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ON THE UNIFORM ASYMPTOTIC VALIDITY OF SUBSAMPLING
AND THE BOOTSTRAP

BY JOSEPH P. ROMANO AND AZEEM M. SHAIKH

Stanford University and University of Chicago

This paper provides conditions under which subsampling and the boot-
strap can be used to construct estimators of the quantiles of the distribution of
a root that behave well uniformly over a large class of distributions P. These
results are then applied (i) to construct confidence regions that behave well
uniformly over P in the sense that the coverage probability tends to at least
the nominal level uniformly over P and (ii) to construct tests that behave well
uniformly over P in the sense that the size tends to no greater than the nom-
inal level uniformly over P. Without these stronger notions of convergence,
the asymptotic approximations to the coverage probability or size may be
poor, even in very large samples. Specific applications include the multivari-
ate mean, testing moment inequalities, multiple testing, the empirical process
and U -statistics.

1. Introduction. Let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of random
variables with distribution P ∈ P, and denote by Jn(x,P ) the distribution of a real-
valued root Rn = Rn(X

(n),P ) under P . In statistics and econometrics, it is often
of interest to estimate certain quantiles of Jn(x,P ). Two commonly used methods
for this purpose are subsampling and the bootstrap. This paper provides conditions
under which these estimators behave well uniformly over P. More precisely, we
provide conditions under which subsampling and the bootstrap may be used to
construct estimators ĉn(α1) of the α1 quantiles of Jn(x,P ) and ĉn(1 − α2) of the
1 − α2 quantiles of Jn(x,P ), satisfying

lim inf
n→∞ inf

P∈P
P

{
ĉn(α1) ≤ Rn ≤ ĉn(1 − α2)

} ≥ 1 − α1 − α2.(1)

Here, ĉn(0) is understood to be −∞, and ĉn(1) is understood to be +∞. For
the construction of two-sided confidence intervals of nominal level 1 − 2α for a
real-valued parameter, we typically would consider α1 = α2 = α, while for a one-
sided confidence interval of nominal level 1 − α we would consider either α1 = 0
and α2 = α, or α1 = α and α2 = 0. In many cases, it is possible to replace the
lim infn→∞ and ≥ in (1) with limn→∞ and =, respectively. These results differ
from those usually stated in the literature in that they require the convergence to
hold uniformly over P instead of just pointwise over P. The importance of this
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stronger notion of convergence when applying these results is discussed further
below.

As we will see, the result (1) may hold with α1 = 0 and α2 = α ∈ (0,1), but it
may fail if α2 = 0 and α1 = α ∈ (0,1), or the other way round. This phenomenon
arises when it is not possible to estimate Jn(x,P ) uniformly well with respect to
a suitable metric, but, in a sense to be made precise by our results, it is possible to
estimate it sufficiently well to ensure that (1) still holds for certain choices of α1
and α2. Note that metrics compatible with the weak topology are not sufficient for
our purposes. In particular, closeness of distributions with respect to such a met-
ric does not ensure closeness of quantiles. See Remark 2.7 for further discussion
of this point. In fact, closeness of distributions with respect to even stronger met-
rics, such as the Kolmogorov metric, does not ensure closeness of quantiles either.
For this reason, our results rely heavily on Lemma A.1 which relates closeness of
distributions with respect to a suitable metric and coverage statements.

In contrast, the usual arguments for the pointwise asymptotic validity of sub-
sampling and the bootstrap rely on showing for each P ∈ P that ĉn(1 − α) tends
in probability under P to the 1 − α quantile of the limiting distribution of Rn

under P . Because our results are uniform in P ∈ P, we must consider the behav-
ior of Rn and ĉn(1 − α) under arbitrary sequences {Pn ∈ P :n ≥ 1}, under which
the quantile estimators need not even settle down. Thus, the results are not trivial
extensions of the usual pointwise asymptotic arguments.

The construction of ĉn(α) satisfying (1) is useful for constructing confidence
regions that behave well uniformly over P. More precisely, our results provide
conditions under which subsampling and the bootstrap can be used to construct
confidence regions Cn = Cn(X

(n)) of level 1 − α for a parameter θ(P ) that are
uniformly consistent in level in the sense that

lim inf
n→∞ inf

P∈P
P

{
θ(P ) ∈ Cn

} ≥ 1 − α.(2)

Our results are also useful for constructing tests φn = φn(X
(n)) of level α for a null

hypothesis P ∈ P0 ⊆ P against the alternative P ∈ P1 = P \ P0 that are uniformly
consistent in level in the sense that

lim sup
n→∞

sup
P∈P0

EP [φn] ≤ α.(3)

In some cases, it is possible to replace the lim infn→∞ and ≥ in (2) or the
lim supn→∞ and ≤ in (3) with limn→∞ and =, respectively.

Confidence regions satisfying (2) are desirable because they ensure that for ev-
ery ε > 0 there is an N such that for n > N we have that P {θ(P ) ∈ Cn} is no less
than 1−α−ε for all P ∈ P. In contrast, confidence regions that are only pointwise
consistent in level in the sense that

lim inf
n→∞ P

{
θ(P ) ∈ Cn

} ≥ 1 − α
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for each fixed P ∈ P have the feature that there exists some ε > 0 and {Pn ∈ P :n ≥
1} such that Pn{θ(Pn) ∈ Cn} is less than 1 − α − ε infinitely often. Likewise, tests
satisfying (3) are desirable for analogous reasons. For this reason, inferences based
on confidence regions or tests that fail to satisfy (2) or (3) may be very mislead-
ing in finite samples. Of course, as pointed out by Bahadur and Savage (1956),
there may be no nontrivial confidence region or test satisfying (2) or (3) when P
is sufficiently rich. For this reason, we will have to restrict P appropriately in our
examples. In the case of confidence regions for or tests about the mean, for in-
stance, we will have to impose a very weak uniform integrability condition. See
also Kabaila (1995), Pötscher (2002), Leeb and Pötscher (2006a, 2006b), Pötscher
(2009) for related results in more complicated settings, including post-model se-
lection, shrinkage-estimators and ill-posed problems.

Some of our results on subsampling are closely related to results in Andrews and
Guggenberger (2010), which were developed independently and at about the same
time as our results. See the discussion on page 431 of Andrews and Guggenberger
(2010). Our results show that the question of whether subsampling can be used to
construct estimators ĉn(α) satisfying (1) reduces to a single, succinct requirement
on the asymptotic relationship between the distribution of Jn(x,P ) and Jb(x,P ),
where b is the subsample size, whereas the results of Andrews and Guggenberger
(2010) require the verification of a larger number of conditions. Moreover, we
also provide a converse, showing this requirement on the asymptotic relationship
between the distribution of Jn(x,P ) and Jb(x,P ) is also necessary in the sense
that, if the requirement fails, then for some nominal coverage level, the uniform
coverage statements fail. Thus our results are stated under essentially the weakest
possible conditions, yet are verifiable in a large class of examples. On the other
hand, the results of Andrews and Guggenberger (2010) further provide a means of
calculating the limiting value of infP∈P P {ĉn(α1) ≤ Rn ≤ ĉn(1 − α2)} in the case
where it may not satisfy (1). To the best of our knowledge, our results on the boot-
strap are the first to be stated at this level of generality. An important antecedent
is Romano (1989), who studies the uniform asymptotic behavior of confidence re-
gions for a univariate cumulative distribution function. See also Mikusheva (2007),
who analyzes the uniform asymptotic behavior of some tests that arise in the con-
text of an autoregressive model.

