
ar
X

iv
:c

on
d-

m
at

/0
31

20
28

v2
 [

co
nd

-m
at

.s
ta

t-
m

ec
h]

 3
0

M
ay

 2
00

4

On the uniform generation of random graphs with prescribed degree sequences

R. Milo,1, 2 N. Kashtan,2, 3 S. Itzkovitz,1, 2 M. E. J. Newman,4 and U. Alon1, 2

1Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel 76100
2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 76100

3Department of Computer Science and Applied Mathematics,

Weizmann Institute of Science, Rehovot, Israel 76100
4Department of Physics and Center for the Study of Complex Systems,

University of Michigan, Ann Arbor, MI 48109–1120, U.S.A.

Random graphs with prescribed degree sequences have been widely used as a model of complex
networks. Comparing an observed network to an ensemble of such graphs allows one to detect
deviations from randomness in network properties. Here we briefly review two existing methods for
the generation of random graphs with arbitrary degree sequences, which we call the “switching” and
“matching” methods, and present a new method based on the “go with the winners” Monte Carlo
method. The matching method may suffer from nonuniform sampling, while the switching method
has no general theoretical bound on its mixing time. The “go with the winners” method has neither
of these drawbacks, but is slow. It can however be used to evaluate the reliability of the other two
methods and, by doing this, we demonstrate that the deviations of the switching and matching
algorithms under realistic conditions are small compared to the “go with the winners” algorithm.
Because of its combination of speed and accuracy we recommend the use of the switching method
for most calculations.

I. INTRODUCTION

In the rapidly growing literature on the modeling of
complex networks one of the most important classes of
network models is the random graph [1]. One well-
studied such model is the model consisting of the ensem-
ble of all graphs that have a given degree sequence [2,
3, 4, 5, 6], and this model has proved useful in under-
standing a variety of network properties. Realistic appli-
cations often require that we restrict ourselves to graphs
with no multiple edges between any vertex pair and no
self-edges. Unfortunately, both the analytic and numer-
ical study of such networks is known to present chal-
lenges [2, 7, 8, 9, 10, 11, 12, 13, 14]. In this short paper
we consider computer algorithms for generating graphs
uniformly from this ensemble. We are concerned primar-
ily with directed graphs, since the examples we will con-
sider are directed, but the concepts discussed generalize
in a straightforward fashion to the undirected case also.

There are two algorithms in common use for the gener-
ation of random graphs with single edges. We will refer to
them as the switching algorithm [8, 9, 15, 16, 17, 18, 19]
and the matching algorithm [4, 5, 19]. We argue that,
under certain circumstances, both of these algorithms
can generate a nonuniform sample of possible graphs.
We then present a new algorithm based on the Monte
Carlo procedure known as go with the winners [22, 23],
which generates uniformly sampled graphs. We compare
the three methods in the context of a particular network
problem—estimation of the density of commonly occur-
ring subgraphs or motifs—and show that, in this context,
the difference between them is small. This result is of
some practical importance, since the “go with the win-
ners” algorithm, although statistically correct, is slow,
while the other two algorithms are substantially faster.

II. ALGORITHMS

In this section we describe the three algorithms under
consideration.

0.001 0.01 0.1 1 10 100 1000 10000
0

5

10

15

20

25

30

35

40

45

Number of switches per connection

N
u
m
b
e
r

o
f

f
e
e
d
f
o
r
w
a
r
d

l
o
o
p
s

i
n

E
.
c
o
l
i

l
i
k
e

r
a
n
d
o
m

n
e
t
w
o
r
k
s

FIG. 1: Starting with the transcription network of E. coli,
the network is randomized using the switching algorithm de-
scribed in the text. We plot the number of feed-forward loops
in the randomized networks vs. number of switches performed
per edge in the graph. The dashed line is the expected asym-
totic value obtained using the “go with the winners” algo-
rithm. Each point is an average over one hundred repeti-
tions of the calculation. Error bars are ±3 standard devia-
tions. The randomized network reaches the equilibrium value
around one switch per edge on average. Similar results are
obtained for other networks and other motifs.

http://arXiv.org/abs/cond-mat/0312028v2

2

Network E. coli transcription yeast transcription C. elegans neurons electronic circuit S15850 [24]
mean s.d. Z mean s.d. Z mean s.d. Z mean s.d. Z

