set. It can be then readily seen that the set of vertices that
belong to every minimum vertex cover set of G is precisely V C(G) = V (G) \ corona(G).
Consequently, we note that the set of strong basis forced vertices of G is indeed V C(GSR),
and therefore, our study can be reduced to finding the set V C(GSR) for a given graph G.

According to the structure of the strong resolving graph of a graph, it can be readily seen
that for instance, trees (including paths), cycles, complete graphs, complete bipartite graphs,
grid graphs or torus graphs (Cartesian product of two paths or two cycles, respectively), and
hypercubes do not contain strong basis forced vertices. On the contrary, in [10] a graph G for
which GSR is isomorphic to a path of odd order was given. Since paths of odd order have a
unique vertex cover of minimum cardinality, it is then clear that such G has a unique strong
metric basis, and clearly, all the vertices of such unique metric basis are strong basis forced
vertices.

1.3 Other basic terminology

The following definitions and notations shall be used in our exposition. The set of leaves
(vertices of degree one, also called pendants) in a graph G is denoted by N1(G), and we
set n1(G) = |N1(G)|. Given a set S ( V (G) and two vertices u ∈ S and v /∈ S, we write
S[u ← v] = (S \ {u}) ∪ {v}. For a vertex v ∈ V (G), the open neighborhood NG(v) of v is
the set of vertices adjacent to v. The diameter of a graph G is the largest possible distance
between any two vertices of G. A vertex v is diametral if there exists a vertex u such that
dG(u, v) equals the diameter of G.

2 General Results on Basis Forced Vertices

In this section, we present a couple of results on basis forced vertices in connected graphs.
By the construction of the following theorem, we obtain that if G is a connected graph with
some basis forced vertices, then we can construct a graph with the same basis forced vertices
but with more vertices in total than G. Our result generalizes the one of [1, Theorem 6].
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Theorem 2. Let G be a connected graph with n vertices, and let B 6= ∅ be the set of basis
forced vertices of G. Let b ∈ B, and let v ∈ V (G) \B be such that d(b, v) = max{d(b, u) | u ∈
V (G)\B}. Let Pm be the path v1 · · · vm. Let H be the graph with V (H) = V (G)∪V (Pm) and
E(G) = E(G) ∪ E(Pm) ∪ {{v, v1}}. Then, the set B is also the set of basis forced vertices of
H and dim(H) = dim(G).

Proof. Let R be a metric basis of G. Let us prove that R is a resolving set of H. Clearly, any
pair of vertices in V (G) is resolved by R. We have d(b, vi) = d(b, v) + i for all vi ∈ V (Pm),
and thus d(b, vi) 6= d(b, vj) when i 6= j. Since d(b, v) = max{d(b, u) | u ∈ V (G) \ B} and
B ⊆ R, we have d(b, vi) 6= d(b, u) for all u ∈ V (G) \ R. Consequently, R is a resolving set of
H and dim(H) ≤ dim(G).

Let S be a metric basis of H. If S does not contain elements of V (Pm), then S is clearly
a resolving set of G. Suppose that vi ∈ S for some vi ∈ V (Pm). Let x, y ∈ V (G) be such
that d(vi, x) 6= d(vi, y). We have d(v, x) = d(vi, x) − i 6= d(vi, y) − i = d(v, y). Thus, the set
S[vi ← v] is a resolving set of G. Consequently, dim(G) ≤ dim(H).

We have shown that dim(H) = dim(G). To conclude the proof, we will show that H has
the same basis forced vertices as G. Since the metric bases of G are metric bases of H, any
basis forced vertex of H is a basis forced vertex of G. Suppose then that some b′ ∈ B is not
a basis forced vertex of H. Then there exists a metric basis S of H that does not contain b′.
The set S cannot be a metric basis of G, since then b′ would not be a basis forced vertex of G.
Consequently, the set S contains some vi and, by the arguments above, the set S′ = S[vi ← v]
is a metric basis of G. Since b′ is a basis forced vertex of G, we have b′ ∈ S′ and b′ = v.
However, v was chosen so that v /∈ B, a contradiction.

The following theorem gives us a condition for the case when we want to transform a basis
forced vertex into a pendant, i.e. if v is a basis forced vertex we can attach a pendant to v
and that pendant becomes a basis forced vertex of the resulting graph.

Theorem 3. Let G be a connected graph with a basis forced vertex v. Let H be the graph
obtained from G by attaching a pendant u to v. The vertex u is a basis forced vertex of
H if and only if for every metric basis R of G there exists a vertex w ∈ NG(v) such that
dH(r, w) = dH(r, u) for all r ∈ R.

Proof. Let us first consider how the metric bases of G and H are related to each other.
Let R be any metric basis of G. Suppose that R is not a resolving set of H. We will show

that then the set R[v ← u] is a resolving set of H. Since v is a basis forced vertex of G, the
vertex v is contained in R. The vertex u resolves any pair of vertices in H that v resolves.
Moreover, the vertex u resolves any pair of vertices where one vertex is u itself. Thus, the set
R[v ← u] is a resolving set of H.

Let S be a metric basis of H. If u /∈ S, then S is a resolving set of G, because S ⊆ V (G)
and S resolves any pair of vertices in G. Suppose that u ∈ S. Then the set S[u ← v] is a
resolving set of G, because the vertex v resolves any pair within V (H) \ {u} = V (G) that u
resolves.

Consequently, we have dim(G) = dim(H), and the metric bases of G and H are exactly
the same except that we may need to replace v with u or vice versa.

(⇐) Assume that for every metric basis R of G there exists a vertex w ∈ NG(v) such that
dH(r, w) = dH(r, u) for all r ∈ R. Suppose to the contrary that the vertex u is not a basis
forced vertex of H. Then there exists a metric basis S of H that does not contain u. Now
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u1

v1

w1

r1

(a) The graph G with the added
pendant u1.

u2

v2

w2

r2

(b) The graph H1 with the added
pendant u2.

(c) The graph H2.

Figure 1: An example of how Theorem 3 can be used.

S is also a metric basis of G. By our assumption there exists a vertex w ∈ NG(v) such that
dH(s,w) = dH(s, u) for all s ∈ S. This means that the vertices w and u are not resolved by
S in H, a contradiction.

(⇒) Assume then that there exists a metric basis R of G such that for all w ∈ NG(v) we
have dH(r, w) 6= dH(r, u) for some r ∈ R. Since v is a basis forced vertex of G, we have v ∈ R.
The set R resolves all pairs x, y in H:

• If x, y ∈ V (G), then R resolves this pair as R is a metric basis of G.
• If x = u and y = v, then R resolves this pair as v ∈ R.
• If x = u and y ∈ NG(v), then R resolves this pair due to our assumption.
• If x = u and y /∈ NG[v], then dH(v, u) = 1 and dH(v, y) ≥ 2, and R resolves this pair as
v ∈ R.

The set R is a metric basis of H that does not contain u, and thus u is not a basis forced
vertex of H.

Consider the graph G in Figure 1(a). This graph was shown to have a unique metric basis
{v1, r1} in [7]. If we attach the pendant u1 to the vertex v1, then the vertex u1 becomes a
basis forced vertex of the new graph H1 (illustrated in Figure 1(b)). Indeed, we clearly have
dH1

(v1, u1) = dH1
(v1, w1) = 1 and dH1

(r1, u1) = dH1
(r1, w1) = 2. Since the set {v1, r1} is the

only metric basis of G, the vertex u1 is a basis forced vertex of H1 according to Theorem 3.
Moreover, according to the proof of Theorem 3, the set {u1, r1} is the unique metric basis of
H1. Similarly, we can add the pendant u2 to the graph H1 as it is illustrated in Figure 1(b).
The set {v2, r2} is the unique metric basis of H1, and the vertex w2 fulfils the requirements
of Theorem 3. Thus, the pendants of the graph H2 (illustrated in Figure 1(c)) are both basis
forced vertices, and they form the unique metric basis of H2.

Let G′ be the graph we obtain from G when we remove the edge v1r1. The set {v1, r1}
is again the unique metric basis of G′. However, if we then attach the pendant u1 to v1 and
thus obtain the graph H ′

1, the vertex u1 is not a basis forced vertex of H ′
1. Indeed, now we

have dH′
1
(r1, u1) = 3, but the vertices of NG′(v1) are at distance at most 2 from r1. Thus,

according to Theorem 3 the vertex u1 is not a basis forced vertex of H ′
1.