The remainder of the paper is organized as follows. In Section 2, we present
the conditions under which ĉn(α) satisfying (1) may be constructed using sub-
sampling or the bootstrap. We then provide in Section 3 several applications of
our general results. These applications include the multivariate mean, testing mo-
ment inequalities, multiple testing, the empirical process and U -statistics. The dis-
cussion of U -statistics is especially noteworthy because it highlights the fact that
the assumptions required for the uniform asymptotic validity of subsampling and
the bootstrap may differ. In particular, subsampling may be uniformly asymptoti-
cally valid under conditions where, as noted by Bickel and Freedman (1981), the
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bootstrap fails even to be pointwise asymptotically valid. The application to mul-
tiple testing is also noteworthy because, despite the enormous recent literature in
this area, our results appear to be the first that provide uniformly asymptotically
valid inference. Proofs of the main results (Theorems 2.1 and 2.4) can be found
in the Appendix; proofs of all other results can be found in Romano and Shaikh
(2012), which contains supplementary material. Many of the intermediate results
may be of independent interest, including uniform weak laws of large numbers for
U -statistics and V -statistics [Lemmas S.17.3 and S.17.4 in Romano and Shaikh
(2012), resp.] as well as the aforementioned Lemma A.1.

2. General results.

2.1. Subsampling. Let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of random
variables with distribution P ∈ P. Denote by Jn(x,P ) the distribution of a real-
valued root Rn = Rn(X

(n),P ) under P . The goal is to construct procedures which
are valid uniformly in P . In order to describe the subsampling approach to ap-
proximate Jn(x,P ), let b = bn < n be a sequence of positive integers tending
to infinity, but satisfying b/n → 0, and define Nn = (n

b

)
. For i = 1, . . . ,Nn, de-

note by Xn,(b),i the ith subset of data of size b. Below, we present results for two
subsampling-based estimators of Jn(x,P ). We first consider the estimator given
by

Ln(x,P ) = 1

Nn

∑
1≤i≤Nn

I
{
Rb

(
Xn,(b),i , P

) ≤ x
}
.(4)

More generally, we will also consider feasible estimators L̂n(x) in which Rb is
replaced by some estimator R̂b, that is,

L̂n(x) = 1

Nn

∑
1≤i≤Nn

I
{
R̂b

(
Xn,(b),i) ≤ x

}
.(5)

Typically, R̂b(·) = Rb(·, P̂n), where P̂n is the empirical distribution, but this is not
assumed below. Even though the estimator of Jn(x,P ) defined in (4) is infeasible
because of its dependence on P , which is unknown, it is useful both as an interme-
diate step toward establishing some results for the feasible estimator of Jn(x,P )

and, as explained in Remarks 2.2 and 2.3, on its own in the construction of some
feasible tests and confidence regions.

THEOREM 2.1. Let b = bn < n be a sequence of positive integers tending to
infinity, but satisfying b/n → 0, and define Ln(x,P ) as in (4). Then, the following
statements are true:

(i) If lim supn→∞ supP∈P supx∈R{Jb(x,P ) − Jn(x,P )} ≤ 0, then

lim inf
n→∞ inf

P∈P
P

{
L−1

n (α1,P ) ≤ Rn ≤ L−1
n (1 − α2,P )

} ≥ 1 − α1 − α2(6)
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holds for α1 = 0 and any 0 ≤ α2 < 1.
(ii) If lim supn→∞ supP∈P supx∈R{Jn(x,P )−Jb(x,P )} ≤ 0, then (6) holds for

α2 = 0 and any 0 ≤ α1 < 1.
(iii) If limn→∞ supP∈P supx∈R |Jb(x,P )−Jn(x,P )| = 0, then (6) holds for any

α1 ≥ 0 and α2 ≥ 0 satisfying 0 ≤ α1 + α2 < 1.

REMARK 2.1. It is typically easy to deduce from the conclusions of Theo-
rem 2.1 stronger results in which the lim infn→∞ and ≥ in (6) are replaced by
limn→∞ and =, respectively. For example, in order to assert that (6) holds with
lim infn→∞ and ≥ replaced by limn→∞ and =, respectively, all that is required is
that

lim
n→∞P

{
L−1

n (α1,P ) ≤ Rn ≤ L−1
n (1 − α2,P )

} = 1 − α1 − α2

for some P ∈ P. This can be verified using the usual arguments for the pointwise
asymptotic validity of subsampling. Indeed, it suffices to show for some P ∈ P that
Jn(x,P ) tends in distribution to a limiting distribution J (x,P ) that is continuous
at the appropriate quantiles. See Politis, Romano and Wolf (1999) for details.

REMARK 2.2. As mentioned earlier, Ln(x,P ) defined in (4) is infeasible be-
cause it still depends on P , which is unknown, through Rb(X

n,(b),i , P ). Even so,
Theorem 2.1 may be used without modification to construct feasible confidence
regions for a parameter of interest θ(P ) provided that Rn(X

(n),P ), and therefore
Ln(x,P ), depends on P only through θ(P ). If this is the case, then one may sim-
ply invert tests of the null hypotheses θ(P ) = θ for all θ ∈ � to construct a confi-
dence region for θ(P ). More concretely, suppose Rn(X

(n),P ) = Rn(X
(n), θ(P ))

and Ln(x,P ) = Ln(x, θ(P )). Whenever we may apply part (i) of Theorem 2.1,
we have that

Cn = {
θ ∈ � :Rn

(
X(n), θ

) ≤ L−1
n (1 − α, θ)

}
satisfies (2). Similar conclusions follow from parts (ii) and (iii) of Theorem 2.1.

REMARK 2.3. It is worth emphasizing that even though Theorem 2.1 is stated
for roots, it is, of course, applicable in the special case where Rn(X

(n),P ) =
Tn(X

(n)). This is especially useful in the context of hypothesis testing. See Ex-
ample 3.3 for one such instance.

Next, we provide some results for feasible estimators of Jn(x,P ). The first
result, Corollary 2.1, handles the case of the most basic root, while Theorem 2.2
applies to more general roots needed for many of our applications.

COROLLARY 2.1. Suppose Rn = Rn(X
(n),P ) = τn(θ̂n − θ(P )), where {τn ∈

R :n ≥ 1} is a sequence of normalizing constants, θ(P ) is a real-valued parameter
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of interest and θ̂n = θ̂n(X
(n)) is an estimator of θ(P ). Let b = bn < n be a sequence

of positive integers tending to infinity, but satisfying b/n → 0, and define

L̂n(x) = 1

Nn

∑
1≤i≤Nn

I
{
τb

(
θ̂b

(
Xn,(b),i) − θ̂n

) ≤ x
}
.

Then statements (i)–(iii) of Theorem 2.1 hold when L−1
n (·,P ) is replaced by

τn

τn+τb
L̂−1

n (·).

THEOREM 2.2. Let b = bn < n be a sequence of positive integers tending to
infinity, but satisfying b/n → 0. Define Ln(x,P ) as in (4) and L̂n(x) as in (5).
Suppose for all ε > 0 that

sup
P∈P

P
{

sup
x∈R

∣∣L̂n(x) − Ln(x,P )
∣∣ > ε

}
→ 0.(7)

Then, statements (i)–(iii) of Theorem 2.1 hold when L−1
n (·,P ) is replaced by

L̂−1
n (·).

As a special case, Theorem 2.2 can be applied to Studentized roots.

COROLLARY 2.2. Suppose

Rn = Rn

(
X(n),P

) = τn(θ̂n − θ(P ))

σ̂n

,

where {τn ∈ R :n ≥ 1} is a sequence of normalizing constants, θ(P ) is a real-
valued parameter of interest, and θ̂n = θ̂n(X

(n)) is an estimator of θ(P ), and σ̂n =
σ̂n(X

(n)) ≥ 0 is an estimator of some parameter σ(P ) ≥ 0. Suppose further that:

(i) The family of distributions {Jn(x,P ) :n ≥ 1,P ∈ P} is tight, and any sub-
sequential limiting distribution is continuous.

(ii) For any ε > 0,

sup
P∈P

P

{∣∣∣∣ σ̂n

σ (P )
− 1

∣∣∣∣ > ε

}
→ 0.

