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ON THE UNIFORM ASYMPTOTIC STABILITY IN

FUNCTIONAL DIFFERENTIAL EQUATIONS

L. Z. WEN

Abstract. We consider a system of functional differential equations x'(t) = F(t, .x,)

and obtain conditions on a Liapunov functional to insure the uniform asymptotic

stability of the zero solution.

1. Introduction. Following the work of Yoshizawa [2], Burton [1] obtained suffi-

cient conditions of the uniform asymptotic stability in the retarded functional

differential equation x'(t) = F(t, xt) on a Liapunov functional. He showed that it is

not necessary to require F(t, x,) bounded for x, bounded. Now we use the Razu-

mikhin condition so that it is not necessary to require V'(t, x,) < -W(\ x(t) |) for all

/ > 0. This work generalized Burton's result.

For x E R", let \x\ be maxlc,Än|xt\. Given h > 0, let C denote the space of

continuous functions from [-h,0] into Rn and for <b E C, \\<j>\\ = sup,,,,^«^ | </>(#) I •

Forci E CH = {$: <t> E C,\\<j>\\ < H), let

111*111 =     2  i°<tf(s)ds
\i=\J-h

where <¡>¡ are the components of <>.

For z0 E R, A > 0, t E [t0, t0 + A) and a continuous function x from [z0 — h, t0

+ A] into R", let x,6Cbe defined by x,(0) = x(t + 0), 0 E [-h,0].

2. Uniform asymptotic stability.

Lemma. Let F be a family of continuous functions f: [a, b] -» [0,1] and W:

[0, oo) -» [0, oo) be a continuous nondecreasing function, and W(s) > 0 if s > 0. If

there exists a > 0 with j¡¡ f(t) dt > a for any f E F then there exists ß > 0 with

f,}W(f(t))dt>ß.

Proof. For any f E F, let E = {t: f(t) > a/2(b - a), a < t < b) and m(E) be

the measure of E. If m(E) < a/2, then

a < fbf(t) dt= [ f(t) dt+ f f(t) dt < a/2 + a/2 = a,
Ja JE J[a.b)-E
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a contradiction. Hence m(E) > a/2 and

/V(/(z)) dt » f W(f(t)) dt> f W(a/2(b - a)) dt > W(a/2(b - a))a/2 = ß.
Ja JE JE

This completes the proof.

We consider the retarded functional differential equation

(1) x'(t)=F(t,x,),

where x'(t) is the right-hand derivative of x(t) and F(t, xt) a continuous function

from RX CH into R", F(t,0) — 0. For continuation of solution, we suppose that F

takes closed bounded sets of R X CH into closed bounded sets of R".

Denote by x(t0, <j>) a solution of (1) with initial condition <b E CH where x, (t0, 4>)

= d> and we denote by x(t) = x(t, t0, <t>) the value of x(tQ, <j>) at t.

Let V(t, <f>) be a continuous nonnegative functional defined in [0, oo) X CH. The

upper right-hand derivative of F along solution of (1) is defined to be

_
F(z, *,(>„, <*>)) = Um { V(t + 8, xl+s(t0, <f>))- V(t,x,(t0,4>))}/0.

s^o+

We suppose that V'(t, xt) exists.

Let Wx, W2, W3, Wbe continuous nondecreasing functions and P be a continuous

function from [0, oo) into [0, oo) with W¡(r) > 0, W(r) > 0, P(r) > r if r > 0 and

W,(0) = 0.

Theorem. Suppose there are functions Wx, W2, W3, W, P, V as above, which also

satisfy the following conditions:

(i) Wx(\ *(0) |) « V(t, *) < W2(\ *(0) I) + W3(|||*y|)/(v any * E CH.

(ii) For any Z0 > 0 and any <¡> E CH

V'(t, x,(t0, <*>)) < 0   if V(t, x,(t0, </>)) = W2(H\\) + W3(nm)   ('o< Ufrifat h),

and

V'(t, x,(t0, <*>)) < -W{\ x(t, z0, «¡>) |)    ifP(v{t, x,(t0, </,))) > V{£, x((t0, <*>))

(t>t0 + h;t-h^£^t).