3 Basis Forced Vertices in Unicyclic Graphs

We begin this section with some preliminary information. Sedlar and Škrekovski studied the
metric dimension problem of unicyclic graphs in [16], and they continued their work in [18].
We follow their terminology in order to use the characterisation of resolving sets of unicyclic
graphs they showed in [18].
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LetG be a unicyclic graph with the cycle C = v0v1 · · · vg−1v0. The components ofG−E(C)
are denoted by Tvi , where the subscript indicates which vertex of C is contained in that
component. A thread is a path (or just a pendant). We denote by ℓ(v) the number of threads
attached to v.

If v ∈ V (C) and deg(v) ≥ 4 or v /∈ V (C) and deg(v) ≥ 3, then v is a branching vertex.
(Notice that a vertex on the cycle that has only one thread attached to it is not a branching
vertex.) If Tvi contains a branching vertex, then the vertex vi is branch-active. The number
of branch-active vertices on the cycle of G is denoted by b(G). The set S is branch-resolving
if for every v ∈ V (G) of degree at least 3 the set S contains a vertex from at least ℓ(v) − 1
threads attached to v. We denote

L(G) =
∑

v∈V (G),ℓ(v)>1

(ℓ(v) − 1).

Let S ⊆ V (G). A vertex vi ∈ V (C) is S-active if S ∩ V (Tvi) 6= ∅. The number of S-active
vertices on the cycle is denoted by a(S). Moreover, a set S ⊆ V (G) is called biactive if
a(S) ≥ 2. Let vi, vj , vk ∈ V (C). If d(vi, vj) + d(vj , vk) + d(vk, vi) = |V (C)|, then the vertices
vi, vj and vk form a geodesic triple on C.

In [16], the metric dimension of a unicyclic graph was determined using the concepts of
branch-resolving sets and geodesic triples. The following lemma and theorem are a collection
of the most important results of [16] concerning our work.

Lemma A. [16] Let G be a unicyclic graph with the cycle C.

(i) If S is a resolving set of G, then S is a biactive branch-resolving set.
(ii) If S is a biactive branch-resolving set of G, then any two vertices within the same

component of G− E(C) are resolved by S.
(iii) If three S-active vertices form a geodesic triple on the cycle C, then any two vertices

that are in distinct components of G− E(C) are resolved by S.
(iv) Let S be a branch-resolving set of G with three S-active vertices on C forming a geodesic

triple. Then S is a resolving set of G.

Theorem B. [16] Let G be a unicyclic graph. Then dim(G) is equal to L(G) + max{2 −
b(G), 0} or L(G) + max{2− b(G), 0} + 1.

In [18], Sedlar and Škrekovski continued their work on unicyclic graphs and their metric
dimensions. In order to determine whether the metric dimension includes the +1 of Theorem
B, they introduced three configurations that resolving sets must avoid. These configurations
will be very useful in studying the basis forced vertices of unicyclic graphs.

Definition 4. Let G be a unicyclic graph with the cycle C of length g and let S be a biactive
branch-resolving set in G. We say that C = v0v1 · · · vg−1v0 is canonically labelled with respect
to S if v0 is S-active and k = max{i | vi is S-active} is as small as possible.

Definition 5. Let G be a unicyclic graph, and let S be a biactive branch-resolving set in G.
We say that the graph G with respect to S contains configurations:

A: If a(S) = 2, g is even, and k = g/2.
B: If k ≤ ⌊g/2⌋ − 1 and there is an S-free thread attached to a vertex vi for some i ∈

[k, ⌊g/2⌋ − 1] ∪ [⌈g/2⌉ + k + 1, g − 1] ∪ {0}.
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(a) (b) (c)

Figure 2: Three examples of unicyclic graphs that contain basis forced vertices. The black
vertices are basis forced vertices, the gray vertices are in some metric bases but not all, and
the white vertices are not in any metric basis.

C: If a(S) = 2, g is even, k ≤ g/2 and there is an S-free thread of length at least g/2 − k
attached to a vertex vi for some i ∈ [0, k].

Theorem C. [18] Let G be a unicyclic graph and let S be a biactive branch-resolving set in
G. The set S is a resolving set of G if and only if G does not contain any of the configurations
A, B and C with respect to S.

The following theorem follows directly from (or is a reformulation of) the results obtained
in [7].

Theorem D. Let v ∈ V (G) be a basis forced vertex of a unicyclic graph G. Then either

(i) v = vi for some vi ∈ V (C) and V (Tvi) = {vi} or
(ii) v is a pendant attached to some vi ∈ V (C) and V (Tvi) = {vi, v}

The following result was obtained in [7] as a corollary of results in [13] and [16].

Theorem E. Let G be a unicyclic graph. Then G contains at most two basis forced vertices.

A unicyclic graph with two basis forced vertices is illustrated in Figure 2(a), and two
unicyclic graphs with one basis forced vertex are illustrated in Figures 2(b) and 2(c). These
graphs also demonstrate that the two options for the placement of a basis forced vertex
established in Theorem D are indeed possible.

3.1 The Structure of Unicyclic Graphs With Basis Forced Vertices

The following observation is clear by Theorems B and D.

Observation 6. Let G be a unicyclic graph that contains f basis forced vertices. If the set
R ⊆ V (G) is a minimum branch-resolving set of G, then R contains no basis forced vertices.
Consequently, dim(G) ≥ L(G) + f .

Recall that g is the length of the cycle C in G, i.e. g is the girth of G.

Theorem 7. Let G be a unicyclic graph with at least one basis forced vertex. Then G has
even girth g.

Proof. Let G be a unicyclic graph with odd girth g. According to Theorem C, any biactive
branch-resolving set with respect to which G does not contain configuration B is a resolving
set of G.
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For a vertex vi of the cycle C that is not branch-active, let ui ∈ V (Tvi) be the endvertex
of the thread attached to vi if such exists or ui = vi if no such thread exists.

Suppose that b(G) = 0. Let vi and vj be such that d(vi, vj) = ⌊g2⌋. Now the set S =
{ui, uj} is a metric basis of G. Indeed, it is clearly biactive and branch-resolving. Moreover,
the graph G does not contain configuration B with respect to the set S, because if C is
canonically labelled with respect to the set S, then k = ⌊g2⌋. Thus, the set S is a resolving set
of G due to Theorem C. Clearly, the graph G cannot have a smaller resolving set, and thus
the set S is a metric basis of G. Since vi and vj can be chosen in multiple ways, the graph G
does not contain basis forced vertices.

Suppose then that b(G) ≥ 1. Let R be a branch-resolving set of cardinality L(G). Let C
be canonically labelled with respect to the set R. Notice that the R-active vertices are exactly
the branch-active vertices on the cycle. If k ≥ ⌊g2⌋, then the set R is a metric basis of G due to
Lemma A(iv), and the graph G does not contain basis forced vertices due to Observation 6.
Suppose that k < ⌊g2⌋. Suppose to the contrary that G contains at least one basis forced
vertex. Now dim(G) ≥ L(G) + 1 due to Observation 6. However, now both sets R ∪ {u⌊ g

2
⌋}

and R ∪ {u⌊ g
2
⌋+1} are metric bases of G according to Theorem C. The vertices u⌊ g

2
⌋ and

u⌊ g
2
⌋+1 are clearly not basis forced vertices, and the set R cannot contain basis forced vertices

due to Observation 6. Consequently, the graph G does not contain basis forced vertices (a
contradiction).

In conclusion, if the graph G has odd girth, then it does not contain any basis forced
vertices. Thus, if the graph G contains basis forced vertices, then the girth is even.

Lemma 8. Let G be a unicyclic graph with g ≥ 4. If dim(G) ≥ L(G) + 2 and b(G) ≥ 1, then
the graph G does not contain any basis forced vertices.

Proof. Let v0 be branch-active and let S be a branch-resolving set of G of cardinality L(G).
Due to Theorem D, the elements of S are not basis forced vertices. Let vi and vj be vertices of
the cycle C such that they form a geodesic triple with v0. The set S∪{vi, vj} is a metric basis
of G according to Lemma A(iv). Since g ≥ 4, we can choose the vertices vi and vj in multiple
ways. Thus, it is easy to see that the vertices of the cycle are not basis forced vertices. Due
to Observation 6, the elements of S are not basis forced vertices either. Therefore, the graph
G contains no basis forced vertices.

Lemma 8 implies that if a unicyclic graph has basis forced vertices, then dim(G) ≤ L(G)+1
or b(G) = 0. If dim(G) ≤ L(G) + 1, then due to Observation 6, we have dim(G) = L(G) + 1
and the graph G contains exactly one basis forced vertex. Thus, if b(G) ≥ 1, the graph G
can contain at most one basis forced vertex (see Figure 2(c)). According to Theorem E, a
unicyclic graph can contain at most two basis forced vertices, and indeed when b(G) = 0,
the graph G can contain either one or two basis forced vertices (see Figures 2(b) and 2(a),
respectively).