Let b = bn < n be a sequence of positive integers tending to infinity, but satisfying
b/n → 0 and τb/τn → 0. Define

L̂n(x) = 1

Nn

∑
1≤i≤Nn

I

{
τb(θ̂b(X

n,(b),i) − θ̂n)

σ̂b(Xn,(b),i)
≤ x

}
.

Then statements (i)–(iii) of Theorem 2.1 hold when L−1
n (·,P ) is replaced by

L̂−1
n (·).
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REMARK 2.4. One can take σ̂n = σ(P ) in Corollary 2.2. Since σ(P ) effec-
tively cancels out from both sides of the inequality in the event {Rn ≤ L̂−1

n (1−α)},
such a root actually leads to a computationally feasible construction. However,
Corollary 2.2 still applies and shows that we can obtain a positive result with-
out the correction factor τn/(τn + τb) present in Corollary 2.1, provided the
conditions of Corollary 2.2 hold. For example, if for some σ(P ), we have that
τn(θ̂n − θ(Pn))/σ (Pn) is asymptotically standard normal under any sequence
{Pn ∈ P :n ≥ 1}, then the conditions hold.

REMARK 2.5. In Corollaries 2.1 and 2.2, it is assumed that the rate of conver-
gence τn is known. This assumption may be relaxed using techniques described in
Politis, Romano and Wolf (1999).

We conclude this section with a result that establishes a converse for Theorems
2.1 and 2.2.

THEOREM 2.3. Let b = bn < n be a sequence of positive integers tending to
infinity, but satisfying b/n → 0 and define Ln(x,P ) as in (4) and L̂n(x) as in (5).
Then the following statements are true:

(i) If lim supn→∞ supP∈P supx∈R{Jb(x,P ) − Jn(x,P )} > 0, then (6) fails for
α1 = 0 and some 0 ≤ α2 < 1.

(ii) If lim supn→∞ supP∈P supx∈R{Jn(x,P ) − Jb(x,P )} > 0, then (6) fails for
α2 = 0 and some 0 ≤ α1 < 1.

(iii) If lim infn→∞ supP∈P supx∈R |Jb(x,P ) − Jn(x,P )| > 0, then (6) fails for
some α1 ≥ 0 and α2 ≥ 0 satisfying 0 ≤ α1 + α2 < 1.

If, in addition, (7) holds for any ε > 0, then statements (i)–(iii) above hold when
L−1

n (·,P ) is replaced by L̂−1
n (·).

2.2. Bootstrap. As before, let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of
random variables with distribution P ∈ P. Denote by Jn(x,P ) the distribution of
a real-valued root Rn = Rn(X

(n),P ) under P . The goal remains to construct pro-
cedures which are valid uniformly in P . The bootstrap approach is to approximate
Jn(·,P ) by Jn(·, P̂n) for some estimator P̂n of P . Typically, P̂n is the empirical
distribution, but this is not assumed in Theorem 2.4 below. Because P̂n need not
a priori even lie in P, it is necessary to introduce a family P′ in which P̂n lies
(at least with high probability). In order for the bootstrap to succeed, we will re-
quire that ρ(P̂n,P ) be small for some function (perhaps a metric) ρ(·, ·) defined
on P′ × P. For any given problem in which the theorem is applied, P, P′ and ρ

must be specified.

THEOREM 2.4. Let ρ(·, ·) be a function on P′ × P, and let P̂n be a (random)
sequence of distributions. Then, the following are true:
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(i) Suppose lim supn→∞ supx∈R{Jn(x,Qn) − Jn(x,Pn)} ≤ 0 for any se-
quences {Qn ∈ P′ :n ≥ 1} and {Pn ∈ P :n ≥ 1} satisfying ρ(Qn,Pn) → 0. If

ρ(P̂n,Pn)
Pn→ 0 and Pn

{
P̂n ∈ P′} → 1(8)

for any sequence {Pn ∈ P :n ≥ 1}, then

lim inf
n→∞ inf

P∈P
P

{
J−1

n (α1, P̂n) ≤ Rn ≤ J−1
n (1 − α2, P̂n)

} ≥ 1 − α1 − α2(9)

holds for α1 = 0 and any 0 ≤ α2 < 1.
(ii) Suppose lim supn→∞ supx∈R{Jn(x,Pn) − Jn(x,Qn)} ≤ 0 for any se-

quences {Qn ∈ P′ :n ≥ 1} and {Pn ∈ P :n ≥ 1} satisfying ρ(Qn,Pn) → 0. If
(8) holds for any sequence {Pn ∈ P :n ≥ 1}, then (9) holds for α2 = 0 and any
0 ≤ α1 < 1.

(iii) Suppose limn→∞ supx∈R |Jn(x,Qn) − Jn(x,Pn)| = 0 for any sequences
{Qn ∈ P′ :n ≥ 1} and {Pn ∈ P :n ≥ 1} satisfying ρ(Qn,Pn) → 0. If (8) holds for
any sequence {Pn ∈ P :n ≥ 1}, then (9) holds for any α1 ≥ 0 and α2 ≥ 0 satisfying
0 ≤ α1 + α2 < 1.

REMARK 2.6. It is typically easy to deduce from the conclusions of Theo-
rem 2.4 stronger results in which the lim infn→∞ and ≥ in (9) are replaced by
limn→∞ and =, respectively. For example, in order to assert that (9) holds with
lim infn→∞ and ≥ replaced by limn→∞ and =, respectively, all that is required is
that

lim
n→∞P

{
J−1

n (α1, P̂n) ≤ Rn ≤ J−1
n (1 − α2, P̂n)

} = 1 − α1 − α2

for some P ∈ P. This can be verified using the usual arguments for the pointwise
asymptotic validity of the bootstrap. See Politis, Romano and Wolf (1999) for
details.

REMARK 2.7. In some cases, it is possible to construct estimators Ĵn(x) of
Jn(x,P ) that are uniformly consistent over a large class of distributions P in the
sense that for any ε > 0

sup
P∈P

P
{
ρ

(
Ĵn(·), Jn(·,P )

)
> ε

} → 0,(10)

where ρ is the Levy metric or some other metric compatible with the weak topol-
ogy. Yet a result such as (10) is not strong enough to yield uniform coverage state-
ments such as those in Theorems 2.1 and 2.4. In other words, such conclusions do
not follow from uniform approximations of the distribution of interest if the quality
of the approximation is measured in terms of metrics metrizing weak convergence.
To see this, consider the following simple example.
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EXAMPLE 2.1. Let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of random vari-
ables with distribution Pθ = Bernoulli(θ). Denote by Jn(x,Pθ ) the distribution of
the root Rn = √

n(θ̂n − θ) under Pθ , where θ̂n = X̄n. Let P̂n be the empirical dis-
tribution of X(n) or, equivalently, P

θ̂n
. Lemma S.1.1 in Romano and Shaikh (2012)

implies for any ε > 0 that

sup
0≤θ≤1

Pθ

{
ρ

(
Jn(·, P̂n), Jn(·,Pθ )

)
> ε

} → 0,(11)

whenever ρ is a metric compatible with the weak topology. Nevertheless, it follows
from the argument on page 78 of Romano (1989) that the coverage statements in
Theorem 2.4 fail to hold provided that both α1 and α2 do not equal zero. Indeed,
consider part (i) of Theorem 2.4. Suppose α1 = 0 and 0 < α2 < 1. For a given n

and δ > 0, let θn = (1 − δ)1/n. Under Pθn , the event X1 = · · · = Xn = 1 has proba-
bility 1− δ. Moreover, whenever such an event occurs, Rn > J−1

n (1−α2, P̂n) = 0.
Therefore, Pθn{J−1

n (α1, P̂n) ≤ Rn ≤ J−1
n (1 − α2, P̂n)} ≤ δ. Since the choice of δ

was arbitrary, it follows that

lim inf
n→∞ inf

0≤θ≤1
Pθ

{
J−1

n (α1, P̂n) ≤ Rn ≤ J−1
n (1 − α2, P̂n)

} = 0.

