ON THE UNIFORM ASYMPTOTIC STABILITY IN FUNCTIONAL DIFFERENTIAL EQUATIONS

L. Z. WEN

Abstract

We consider a system of functional differential equations $x^{\prime}(t)=F\left(t, x_{t}\right)$ and obtain conditions on a Liapunov functional to insure the uniform asymptotic stability of the zero solution.

1. Introduction. Following the work of Yoshizawa [2], Burton [1] obtained sufficient conditions of the uniform asymptotic stability in the retarded functional differential equation $x^{\prime}(t)=F\left(t, x_{t}\right)$ on a Liapunov functional. He showed that it is not necessary to require $F\left(t, x_{t}\right)$ bounded for x_{t} bounded. Now we use the Razumikhin condition so that it is not necessary to require $V^{\prime}\left(t, x_{t}\right) \leqslant-W(|x(t)|)$ for all $t \geqslant 0$. This work generalized Burton's result.

For $x \in R^{n}$, let $|x|$ be $\max _{1<i \leqslant n}\left|x_{i}\right|$. Given $h>0$, let C denote the space of continuous functions from $[-h, 0]$ into R^{n} and for $\phi \in C,\|\phi\|=\sup _{-h<\theta \leq 0}|\phi(\theta)|$. For $\phi \in C_{H}=\{\phi: \phi \in C,\|\phi\| \leqslant H\}$, let

$$
\left\|\|\phi\|=\left(\sum_{i=1}^{n} \int_{-h}^{0} \phi_{i}^{2}(s) d s\right)^{1 / 2}\right.
$$

where ϕ_{i} are the components of ϕ.
For $t_{0} \in R, A>0, t \in\left[t_{0}, t_{0}+A\right)$ and a continuous function x from $\left[t_{0}-h, t_{0}\right.$ $+A]$ into R^{n}, let $x_{t} \in C$ be defined by $x_{t}(\theta)=x(t+\theta), \theta \in[-h, 0]$.

2. Uniform asymptotic stability.

Lemma. Let F be a family of continuous functions $f:[a, b] \rightarrow[0,1]$ and W : $[0, \infty) \rightarrow[0, \infty)$ be a continuous nondecreasing function, and $W(s)>0$ if $s>0$. If there exists $\alpha>0$ with $\int_{a}^{b} f(t) d t \geqslant \alpha$ for any $f \in F$ then there exists $\beta>0$ with $\int_{0}^{1} W(f(t)) d t \geqslant \beta$.

Proof. For any $f \in F$, let $E=\{t: f(t) \geqslant \alpha / 2(b-a), a \leqslant t \leqslant b\}$ and $m(E)$ be the measure of E. If $m(E)<\alpha / 2$, then

$$
\alpha \leqslant \int_{a}^{b} f(t) d t=\int_{E} f(t) d t+\int_{[a, b]-E} f(t) d t<\alpha / 2+\alpha / 2=\alpha,
$$

[^0]a contradiction. Hence $m(E) \geqslant \alpha / 2$ and
$\int_{a}^{b} W(f(t)) d t \geqslant \int_{E} W(f(t)) d t \geqslant \int_{E} W(\alpha / 2(b-a)) d t \geqslant W(\alpha / 2(b-a)) \alpha / 2 \stackrel{\text { def }}{=} \beta$.
This completes the proof.
We consider the retarded functional differential equation
\[

$$
\begin{equation*}
x^{\prime}(t)=F\left(t, x_{t}\right) \tag{1}
\end{equation*}
$$

\]

where $x^{\prime}(t)$ is the right-hand derivative of $x(t)$ and $F\left(t, x_{t}\right)$ a continuous function from $R \times C_{H}$ into $R^{n}, F(t, 0)=0$. For continuation of solution, we suppose that F takes closed bounded sets of $R \times C_{H}$ into closed bounded sets of R^{n}.

Denote by $x\left(t_{0}, \phi\right)$ a solution of (1) with initial condition $\phi \in C_{H}$ where $x_{t_{0}}\left(t_{0}, \phi\right)$ $=\phi$ and we denote by $x(t)=x\left(t, t_{0}, \phi\right)$ the value of $x\left(t_{0}, \phi\right)$ at t.