Then the zero solution of (\) is uniformly asymptotically stable.

Proof. We first prove the uniform stability. Given e > 0 (e < H, Wx(e) < H),

choose 8 > 0 such that 8 < e, W2(8) < Wx(e)/2, and W3(8jñh) < Wx(e)/2. Let

z0 > 0 and ||<i>ll < 8. We shall show that

(2) V(t,xl(t0,<P))<Wx(e)       (t>t0).

Obviously,

V(t0,4) < ^2(|*(0)|) + W3(M) < W2(d) + W3(sfh) < Wx(e).

For each t E [t0, t0 + h), if V(t, x,) < W2(H\\) + W3(\\\<¡>\\\), then V(t, x,) < Wx(e),

if V(t, x,) = W2(\\<¡>\\) + W3(\\\<}>\\1), from condition (ii) we get V(t + At, xl+Al) <

W^dl^H) + ^3(lll«í>lll) for all sufficiently small At > 0. It implies that V(t, xt) < Wx(e)
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for all t E [Zq, i0 + h). Thus, if (2) fails, then there exists z, > t0 + h such that

V(t'x,xh)=Wx(e),    V(t,Xl)<Wx(e)        (/</,).

Let d = infW20W)+W3(M)^,yM[P(r)-r]. Obviously, there exists TE(t0 +

h, f,) such that

(a) W2(H\\) + W3(\\\n) < Wx(e) -U< V(T, xT) < Wx(e), wheree > 1,

(b) V'(T, xT) > 0.

From (a),

P(V(T, xT)) > V(T, xT) + d> Wx(e) + ( 1 - -)</> Fij, x£)        (i0 < £ < P).

From condition (ii), we have V'(T, xT) < -W(\ x(T) |) «£ 0, which contradicts (b).

Hence, (2) holds.

By (2) and condition (i), we get | x(t) |< e for t > t0. Since 5 is independent of z0,

this proves the uniform stability.

Next, we prove the uniform asymptotic stability. For H* = min[H, 1] choose

8 > 0 such that | x(t, t0, <f>) |< H* for t 3» z0, if z0 » 0 and II<j>\\ *£ 5. From condition

(i), we have

V(t, *,(/<,, <i»)) < W2(H*) + W3{H*{ñh).

Choose a positive B > W2(H*) + W3(H*y[h~h). For given e > 0 (e < H), let d =

infIVi(e)x:r^B(P(r) — r), and JV be a positive integer satisfying Wx(e) +

(N - l)d<B< Wx(e) + Nd. We shall show that there exists Tx> t0 + h such that

(3) v(Tx,xTt(t0,4>)) < Wx(e) + (N-l)d.

If not, then

V(t,x,)^Wx(e) + (N-\)d       (t>t0 + h),

and

P(V(t, x,)) > V(t, x,) + d> Wx(e) +Nd>B> V{t xf)        (z0 < ¿< t).

From (ii) we have V'(t, x,) *£ -W(\ x(t) I) (t>t0 + h); it follows that

(4) V(t,x,)<B-f'    W(\x(s)\)ds.
Jt0+h

If V(t, x,) s* Wx(e), then

W2(\x(t)\) + W3(\\\xt\\\) > V(t,x,) > Wx(e).

Therefore,  either   W2(\x(t)\)> Wx(e)/2 or   W3(\\\x,\\\)> Wx(e)/2.  Let  £", = {?:

W3(lll*,lll) > Wx(e)/2, í > fo) and £2 = ['o> °°) ~ £i- If * G Eu tnen there exists a

constant a > 0 with |||;c,||| > a. If z G E2, then there exists a constant b > 0 with

| x(f ) |> è. In case t E Ex, we have

¿ [°x2(t + 0)d0>a2,
¡= i •'-A
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then

14:  LVj       a2 def
c,r( s) ds > — —a.

nJ'-h" ,= 1

Since | x(t) |< 1, we have

1
|x(z)|=max,.|x,.(z)|^- 2*,2(0-

i=i

Then from the Lemma, there exists ß > 0 such that

(5) /'   »F(| *(S)|)*>/'   w[lixf(s))ds>ß.
Jt-h Jt-h    \"/=i /

Let K be the positive integer satisfying K> B> (K — 1) and P, = z0 +

(A: + \)h + 2B/W(b), we have either

(a) m(P, n [z0 + A, P,]) > Kh or

(b) m(P2 n [z0 + ft', P,]) > 2B/W(b).