A similar argument establishes the result for parts (ii) and (iii) of Theorem 2.4.

On the other hand, when ρ is the Kolmogorov metric, (11) holds when the supre-
mum over 0 ≤ θ ≤ 1 is replaced with a supremum over δ < θ < 1 − δ for some
δ > 0. Moreover, when θ is restricted to such an interval, the coverage statements
in Theorem 2.4 hold as well.

3. Applications. Before proceeding, it is useful to introduce some notation
that will be used frequently throughout many of the examples below. For a distri-
bution P on Rk , denote by μ(P ) the mean of P , by �(P ) the covariance matrix
of P , and by �(P ) the correlation matrix of P . For 1 ≤ j ≤ k, denote by μj(P )

the j th component of μ(P ) and by σ 2
j (P ) the j th diagonal element of �(P ). In

all of our examples, X(n) = (X1, . . . ,Xn) will be an i.i.d. sequence of random vari-
ables with distribution P and P̂n will denote the empirical distribution of X(n). As
usual, we will denote by X̄n = μ(P̂n) the usual sample mean, by �̂n = �(P̂n) the
usual sample covariance matrix and by �̂n = �(P̂n) the usual sample correlation
matrix. For 1 ≤ j ≤ k, denote by X̄j,n the j th component of X̄n and by S2

j,n the

j th diagonal element of �̂n. Finally, we say that a family of distributions Q on the
real line satisfies the standardized uniform integrability condition if

lim
λ→∞ sup

Q∈Q
EQ

[(
Y − μ(Q)

σ(Q)

)2

I

{∣∣∣∣Y − μ(Q)

σ(Q)

∣∣∣∣ > λ

}]
= 0.(12)

In the preceding expression, Y denotes a random variable with distribution Q. The
use of the term standardized to describe (12) reflects that fact that the variable Y is
centered around its mean and normalized by its standard deviation.
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3.1. Subsampling.

EXAMPLE 3.1 (Multivariate nonparametric mean). Let X(n) = (X1, . . . ,Xn)

be an i.i.d. sequence of random variables with distribution P ∈ P on Rk . Suppose
one wishes to construct a rectangular confidence region for μ(P ). For this purpose,
a natural choice of root is

Rn

(
X(n),P

) = max
1≤j≤k

√
n(X̄j,n − μj(P ))

Sj,n

.(13)

In this setup, we have the following theorem:

THEOREM 3.1. Denote by Pj the set of distributions formed from the j th
marginal distributions of the distributions in P. Suppose P is such that (12) is
satisfied with Q = Pj for all 1 ≤ j ≤ k. Let Jn(x,P ) be the distribution of the
root (13). Let b = bn < n be a sequence of positive integers tending to infinity, but
satisfying b/n → 0 and define Ln(x,P ) by (4). Then

lim
n→∞ inf

P∈P
P

{
L−1

n (α1,P ) ≤ max
1≤j≤k

√
n(X̄j,n − μj(P ))

Sj,n

≤ L−1
n (1 − α2,P )

}
(14)

= 1 − α1 − α2

for any α1 ≥ 0 and α2 ≥ 0 such that 0 ≤ α1 + α2 < 1. Furthermore, (14) re-
mains true if L−1

n (·,P ) is replaced by L̂−1
n (·), where L̂n(x) is defined by (5) with

R̂b(X
n,(b),i) = Rb(X

n,(b),i , P̂n).

Under suitable restrictions, Theorem 3.1 generalizes to the case where the root
is given by

Rn

(
X(n),P

) = f
(
Zn(P ), �̂n

)
,(15)

where f is a continuous, real-valued function and

Zn(P ) =
(√

n(X̄1,n − μ1(P ))

S1,n

, . . . ,

√
n(X̄k,n − μk(P ))

Sk,n

)′
.(16)

In particular, we have the following theorem:

THEOREM 3.2. Let P be defined as in Theorem 3.1. Let Jn(x,P ) be the dis-
tribution of root (15), where f is continuous.

(i) Suppose further that for all x ∈ R that

Pn

{
f

(
Zn(Pn),�(P̂n)

) ≤ x
} → P

{
f (Z,�) ≤ x

}
,(17)

Pn

{
f

(
Zn(Pn),�(P̂n)

)
< x

} → P
{
f (Z,�) < x

}
(18)
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for any sequence {Pn ∈ P :n ≥ 1} such that Zn(Pn)
d→ Z under Pn and �(P̂n)

Pn→
�, where Z ∼ N(0,�). Then

lim inf
n→∞ inf

P∈P
P

{
L−1

n (α1,P ) ≤ f
(
Zn(P ), �̂n

) ≤ L−1
n (1 − α2,P )

}
(19)

≥ 1 − α1 − α2

for any α1 ≥ 0 and α2 ≥ 0 such that 0 ≤ α1 + α2 < 1.
(ii) Suppose further that if Z ∼ N(0,�) for some � satisfying �j,j = 1 for

all 1 ≤ j ≤ k, then f (Z,�) is continuously distributed. Then, (19) remains true if
L−1

n (·,P ) is replaced by L̂−1
n (·), where L̂n(x) is defined by (5) with R̂b(X

n,(b),i) =
Rb(X

n,(b),i , P̂n). Moreover, the lim infn→∞ and ≥ may be replaced by limn→∞
and =, respectively.

In order to verify (17) and (18) in Theorem 3.2, it suffices to assume that
f (Z,�) is continuously distributed. Under the assumptions of the theorem, how-
ever, f (Z,�) need not be continuously distributed. In this case, (17) and (18) hold
immediately for any x at which P {(Z,�) ≤ x} is continuous, but require a further
argument for x at which P {(Z,�) ≤ x} is discontinuous. See, for example, the
proof of Theorem 3.9, which relies on Theorem 3.8, where the same requirement
appears.

EXAMPLE 3.2 (Constrained univariate nonparametric mean). Andrews (2000)
considers the following example. Let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of
random variables with distribution P ∈ P on R. Suppose it is known that μ(P ) ≥ 0
for all P ∈ P and one wishes to construct a confidence interval for μ(P ). A natural
choice of root in this case is

Rn = Rn

(
X(n),P

) = √
n
(
max{X̄n,0} − μ(P )

)
.

This root differs from the one considered in Theorem 3.1 and the ones discussed
in Theorem 3.2 in the sense that under weak assumptions on P,

lim sup
n→∞

sup
P∈P

sup
x∈R

{
Jb(x,P ) − Jn(x,P )

} ≤ 0(20)

holds, but

lim sup
n→∞

sup
P∈P

sup
x∈R

{
Jn(x,P ) − Jb(x,P )

} ≤ 0(21)

fails to hold. To see this, suppose (12) holds with Q = P. Note that

Jb(x,P ) = P
{
max

{
Zb(P ),−√

bμ(P )
} ≤ x

}
,

Jn(x,P ) = P
{
max

{
Zn(P ),−√

nμ(P )
} ≤ x

}
,



UNIFORM ASYMPTOTIC VALIDITY 2809

where Zb(P ) = √
b(X̄b −μ(P )) and Zn(P ) = √

n(X̄n−μ(P )). Since
√

bμ(P ) ≤√
nμ(P ) for any P ∈ P, Jb(x,P ) − Jn(x,P ) is bounded from above by

P
{
max

{
Zb(P ),−√

nμ(P )
} ≤ x

} − Jn(x,P ).