“go with the winners” 7.57(5) 3.05(3) 10.6(1) 11.06(6) 3.60(4) 14.1(2) 88(1) 10.7(7) 3.4(3) 2.20(5) 1.48(3) 284(6)
switching 7.63(9) 3.05(6) 10.5(2) 11.0(1) 3.71(7) 13.7(3) 88.3(3) 10.1(2) 3.6(1) 2.24(5) 1.47(3) 286(6)
matching 7.67(9) 2.98(6) 10.8(2) 11.1(1) 3.67(7) 13.8(3) 94.5(3) 10.0(2) 3.0(1) 2.21(5) 1.45(3) 290(6)

TABLE I: Mean and standard deviation (s.d.) of the number of appearances of the feed-forward loop subgraph in random
networks with degree sequences the same as the real world networks studied in [19]. We used between 1000 and 10 000 random
networks for each measurement. Z-scores are the number of standard deviations by which the real network deviates from the
average of the random ensemble. Standard errors are shown in parentheses.

A. Switching algorithm

First, we describe the switching algorithm, which uses
a Markov chain to generate a random graph with a given
degree sequence [8, 9, 15, 16, 17, 18, 19]. For simplic-
ity, we discuss directed networks with no mutual edges
(vertex pairs with edges running in both directions be-
tween them). The case with mutual edges is a simple
generalization [9].

The method starts from a given network and involves
carrying out a series of Monte Carlo switching steps
whereby a pair of edges (A → B, C → D) is selected at
random and the ends are exchanged to give (A→ D, C →

B). However, the exchange is only performed if it gen-
erates no multiple edges or self-edges; otherwise it is not
performed. The entire process is repeated some number
QE times, where E is the number of edges in the graph
and Q is chosen large enough that the Markov chain
shows good mixing. (Exchanges that are not performed
because they would generate multiple or self-edges are
still counted to insure detailed balance [25].)

This algorithm works well but, as with many Markov
chain methods, suffers because in general we have no
measure of how long we need to wait for it to mix prop-
erly. Theoretical bounds on the mixing time exist only
for specific near-regular degree sequences [10]. We em-
pirically find, however, that for many networks, values of
around Q = 100 appear to be more than adequate (see
Fig. 1).

B. Matching algorithm

An alternative approach is the matching algorithm [4,
5, 19], in which each vertex is assigned a set of “stubs”
or “spokes”—the sawn-off ends of incoming and out-
going edges—according to the desired degree sequence.
(One can also assign mutual-edge stubs for networks that
include such edges.) Then in-stubs and out-stubs are
picked randomly in pairs and joined up to create the net-
work edges. If a multiple or self-edge is created, the en-
tire network is discarded and the process starts over from
scratch.

This process will correctly generate random directed
graphs with the desired properties. Unfortunately, how-
ever, many real-world networks have a heavy-tailed de-
gree distribution that includes a small minority of ver-

tices with high degree. All other things being equal, the
expected number of edges between two such vertices will
often exceed one, making it unlikely that the procedure
above will run to completion, except in the rarest of cases.
To obviate this problem a modification of the method can
be used in which, following selection of a stub pair that
creates a multiple edge, the network is not discarded, and
an alternative stub pair is selected at random. In general
this method generates a biased sample of possible net-
works [21] but, as we will show, not significantly so for
our purposes (see Table I).

C. Go with the Winners algorithm

The “go with the winners” algorithm is a non-Markov-
chain Monte Carlo method for sampling uniformly from
a given distribution [22, 23]. When applied to the prob-
lem of graph generation, the method is as follows. We
consider a colony of M graphs. As with the matching
algorithm, we start with the appropriate number of in-
stubs and out-stubs for each vertex and repeatedly choose
at random one in-stub and one out-stub from the graph
and link them together to create an edge. If a multiple
edge or self-edge is generated, the network containing
it is removed from the colony and discarded. To com-
pensate for the resulting slow decline in the size of the
colony, its size is periodically doubled by cloning each of
the surviving graphs; this cloning step is carried out at a
predetermined rate chosen to keep the size of the colony
roughly constant on average. The process is repeated un-
til all stubs have been linked, then one network is chosen
at random from the colony and assigned a weight:

Wi = 2−c
m

M
, (1)

where c is the number of cloning steps made and m is the
number of surviving networks. The mean of any quantity
X (for example, the number of occurrences of a given
subgraph) over a set of such networks is then given by

∑
i
WiXi∑
i
Wi

, (2)

where Xi is the value of X in network i.

