ON THE UNIFORM ASYMPTOTIC STABILITY IN FUNCTIONAL DIFFERENTIAL EQUATIONS

L. Z. WEN

ABSTRACT. We consider a system of functional differential equations $x'(t) = F(t, x_t)$ and obtain conditions on a Liapunov functional to insure the uniform asymptotic stability of the zero solution.

1. Introduction. Following the work of Yoshizawa [2], Burton [1] obtained sufficient conditions of the uniform asymptotic stability in the retarded functional differential equation $x'(t) = F(t, x_t)$ on a Liapunov functional. He showed that it is not necessary to require $F(t, x_t)$ bounded for x_t bounded. Now we use the Razumikhin condition so that it is not necessary to require $V'(t, x_t) \leq -W(|x(t)|)$ for all $t \ge 0$. This work generalized Burton's result.

For $x \in \mathbb{R}^n$, let |x| be $\max_{1 \le i \le n} |x_i|$. Given h > 0, let C denote the space of continuous functions from [-h, 0] into \mathbb{R}^n and for $\phi \in C$, $\|\phi\| = \sup_{-h \le \theta \le 0} |\phi(\theta)|$. For $\phi \in C_H = \{\phi: \phi \in C, \|\phi\| \le H\}$, let

$$\|\phi\|\| = \left(\sum_{i=1}^{n} \int_{-h}^{0} \phi_{i}^{2}(s) ds\right)^{1/2},$$

where ϕ_i are the components of ϕ .

For $t_0 \in R$, A > 0, $t \in [t_0, t_0 + A)$ and a continuous function x from $[t_0 - h, t_0 + A]$ into R^n , let $x_t \in C$ be defined by $x_t(\theta) = x(t + \theta), \theta \in [-h, 0]$.

2. Uniform asymptotic stability.

LEMMA. Let F be a family of continuous functions $f: [a, b] \to [0, 1]$ and W: $[0, \infty) \to [0, \infty)$ be a continuous nondecreasing function, and W(s) > 0 if s > 0. If there exists $\alpha > 0$ with $\int_a^b f(t) dt \ge \alpha$ for any $f \in F$ then there exists $\beta > 0$ with $\int_0^1 W(f(t)) dt \ge \beta$.

PROOF. For any $f \in F$, let $E = \{t: f(t) \ge \alpha/2(b-a), a \le t \le b\}$ and m(E) be the measure of E. If $m(E) \le \alpha/2$, then

$$\alpha \leq \int_a^b f(t) dt = \int_E f(t) dt + \int_{[a,b]-E} f(t) dt < \alpha/2 + \alpha/2 = \alpha,$$

©1982 American Mathematical Society 0002-9939/82/0000-1051/\$02.25

Received by the editors December 9, 1980 and, in revised form, April 25, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 34K20.

Key words and phrases. Functional differential equations, Liapunov functionals, uniform asymptotic stability.

a contradiction. Hence $m(E) \ge \alpha/2$ and

$$\int_{a}^{b} W(f(t)) dt \ge \int_{E} W(f(t)) dt \ge \int_{E} W(\alpha/2(b-a)) dt \ge W(\alpha/2(b-a))\alpha/2 \stackrel{\text{def}}{=} \beta.$$

This completes the proof.

We consider the retarded functional differential equation

(1)
$$x'(t) = F(t, x_t),$$

where x'(t) is the right-hand derivative of x(t) and $F(t, x_t)$ a continuous function from $R \times C_H$ into R^n , F(t, 0) = 0. For continuation of solution, we suppose that F takes closed bounded sets of $R \times C_H$ into closed bounded sets of R^n .

Denote by $x(t_0, \phi)$ a solution of (1) with initial condition $\phi \in C_H$ where $x_{t_0}(t_0, \phi) = \phi$ and we denote by $x(t) = x(t, t_0, \phi)$ the value of $x(t_0, \phi)$ at t.

Let $V(t, \phi)$ be a continuous nonnegative functional defined in $[0, \infty) \times C_H$. The upper right-hand derivative of V along solution of (1) is defined to be

$$V'(t, x_t(t_0, \phi)) = \overline{\lim_{\delta \to 0^+}} \left\{ V(t + \delta, x_{t+\delta}(t_0, \phi)) - V(t, x_t(t_0, \phi)) \right\} / \delta$$

We suppose that $V'(t, x_t)$ exists.

Let W_1 , W_2 , W_3 , W be continuous nondecreasing functions and P be a continuous function from $[0, \infty)$ into $[0, \infty)$ with $W_i(r) > 0$, W(r) > 0, P(r) > r if r > 0 and $W_i(0) = 0$.