It now follows from the uniform central limit theorem established by Lemma 3.3.1
of Romano and Shaikh (2008) and Theorem 2.11 of Bhattacharya and Ranga Rao
(1976) that (20) holds. It therefore follows from Theorem 2.1 that (6) holds with
α1 = 0 and any 0 ≤ α2 < 1. To see that (21) fails, suppose further that {Qn :n ≥
1} ⊆ P, where Qn = N(h/

√
n,1) for some h > 0. For Z ∼ N(0,1),

Jn(x,Qn) = P
{
max(Z,−h) ≤ x

}
,

Jb(x,Qn) = P
{
max(Z,−h

√
b/

√
n) ≤ x

}
.

The left-hand side of (21) is therefore greater than or equal to

lim sup
n→∞

(
P

{
max(Z,−h) ≤ x

} − P
{
max(Z,−h

√
b/

√
n) ≤ x

})
for any x. In particular, if −h < x < 0, then the second term is zero for large
enough n, and so the limiting value is P {Z ≤ x} = �(x) > 0. It therefore follows
from Theorem 2.3 that (6) fails for α2 = 0 and some 0 ≤ α1 < 1. On the other hand,
(6) holds with α2 = 0 and any 0.5 < α1 < 1. To see this, consider any sequence
{Pn ∈ P :n ≥ 1} and the event {L−1

n (α1,Pn) ≤ Rn}. For the root in this example,
this event is scale invariant. So, in calculating the probability of this event, we may
without loss of generality assume σ 2(Pn) = 1. Since μ(Pn) ≥ 0, we have for any
x ≥ 0 that

Jn(x,Pn) = P
{
max

{
Zn(Pn),−√

nμ(Pn)
} ≤ x

} = P
{
Zn(Pn) ≤ x

} → �(x)

and similarly for Jb(x,Pn). Using the usual subsampling arguments, it is thus
possible to show for 0.5 < α1 < 1 that

L−1
n (α1,Pn)

Pn→ �−1(α1).

The desired conclusion therefore follows from Slutsky’s theorem. Arguing as the
the proof of Corollary 2.2 and Remark 2.4, it can be shown that the same results
hold when L−1

n (·,P ) is replaced by L̂−1
n (·), where L̂n(x) is defined as Ln(x,P ) is

defined but with μ(P ) replaced by X̄n.

EXAMPLE 3.3 (Moment inequalities). The generality of Theorem 2.1 illus-
trated in Example 3.2 is also useful when testing multisided hypotheses about
the mean. To see this, let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of random
variables with distribution P ∈ P on Rk . Define P0 = {P ∈ P :μ(P ) ≤ 0} and
P1 = P \ P0. Consider testing the null hypothesis that P ∈ P0 versus the alter-
native hypothesis that P ∈ P1 at level α ∈ (0,1). Such hypothesis testing problems
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have recently received considerable attention in the “moment inequality” litera-
ture in econometrics. See, for example, Andrews and Soares (2010), Andrews and
Guggenberger (2010), Andrews and Barwick (2012), Bugni (2010), Canay (2010)
and Romano and Shaikh (2008, 2010). Theorem 2.1 may be used to construct tests
that are uniformly consistent in level in the sense that (3) holds under weak as-
sumptions on P. Formally, we have the following theorem:

THEOREM 3.3. Let P be defined as in Theorem 3.1. Let Jn(x,P ) be the dis-
tribution of

Tn

(
X(n)) = max

1≤j≤k

√
nX̄j,n

Sj,n

.

Let b = bn < n be a sequence of positive integers tending to infinity, but satisfy-
ing b/n → 0 and define Ln(x) by the right-hand side of (4) with Rn(X

(n),P ) =
Tn(X

(n)). Then, the test defined by

φn

(
X(n)) = I

{
Tn

(
X(n)) > L−1

n (1 − α)
}

satisfies (3) for any 0 < α < 1.

The argument used to establish Theorem 3.3 is essentially the same as the one
presented in Romano and Shaikh (2008) for

Tn

(
X(n)) = ∑

1≤j≤k

max{√nX̄j,n,0}2,

though Lemma S.6.1 in Romano and Shaikh (2012) is needed for establishing
(20) here because of Studentization. Related results are obtained by Andrews and
Guggenberger (2009).

EXAMPLE 3.4 (Multiple testing). We now illustrate the use of Theorem 2.1 to
construct tests of multiple hypotheses that behave well uniformly over a large class
of distributions. Let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of random variables
with distribution P ∈ P on Rk , and consider testing the family of null hypotheses

Hj :μj(P ) ≤ 0 for 1 ≤ j ≤ k(22)

versus the alternative hypotheses

H ′
j :μj(P ) > 0 for 1 ≤ j ≤ k(23)

in a way that controls the familywise error rate at level 0 < α < 1 in the sense that

lim sup
n→∞

sup
P∈P

FWERP ≤ α,(24)

where

FWERP = P
{
reject some Hj with μj(P ) ≤ 0

}
.



UNIFORM ASYMPTOTIC VALIDITY 2811

For K ⊆ {1, . . . , k}, define Ln(x,K) according to the right-hand side of (4) with

Rn

(
X(n),P

) = max
j∈K

√
nX̄j,n

Sj,n

,

and consider the following stepwise multiple testing procedure:

ALGORITHM 3.1. Step 1: Set K1 = {1, . . . , k}. If

max
j∈K1

√
nX̄j,n

Sj,n

≤ L−1
n (1 − α,K1),

then stop. Otherwise, reject any Hj with
√

nX̄j,n

Sj,n

> L−1
n (1 − α,K1)

and continue to Step 2 with

K2 =
{
j ∈ K1 :

√
nX̄j,n

Sj,n

≤ L−1
n (1 − α,K1)

}
.

...

Step s: If

max
j∈Ks

√
nX̄j,n

Sj,n

≤ L−1
n (1 − α,Ks),

then stop. Otherwise, reject any Hj with
√

nX̄j,n

Sj,n

> L−1
n (1 − α,Ks)

and continue to Step s + 1 with

Ks+1 =
{
j ∈ Ks :

√
nX̄j,n

Sj,n

≤ L−1
n (1 − α,Ks)

}
.

...

We have the following theorem:

THEOREM 3.4. Let P be defined as in Theorem 3.1. Let b = bn < n be a
sequence of positive integers tending to infinity, but satisfying b/n → 0. Then,
Algorithm 3.1 satisfies

lim sup
n→∞

sup
P∈P

FWERP ≤ α(25)

for any 0 < α < 1.
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It is, of course, possible to extend the analysis in a straightforward way to two-
sided testing. See also Romano and Shaikh (2010) for related results about a mul-
tiple testing problem involving an infinite number of null hypotheses.

EXAMPLE 3.5 (Empirical process on R). Let X(n) = (X1, . . . ,Xn) be an i.i.d.
sequence of random variables with distribution P ∈ P on R. Suppose one wishes
to construct a confidence region for the cumulative distribution function associated
with P , that is, P {(−∞, t]}. For this purpose a natural choice of root is

sup
t∈R

√
n
∣∣P̂n

{
(−∞, t]} − P

{
(−∞, t]}∣∣.(26)

In this setting, we have the following theorem:

THEOREM 3.5. Fix any ε ∈ (0,1), and let

P = {
P on R : ε < P

{
(−∞, t]} < 1 − ε for some t ∈ R

}
.(27)

Let Jn(x,P ) be the distribution of root (26). Then

lim
n→∞ inf

P∈P
P

{
L−1

n (α1,P ) ≤ sup
t∈R

√
n
∣∣P̂n

{
(−∞, t]} − P

{
(−∞, t]}∣∣

≤ L−1
n (1 − α2,P )

}
(28)

= 1 − α1 − α2

for any α1 ≥ 0 and α2 ≥ 0 such that 0 ≤ α1 + α2 < 1. Furthermore, (28) re-
mains true if L−1

n (·,P ) is replaced by L̂−1
n (·), where L̂n(x) is defined by (5) with

R̂b(X
n,(b),i) = Rb(X

n,(b),i , P̂n).