3

1 configuration 90 configurations

0

0.5

1

0

0.5

1

%
 f

re
qu

en
cy

 o
f

oc
cu

rr
en

ce

0

0.5

1

switching algorithm

go with the winners

matching algorithm

(c)

(a) (b)

FIG. 2: Uniformity tests of the three algorithms on a toy net-
work. Panels (a) and (b) depict the two types of topologies of
the 91 random networks studied, one of them like (a) and 90
like (b). Panel (c) shows the frequency with which each con-
figuration is sampled by our three algorithms. 100 000 graphs
were generated with each algorithm, and the figure shows the
fraction of graphs of each type generated. If sampling were
uniform, each should appear with probability 1

91
, which is

indicated by the dotted lines. The “go with the winners”
and switching algorithms sample uniformly within sampling
error, passing both the Kolmogorov–Smirnoff and Lillie Gaus-
sian tests. The matching algorithm under-samples the unique
configuration (a).

III. COMPARISON OF ALGORITHMS

In Fig. 2 we show a comparison of the performance
of our three algorithms when applied to a simple toy
network. The network consists of an out-hub with ten
outgoing edges, an in-hub with ten incoming edges, and
ten nodes with one incoming edge and one outgoing edge
each. Given this degree sequence, there are just two dis-
tinct network topologies with no multiple edges, as shown
in Fig. 2a and 2b. There is only a single way to form the
network in 2a, but there are 90 different ways to form 2b.

We generated 100 000 random networks using each of
the 3 methods described here and the results are summa-
rized in Fig. 2c. As the figure shows, the matching algo-
rithm introduces a bias, undersampling the configuration
of Fig. 2a. This is a result of the dynamics of the algo-
rithm, which favors the creation of edges between hubs.
The switching and “go with the winners” algorithms on
the other hand sample the configurations uniformly, gen-
erating each graph an equal number of times within the
measurement error on our calculations. The “go with the
winners” algorithm truly samples the ensemble uniformly
but is far less efficient than the two other methods. The
results given here indicate that the switching algorithm
produces essentially identical results while being a good
deal faster. The matching algorithm is faster still but
samples in a measurably biased way.

Now consider the study of network motifs. We are in-
terested in knowing when particular subgraphs or motifs
appear significantly more or less often in a real-world net-
work than would be expected on the basis of chance, and
we can answer this question by comparing motif counts
to random graphs. Some results for the case of the “feed-
forward loop” motif [18, 19] are given in Table I. In this
case the densities of motifs in the real-world networks
are many standard deviations away from random, which
suggests that any of the present algorithms is adequate
for generating suitable random graphs to act as a null
model, although the “go with the winners” and switch-
ing algorithms, while slower, are clearly more satisfactory
theoretically. The matching algorithm was measurably
nonuniform for our toy example above, but seems to give
better results on the real-world problem.

Overall, our results appear to argue in favor of using
the switching method, with the “go with the winners”
method finding limited use as a check on the accuracy
of sampling. Accuracy checks are also supplied by ana-
lytical estimates for subgraph numbers [12]. Numerical
results in [12, 19, 20] were done using the switching al-
gorithm.

IV. CONCLUSIONS

In this paper we have compared three algorithms for
generating random graphs with prescribed degree se-
quences and no multiple edges or self-edges. Two of the
three have been used previously, but suffer from nonuni-

4

formity in their sampling properties, while the third, a
method based on the “go with the winners” Monte Carlo
procedure, is new and samples uniformly but is quite
slow. Of the two older algorithms, we show that one,
which we call the “matching” algorithm, has measurable
deviations from uniformity when compared to the “go
with the winners” method, although for graphs typical
of practical studies these deviations are small enough to
make no significant difference to most previously pub-
lished results. The other older algorithm, which we
call the “switching” algorithm and which is based on a
Markov chain Monte Carlo method, samples correctly in

the limit of long times and in practice is found to give
good results when compared with the “go with the win-
ners” method. Overall, therefore, we conclude that the
switching algorithm is probably the algorithm of choice,
with the “go with the winners” algorithm finding a sup-
porting role as a check on uniformity, although its slow-
ness makes it impractical for large-scale use.
We thank Oliver D. King for discussions and for pointing
out and demonstrating that the matching algorithm of
the supplementary online material of [19] does not uni-
formly generate simple graphs.