Let $V(t, \phi)$ be a continuous nonnegative functional defined in $[0, \infty) \times C_{H}$. The upper right-hand derivative of V along solution of (1) is defined to be

$$
V^{\prime}\left(t, x_{t}\left(t_{0}, \phi\right)\right)=\varlimsup_{\delta \rightarrow 0^{+}}\left\{V\left(t+\delta, x_{t+\delta}\left(t_{0}, \phi\right)\right)-V\left(t, x_{t}\left(t_{0}, \phi\right)\right)\right\} / \delta
$$

We suppose that $V^{\prime}\left(t, x_{t}\right)$ exists.
Let W_{1}, W_{2}, W_{3}, W be continuous nondecreasing functions and P be a continuous function from $[0, \infty)$ into $[0, \infty)$ with $W_{i}(r)>0, W(r)>0, P(r)>r$ if $r>0$ and $W_{i}(0)=0$.

Theorem. Suppose there are functions $W_{1}, W_{2}, W_{3}, W, P, V$ as above, which also satisfy the following conditions:
(i) $W_{1}(|\Psi(0)|) \leqslant V(t, \Psi) \leqslant W_{2}(|\Psi(0)|)+W_{3}(| | I \Psi \|)$ for any $\Psi \in C_{H}$.
(ii) For any $t_{0} \geqslant 0$ and any $\phi \in C_{H}$
$V^{\prime}\left(t, x_{t}\left(t_{0}, \phi\right)\right)<0$ if $V\left(t, x_{t}\left(t_{0}, \phi\right)\right)=W_{2}(\|\phi\|)+W_{3}(\|\phi\|) \quad\left(t_{0} \leqslant t \leqslant t_{0}+h\right)$,
and

$$
\begin{aligned}
& V^{\prime}\left(t, x_{t}\left(t_{0}, \phi\right)\right) \leqslant-W\left(\left|x\left(t, t_{0}, \phi\right)\right|\right) \quad \text { if } P\left(V\left(t, x_{t}\left(t_{0}, \phi\right)\right)\right)>V\left(\xi, x_{\xi}\left(t_{0}, \phi\right)\right) \\
&\left(t \geqslant t_{0}+h ; t-h \leqslant \xi \leqslant t\right)
\end{aligned}
$$

Then the zero solution of (1) is uniformly asymptotically stable.
Proof. We first prove the uniform stability. Given $\varepsilon>0\left(\varepsilon<H, W_{1}(\varepsilon)<H\right)$, choose $\delta>0$ such that $\delta<\varepsilon, W_{2}(\delta)<W_{1}(\varepsilon) / 2$, and $W_{3}(\delta \sqrt{n h})<W_{1}(\varepsilon) / 2$. Let $t_{0} \geqslant 0$ and $\|\phi\|<\delta$. We shall show that

$$
\begin{equation*}
V\left(t, x_{t}\left(t_{0}, \phi\right)\right)<W_{1}(\varepsilon) \quad\left(t \geqslant t_{0}\right) . \tag{2}
\end{equation*}
$$

Obviously,

$$
V\left(t_{0}, \phi\right) \leqslant W_{2}(|\phi(0)|)+W_{3}(\|\phi\| \|) \leqslant W_{2}(\delta)+W_{3}(\delta \sqrt{n h})<W_{1}(\varepsilon)
$$

For each $t \in\left[t_{0}, t_{0}+h\right)$, if $V\left(t, x_{t}\right)<W_{2}(\|\phi\|)+W_{3}(\| \|\| \|)$, then $V\left(t, x_{t}\right)<W_{1}(\varepsilon)$, if $V\left(t, x_{t}\right)=W_{2}(\|\phi\|)+W_{3}(\|\phi\|)$, from condition (ii) we get $V\left(t+\Delta t, x_{t+\Delta t}\right) \leqslant$ $W_{2}(\|\phi\|)+W_{3}(\|\phi\|)$ for all sufficiently small $\Delta t>0$. It implies that $V\left(t, x_{t}\right)<W_{1}(\varepsilon)$
for all $t \in\left[t_{0}, t_{0}+h\right.$). Thus, if (2) fails, then there exists $t_{1} \geqslant t_{0}+h$ such that

$$
V\left(\dot{t}_{1}^{\dot{0}}, x_{t_{1}}\right)=W_{1}(\varepsilon), \quad V\left(t, x_{t}\right) \leqslant W_{1}(\varepsilon) \quad\left(t \leqslant t_{1}\right)
$$

Let $d=\inf _{W_{2}(\|\phi\|)+W_{3}(\|\phi\|)<r<W_{1}(e)}[P(r)-r]$. Obviously, there exists $T \in\left(t_{0}+\right.$ h, t_{1}) such that
(a) $W_{2}(\|\phi\|)+W_{3}(\|\phi\|) \leqslant W_{1}(\varepsilon)-\frac{1}{e} d<V\left(T, x_{T}\right)<W_{1}(\varepsilon)$, where $e>1$,
(b) $V^{\prime}\left(T, x_{T}\right)>0$.