EXAMPLE 3.6 (One sample U -statistics). Let X(n) = (X1, . . . ,Xn) be an i.i.d.
sequence of random variables with distribution P ∈ P on R. Suppose one wishes
to construct a confidence region for

θ(P ) = θh(P ) = EP

[
h(X1, . . . ,Xm)

]
,(29)

where h is a symmetric kernel of degree m. The usual estimator of θ(P ) in this
case is given by the U -statistic

θ̂n = θ̂n

(
X(n)) = 1(n

m

) ∑
c

h(Xi1, . . . ,Xim).

Here,
∑

c denotes summation over all
(n
m

)
subsets {i1, . . . , im} of {1, . . . , n}. A nat-

ural choice of root is therefore given by

Rn

(
X(n),P

) = √
n
(
θ̂n − θ(P )

)
.(30)

In this setting, we have the following theorem:
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THEOREM 3.6. Let

g(x,P ) = gh(x,P ) = EP

[
h(x,X2, . . . ,Xm)

] − θ(P )(31)

and

σ 2
h (P ) = m2 VarP

[
g(Xi,P )

]
.(32)

Suppose P satisfies the uniform integrability condition

lim
λ→∞ sup

P∈P
EP

[
g2(Xi,P )

σ 2
h (P )

I

{∣∣∣∣g(Xi,P )

σh(P )

∣∣∣∣ > λ

}]
= 0(33)

and

sup
P∈P

VarP [h(X1, . . . ,Xm)]
σ 2(P )

< ∞.(34)

Let Jn(x,P ) be the distribution of the root (30). Let b = bn < n be a sequence of
positive integers tending to infinity, but satisfying b/n → 0, and define Ln(x,P )

by (4). Then

lim
n→∞ inf

P∈P
P

{
L−1

n (α1,P ) ≤ √
n
(
θ̂n − θ(P )

) ≤ L−1
n (1 − α2,P )

}
(35)

= 1 − α1 − α2

for any α1 ≥ 0 and α2 ≥ 0 such that 0 ≤ α1 + α2 < 1. Furthermore, (35) re-
mains true if L−1

n (·,P ) is replaced by L̂−1
n (·), where L̂n(x) is defined by (5) with

R̂b(X
n,(b),i) = Rb(X

n,(b),i , P̂n).

3.2. Bootstrap.

EXAMPLE 3.7 (Multivariate nonparametric mean). Let X(n) = (X1, . . . ,Xn)

be an i.i.d. sequence of random variables with distribution P ∈ P on Rk . Suppose
one wishes to construct a rectangular confidence region for μ(P ). As described in
Example 3.1, a natural choice of root in this case is given by (13). In this setting,
we have the following theorem, which is a bootstrap counterpart to Theorem 3.1:

THEOREM 3.7. Let P be defined as in Theorem 3.1. Let Jn(x,P ) be the dis-
tribution of the root (13). Then

lim
n→∞ inf

P∈P
P

{
J−1

n (α1, P̂n) ≤ max
1≤j≤k

√
n(X̄j,n − μj(P ))

Sj,n

≤ J−1
n (1 − α2, P̂n)

}
(36)

= 1 − α1 − α2

for any α1 ≥ 0 and α2 ≥ 0 such that 0 ≤ α1 + α2 < 1.
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Theorem 3.7 generalizes in the same way that Theorem 3.1 generalizes. In par-
ticular, we have the following result:

THEOREM 3.8. Let P be defined as in Theorem 3.1. Let Jn(x,P ) be the dis-
tribution of the root (15). Suppose f is continuous. Suppose further that for all
x ∈ R

Pn

{
f

(
Zn(Pn),�(P̂n)

) ≤ x
} → P

{
f (Z,�) ≤ x

}
,(37)

Pn

{
f

(
Zn(Pn),�(P̂n)

)
< x

} → P
{
f (Z,�) < x

}
(38)

for any sequence {Pn ∈ P :n ≥ 1} such that Zn(Pn)
d→ Z under Pn and �(P̂n)

Pn→
�, where Z ∼ N(0,�). Then

lim inf
n→∞ inf

P∈P
P

{
J−1

n (α1, P̂n) ≤ f
(
Zn(P ), �̂n

) ≤ J−1
n (1 − α2, P̂n)

}
(39)

≥ 1 − α1 − α2

for any α1 ≥ 0 and α2 ≥ 0 such that 0 ≤ α1 + α2 < 1.

EXAMPLE 3.8 (Moment inequalities). Let X(n) = (X1, . . . ,Xn) be an i.i.d.
sequence of random variables with distribution P ∈ P on Rk and define P0 and P1
as in Example 3.3. Andrews and Barwick (2012) propose testing the null hypoth-
esis that P ∈ P0 versus the alternative hypothesis that P ∈ P1 at level α ∈ (0,1)

using an “adjusted quasi-likelihood ratio” statistic Tn(X
(n)) defined as follows:

Tn

(
X(n)) = inf

t∈Rk : t≤0
Wn(t)

′�̃−1
n Wn(t).

Here, t ≤ 0 is understood to mean that the inequality holds component-wise,

Wn(t) =
(√

n(X̄1,n − t1)

S1,n

, . . . ,

√
n(X̄k,n − tk)

Sk,n

)′

and

�̃n = max
{
ε − det(�̂n),0

}
Ik + �̂n,(40)

where ε > 0 and Ik is the k-dimensional identity matrix. Andrews and Barwick
(2012) propose a procedure for constructing critical values for Tn(X

(n)) that they
term “refined moment selection.” For illustrative purposes, we instead consider in
the following theorem a simpler construction.

THEOREM 3.9. Let P be defined as in Theorem 3.1. Let Jn(x,P ) be the dis-
tribution of the root

Rn

(
X(n),P

) = inf
t∈Rk : t≤0

(
Zn(P ) − t

)′
�̃−1

n

(
Zn(P ) − t

)
,(41)
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where Zn(P ) is defined as in (16). Then, the test defined by

φn

(
X(n)) = I

{
Tn

(
X(n)) > J−1

n (1 − α, P̂n)
}

satisfies (3) for any 0 < α < 1.

Theorem 3.9 generalizes in a straightforward fashion to other choices of test
statistics, including the one used in Theorem 3.3. On the other hand, even when
the underlying choice of test statistic is the same, the first-order asymptotic proper-
ties of the tests in Theorems 3.9 and 3.3 will differ. For other ways of constructing
critical values that are more similar to the construction given in Andrews and Bar-
wick (2012), see Romano, Shaikh and Wolf (2012).

EXAMPLE 3.9 (Multiple testing). Theorem 2.4 may be used in the same way
that Theorem 2.1 was used in Example 3.4 to construct tests of multiple hypotheses
that behave well uniformly over a large class of distributions. To see this, let X(n) =
(X1, . . . ,Xn) be an i.i.d. sequence of random variables with distribution P ∈ P
on Rk , and again consider testing the family of null hypotheses (22) versus the
alternative hypotheses (23) in a way that satisfies (24) for α ∈ (0,1). For K ⊆
{1, . . . , k}, let Jn(x,K,P ) be the distribution of the root

Rn

(
X(n),P

) = max
j∈K

√
n(X̄j,n − μj(P ))

Sj,n

under P , and consider the stepwise multiple testing procedure given by Algo-
rithm 3.1 with L−1

n (1 − α,Kj) replaced by J−1
n (1 − α,Kj , P̂n). We have the fol-

lowing theorem, which is a bootstrap counterpart to Theorem 3.4:

THEOREM 3.10. Let P be defined as in Theorem 3.1. Then Algorithm 3.1 with
L−1

n (1 − α,Kj) replaced by J−1
n (1 − α,Kj , P̂n) satisfies (25) for any 0 < α < 1.

It is, of course, possible to extend the analysis in a straightforward way to two-
sided testing.