[1] B. Bollobas, Random Graphs, 2nd edition, Academic
Press, New York (2001).

[2] E. Bender and E. Canfield, The asymptotic number of
labelled graphs with given degree sequences, J. Combin.

Theory Ser. A 24, 296–307 (1978).
[3] M. Molloy and B. Reed, The size of the giant component

of a random graph with a given degree sequence, Combi-

natorics, Probability and Computing 7, 295–305 (1998).
[4] M. Molloy and B. Reed, A critical point for random

graphs with a given degree sequence, Random Structures

and Algorithms 6, 161–179 (1995).
[5] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Ran-

dom graphs with arbitrary degree distribution and their
applications, Phys. Rev. E 64, 026118 (2001).

[6] F. Chung and L. Lu, The average distances in random
graphs with given expected degrees, Proc. Natl. Acad.

Sci. U.S.A. 99, 15879–15882 (2002).
[7] T. A. B. Snijders, Enumeration and simulation methods

for 0–1 matrices with given marginals, Psychometrika 56,
397–417 (1991).

[8] A. R. Rao, R. Jana, and S. Bandyopadhya, A Markov
chain Monte Carlo method for generating random (0, 1)-
matrices with given marginals, Indian J. of Statistics 58,
225–242 (1996).

[9] J. M. Roberts, Jr., Simple methods for simulating so-
ciomatrices with given marginal totals, Social Networks

22, 273–283 (2000).
[10] R. Kannan, P. Tetali, and S. Vempala, Simple Markov-

chain algorithms for generating bipartite graphs and
tournaments, Proceedings of the ACM Symposium on

Discrete Algorithms (1997).
[11] Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu, Se-

quential Monte Carlo Methods for Statistical Analysis
of Tables, Discussion Paper 03-22, Institute of Statistics
and Decision Sciences, Duke University (2003).

[12] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon,
Subgraphs in random networks, Phys. Rev. E 68, 026127
(2003).

[13] S. Maslov, K. Sneppen, and A. Zaliznyak, Pattern de-

tection in complex networks: Correlation profile of the
Internet, preprint cond-mat/0205379 (2002).

[14] J. Park and M.E.J. Newman, The origin of degree corre-
lations in the Internet and other networks, Phys. Rev. E

68, 026112 (2003).
[15] M. E. J. Newman, Assortative mixing in networks, Phys.

Rev. Lett. 89, 208701 (2002).
[16] S. Maslov and K. Sneppen, Specificity and stability

in topology of protein networks, Science 296, 910–913
(2002).

[17] A. Roberts, L. Stone, Island-sharing by archipelago
species. Oecologia 83, 560-567 (1990).

[18] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Network
motifs in the transcriptional regulation network of Es-
cherichia coli, Nature Genetics 31, 64–68 (2002).

[19] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan., D.
Chklovskii, and U. Alon, Network motifs: Simple build-
ing blocks of complex networks, Science 298, 824–827
(2002).

[20] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-
Orr, I. Ayzenshtat, M. Sheffer and U. Alon, Superfamilies
of designed and evolved networks, Science 303, 1538–42
(2004).

[21] O. D. King, Private communication.
[22] D. Aldous and U.V. Vazirani, “Go With the Winners” al-

gorithms, Proceedings of the IEEE Symposium on Foun-

dations of Computer Science, pp. 492–501 (1994).
[23] P. Grassberger and W. Nadler, “Go-with-the-winners”

simulations, preprint cond-mat/0010265 (2000).
[24] F. Brglez, D. Bryan, and K. Kozminski, Combinatorial

Profiles of Sequential Benchmark Circuits, Proceedings of

IEEE International Symposium on Circuits and Systems,
1929 (1989).

[25] There are singular networks where the Markov process
is not ergodic. This lack of ergodicity can be removed
by making small modifications as in [8], and by choosing
the number of switching steps per edge to be randomly
distributed around Q.

http://arXiv.org/abs/cond-mat/0205379
http://arXiv.org/abs/cond-mat/0010265