From (a),
$P\left(V\left(T, x_{T}\right)\right) \geqslant V\left(T, x_{T}\right)+d>W_{1}(\varepsilon)+\left(1-\frac{1}{e}\right) d>V\left(\xi, x_{\xi}\right) \quad\left(t_{0} \leqslant \xi \leqslant T\right)$.
From condition (ii), we have $V^{\prime}\left(T, x_{T}\right) \leqslant-W(|x(T)|) \leqslant 0$, which contradicts (b). Hence, (2) holds.

By (2) and condition (i), we get $|x(t)|<\varepsilon$ for $t \geqslant t_{0}$. Since δ is independent of t_{0}, this proves the uniform stability.

Next, we prove the uniform asymptotic stability. For $H^{*}=\min [H, 1]$ choose $\delta>0$ such that $\left|x\left(t, t_{0}, \phi\right)\right|<H^{*}$ for $t \geqslant t_{0}$, if $t_{0} \geqslant 0$ and $\|\phi\| \leqslant \delta$. From condition (i), we have

$$
V\left(t, x_{t}\left(t_{0}, \phi\right)\right) \leqslant W_{2}\left(H^{*}\right)+W_{3}\left(H^{*} \sqrt{n h}\right)
$$

Choose a positive $B>W_{2}\left(H^{*}\right)+W_{3}\left(H^{*} \sqrt{n h}\right)$. For given $\varepsilon>0(\varepsilon<H)$, let $\bar{d}=$ $\inf _{W_{1}(\varepsilon)<r<B}(P(r)-r)$, and N be a positive integer satisfying $W_{1}(\varepsilon)+$ $(N-1) \bar{d}<B \leqslant W_{1}(\varepsilon)+N \bar{d}$. We shall show that there exists $T_{1}>t_{0}+h$ such that

$$
\begin{equation*}
V\left(T_{1}, x_{T_{1}}\left(t_{0}, \phi\right)\right)<W_{1}(\varepsilon)+(N-1) \bar{d} . \tag{3}
\end{equation*}
$$

If not, then

$$
V\left(t, x_{t}\right) \geqslant W_{1}(\varepsilon)+(N-1) \bar{d} \quad\left(t \geqslant t_{0}+h\right)
$$

and

$$
P\left(V\left(t, x_{t}\right)\right) \geqslant V\left(t, x_{t}\right)+\bar{d} \geqslant W_{1}(\varepsilon)+N \bar{d} \geqslant B>V\left(\xi, x_{\xi}\right) \quad\left(t_{0} \leqslant \xi \leqslant t\right)
$$

From (ii) we have $V^{\prime}\left(t, x_{t}\right) \leqslant-W(|x(t)|)\left(t \geqslant t_{0}+h\right)$; it follows that

$$
\begin{equation*}
V\left(t, x_{t}\right)<B-\int_{t_{0}+h}^{t} W(|x(s)|) d s \tag{4}
\end{equation*}
$$

If $V\left(t, x_{t}\right) \geqslant W_{1}(\varepsilon)$, then

$$
W_{2}(|x(t)|)+W_{3}\left(\left\|x_{t}\right\|\right)>V\left(t, x_{t}\right)>W_{1}(\varepsilon) .
$$

Therefore, either $W_{2}(|x(t)|) \geqslant W_{1}(\varepsilon) / 2$ or $W_{3}\left(\left\|x_{t}\right\|\right) \geqslant W_{1}(\varepsilon) / 2$. Let $E_{1}=\{t$: $\left.W_{3}\left(\left\|x_{t}\right\|\right) \geqslant W_{1}(\varepsilon) / 2, t \geqslant t_{0}\right\}$ and $E_{2}=\left[t_{0}, \infty\right)-E_{1}$. If $t \in E_{1}$, then there exists a constant $a>0$ with $\left\|x_{t}\right\|>a$. If $t \in E_{2}$, then there exists a constant $b>0$ with $|x(t)|>b$. In case $t \in E_{1}$, we have

$$
\sum_{i=1}^{n} \int_{-h}^{0} x_{i}^{2}(t+\theta) d \theta \geqslant a^{2}
$$

then

$$
\int_{t-h}^{t} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(s) d s \geqslant \frac{a^{2}}{n} \stackrel{\text { def }}{=} \alpha
$$

Since $|x(t)|<1$, we have

$$
|x(t)|=\max _{i}\left|x_{i}(t)\right| \geqslant \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(t)
$$