EXAMPLE 3.10 (Empirical process on R). Let X(n) = (X1, . . . ,Xn) be an
i.i.d. sequence of random variables with distribution P ∈ P on R. Suppose one
wishes to construct a confidence region for the cumulative distribution function
associated with P , that is, P {(−∞, t]}. As described in Example 3.5, a natural
choice of root in this case is given by (26). In this setting, we have the following
theorem, which is a bootstrap counterpart to Theorem 3.5:

THEOREM 3.11. Fix any ε ∈ (0,1), and let P be defined as in Theorem 3.5.
Let Jn(x,P ) be the distribution of the root (26). Denote by P̂n the empirical dis-
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tribution of X(n). Then

lim
n→∞ inf

P∈P
P

{
J−1

n (α1, P̂n) ≤ sup
t∈R

√
n
∣∣P̂n

{
(−∞, t]} − P

{
(−∞, t]}∣∣

≤ J−1
n (1 − α2, P̂n)

}
= 1 − α1 − α2

for any α1 ≥ 0 and α2 ≥ 0 such that 0 ≤ α1 + α2 < 1.

Some of the conclusions of Theorem 3.11 can be found in Romano (1989),
though the method of proof given in Romano and Shaikh (2012) is quite different.

EXAMPLE 3.11 (One sample U -statistics). Let X(n) = (X1, . . . ,Xn) be an
i.i.d. sequence of random variables with distribution P ∈ P on R and let h be
a symmetric kernel of degree m. Suppose one wishes to construct a confidence
region for θ(P ) = θh(P ) given by (29). As described in Example 3.6, a natural
choice of root in this case is given by (30). Before proceeding, it is useful to intro-
duce the following notation. For an arbitrary kernel h̃, ε > 0 and B > 0, denote by
P

h̃,ε,B
the set of all distributions P on R such that

EP

[∣∣h̃(X1, . . . ,Xm) − θ
h̃
(P )

∣∣ε] ≤ B.(42)

Similarly, for an arbitrary kernel h̃ and δ > 0, denote by S
h̃,δ

the set of all distri-
butions P on R such that

σ 2
h̃
(P ) ≥ δ,(43)

where σ 2
h̃
(P ) is defined as in (32). Finally, for an arbitrary kernel h̃, ε > 0 and

B > 0, let P̄
h̃,ε,B

be the set of distributions P on R such that

EP

[∣∣h̃(Xi1, . . . ,Xim) − θ
h̃
(P )

∣∣ε] ≤ B,

whenever 1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Using this notation, we have the following
theorem:

THEOREM 3.12. Define the kernel h′ of degree 2m according to the rule

h′(x1, . . . , x2m) = h(x1, . . . , xm)h(x1, xm+2, . . . , x2m)
(44)

− h(x1, . . . , xm)h(xm+1, . . . , x2m).

Suppose

P ⊆ Ph,2+δ,B ∩ Sh,δ ∩ P̄h′,1+δ,B ∩ P̄h,2+δ,B
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for some δ > 0 and B > 0. Let Jn(x,P ) be the distribution of the root Rn defined
by (30). Then

lim
n→∞ inf

P∈P
P

{
J−1

n (α1, P̂n) ≤ √
n
(
θ̂n − θ(P )

) ≤ J−1
n (1 − α2, P̂n)

} = 1 − α1 − α2

for any α1 and α2 such that 0 ≤ α1 + α2 < 1.

Note that the kernel h′ defined in (44) arises in the analysis of the estimated
variance of the U -statistic. Note further that the conditions on P in Theorem 3.12
are stronger than the conditions on P in Theorem 3.6. While it may be possible to
weaken the restrictions on P in Theorem 3.12 some, it is not possible to establish
the conclusions of Theorem 3.12 under the conditions on P in Theorem 3.6. In-
deed, as shown by Bickel and Freedman (1981), the bootstrap based on the root
Rn defined by (30) need not be even pointwise asymptotically valid under the con-
ditions on P in Theorem 3.6.

APPENDIX

A.1. Proof of Theorem 2.1.

LEMMA A.1. If F and G are (nonrandom) distribution functions on R, then
we have that:

(i) If supx∈R{G(x) − F(x)} ≤ ε, then G−1(1 − α2) ≥ F−1(1 − (α2 + ε)).
(ii) If supx∈R{F(x) − G(x)} ≤ ε, then G−1(α1) ≤ F−1(α1 + ε).

Furthermore, if X ∼ F , it follows that:

(iii) If supx∈R{G(x) − F(x)} ≤ ε, then P {X ≤ G−1(1 − α2)} ≥ 1 − (α2 + ε).
(iv) If supx∈R{F(x) − G(x)} ≤ ε, then P {X ≥ G−1(α1)} ≥ 1 − (α1 + ε).
(v) If supx∈R |G(x) − F(x)| ≤ ε

2 , then P {G−1(α1) ≤ X ≤ G−1(1 − α2)} ≥
1 − (α1 + α2 + ε).

If Ĝ is a random distribution function on R, then we have further that:

(vi) If P {supx∈R{Ĝ(x) − F(x)} ≤ ε} ≥ 1 − δ, then P {X ≤ Ĝ−1(1 − α2)} ≥
1 − (α2 + ε + δ).

(vii) If P {supx∈R{F(x) − Ĝ(x)} ≤ ε} ≥ 1 − δ, then P {X ≥ Ĝ−1(α1)} ≥ 1 −
(α1 + ε + δ).

(viii) If P {supx∈R |Ĝ(x) − F(x)| ≤ ε
2} ≥ 1 − δ, then P {Ĝ−1(α1) ≤ X ≤

Ĝ−1(1 − α2)} ≥ 1 − (α1 + α2 + ε + δ).

PROOF. To see (i), first note that supx∈R{G(x) − F(x)} ≤ ε implies that
G(x) − ε ≤ F(x) for all x ∈ R. Thus, {x ∈ R :G(x) ≥ 1 − α2} = {x ∈ R :G(x) −
ε ≥ 1 − α2 − ε} ⊆ {x ∈ R :F(x) ≥ 1 − α2 − ε}, from which it follows that
F−1(1 − (α2 + ε)) = inf{x ∈ R :F(x) ≥ 1 − α2 − ε} ≤ inf{x ∈ R :G(x) ≥ 1 −
α2} = G−1(1−α2). Similarly, to prove (ii), first note that supx∈R{F(x)−G(x)} ≤
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ε implies that F(x) − ε ≤ G(x) for all x ∈ R, so {x ∈ R :F(x) ≥ α1 + ε} =
{x ∈ R :F(x) − ε ≥ α1} ⊆ {x ∈ R :G(x) ≥ α1}. Therefore, G−1(α1) = inf{x ∈
R :G(x) ≥ α1} ≤ inf{x ∈ R :F(x) ≥ α1 + ε} = F−1(α1 + ε). To prove (iii), note
that because supx∈R{G(x) − F(x)} ≤ ε, it follows from (i) that {X ≤ G−1(1 −
α2)} ⊇ {X ≤ F−1(1−(α2 +ε))}. Hence, P {X ≤ G−1(1−α2)} ≥ P {X ≤ F−1(1−
(α2 + ε))} ≥ 1 − (α2 + ε). Using the same reasoning, (iv) follows from (ii) and the
assumption that supx∈R{F(x) − G(x)} ≤ ε. To see (v), note that

P
{
G−1(α1) ≤ X ≤ G−1(1 − α2)

} ≥ 1 − P
{
X < G−1(α1)

}
− P

{
X > G−1(1 − α2)

}
≥ 1 − (α1 + α2 + ε),

where the first inequality follows from the Bonferroni inequality, and the second
inequality follows from (iii) and (iv). To prove (vi), note that

P
{
X ≤ Ĝ−1(1 − α2)

}
≥ P

{
X ≤ Ĝ−1(1 − α2) ∩ sup

x∈R

{
Ĝ(x) − F(x)

} ≤ ε
}

≥ P
{
X ≤ F−1(

1 − (α2 + ε)
) ∩ sup

x∈R

{
Ĝ(x) − F(x)