THEOREM. Suppose there are functions W_1 , W_2 , W_3 , W, P, V as above, which also satisfy the following conditions:

- (i) $W_1(|\Psi(0)|) \le V(t, \Psi) \le W_2(|\Psi(0)|) + W_3(|||\Psi||)$ for any $\Psi \in C_H$.
- (ii) For any $t_0 \ge 0$ and any $\phi \in C_H$

 $V'(t, x_t(t_0, \phi)) < 0 \quad \text{if } V(t, x_t(t_0, \phi)) = W_2(||\phi||) + W_3(|||\phi||) \quad (t_0 \le t \le t_0 + h),$ and

$$V'(t, x_t(t_0, \phi)) \leq -W(|x(t, t_0, \phi)|) \quad if P(V(t, x_t(t_0, \phi))) > V(\xi, x_{\xi}(t_0, \phi)))$$

(t > t_0 + h; t - h < \xi < t).

Then the zero solution of (1) is uniformly asymptotically stable.

PROOF. We first prove the uniform stability. Given $\varepsilon > 0$ ($\varepsilon < H$, $W_1(\varepsilon) < H$), choose $\delta > 0$ such that $\delta < \varepsilon$, $W_2(\delta) < W_1(\varepsilon)/2$, and $W_3(\delta\sqrt{nh}) < W_1(\varepsilon)/2$. Let $t_0 \ge 0$ and $\|\phi\| < \delta$. We shall show that

(2)
$$V(t, x_t(t_0, \phi)) < W_1(\varepsilon) \qquad (t \ge t_0).$$

Obviously,

$$V(t_0,\phi) \leq W_2(|\phi(0)|) + W_3(||\phi||) \leq W_2(\delta) + W_3(\delta\sqrt{nh}) < W_1(\varepsilon).$$

For each $t \in [t_0, t_0 + h)$, if $V(t, x_t) < W_2(||\phi||) + W_3(|||\phi||)$, then $V(t, x_t) < W_1(\varepsilon)$, if $V(t, x_t) = W_2(||\phi||) + W_3(|||\phi|||)$, from condition (ii) we get $V(t + \Delta t, x_{t+\Delta t}) \le W_2(||\phi||) + W_3(|||\phi|||)$ for all sufficiently small $\Delta t > 0$. It implies that $V(t, x_t) < W_1(\varepsilon)$ for all $t \in [t_0, t_0 + h)$. Thus, if (2) fails, then there exists $t_1 \ge t_0 + h$ such that

$$W(t_1, x_{t_1}) = W_1(\varepsilon), \quad V(t, x_t) \leq W_1(\varepsilon) \qquad (t \leq t_1).$$

Let $d = \inf_{W_2(\|\phi\|) + W_3(\|\phi\|) \le r \le W_1(\varepsilon)} [P(r) - r]$. Obviously, there exists $T \in (t_0 + h, t_1)$ such that

- (a) $W_2(||\phi||) + W_3(|||\phi|||) \le W_1(\varepsilon) \frac{1}{\varepsilon}d \le V(T, x_T) \le W_1(\varepsilon)$, where e > 1,
- (b) $V'(T, x_T) > 0.$

From (a),

$$P(V(T, x_T)) \ge V(T, x_T) + d \ge W_1(\varepsilon) + \left(1 - \frac{1}{e}\right) d \ge V(\xi, x_\xi) \qquad (t_0 \le \xi \le T).$$

From condition (ii), we have $V'(T, x_T) \le -W(|x(T)|) \le 0$, which contradicts (b). Hence, (2) holds.

By (2) and condition (i), we get $|x(t)| < \varepsilon$ for $t \ge t_0$. Since δ is independent of t_0 , this proves the uniform stability.

Next, we prove the uniform asymptotic stability. For $H^* = \min[H, 1]$ choose $\delta > 0$ such that $|x(t, t_0, \phi)| < H^*$ for $t \ge t_0$, if $t_0 \ge 0$ and $||\phi|| \le \delta$. From condition (i), we have

$$V(t, x_t(t_0, \phi)) \leq W_2(H^*) + W_3(H^*\sqrt{nh}).$$

Choose a positive $B > W_2(H^*) + W_3(H^*\sqrt{nh})$. For given $\varepsilon > 0$ ($\varepsilon < H$), let $\overline{d} = \inf_{W_1(\varepsilon) \le r \le B} (P(r) - r)$, and N be a positive integer satisfying $W_1(\varepsilon) + (N-1)\overline{d} \le B \le W_1(\varepsilon) + N\overline{d}$. We shall show that there exists $T_1 > t_0 + h$ such that