Then from the Lemma, there exists $\beta \geqslant 0$ such that

$$
\begin{equation*}
\int_{t-h}^{t} W(|x(s)|) d s \geqslant \int_{t-h}^{t} W\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(s)\right) d s \geqslant \beta \tag{5}
\end{equation*}
$$

Let K be the positive integer satisfying $K>B \geqslant(K-1)$ and $T_{1}=t_{0}+$ $(K+1) h+2 B / W(b)$, we have either
($\bar{a}) m\left(E_{1} \cap\left[t_{0}+h, T_{1}\right]\right) \geqslant K h$ or
(b) $m\left(E_{2} \cap\left[t_{0}+h, T_{1}\right]\right) \geqslant 2 B / W(b)$.

If (\bar{a}) holds, then in $E_{1} \cap\left[t_{0}+h, T_{1}\right]$ there exist K points $t_{1}<t_{2}<\cdots<t_{k}$ satisfying $t_{1} \geqslant t_{0}+2 h$ and $t_{j}-t_{j-1} \geqslant h(j=2,3, \ldots, K)$. From (4) and (5), we have

$$
\begin{aligned}
V\left(T_{1}, x_{T_{1}}\right) & <B-\int_{t_{0}+h}^{T_{1}} W(|x(s)|) d s \\
& i \leqslant B-\sum_{j=1}^{k} \int_{t_{j}-h}^{t_{j}} W\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(s)\right) d s \leqslant B-k \beta<0
\end{aligned}
$$

If ($\overline{\mathrm{b}}$) holds, from (4) we have

$$
V\left(T_{1}, x_{T_{1}}\right)<B-\int_{E_{2} \cap\left[t_{0}+h, T_{1}\right]} W(b) d s=B-W(b) m\left(E_{2} \cap\left[t_{0}+h, T_{1}\right]\right)<0
$$

Thus either $(\overline{\mathrm{a}})$ or $(\overline{\mathrm{b}})$ implies $V\left(T_{1}, X_{T_{1}}\right)<0$, a contradiction to $V\left(t, x_{t}\right) \geqslant 0$. Hence (3) holds.

In the following, we will show that

$$
\begin{equation*}
V\left(t, x_{t}\left(t_{0}, \varphi\right)\right)<W_{1}(\varepsilon)+(N-1) \bar{d} \quad \text { for all } t \geqslant T_{1} \tag{6}
\end{equation*}
$$

If (6) is not true, then there exists $\sigma>T_{1}$ such that $V\left(\sigma, x_{\sigma}\right) \leqslant W_{1}(\varepsilon)+(N-1) \bar{d}$ and
(A) $B-W_{2}\left(H^{*}\right)-W_{3}\left(H^{*} \sqrt{n h}\right)>W_{1}(\varepsilon)+(N-1) \bar{d}-V\left(\sigma, x_{\sigma}\right)$,
(B) $V^{\prime}\left(\sigma, x_{\sigma}\right)>0$.

From (A), we get

$$
\begin{aligned}
P\left(V\left(\sigma, x_{\sigma}\right)\right) & \geqslant V\left(\sigma, x_{\sigma}\right)+\bar{d} \\
& >W_{1}(\varepsilon)+(N-1) \bar{d}-B+W_{2}\left(H^{*}\right)+W_{3}\left(H^{*} \sqrt{n h}\right)+\bar{d} \\
& =W_{1}(\varepsilon)+N \bar{d}-B+W_{2}\left(H^{*}\right)+W_{3}\left(H^{*} \sqrt{n h}\right) \\
& \geqslant W_{2}\left(H^{*}\right)+W_{3}\left(H^{*} \sqrt{n h}\right) \geqslant V\left(\xi, x_{\xi}\right) \quad\left(t_{0} \leqslant \xi \leqslant \sigma\right)
\end{aligned}
$$

From condition (ii) we have $V^{\prime}\left(\sigma, x_{\sigma}\right) \leqslant-W(|x(\sigma)|) \leqslant 0$, which contradicts (B). Therefore, (6) holds.

Similarly, there exists $T_{2}, T_{3}, \ldots, T_{N}$ such that

$$
V\left(t, x_{t}\left(t_{0}, \phi\right)\right)<W_{1}(\varepsilon)+(N-k) \bar{d} \text { for } t \geqslant T_{k}, k=2,3, \ldots, N
$$

Then $V\left(t, x_{t}\left(t_{0}, \phi\right)\right)<W_{1}(\varepsilon)$ for all $t \geqslant T_{N}$. From condition (i) we have $|x(t)|<\varepsilon$ for all $t \geqslant T_{N}$, where

$$
T_{N}=t_{0}+N((k+1) h+2 B / W(b))
$$

Since $N((k+1) h+2 B / W(b))$ is independent of t_{0}, we have completed the proof of the theorem.