The following two lemmas show that we can divide unicyclic graphs with basis forced
vertices into the three types represented by the three example graphs introduced in Figure 2.

Lemma 9. Let G be a unicyclic graph with g ≥ 4. The graph G contains two basis forced
vertices if and only if b(G) = 0, dim(G) = 2, and G has a unique metric basis.

Proof. If the graph G has a unique metric basis, then it contains exactly dim(G) = 2 basis
forced vertices.
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Assume that G contains two basis forced vertices. According to Observation 6, we have
dim(G) ≥ L(G) + 2. Now, we have b(G) = 0 due to Lemma 8. Consequently, L(G) = 0.
If dim(G) ≥ 3, then any set S ⊆ V (G) such that |S| = 3 and the S-active vertices form
a geodetic triple on the cycle is a metric basis of G due to Lemma A(iv). Thus, it is easy
to find a metric basis of G that does not contain at least one of the basis forced vertices, a
contradiction. Therefore, we have dim(G) = 2 and the only metric basis of G consists of the
two basis forced vertices.

Lemma 10. Let G be a unicyclic graph with g ≥ 4. If G contains exactly one basis forced
vertex, then b(G) ≤ 1.

Proof. Suppose to the contrary that b(G) ≥ 2. Let vi and vj be branch-active. Let S be a
metric basis of G and let v be a basis forced vertex of G. (Notice that due to Theorem D, we
have v 6= vi, vj .)

Since g is even due to Theorem 7, there exists a vertex vk such that vk 6= v, vi, vj and vk,
vi and vj form a geodesic triple on the cycle of G. Due to Theorem D and Lemma A(i), the
set S \ {v} is a branch-resolving set of G. Thus, the set S[v ← vk] is a metric basis of G
according to Lemma A(iv), a contradiction.

Thus, there are three types of unicyclic graphs that have basis forced vertices:

• We have b(G) = 0, the graph G contains two basis forced vertices and has a unique
metric basis (for example, the graph in Figure 2(a)).

• We have b(G) = 0 and the graph G contains exactly one basis forced vertex (for example,
the graph in Figure 2(b)).

• We have b(G) = 1 and the graph contains exactly one basis forced vertex (for example,
the graph in Figure 2(c)).

In Section 3.2, we investigate whether the basis forced vertices are on the cycle or as
pendants (these are the only two possibilities according to Theorem D). The remainder of
this section is devoted to finding more general properties of unicyclic graphs with basis forced
vertices.

Theorem 11. Let G be a unicyclic graph with g ≥ 4 and at least one basis forced vertex.
Then dim(G) = L(G) + max{2− b(G), 0}.

Proof. Recall that according to Theorem B we have either dim(G) = L(G)+max{2−b(G), 0}
or dim(G) = L(G) + max{2− b(G), 0} + 1.

Suppose to the contrary that dim(G) = L(G) + max{2 − b(G), 0} + 1. The graph G has
at most two basis forced vertices according to Theorem E. Now either b(G) = 0 or b(G) = 1
due to Lemmas 9 and 10.

Suppose that b(G) = 0. Then L(G) = 0 and dim(G) = 3. Now, according to Lemma A(iv),
any set S ⊆ V (G) such that |S| = 3 and the S-active vertices form a geodesic triple is a metric
basis of G. However, we can choose the elements of the geodesic triple in multiple ways, and
thus the graph G cannot have any basis forced vertices.

Suppose then that b(G) = 1. Now dim(G) = L(G) + 2, and the graph G does not have
any basis forced vertices according to Lemma 8, a contradiction.

Let us consider the metric dimensions of different types of unicyclic graphs that contain
basis forced vertices. For this purpose, let G again be a unicyclic graph containing basis
forced vertices.
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• If b(G) = 0, then L(G) = 0 and dim(G) = 2 due to Theorem 11. On the first hand, if
the graph G contains two basis forced vertices, then G has a unique metric basis as we
saw before; for an example, see Figure 2(a). On the other hand, if the graph G contains
only one basis forced vertex, then the metric bases of G consist of the basis forced vertex
and one other vertex. Indeed, in our example graph in Figure 2(b), the metric bases of
G consist of one gray vertex and the basis forced vertex that is illustrated in black.

• If b(G) = 1, then dim(G) = L(G) + 1 according to Theorem 11. Furthermore, the
graph G contains only one basis forced vertex, and all elements of a metric basis that
contribute towards L(G) are in one component Tvi since b(G) = 1. Thus, the metric
bases of G consist of the basis forced vertex and the vertices of the component Tvi (see
Figure 2(c)).

Recall that according to Lemma A(i) we have a(S) ≥ 2 for any metric basis S of a
unicyclic graph. Due to the discussion above, we have the following corollary.

Corollary 12. Let G be a unicyclic graph with at least one basis forced vertex. If S is a
metric basis of G, then a(S) = 2.

According to Corollary 12, if a unicyclic graph G has basis forced vertices, then there are
only two S-active vertices on the cycle for any metric basis S. Consequently, if a unicyclic
graph G contains basis forced vertices, then a canonical labelling of C is always such that
the vertices v0 and vk are the only S-active vertices for any metric basis S. Moreover, we
can choose in which component (Tv0 or Tvk) the basis forced vertex we are considering is
located. In the majority of this paper, the component Tvk contains a basis forced vertex and
v0 is branch-active if b(G) 6= 0. The following lemma describes how the two S-active vertices
are located with respect to one another, when S is a metric basis of a unicyclic graph that
contains basis forced vertices.

Lemma 13. Let G be a unicyclic graph, and let S be a metric basis of G. If G contains a
basis forced vertex in Tvk , then 2 ≤ k < g/2.

Proof. Since G contains at least one basis forced vertex, a(S) = 2 due to Corollary 12. Thus,
we have 0 < k ≤ g/2 (due to the definition of canonical labelling). If k = g/2, then the
graph G contains configuration A with respect to S, and the set S is not a resolving set of G
according to Theorem C. Thus, k < g/2.

Suppose that k = 1. According to Lemma 9 and Lemma 10, we have b(G) ≤ 1. If C
contains a branch-active vertex, then that vertex is v0 due to Theorem D. Thus, for any vi,
i 6= 0, either deg(vi) = 2 or there is exactly one thread attached to vi.

Since S is a metric basis of G, then G does not contain configuration B with respect to S
due to Theorem C. Thus, there are no S-free threads at vertices vi where i ∈ [0, g/2 − 1] ∪
[g/2 + 2, g − 1]. Consequently, we have deg(vi) = 2 for all i ∈ [2, g/2 − 1] ∪ [g/2 + 2, g − 1].
Let u be vg/2+1 or the end-vertex of the thread attached to vg/2+1 if such a thread exists. We
claim that now the set R = S[v ← u] is a metric basis of G. Let us relabel C so that u0 = v0
and ug/2−1 = vg/2+1. The labelling ui is canonical with respect to R with k = g/2 − 1. The
graph G does not contain configuration A with respect to the set R. There are no R-free
threads at vertices ui where i ∈ [0, g/2−1]. Thus, the graph G does not contain configuration
B or C with respect to the set R. Thus, the set R is a metric basis of G according to Theorem
C, a contradiction.
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According to Lemmas 9 and 10, we have b(G) ≤ 1 for every unicyclic graph G that
contains basis forced vertices. Thus, there is at most one branch-active vertex on the cycle C.
This branch-active vertex is always S-active for any metric basis S, since the set S is branch-
resolving due to Lemma A(i). Therefore, every vertex on the cycle that is not branch-active
is either of degree 2 or has exactly one thread attached to it. The following two lemmas
consider how long the S-free threads can be, and without which S-free threads the graph G
cannot have basis forced vertices.

Lemma 14. Let G be a unicyclic graph with at least one basis forced vertex. Let S be a
metric basis of G, and let i ∈ [1, k − 1] where k is the index of the canonical labelling. The
following properties hold.

(i) Either deg(vi) = 2 or there is exactly one thread at vi.
(ii) A thread at vi is of length at most g/2 − k − 1.
(iii) There exists a thread of length g/2 − k − 1 at some vi or k = g/2 − 2 and there is no

basis forced vertex on the cycle.
(iv) For each j ∈ [k + 1, g/2 − 1] ∪ [g/2 + k + 1, g − 1], we have deg(vj) = 2.

Proof. Let v be a basis forced vertex of G. Let C be canonically labelled so that Tvk contains
v. Due to Theorem 7 and Lemma 13, g is even and 2 ≤ k < g/2.