If (ä) holds, then in Ex n [r0 + A, P,] there exist /: points tx <t2< ■ ■ • < tk

satisfying z, > t0 + 2h and tj — r,_, > ft (/ = 2,3,... ,A'). From (4) and (5), we

have

ÍTuxr)<B-,fT:  W(\x(s)\)ds
Jt0+h

< B - 2   i'7   w(- 2 *iW ds<B-kß<0.
j=\Jtj-h    \n,= 1 /

-
If (b) holds, from (4) we have

V(TX, xT) < B - f W(b)ds = B- W(b)m(E2n[t0 + h,Tx]) < 0.
JE2n[,0^-h.Tl]

Thus either (ä) or (b) implies V(TX, XTt) < 0, a contradiction to V(t, xt) > 0. Hence

(3) holds.

In the following, we will show that

(6) V(t,xl(t0,<p))<1Vx(e) + (N-\)d   for all t>Tx.

If (6) is not true, then there exists o > P, such that V(o, xa) < W,(e) + (JV - 1)J

and

(A)5 - lf2(#*) - W3(H*i/n~h) > W,(e) + (iV - \)d - V(o, xa),

(B) F(o, x„) > 0.

From (A), we get

P(F(0,xa))>P(a,xa) + J

> W,(e) + (N-l)d-B+ W2(H*) + W3{H*{n~h) + d

= Wx(e) + Nd- B+ W2(H*) + W3{H*{ñh)

2* W2(H*) + W3(H*{n~h) 3* K(É, x()        (i0 < £ ^ a).
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From condition (ii) we have V'(o, xa) «£ -W(\ x(o) |) < 0, which contradicts (B).

Therefore, (6) holds.

Similarly, there exists P2, T3,...,TN such that

V(t, x,(t0,<?)) < Wx(e) + (N - k)d   îott>Tk,k = 2,3,...,N.

Then V(t, x,(t0, </>)) < Wx(e) for all t » TN. From condition (i) we have | x(t)\< e

for all t> TN, where

TN = t0 + N((k + \)h + 2B/W(b)).

Since N((k + l)ft + 2B/W(b)) is independent of z0, we have completed the proof

of the theorem.

Example. Consider the equation

(7) x'(t) =-a(t)x(t) + b(t)x{t - h)

where a(t) and b(t) are continuous functions, 0 < a < a(t) < oo, | b(t) |< b < pa,

0<H< 1.

One can choose V(t, x,) = {x2(t), Wx(\ x(t) |) = \x2(t), W2(\ x(t) |) = x2(t),

W3(\\\xt\\\) = lll^lll2 and P(s) = qs,q> 1.

For z E [t0, t0 + ft), if V(t, x,) = W2(H\\) + rV3(\\\n), that is {x2(t) = II $112 +

llalli2. Then

P'(i, x,) = x(z)x'(i) = -a(t)x2(t) + b(t)x(t)x(t - ft)

<~ax2(t)+ |[x2(z) + x2(i - ft)]

< - (a - I)x2(0 + |||<i»||2 = - {la - y )||<Í»II2 - (2a - ¿>)|||<p|||2

<0.

For t E [z0 + ft, 00) if P(K(Z, x,)) > V(t x£) (i - ft < | < i), that is qx2(t) >

x2(£) (f - Â < I < *), then ox2(z) > x2(i - ft).

F(z,x,)<-(fl-|)x2(z)+|x2(z-ft)

<-(û-f),2(z)+fflx2(z) = -(a-ft(-4^)),2(0.

If we choose q = 2//» - 1, then a - ft((l + g)/2) > 0. Let

W(|x(z)|) = (a-/>((l + g)/2))x2(z).

We can see that the conditions of the Theorem are satisfied. Therefore, the zero

solution of (7) is uniformly asymptotically stable.
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