} ≤ ε
}

≥ P
{
X ≤ F−1(

1 − (α2 + ε)
)} − P

{
sup
x∈R

{
Ĝ(x) − F(x)

}
> ε

}
= 1 − α2 − ε − δ,

where the second inequality follows from (i). A similar argument using (ii) estab-
lishes (vii). Finally, (viii) follows from (vi) and (vii) by an argument analogous to
the one used to establish (v). �

LEMMA A.2. Let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of random vari-
ables with distribution P . Denote by Jn(x,P ) the distribution of a real-valued root
Rn = Rn(X

(n),P ) under P . Let Nn = (n
b

)
, kn = n

b
� and define Ln(x,P ) accord-

ing to (4). Then, for any ε > 0, we have that

P
{

sup
x∈R

∣∣Ln(x,P ) − Jb(x,P )
∣∣ > ε

}
≤ 1

ε

√
2π

kn

.(45)

PROOF. Let ε > 0 be given and define Sn(x,P ;X1, . . . ,Xn) by

1

kn

∑
1≤i≤kn

I
{
Rb

(
(Xb(i−1)+1, . . . ,Xbi),P

) ≤ x
} − Jb(x,P ).
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Denote by Sn the symmetric group with n elements. Note that using this notation,
we may rewrite Ln(x,P ) − Jb(x,P ) as

Zn(x,P ;X1, . . . ,Xn) = 1

n!
∑

π∈Sn

Sn(x,P ;Xπ(1), . . . ,Xπ(n)).

Note further that

sup
x∈R

∣∣Zn(x,P ;X1, . . . ,Xn)
∣∣ ≤ 1

n!
∑

π∈Sn

sup
x∈R

∣∣Sn(x,P ;Xπ(1), . . . ,Xπ(n))
∣∣,

which is a sum of n! identically distributed random variables. Let ε > 0 be given.
It follows that P {supx∈R |Zn(x,P ;X1, . . . ,Xn)| > ε} is bounded above by

P

{
1

n!
∑

π∈Sn

sup
x∈R

∣∣Sn(x,P ;Xπ(1), . . . ,Xπ(n))
∣∣ > ε

}
.(46)

Using Markov’s inequality, (46) can be bounded by

1

ε
EP

[
sup
x∈R

∣∣Sn(x,P ;X1, . . . ,Xn)
∣∣]

(47)

= 1

ε

∫ 1

0
P

{
sup
x∈R

∣∣Sn(x,P ;X1, . . . ,Xn)
∣∣ > u

}
du.

We may use the Dvoretsky–Kiefer–Wolfowitz inequality to bound the right-hand
side of (47) by

1

ε

∫ 1

0
2 exp

{−2knu
2}

du = 2

ε

√
2π

kn

[
�(2

√
kn) − 1

2

]
<

1

ε

√
2π

kn

,

which establishes (45). �

LEMMA A.3. Let X(n) = (X1, . . . ,Xn) be an i.i.d. sequence of random vari-
ables with distribution P ∈ P. Denote by Jn(x,P ) the distribution of a real-valued
root Rn = Rn(X

(n),P ) under P . Let kn = n
b
� and define Ln(x,P ) according

to (4). Let

δ1,n(ε, γ,P ) = 1

γ ε

√
2π

kn

+ I
{

sup
x∈R

{
Jb(x,P ) − Jn(x,P )

}
> (1 − γ )ε

}
,

δ2,n(ε, γ,P ) = 1

γ ε

√
2π

kn

+ I
{

sup
x∈R

{
Jn(x,P ) − Jb(x,P )

}
> (1 − γ )ε

}
,

δ3,n(ε, γ,P ) = 1

γ ε

√
2π

kn

+ I
{

sup
x∈R

∣∣Jb(x,P ) − Jn(x,P )
∣∣ > (1 − γ )ε

}
.

Then, for any ε > 0 and γ ∈ (0,1), we have that:
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(i) P {Rn ≤ L−1
n (1 − α2,P )} ≥ 1 − (α2 + ε + δ1,n(ε, γ,P ));

(ii) P {Rn ≥ L−1
n (α,P )} ≥ 1 − (α1 + ε + δ2,n(ε, γ,P ));

(iii) P {L−1
n (α1,P ) ≤ Rn ≤ L−1

n (1 − α2,P )} ≥ 1 − (α1 + α2 + ε + δ3,n(ε,

γ,P )).

PROOF. Let ε > 0 and γ ∈ (0,1) be given. Note that

P
{

sup
x∈R

{
Ln(x,P ) − Jn(x,P )

}
> ε

}

≤ P
{

sup
x∈R

{
Ln(x,P ) − Jb(x,P )

} + sup
x∈R

{
Jb(x,P ) − Jn(x,P )

}
> ε

}

≤ P
{

sup
x∈R

{
Ln(x,P ) − Jb(x,P )

}
> γε

}

+ I
{

sup
x∈R

{
Jb(x,P ) − Jn(x,P )

}
> (1 − γ )ε

}

≤ 1

γ ε

√
2π

kn

+ I
{

sup
x∈R

{
Jb(x,P ) − Jn(x,P )

}
> (1 − γ )ε

}
,

where the final inequality follows from Lemma A.2. Assertion (i) thus follows
from the definition of δ1,n(ε, γ,P ) and part (vi) of Lemma A.1. Assertions (ii) and
(iii) are established similarly. �

PROOF OF THEOREM 2.1. To prove (i), note that by part (i) of Lemma A.3,
we have for any ε > 0 and γ ∈ (0,1) that

sup
P∈P

P
{
Rn ≤ L−1

n (1 − α2,P )
} ≥ 1 −

(
α2 + ε + inf

P∈P
δ1,n(ε, γ,P )

)
,

where

δ1,n(ε, γ,P ) = 1

γ ε

√
2π

kn

+ I
{

sup
x∈R

{
Jb(x,P ) − Jn(x,P )

}
> (1 − γ )ε

}
.

By the assumption on supP∈P supx∈R{Jb(x,P ) − Jn(x,P )}, we have that
infP∈P δ1,n(ε, γ,P ) → 0 for every ε > 0. Thus, there exists a sequence εn > 0
tending to 0 so that infP∈P δ1,n(εn, γ,P ) → 0. The desired claim now follows
from applying part (i) of Lemma A.3 to this sequence. Assertions (ii) and (iii)
follow in exactly the same way. �

A.2. Proof of Theorem 2.4. We prove only (i). Similar arguments can be used
to establish (ii) and (iii). Let α1 = 0, 0 ≤ α2 < 1 and η > 0 be given. Choose δ > 0
so that

sup
x∈R

{
Jn

(
x,P ′) − Jn(x,P )

}
<

η

2
,
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whenever ρ(P ′,P ) < δ for P ′ ∈ P′ and P ∈ P. For n sufficiently large, we have
that

sup
P∈P

P
{
ρ(P̂n,P ) > δ

}
<

η

4
and sup

P∈P
P

{
P̂n /∈ P′} <

η

4
.

For such n, we therefore have that

1 − η

2
≤ inf

P∈P
P

{
ρ(P̂n,P ) ≤ δ ∩ P̂n ∈ P′}

≤ inf
P∈P

P

{
sup
x∈R

{
Jn(x, P̂n) − Jn(x,P )

} ≤ η

2

}
.

It follows from part (vi) of Lemma A.1 that for such n

inf
P∈P

P
{
Rn ≤ J−1

n (1 − α2, P̂n)
} ≥ 1 − (α2 + η).

Since the choice of η was arbitrary, the desired result follows.

SUPPLEMENTARY MATERIAL

Supplement to “On the uniform asymptotic validity of subsampling and
the bootstrap” (DOI: 10.1214/12-AOS1051SUPP; .pdf). The supplement pro-
vides additional details and proofs for many of the results in the authors’ paper.
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