(i) Otherwise vi is branch-active. Due to Corollary 12, we have a(S) = 2, and the claim
follows since a branch-active vertex must be S-active if S is a metric basis.

(ii) According to Theorem C the graph G does not contain configuration C with respect
to the set S, and the claim follows.

(iii) If k = g/2 − 1, then g/2 − k − 1 = 0, and the claim is trivial.
Suppose then that 2 ≤ k ≤ g/2 − 2. Since v is a basis forced vertex, the set R = S[v ←

vk+1] is not a metric basis of G. According to Theorem C, the graph G contains configuration
A, B or C with respect to the set R. However, G does not contain configuration

A: Since k ≤ g/2 − 2, we have k + 1 ≤ g/2 − 1, and the graph G does not contain
configuration A with respect to the set R.

B: The graph G does not contain configuration B with respect to the set S. Thus, there
does not exist a thread at any vi where i ∈ [k + 1, g/2 − 1] ∪ [g/2 + k + 2, g − 1].
Consequently, the graph G does not contain configuration B with respect to the set R.

Thus, G contains configuration C with respect to the set R. In other words, there exists a
thread of length at least g/2 − (k + 1) at some vi where i ∈ [1, k]. If such a thread does
not exist at any vi where i ∈ [1, k − 1], then there is a thread of length g/2 − (k + 1) at vk.
Since Tvk contains the basis forced vertex v, we have g/2 − (k + 1) ≤ 1 due to Theorem D.
Consequently, we have k = g/2 − 2 and v is a pendant attached to vk.

(iv) Suppose to the contrary that vj ∈ C is a vertex such that deg(vj) > 2 and j ∈
[k + 1, g/2 − 1] ∪ [g/2 + k + 1, g − 1]. By the previous observation (above Lemma 14),
this implies that there is exactly one thread attached to vi. Hence, the graph G contains
configuration B with respect to S and a contradiction follows with the fact that S is a metric
basis of G.

In the following lemma, we introduce a new parameter that is very useful in characterising
unicyclic graphs with basis forced vertices. Note that the vertex vg/2+j is the vertex antipodal
to vj on the cycle C.
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Lemma 15. Let G be a unicyclic graph with at least one basis forced vertex v. Let S be
a metric basis of G and let C be (canonically) labelled so that Tvk contains the basis forced
vertex v. Let m = min{j ≥ 1 | deg(vj) ≥ 3 or deg(vg/2+j) ≥ 3}. Then, it follows m < k and
there exists a thread of length at least m at some vi where i ∈ [g/2 +m+ 1, g/2 + k].

Proof. According to Theorem C, the graph G does not contain configuration B with respect
to the set S. Thus, we have deg(vi) = 2 for all i ∈ [k + 1, g/2 − 1] ∪ [g/2 + k + 1, g − 1].

Let us first show that m < k. Suppose to the contrary that m ≥ k. Now, we have
deg(vi) = 2 for all i ∈ [1, k − 1] ∪ [g/2 + 1, g/2 + k − 1] due to the definition of m. The
only vertices vi for which we may have deg(vi) ≥ 3 are v0, vk, vg/2 and vg/2+k. Let u be
vg/2+k or the end-vertex of the thread attached to vg/2+k if such exists (if b(G) = 1, then v0
is branch-active, and thus the vertex u is well-defined). The graph G clearly does not contain
configuration A with respect to the set S[v ← u]. Neither does it contain configuration B,
since deg(vi) = 2 for all i ∈ [1, k − 1] ∪ [g/2 + k, g/2 + k − 1] and there are no threads
without elements of S[v ← u] attached to v0 or vg/2+k. We also have deg(vi) = 2 for all
i ∈ [g/2+k+1, g−1], and thus the graph G does not contain configuration C with respect to
the set S[v ← u]. Therefore, the set S[v ← u] is a metric basis of G according to Theorem C,
a contradiction.

Suppose then that there does not exist a thread of length at least m at some vi where
i ∈ [g/2+m+1, g/2+k]. Let u be vg/2+m or the end-vertex of the thread attached to vg/2+m

if such exists. The set S[v ← u] is a metric basis according to Theorem C:

A: Since 1 ≤ m < k ≤ g/2− 1, the graph G does not contain configuration A with respect
to the set S[v ← u].

B: Due to the definition ofm, we have deg(vi) = 2 for all i ∈ [1,m−1]∪[g/2+1, g/2+m−1].
Moreover, if there exists a thread attached to vg/2+m, then it contains an element of
S[v ← u]. Since the set S is a metric basis of G, there is no S-free thread at v0.
Consequently, there is no S[v ← u]-free thread at v0 either. Thus, the graph G does
not contain configuration B with respect to the set S[v ← u].

C: Any thread attached to a vertex vi where i ∈ [g/2+m+1, g/2 + k] is of length at most
m− 1 = g/2− (g/2−m)− 1 (if we label C again the new k would be g − (g/2 +m) =
g/2 −m). Thus, the graph G does not contain configuration C with respect to the set
S[v ← u].

Consequently, there exists a metric basis of G that does not contain the basis forced vertex
v, a contradiction.

3.2 Basis Forced Vertex on the Cycle or as a Pendant

Recall that, according to Theorem D, a basis forced vertex of a unicyclic graph is either on
the cycle or is a pendant that is attached to the cycle. In this section, we show that there is
only a slight structural difference between unicyclic graphs that have a basis forced vertex on
the cycle compared to those that have a basis forced vertex as a pendant.

The following lemma states that if G is a unicyclic graph with a basis forced vertex
vi ∈ V (C), then we can construct a graph with a pendant as a basis forced vertex simply by
attaching a pendant to vi. The attached pendant is a basis forced vertex of the new graph.

Lemma 16. Let G be a unicyclic graph and let H be the graph we obtain from G by attaching
one pendant u to a vertex vi, where i ∈ {0, . . . , g− 1}. If the vertex vi is a basis forced vertex
of G, then the vertex u is a basis forced vertex of H.
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Proof. Let S be a metric basis of G. Let C be canonically labelled so that v0 is a basis forced
vertex of G (recall that this is possible due to Corollary 12). The graph G has even girth g
due to Theorem 7. According to Corollary 12 and Lemma 13, we have a(S) = 2 and k < g/2.
According to Theorem D, we have V (Tv0) = {v0}, and thus dH(s, u) = dG(s, v0) + 1 =
dH(s, vg−1) for all s ∈ S. The vertex u is now a basis forced vertex of H due to Theorem
3.

Consider again the graph in Figure 2(c). The black vertex is a basis forced vertex. As it
is on the cycle, we can attach a pendant to it, and the pendant becomes a basis forced vertex
of the new graph. The metric bases behave exactly as in the original graph, that is, a metric
basis consists of the added pendant and two of the gray vertices.

Constructing a graph with a basis forced vertex on the cycle from a graph that has one as
a pendant is not so simple. Indeed, the following lemma gives us two cases where we cannot
remove the pendant and have the adjacent cycle vertex become a basis forced vertex.

Lemma 17. Let G be a unicyclic graph with a basis forced vertex v that is a pendant. Let S
be a metric basis of G, and let C be canonically labelled so that v ∈ V (Tvk). If

(i) k = g/2− 2 and there are no threads at vertices vi where i ∈ [1, k − 1], or
(ii) k = g/2− 1 and b(G) = 0,

then the vertex vk is not a basis forced vertex of the graph G− v.

Proof. (i) Let R = S[v ← vg/2−1]. The graph G− v clearly does not contain configuration A
with respect to the set R. Neither does it contain configuration B, because the graph G does
not contain configuration B with respect to the set S and thus deg(vg/2−1) = 2. Since there
are no threads at vertices vi where i ∈ [1, g/2− 2] (in the graph G− v), the graph G− v does
not contain configuration C with respect to the set R. Thus, the set R is a metric basis of
G− v due to Theorem C, and vk is not a basis forced vertex of G− v.

(ii) Since S is a metric basis of G, the graph G does not contain configuration A, B, or C
with respect to the set S. When we remove the pendant v from the graph G and replace v
in the set S with its neighbour vk, the graph G− v clearly does not contain configuration A,
B, or C with respect to the set S[v ← vk]. Thus, the set S[v ← vk] is a metric basis of G− v
according to Theorem C.

Since b(G) = 0, we have dim(G) = 2 due to Theorem 11. Let R = {u, v1}, where u is vg/2
or the end-vertex of the thread attached to vg/2 if such exists. The set R is a metric basis of
G− v due to Theorem C:

A: The graph G− v clearly does not contain configuration A with respect to the set R.
B: Due to Lemma 14(ii), we have degG(vi) = 2 for all i ∈ [1, g/2 − 2]. Thus, there are no

R-free threads at v1. There are no R-free threads at vg/2 either, since b(G) = 0 and if
there does exist a thread at vg/2, then it contains the vertex u. Consequently, the graph
G− v does not contain configuration B with respect to the set R.