(3)
$$V(T_1, x_{T_1}(t_0, \phi)) < W_1(\varepsilon) + (N-1)\overline{d}.$$

If not, then

$$V(t, x_t) \ge W_1(\varepsilon) + (N-1)\overline{d} \qquad (t \ge t_0 + h),$$

and

$$P(V(t, x_t)) \ge V(t, x_t) + \overline{d} \ge W_1(\varepsilon) + N\overline{d} \ge B \ge V(\xi, x_{\xi}) \qquad (t_0 \le \xi \le t).$$

From (ii) we have $V'(t, x_t) \leq -W(|x(t)|)$ $(t \geq t_0 + h)$; it follows that

(4)
$$V(t, x_t) < B - \int_{t_0+h}^t W(|x(s)|) \, ds.$$

If $V(t, x_t) \ge W_1(\varepsilon)$, then

$$W_2(|x(t)|) + W_3(||x_t||) > V(t, x_t) > W_1(\varepsilon).$$

Therefore, either $W_2(|x(t)|) \ge W_1(\varepsilon)/2$ or $W_3(||x_t||) \ge W_1(\varepsilon)/2$. Let $E_1 = \{t: W_3(||x_t||) \ge W_1(\varepsilon)/2, t \ge t_0\}$ and $E_2 = [t_0, \infty) - E_1$. If $t \in E_1$, then there exists a constant a > 0 with $||x_t|| \ge a$. If $t \in E_2$, then there exists a constant b > 0 with $||x(t)| \ge b$. In case $t \in E_1$, we have

$$\sum_{i=1}^n \int_{-h}^0 x_i^2(t+\theta) d\theta \ge a^2,$$

then

$$\int_{t-h}^{t} \frac{1}{n} \sum_{i=1}^{n} x_i^2(s) \, ds \geq \frac{a^2}{n} \stackrel{\text{def}}{=} \alpha.$$

Since |x(t)| < 1, we have

$$|x(t)| = \max_{i} |x_{i}(t)| \ge \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(t).$$

Then from the Lemma, there exists $\beta \ge 0$ such that

(5)
$$\int_{t-h}^{t} W(|x(s)|) ds \ge \int_{t-h}^{t} W\left(\frac{1}{n} \sum_{i=1}^{n} x_i^2(s)\right) ds \ge \beta.$$

Let K be the positive integer satisfying $K > B \ge (K - 1)$ and $T_1 = t_0 + (K + 1)h + 2B/W(b)$, we have either

 $(\bar{a}) m(E_1 \cap [t_0 + h, T_1]) \ge Kh \text{ or }$

($\bar{\mathbf{b}}$) $m(E_2 \cap [t_0 + h, T_1]) \ge 2B/W(b)$.

If (a) holds, then in $E_1 \cap [t_0 + h, T_1]$ there exist K points $t_1 < t_2 < \cdots < t_k$ satisfying $t_1 \ge t_0 + 2h$ and $t_j - t_{j-1} \ge h$ $(j = 2, 3, \dots, K)$. From (4) and (5), we have

$$V(T_1, x_{T_1}) < B - \int_{t_0+h}^{T_1} W(|x(s)|) ds$$

$$\leq B - \sum_{j=1}^k \int_{t_j-h}^{t_j} W\left(\frac{1}{n} \sum_{i=1}^n x_i^2(s)\right) ds \leq B - k\beta < 0.$$

If (\overline{b}) holds, from (4) we have

$$V(T_1, x_{T_1}) < B - \int_{E_2 \cap [t_0 + h, T_1]} W(b) \, ds = B - W(b) m(E_2 \cap [t_0 + h, T_1]) < 0.$$

Thus either (ā) or (b) implies $V(T_1, X_{T_1}) < 0$, a contradiction to $V(t, x_t) \ge 0$. Hence (3) holds.

In the following, we will show that

(6)
$$V(t, x_t(t_0, \varphi)) < W_1(\varepsilon) + (N-1)\overline{d} \text{ for all } t \ge T_1.$$

If (6) is not true, then there exists $\sigma > T_1$ such that $V(\sigma, x_{\sigma}) \le W_1(\varepsilon) + (N-1)\overline{d}$ and

(A) $B - W_2(H^*) - W_3(H^*\sqrt{nh}) > W_1(\varepsilon) + (N-1)\overline{d} - V(\sigma, x_{\sigma}),$

(B) $V'(\sigma, x_{\sigma}) > 0.$

From (A), we get

$$P(V(\sigma, x_{\sigma})) \ge V(\sigma, x_{\sigma}) + \overline{d}$$

$$> W_{1}(\varepsilon) + (N-1)\overline{d} - B + W_{2}(H^{*}) + W_{3}(H^{*}\sqrt{nh}) + \overline{d}$$

$$= W_{1}(\varepsilon) + N\overline{d} - B + W_{2}(H^{*}) + W_{3}(H^{*}\sqrt{nh})$$

$$\ge W_{2}(H^{*}) + W_{3}(H^{*}\sqrt{nh}) \ge V(\xi, x_{\xi}) \qquad (t_{0} \le \xi \le \sigma).$$

536

From condition (ii) we have $V'(\sigma, x_{\sigma}) \leq -W(|x(\sigma)|) \leq 0$, which contradicts (B). Therefore, (6) holds.