Example. Consider the equation

$$
\begin{equation*}
x^{\prime}(t)=-a(t) x(t)+b(t) x(t-h) \tag{7}
\end{equation*}
$$

where $a(t)$ and $b(t)$ are continuous functions, $0<a \leqslant a(t)<\infty,|b(t)| \leqslant b<\mu a$, $0<\mu<1$.

One can choose $V\left(t, x_{t}\right)=\frac{1}{2} x^{2}(t), W_{1}(|x(t)|)=\frac{1}{4} x^{2}(t), \quad W_{2}(|x(t)|)=x^{2}(t)$, $W_{3}\left(\left\|x_{t}\right\|\right)=\left\|x_{t}\right\|^{2}$ and $P(s)=q s, q>1$.

For $t \in\left[t_{0}, t_{0}+h\right)$, if $V\left(t, x_{t}\right)=W_{2}(\|\phi\|)+W_{3}(\|\phi\|)$, that is $\frac{1}{2} x^{2}(t)=\|\phi\|^{2}+$ $\left\|\|\phi\|^{2}\right.$. Then

$$
\begin{aligned}
V^{\prime}\left(t, x_{t}\right) & =x(t) x^{\prime}(t)=-a(t) x^{2}(t)+b(t) x(t) x(t-h) \\
& \leqslant-a x^{2}(t)+\frac{b}{2}\left[x^{2}(t)+x^{2}(t-h)\right] \\
& \leqslant-\left(a-\frac{b}{2}\right) x^{2}(t)+\frac{b}{2}\|\phi\|^{2}=-\left(2 a-\frac{3 b}{2}\right)\|\phi\|^{2}-(2 a-b)\|\phi\|^{2} \\
& <0
\end{aligned}
$$

For $t \in\left[t_{0}+h, \infty\right)$ if $P\left(V\left(t, x_{t}\right)\right)>V\left(\xi, x_{\xi}\right)(t-h \leqslant \xi \leqslant t)$, that is $q x^{2}(t)>$ $x^{2}(\xi)(t-h \leqslant \xi \leqslant t)$, then $q x^{2}(t)>x^{2}(t-h)$.

$$
\begin{aligned}
V^{\prime}\left(t, x_{t}\right) & \leqslant-\left(a-\frac{b}{2}\right) x^{2}(t)+\frac{b}{2} x^{2}(t-h) \\
& \leqslant-\left(a-\frac{b}{2}\right) x^{2}(t)+\frac{b}{2} q x^{2}(t)=-\left(a-b\left(\frac{1+q}{2}\right)\right) x^{2}(t)
\end{aligned}
$$

If we choose $q=2 / \mu-1$, then $a-b((1+q) / 2)>0$. Let

$$
W(|x(t)|)=(a-b((1+q) / 2)) x^{2}(t)
$$

We can see that the conditions of the Theorem are satisfied. Therefore, the zero solution of (7) is uniformly asymptotically stable.

References

1. T. A. Burton, Uniform asymptotic stability in functional differential equations, Proc. Amer. Math. Soc. 68 (1978), 195-199.
2. T. Yoshizawa, Stability theory by Lyapunov's second method, Publ. Math. Soc. Japan, No. 9, Math. Soc. of Japan, Tokyo, 1966, pp. 183-192.
3. B. S. Razumikhin, Application of Liapunov's method to problems in the stability of systems with a delay, Avtomat. i Telemeh. 21 (1960), 740-749. (Russian)
4. J. Kato, On Liapunov-Razumikhin type theorems for functional equations, Funkcial. Ekvac. 16 (1973), 225-239.
5. J. K. Hale, Theory of functional differential equations, Appl. Math. Sci., Vol. 3, Springer-Verlag, New York and Berlin, 1977, pp. 11-41.
6. N. N. Krasovskii, Stability of motion, Stanford Univ. Press, Stanford, Calif., 1963.

Department of Mathematics, Hunan University, Changsha, Hunan, People's Rupublic of China

[^0]: Received by the editors December 9, 1980 and, in revised form, April 25, 1981.
 1980 Mathematics Subject Classification. Primary 34K20.
 Key words and phrases. Functional differential equations, Liapunov functionals, uniform asymptotic stability.