C: As we saw before, degG(vi) = 2 for all i ∈ [1, g/2 − 2]. Due to Theorem D,
degG−v(vg/2−1) = 2. Thus, the graph G − v does not contain configuration C with
respect to the set R.

Thus, there exists a metric basis of G− v that does not contain vk. Consequently, vk is not
a basis forced vertex of G− v.
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The graphs in Figures 2(a) and 2(b) both fall under case (ii) of Lemma 17. Thus, if we
remove one of the basis forced vertices (illustrated in black) from one of these graphs, the
adjacent cycle vertices are not basis forced vertices of the resulting graphs.

In addition to the two cases presented in Lemma 17, we have one more requirement in
order to have a basis forced vertex on the cycle.

Lemma 18. Let G be a unicyclic graph with a basis forced vertex v. If v ∈ V (C), then there
is a thread at the vertex antipodal to v. (If v = vi, then there is a thread at vg/2+i.)

Proof. Let S be a metric basis of G, and let vk be a basis forced vertex. Now g is even and
2 ≤ k < g/2 due to Theorem 7 and Lemma 13.

Suppose to the contrary that there is no thread at vg/2+k (i.e. deg(vg/2+k) = 2). Let u
be vk−1 or the end-vertex of the thread at vk−1 if such a thread exists. Let R = S[vk ← u].
Due to Theorem C, the graph G does not contain configuration B with respect to the set S.
Thus, there are no threads at vertices vi where i ∈ [k+1, g/2− 1]∪ [g/2+ k+1, g− 1]. Since
there is no thread at vg/2+k by assumption and no thread at vk by Theorem E, there are no
R-free threads at vertices vi where i ∈ [k− 1, g/2− 1]∪ [g/2+ k, g − 1]∪{0}. Thus, the graph
G does not contain configuration B with respect to the set R. It is clear that the graph G
does not contain configuration A or C with respect to the set R either. Thus, the set R is a
metric basis of G according to Theorem C, a contradiction.

Excluding the two cases in Lemma 17, the condition in Lemma 18 is sufficient for the case
where b(G) = 1. Indeed, the following lemma states that when b(G) = 1 and G contains a
pendant v that is a basis forced vertex, we can remove the pendant v and the adjacent cycle
vertex becomes a basis forced vertex of the resulting graph as long as the thread described
by Lemma 18 is present and we are not considering one of the two cases of Lemma 17 (cf.
Lemma 14(iii)).

Lemma 19. Let G be a unicyclic graph with b(G) = 1 and one basis forced vertex v that
is a pendant. Let S be a metric basis of G, and let C be canonically labelled so that v0 is
branch-active and v ∈ V (Tvk). If there exists a thread of length g/2− k − 1 at some vi where
i ∈ [1, k − 1], then the vertex vk is a basis forced vertex of G− v if and only if there exists a
thread attached to the vertex vg/2+k ( i.e. the vertex antipodal to vk).

Proof. Recall that by Lemma 13 we have k ≤ g/2− 1. If vk is a basis forced vertex of G− v,
then there exists a thread attached to the vertex vg/2+k due to Lemma 18.

Suppose then that there exists a thread attached to the vertex vg/2+k. The set S[v ← vk]
is clearly a metric basis of G − v. Since b(G − v) = 1, all metric bases of G − v are of the
form S[v ← u], where S is a metric basis of G and u ∈ V (Tvi) for some i 6= 0. Denote
m = min{j ≥ 1 | degG(vj) ≥ 3 or degG(vg/2+j) ≥ 3}. The set S[v ← u] is not a metric basis
if i 6= k:

• If i ∈ [1, k − 1], then the graph G − v contains configuration B with respect to the set
S[v ← u] due to the thread attached to vg/2+k.

• If i ∈ [k+1, g/2− 1], then the graph G− v contains configuration C with respect to the
set S[v ← u].

• If i = g/2, then the graph G − v contains configuration A with respect to the set
S[v ← u].
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• If i ∈ [g/2 + 1, g/2 + m], then the graph G − v contains configuration C with respect
to the set S[v ← u], because due to Lemma 15 there exists a thread at some vj, where
j ∈ [g/2 +m+ 1, g − 1].

• If i ∈ [g/2 +m+ 1, g − 1], then the graph G− v contains configuration B with respect
to the set S[v ← u] due to the definition of m.

Consequently, u = vk and vk is a basis forced vertex of G− v.

3.3 Characterisation of Unicyclic Graphs With b(G) = 1 and One Basis

Forced Vertex

In this section we fully characterize the unicyclic graphs and their basis forced vertices when
b(G) = 1. Now we know one spot of the graph where we have elements of a metric basis (in
order to have a branch-resolving set). There is only one additional element (due to the metric
dimension). The following lemma regarding the vertex that is branch-active.

Lemma 20. Let G be a unicyclic graph with b(G) = 1, and v be branch-active. If G contains
a basis forced vertex, then there is no thread attached to v.

Proof. Let v0 be branch-active, u basis forced, and S a metric basis of G. Since b(G) = 1, we
have dim(G) = L(G) + 1 due to Theorem 11. Furthermore,

|S ∩ V (Tv0)| = L(G) =
∑

v∈V (Tv0 ),ℓ(v)>1

(ℓ(v) − 1).

Thus, if there exist a thread or threads at v0, then one of them is S-free, and G contains
configuration B (a contradiction).

Recall that, by Theorem D, a basis forced vertex of a unicyclic graph is either a cycle
vertex of degree two or a sole pendant attached to a cycle vertex. In the following theorem,
we are now ready to characterise the basis forced vertices in pendants.

Theorem 21. Let G be a unicyclic graph with b(G) = 1 and let C be its cycle labelled in
such a way that v0 is branch-active. Assume further that v is a pendant attached to vj ∈ C
and V (Tvj ) = {vj , v}. Now v is a basis forced vertex of G if and only if

(1) the girth g of G is even,
(2) no thread is attached to v0,
(3) j ∈ [2, g/2 − 1],
(4) deg(vi) = 2 for all i ∈ [j + 1, g/2 − 1] ∪ [g/2 + j + 1, g − 1],
(5) every thread attached to some vi where i ∈ [1, j − 1] is of length at most g/2− j − 1,
(6) for m = min{l ≥ 1 | deg(vl) ≥ 3 or deg(vg/2+l) ≥ 3} we have m < j and there exists a

thread of length at least m at some vi where i ∈ [g/2 +m+ 1, g/2 + j], and
(7) j = g/2− 2 or there exists a thread of length g/2− j − 1 at some vi where i ∈ [1, j − 1].

Proof. (⇒) Assume first that v is a basis forced vertex of G. The conditions (1)–(7) can be
shown to be satisfied based on the previously presented results. Indeed, the conditions (1)–
(7) hold by Theorem 7, Lemma 20, Lemma 13, Lemma 14(iv), Lemma 14(ii), Lemma 15 and
Lemma 14(iii), respectively.

(⇐) Assume then that the conditions (1)–(7) hold. Let R (⊆ V (Tv0)) be a minimum
branch-resolving set of G. In what follows, we first show that S = R ∪ {v} is a resolving set
of G due to Theorem C:
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A: The graph G does not contain configuration A with respect to the set S since by (3)
we have j ∈ [2, g/2 − 1].

B: By (2), there is no thread attached to v0 and, thus, there is no S-free thread at v0.
By (4) and the fact that V (Tvj ) = {vj , v}, there are no S-free threads at vj or vi where
i ∈ [j + 1, g/2 − 1] ∪ [g/2 + j + 1, g − 1] either. Thus, the graph G does not contain
configuration B with respect to the set S.

C: By the previous case, there are no S-free threads at v0 or vj. Furthermore, by (5), all
the threads attached to some vi where i ∈ [1, j − 1] are of length at most g/2 − j − 1.
Thus the graph G does not contain configuration C with respect to the set S.

According to Theorem B, we have dim(G) = L(G) + 1. Thus, the set S is a metric basis of
G.

Observe that all metric bases of G are of the form R∪{u}, where R is a minimum branch-
resolving set and u ∈ V (Ti) for some i 6= 0. In what follows, we show that if S′ = R ∪ {u} is
a metric basis of G, then i = j:

• i ∈ [1, j − 1]: The pendant v at the vertex vj causes G to contain configuration B with
respect to the set S′.