Similarly, there exists T_2, T_3, \ldots, T_N such that

$$V(t, x_t(t_0, \phi)) < W_1(\varepsilon) + (N-k)\overline{d} \quad \text{for } t \ge T_k, k = 2, 3, \dots, N.$$

Then $V(t, x_t(t_0, \phi)) < W_1(\varepsilon)$ for all $t \ge T_N$. From condition (i) we have $|x(t)| < \varepsilon$ for all $t \ge T_N$, where

$$T_N = t_0 + N((k+1)h + 2B/W(b)).$$

Since N((k + 1)h + 2B/W(b)) is independent of t_0 , we have completed the proof of the theorem.

EXAMPLE. Consider the equation

(7)
$$x'(t) = -a(t)x(t) + b(t)x(t-h)$$

where a(t) and b(t) are continuous functions, $0 < a \le a(t) < \infty$, $|b(t)| \le b < \mu a$, $0 < \mu < 1$.

One can choose $V(t, x_t) = \frac{1}{2}x^2(t)$, $W_1(|x(t)|) = \frac{1}{4}x^2(t)$, $W_2(|x(t)|) = x^2(t)$, $W_3(||x_t||) = ||x_t||^2$ and P(s) = qs, q > 1.

For $t \in [t_0, t_0 + h)$, if $V(t, x_t) = W_2(||\phi||) + W_3(|||\phi||)$, that is $\frac{1}{2}x^2(t) = ||\phi||^2 + ||\phi||^2$. Then

$$V'(t, x_t) = x(t)x'(t) = -a(t)x^2(t) + b(t)x(t)x(t-h)$$

$$\leq -ax^2(t) + \frac{b}{2}[x^2(t) + x^2(t-h)]$$

$$\leq -\left(a - \frac{b}{2}\right)x^2(t) + \frac{b}{2}\|\phi\|^2 = -\left(2a - \frac{3b}{2}\right)\|\phi\|^2 - (2a - b)\|\phi\|^2$$

$$< 0.$$

For $t \in [t_0 + h, \infty)$ if $P(V(t, x_t)) > V(\xi, x_{\xi})$ $(t - h \le \xi \le t)$, that is $qx^2(t) > x^2(\xi) (t - h \le \xi \le t)$, then $qx^2(t) > x^2(t - h)$.

$$V'(t, x_t) \leq -\left(a - \frac{b}{2}\right) x^2(t) + \frac{b}{2} x^2(t - h)$$

$$\leq -\left(a - \frac{b}{2}\right) x^2(t) + \frac{b}{2} q x^2(t) = -\left(a - b\left(\frac{1 + q}{2}\right)\right) x^2(t).$$

If we choose $q = 2/\mu - 1$, then a - b((1 + q)/2) > 0. Let

$$W(|x(t)|) = (a - b((1+q)/2))x^{2}(t).$$

We can see that the conditions of the Theorem are satisfied. Therefore, the zero solution of (7) is uniformly asymptotically stable.

References

1. T. A. Burton, Uniform asymptotic stability in functional differential equations, Proc. Amer. Math. Soc. 68 (1978), 195-199.

2. T. Yoshizawa, Stability theory by Lyapunov's second method, Publ. Math. Soc. Japan, No. 9, Math. Soc. of Japan, Tokyo, 1966, pp. 183-192.

3. B. S. Razumikhin, Application of Liapunov's method to problems in the stability of systems with a delay, Avtomat. i Telemeh. 21 (1960), 740-749. (Russian)

4. J. Kato, On Liapunov-Razumikhin type theorems for functional equations, Funkcial. Ekvac. 16 (1973), 225-239.

5. J. K. Hale, *Theory of functional differential equations*, Appl. Math. Sci., Vol. 3, Springer-Verlag, New York and Berlin, 1977, pp. 11-41.

6. N. N. Krasovskii, Stability of motion, Stanford Univ. Press, Stanford, Calif., 1963.

DEPARTMENT OF MATHEMATICS, HUNAN UNIVERSITY, CHANGSHA, HUNAN, PEOPLE'S RUPUBLIC OF CHINA