• i ∈ [j + 1, g/2 − 1]: Observe first that if j = g/2− 2, then i = g/2− 1 and the pendant
v causes the graph G to contain configuration C with respect to the set S′. Otherwise,
due to the condition (7), there exists a thread of length g/2 − j − 1 ≥ g/2 − i at some
vl where l ∈ [1, j − 1]. Thus, the graph G contains configuration C with respect to the
set S′.

• i = g/2: The graph G contains configuration A with respect to the set S′.
• i ∈ [g/2 + 1, g/2 + m]: Observe first that the distance d(v0, vi) = g − i. By the
condition (6), there exists a thread of length at least m ≥ g/2− (g− i) for some vl with
l ∈ [g/2 +m+1, g/2 + j]. Hence, G contains configuration C with respect to the set S′.

• i ∈ [g/2+m+1, g−1]: Due to condition 6, there exists an S′-free thread at vm or vg/2+m

since b(G) = 1 and v0 is branch-active. Thus, the graph G contains configuration B
with respect to the set S′.

Thus, in conclusion, i = j. Recall that V (Tvj ) = {vj , v}. If u = vj , then the vertex v forms an
S′-free thread and the graph G contains configuration B with respect to the set S′. Therefore,
u = v and v is a basis forced vertex of G.

Based on Theorem 21, we also obtain a characterisation for the basis forced vertices in
the cycle as given in the following theorem.

Theorem 22. Let G be a unicyclic graph with b(G) = 1 and C be its cycle labelled in such a
way that v0 is branch-active. Assume further that vj ∈ C is such that deg(vj) = 2. Now vj
is a basis forced vertex of G if and only if the conditions (1)–(6) of Theorem 21 are met and
the following two additional conditions are satisfied:

(7’) there exists a thread of length g/2− j − 1 at some vi where i ∈ [1, j − 1] and
(8) there exists a thread attached to the vertex vg/2+j (antipodal to vj) .

Proof. (⇒) Assume first that vj is a basis forced vertex of G. The conditions (1)–(6) hold as
in the case of Theorem 21. Furthermore, the condition (7’) is satisfied due to Lemma 14(iii)
and the condition (8) follows by Lemma 18.

(⇐) Assume then that the conditions (1)–(6), (7’) and (8) hold. Suppose to the contrary
that vj is not a basis forced vertex of G. Then form a new graph G′ from G by adding a
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pendant v to vj . Now the conditions (1)–(7) of Theorem 21 are satisfied and v is a basis forced
vertex of G′. However, by Lemma 19, it follows that vj is basis forced vertex of G′ − v = G
(a contradiction).

4 Strong Basis Forced Vertices in Unicyclic Graphs

In order to use the tool of strong resolving graphs, our first comments are addressed to
describe how the strong resolving graph of a unicyclic graph G looks like. To this end, we
need to divide the study into two cases, depending on the parity of the unique cycle of G. We
shall use a similar terminology and notation as already commented, where G is a unicyclic
graph with the cycle C = v0v1 · · · vg−1v0. We first give some observations and basic results.

Observation 23. Let G be a unicyclic graph with the cycle C = v0v1 · · · vg−1v0. Then,

• Any two vertices of degree one in G are MMD. Thus, N1(G) induces a clique in GSR.
• Any two diametral vertices of C of degree two in G are MMD, and they induce an edge
in GSR.

• If vi ∈ C has degree two, then vi is MMD with all the vertices u ∈
(

N1(Tvi+⌊g/2⌋
) ∪N1(Tvi+⌈g/2⌉

)
)

\ C.

• Every cut vertex of G is not MMD with any other vertex of G. Thus, it is isolated in
GSR.

Proposition 24. Let G be a unicyclic graph with the cycle C = v0v1 · · · vg−1v0. Then GSR

can be obtained as follows.

• g even: We begin with g/2 edges formed by the vertices vivi+g/2 for every i ∈
{0, . . . , g/2 − 1}. Next, for every vj ∈ C of degree at least three in G, we substitute
vj by a clique of cardinality |N1(Tvj ) \ {vj}|, and add all possible edges between vj+g/2

(or a clique corresponding to it if already added) and the vertices of the added clique.
Finally, we add all possible edges between any two vertices belonging to any two differ-
ent cliques of the added ones in the step above, and the cut vertices of G are added as
isolated vertices of GSR. Notice that such graph may not be connected, even if we do
not consider the isolated vertices.

• g odd: We begin with a cycle C ′ = v0v(g+1)/2v1v(g+1)/2+1v2v(g+1)/2+2 · · · v(g−1)/2v0.
Next, for every vj ∈ C of degree at least three in G, we substitute vj by a clique of
cardinality |N1(Tvj ) \ {vj}|, and add all possible edges between vj+(g−1)/2, vj+(g+1)/2 (or
the cliques corresponding to them if already added) and the vertices of the added clique.
Finally, we add all possible edges between any two vertices belonging to any two differ-
ent cliques of the added ones in the step above, and the cut vertices of G are added as
isolated vertices of GSR.

Based on these two results above, we can easily deduce the following reduction.

Proposition 25. Let G be a unicyclic graph with the cycle C = v0v1 · · · vg−1v0 where S ⊆
V (C) is the set of vertices of C of degree larger than two in G. Let G′ be a unicyclic graph
with a cycle C ′ = v′0v

′
1 · · · v

′
g−1v

′
0, where the set S′ ⊆ V (C ′) of vertices of C ′ of degree larger

than two in G satisfies that for every v′i ∈ S′,

• v′i ∈ S′ if and only if vi ∈ S,
• v′i has |N1(Tvi) \ {vi}| adjacent pendant vertices, and
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• the only cut vertex of G′ in Tv′i
is v′i.

Then, the strong resolving graphs of G and of G′ differ only on |V (G)| − |V (G′)| isolated
vertices.

An example of a unicyclic graph G, its related graph G′ (as described in the proposition
above), and their strong resolving graph (without the isolated vertices) are given in Figure 3.

G G′ GSR

Figure 3: A unicyclic graph G, its related graph G′ and GSR (without isolated ones).

Once given some properties of the strong resolving graph of a unicyclic graph, we are then
able to present our results on strong basis forced vertices of such graphs. For instance, it is
easy to observe that the bolded vertices are strong basis forced vertices of the graphs G and G′

represented in Figure 3, since any vertex cover of minimum cardinality in GSR must contain
such vertices, or equivalently, these bolded vertices form the set V C(GSR). This means that,
in contrast with the classical version of metric dimension, a unicyclic graph can contain more
than two strong basis forced vertices. Indeed, as we next show, a unicyclic graph can contain
as many strong basis forced vertices as we would require.

Let n ≥ 2 be an integer. We construct a unicyclic graph Gn as follows. We begin with a
cycle C2n+2. Then, to obtain Gn, we add a pendant vertex to exactly n+2 consecutive vertices
of the cycle C2n+2. Now, the strong resolving graph (Gn)SR is isomorphic to a complete graph
Kn+2 with one pendant vertex added to n of its vertices, together with n+2 isolated vertices.
It can be noted that every vertex cover set of minimum cardinality in (Gn)SR contains the
n vertices of Kn+2 having a pendant vertex as a neighbor, and exactly one vertex of the
remaining two vertices of Kn+2 not having an adjacent pendant vertex. Therefore, these
n vertices mentioned before form precisely the set V C(GSR), and so, they are strong basis
forced vertices of G.

On the other hand, based on Proposition 25, we observe that strong basis forced vertices
of a unicyclic graph G with cycle C = v0v1 · · · vg−1v0 are independent of the structure of the
components Tvi for every vi of C. In this sense, from now on we shall only consider unicyclic
graphs G having a structure as the graphs G′ described in Proposition 25. In the following
lemma, we present a couple of useful results.

Lemma 26. Let G be a unicyclic graph with the cycle C = v0v1 · · · vg−1v0.

(i) If every vertex of C has degree at least three, then G has no strong basis forced vertices.
(ii) If there is at most one vertex vi of C of degree at least three, then G has no strong basis

forced vertices.

Proof. (i) It is clear from the constructions given in Proposition 24 that the strong resolving
graph GSR has a component isomorphic to a complete graph Kn1(G) and |V (G)| − n1(G)
isolated vertices. Hence, we note that corona(GSR) = V (GSR), and so V C(GSR) = ∅, which
leads to our conclusion.
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(ii) If every vertex of C has degree two, then G is a cycle, which clearly has no strong
basis forced vertices. Assume now that G has one vertex, say vi, of C of degree at least three.
If g is even, then by the construction given in Proposition 24, the graph GSR has (g − 2)/2
components isomorphic to K2, one trivial component K1, and one component isomorphic to
a clique. Hence, we observe that corona(GSR) = V (GSR), and so V C(GSR) = ∅.

Now, if g is odd, then again by the construction given in Proposition 24, we have that
GSR has one trivial component K1, and one component isomorphic to a cycle in which one
of its vertices, say x, has been substituted by a clique, with all vertices of this clique being
adjacent to the two neighbors of x in such cycle. Thus, we again deduce that V C(GSR) = ∅,
which altogether allow to conclude that G has no strong basis forced vertices.

In what follows, we divide the study into two sections based on the parity of the cycle.

4.1 Unicyclic graphs with an even cycle

For the rest of the section, we assume that girth g of the unicyclic graph G is even. In the
following lemma, we first present some basic properties on the strong basis forced vertices of
such graphs.

Lemma 27. Let G be a unicyclic graph such that its girth g is even and the cycle C =
v0v1 · · · vg−1v0.

(i) If the diametral vertices vi and vi+g/2 are of degree two, then vi and vi+g/2 are not
strong basis forced vertices.

(ii) If for all the pairs of diametral vertices vi and vi+g/2 at least one of them has degree
two in G, then G has no strong basis forced vertices.

Proof. (i) If vi and vi+g/2 have degree two, then clearly vi and vi+g/2 induce a component
in GSR isomorphic to K2. Thus, neither of them belongs to V C(GSR), and so they are not
strong basis forced vertices.

(ii) If vi and vi+g/2 are both of degree two, then by (i), they induce a component in GSR

isomorphic to K2 and are not strong basis forced vertices. Assume now that exactly one of the
vertices vi or vi+g/2 is of degree two in G. From the constructions given in Proposition 24, the
strong resolving graph GSR is isomorphic to a graph having a vertex partition formed by three
sets X,Y,Z, where X induces a clique (all the leaves in G), Y ∪ Z induces an independent
set (Y is the set of vertices of C of degree two and Z is the set of cut vertices of G), the
neighborhoods of vertices of Y in X form a vertex partition of X, and the vertices of Z are
isolated. Thus, one can readily observe that the independence number of such graph equals
g/2 and that V C(GSR) = ∅ since corona(GSR) = V (GSR). Therefore, there is no strong
basis forced vertex as well.

From now on, in order to give the number of strong basis forced vertices of unicyclic
graphs we shall describe some notations and definitions. Based on the results listed above, it
is enough to consider unicyclic graphs with structure as the graph G′ described in Proposition
25. Consider G is a unicyclic graph with cycle C = v0v1 · · · vg−1v0 with g even. For a vertex
vi of C, by Qvi we denote the set of vertices of degree one in G adjacent to vi+g/2 (if vi+g/2

has degree two, then Qvi is an empty set). By D2(C) we denote the set of vertices from the
pairs vj, vj+g/2 such that both vertices have degree two, and let d2(C) = |D2(C)|/2. Also,
by D>2(C) we denote the set of vertices from the pairs vj , vj+g/2 such that both vertices
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have degree larger than two, and let d>2(C) = |D>2(C)|/2. Notice that if D>2(C) = ∅ or
D>2(C) = C, then G has no strong basis forced vertices, according to Lemma 26(i) and
Lemma 27(ii). Thus, from now on we assume that D>2(C) 6= ∅ and that D>2(C) 6= C for
any graph G. With these notations, we note the following fact.

Lemma 28. Let G be a unicyclic graph such that its girth g is even, the cycle C =
v0v1 · · · vg−1v0 and D>2(C) 6= ∅. Then a maximum independent set of GSR consist of
(i) the vertices vi ∈ C with degG(vi) ≥ 3, denoted by X, (ii) one vertex of each pair
vj , vj+g/2 ∈ D2(C), (iii) the set of vertices vi of degree two in G such that Qvi 6= ∅, and
(iv) one vertex of the set

⋃

vi∈D>2(C) Qvi. Thus, in total, the cardinality of a maximum inde-
pendent set of GSR is at least |X|+ g/2 − d>2(C) + 1.

As a consequence of the lemma, one can see that the set corona(GSR) contains the vertices
vi ∈ C with degG(vi) ≥ 3, both vertices of the pairs vj, vj+g/2 ∈ D2(C), the set of vertices vi
of degree two in G such that Qvi 6= ∅, and every vertex of the set

⋃

vi∈D>2(C)Qvi .

Theorem 29. Let G be a unicyclic graph with the cycle C = v0v1 · · · vg−1v0 with g even.

(i) If D>2(C) = ∅, then there are no strong basis forced vertices of G.
(ii) If D>2(C) 6= ∅, then the strong basis forced vertices of G are the vertices of the

nonempty sets Qvi . Hence, in total, the number of strong basis forced vertices is
∑

vi /∈D2(C)∪D>2(C) |Qvi |.

Proof. (i) The first claim immediately follows by Lemma 27(ii) (as discussed earlier). (ii)
Assuming D>2(C) 6= ∅, the second claim straightforwardly follows by Lemma 28 (and the
observations afterwards).

One conclusion that we can deduce from the result above is that the unicyclic graphs
G whose unique cycle has even order can have only strong basis forced vertices which are
vertices of degree one. In contrast with this situation, as shown in the next section, for the
case of unicyclic graphs G whose unique cycle has odd order, there could be strong basis forced
vertices which are vertices of degree one as well as vertices of the cycle; see Theorem 30 and
Example 32.

4.2 Unicyclic graphs with an odd cycle

In this section, we characterize the strong basis forced vertices in the unicyclic graphs G of
which unique cycle C = v0v1 · · · vg−1v0 has an odd order g. To this end, we first introduce
some notation and terminology. Recall that the vertices u and v in C are MMD in G if and
only if degG(u) = degG(v) = 2 and dG(u, v) = (g − 1)/2. Assuming i, j ∈ {0, . . . , g − 1}, let
Q[i,j] denote the maximal sequence of vertices vivi+(g−1)/2vi+1vi+1+(g−1)/2 · · · vj in GSR such
that the degree of each vertex in G is equal to 2 and each pair of consecutive vertices are
MMD, i.e., adjacent in GSR. Hence, j is either equal to i + k or i + k + (g − 1)/2 for some
k ≥ 0. We call vi and vj the end-vertices of Q[i,j]. Furthermore, we denote q[i,j] = |Q[i,j]| and
say that the sequence Q[i,j] is of odd length (or simply odd) if 2 ∤ q[i,j], and otherwise it is of
even length (or simply even). Denote the set of every other vertex of Q[i,j] starting from the
first one by A1(Q[i,j]) and the set of every other vertex of Q[i,j] starting from the second one
by A2(Q[i,j]). Notice that |A1(Q[i,j])| = ⌈q[i,j]/2⌉ and |A2(Q[i,j])| = ⌊q[i,j]/2⌋.

Analogously to the sets Qvi in the case of unicyclic graphs with an odd cycle, we now
define Q′

vi and Q′′
vi to be the sets of vertices of degree one in G adjacent to vi+⌊g/2⌋ and
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vi+⌈g/2⌉, respectively. Observe that the vertices of Q′
vi and Q′′

vi are MMD with vi or its leaves
(if such vertices exist) and that if vi+⌊g/2⌋ or vi+⌈g/2⌉ has degree two in G, then Q′

vi or Q′′
vi ,

respectively, is empty. Furthermore, if Q[i,j] is a maximal sequence of vertices as defined
above, then Q′

vi or Q′′
vi is non-empty, as well as, Q′

vj or Q′′
vj is non-empty. We may now

consider the graph GSR to be formed as follows:

• The vertices of each maximal sequence Q[i,j] induce a path in GSR.
• The leaves (or pendants) of G induce a clique in GSR.
• Each leaf u of G is adjacent to vi ∈ C in GSR if and only if degG(vi) = 2 and u ∈
Q′

vi ∪Q′′
vi .

In the following theorem, we give a characterization of the strong basis forced vertices in
the case of an odd cycle C. Notice that in the cases (i) and (iii) we might have corona(GSR) =
V (GSR) implying G has no strong basis forced vertices.

Theorem 30. Let U be a subset of vertices u ∈ C such that deg(u) ≥ 3 and the leaves of
u in G are not adjacent to an end-vertex of a maximal sequence Q[i,j] of odd length in GSR.
The strong basis forced vertices of G can be determined based on U as follows:

(i) If |U | ≥ 2, or |U | = 1 and the unique vertex u ∈ U is such that the leaves of u in G
are not adjacent to any maximal sequence in GSR, then the strong basis forced vertices
of G are the leaves of G adjacent to a maximal sequence of odd length in GSR and the
vertices A2(Q[i,j]) for each Q[i,j] of odd length.

(ii) If |U | = 1 and the unique vertex u ∈ U is such that the leaves of u in G are adjacent to
a maximal sequence of even length in GSR, then the strong basis forced vertices of G are
the leaves adjacent to a maximal sequence of odd length in GSR, the vertices A2(Q[i,j])
for each Q[i,j] of odd length and the vertices Ak(Q[i,j]) of a maximal sequence of even
length adjacent in GSR to the leaves of u in G, where k is chosen in such a way that
the vertex of Q[i,j] adjacent in GSR to the leaves of u in G belongs to Ak(Q[i,j]).

(iii) If U = ∅, then the strong basis forced vertices of G are the leaves of G adjacent to two
maximal sequences of odd length in GSR, denoted by X, and the vertices A2(Q[i,j]) for
each odd maximal sequence Q[i,j] with its end-vertices adjacent to two vertices x1 and
x2 of X in GSR such that x1 and x2 are not leaves of a same vertex of C in G.

Proof. Observe first that if U 6= ∅, then the cardinality of a maximum independent set of
GSR is equal to

1 +

t
∑

ℓ=1

⌈q[iℓ,jℓ]/2⌉,

where t denotes the number of maximal sequences Q[i,j]. Indeed, a maximum independent set
of GSR can be formed by choosing a leaf of a vertex belonging U and the ⌈q[iℓ,jℓ]/2⌉ suitable
(every other) vertices of each Q[i,j].

(i) Assume that |U | ≥ 2 or that |U | = 1 and the unique vertex u ∈ U is such that the
leaves of u in G are not adjacent to any maximal sequence in GSR. It is straightforward to
verify the set corona(GSR) consist of the isolated vertices of GSR, the leaves of vertices of U
in G, the vertices in the maximal sequences of even length and the vertices A1(Q[i,j]) of each
Q[i,j] of odd length. Therefore, as V C(GSR) = V (GSR)\corona(GSR), the claim immediately
follows.

(ii) Assume that |U | = 1 and the unique vertex u ∈ U is such that the leaves of u in G are
adjacent to a maximal sequence of even length in GSR. It can be easily seen that corona(GSR)
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consist of the isolated vertices of GSR, the leaves of u in G, the vertices A1(Q[i,j]) of each
Q[i,j] of odd length and the vertices A3−k(Q[i′,j′]) of a maximal sequence Q[i′,j′] of even length
adjacent (in GSR) to the leaves of u (in G), where k is chosen in such a way that the vertex of
Q[i′,j′] adjacent (in GSR) to the leaves of u (in G) does not belong to A3−k(Q[i′,j′]). Therefore,
as V C(GSR) = V (GSR) \ corona(GSR), the claim immediately follows.

(iii) Finally, assume that U = ∅. Now the cardinality of a maximum independent set of
GSR is equal to

t
∑

ℓ=1

⌈q[iℓ,jℓ]/2⌉ (1)

since each leaf of G is adjacent to a maximal sequence of odd length in GSR. Denote by
X the leaves of G which are adjacent to two maximal sequences of odd length in GSR.
Clearly, no vertex of X belongs to corona(GSR) since otherwise the size given in (1) cannot
be reached. Suppose then that Q[i,j] of odd length is such that its end-vertices are adjacent
to two vertices x1 and x2 of X in GSR with x1 and x2 not being leaves of a same vertex of
C in G. Applying a similar argument as above, it can be deduced that the vertices A2(Q[i,j])
do not belong to corona(GSR). However, all the other vertices except the mentioned ones
belong to corona(GSR). Thus, the claim follows.

Before the previous theorem, it was briefly mentioned that in some cases no strong basis
forced vertices might occur. In the following straightforward corollary, this possibility is
further discussed.

Corollary 31. Let U be a subset of vertices u ∈ C such that deg(u) ≥ 3 and the leaves of u
in G are not adjacent to an end-vertex of a maximal sequence Q[i,j] of odd length in GSR.

(i) Assume that |U | ≥ 2, or |U | = 1 and the unique vertex u ∈ U is such that the leaves of
u in G are not adjacent to any maximal sequence in GSR. All the maximal sequences
are of even length in GSR if and only if there are no strong basis forced vertices in G.

(ii) Assume that U = ∅. There are no leaves of G adjacent to two maximal sequences of
odd length in GSR if and only if there are no strong basis forced vertices in G.

Proof. The results immediately follow by Theorem 30.

Observe that although it is not easy to give a simple closed formula for the number
of strong basis forced vertices of a unicyclic graph with an odd cycle, the number can be
straightforwardly computed based on Theorem 30. Recall that in the case of a unicyclic
graph with an even cycle, only the leaves of G can be strong basis forced vertices. In the
following example, we illustrate the fact that this is not the case with an odd cycle.

Example 32. Let Gt,q be a unicyclic graph with an odd cycle C2t+1 = v0v1 · · · v2tv0 and
q (distinct) pendants added to each of the vertices v0, vt, vt+1 and v2t, where t and q are
integers such that t, q ≥ 2. Now the strong resolving graph of Gt,q consist of a unique maximal
sequence Q[1,t−1] with odd length 2t−3, the isolated vertices v0, vt, vt+1 and v2t, and a clique
of the 4q leaves of Gt,q. Furthermore, the set U of Theorem 30 consist of the vertices v0 and
vt. Therefore, by Theorem 30(i), the strong basis forced vertices of Gt,q are the leaves of vt+1

and v2t as well as the vertices of A2(Q[1,t−1]). Hence, in total, the number of strong basis
forced vertices of Gt,q is ⌊q[1,t−1]/2⌋ + 2q = t− 2 + 2q. In particular, we can notice that the
number of strong basis forced vertices in the leaves and in the cycle can be arbitrarily large.
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5 Concluding remarks

Since it is already known that a unicyclic graph can have at most 2 basis forced vertices, this
work has centered the attention into classifying unicyclic graphs according to the number of
basis forced vertices they have. Those unicyclic graphs with number of branch-active vertices
on the cycle equal 1 (that is b(G) = 1) have been completely dealt with. In consequence, since
the unicyclic graphs having basis forced vertices satisfy that b(G) ∈ {0, 1}, it remains an open
problem of considering unicyclic graphs where b(G) = 0. Some other interesting problems
concerning basis forced vertices are as follows.

• Are there some graph classes in which the problem of deciding whether a given vertex
is a basis forced vertex will be polynomial?

• Can we determine the number of basis forced vertices in some simple superclasses of
unicyclic graphs like cactus graphs for instance?

On the other hand, strong basis forced vertices in unicyclic graphs have been introduced
and studied in this work. In this sense, it would be of clear interest to generalize the study
of strong basis forced vertices to general graphs. In particular, the following questions could
be of interest.

• Which is the complexity of deciding whether a given vertex of a graph is a strong basis
forced vertex?

• Can we compute or bound the number of strong basis forced vertices of general graph?
• Can we characterize the class of graphs having strong basis forced vertices?
• It would be also interesting to know that graphs that have a unique strong metric basis.
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[4] M. Claverol, A. Garćıa, G. Hernández, C. Hernando, M. Maureso, M. Mora, and J. Tejel.
Metric dimension of maximal outerplanar graphs. Bull. Malays. Math. Sci. Soc., 44:2603–
2630, 2021. doi: 10.1007/s40840-020-01068-6

24



[5] A. Hakanen, V. Junnila, T. Laihonen. The solid-metric dimension. Theor. Comput. Sci.,
806:156–170, 2020. doi: 10.1016/j.tcs.2019.02.013

[6] A. Hakanen, V. Junnila, T. Laihonen, and M. L. Puertas. On the metric dimensions for
sets of vertices. Discuss. Math. Graph Theory, 2020. doi: 10.7151/dmgt.2367 In press.

[7] A. Hakanen, V. Junnila, T. Laihonen, and I. G. Yero. On vertices contained in all or in
no metric basis. Discrete Appl. Math., 2021. doi: 10.1016/j.dam.2021.12.004. In press.

[8] F. Harary and R. Melter. On the metric dimension of a graph. Ars Combin., 2:191–195,
1976.

[9] A. Kelenc, N. Tratnik, and I. G. Yero. Uniquely identifying the edges of a graph: the edge
metric dimension. Discrete Appl. Math., 251:204–220, 2018. doi: \newblock

[10] D. Kuziak, M. L. Puertas, J. A. Rodŕıguez-Velázquez, and I. G. Yero. Strong resolving
graphs: the realization and the characterization problems. Discrete Appl. Math., 236:270–
287, 2018. doi: 10.1016/j.dam.2017.11.013
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