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1. Introduction

The brilliant 350-page monograph [DS] by David and Semmes, which, like many other
research monographs, has been cited by many and read by few(1) is, in a sense, devoted
to a single question: How to relate the boundedness of certain singular integral operators
in L2(µ) to the geometric properties of the support of µ? At the moment of its writing,
even the case of the Cauchy integral on the complex plane had not been understood.
This changed with the appearance of the pioneering work by Mattila, Melnikov, and
Verdera [MMV], which led to many far-reaching developments culminating in the full
proof of Vitushkin’s conjecture by David [D3] in 1998. Since then, there was a strong
temptation to generalize the corresponding results to kernels of higher dimensions. How-
ever, the curvature methods introduced by Melnikov, which were an indispensable part
of every approach known until very recently, fail miserably above the dimension 1. The
development of curvature-free techniques is still an urgent necessity.

For dimensions greater than 1, connecting the geometry of the support of µ with the
boundedness of some singular integral operators in L2(µ) is not easy in either direction.
Passing from the geometric properties of the measure to the bounds for the operator
norms is somewhat simpler. It had been known to David and Semmes already that the
uniform rectifiability of an Ahlfors–David regular (AD-regular, for short) d-dimensional
measure µ in Rn suffices for the boundedness in L2(µ) of many reasonable d-dimensional
Calderón–Zygmund operators (more precisely, the ones with smooth antisymmetric con-
volution type kernels).

It is the other direction that remains a challenging task. We do not know what [DS]
looked like to its authors when they were writing it, but an unexperienced reader would,
most likely, perceive it as a desperate attempt to build a bridge in this direction starting
with the destination point. Formally, the book presents a variety of conditions equivalent
to the uniform rectifiability. Apparently, the hope was that one of those conditions could
be checked using the boundedness of the d-dimensional Riesz transform in Rn, which is
the natural analogue of the Cauchy operator in the high-dimensional setting. David and

(1) Namely by four people: Guy David, Steven Semmes, Peter Jones, and Someone Else, as the
saying goes.
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Semmes did not manage to show that much. Nevertheless, they proved that the uniform
rectifiability of µ is implied by the simultaneous boundedness in L2(µ) of a sufficiently big
class of d-dimensional convolution type Calderón–Zygmund operators with odd kernels.

The aim of the present paper is to fulfill that hope in the case n=d+1 and to supply
the missing part of the bridge, the part that leads from the boundedness of the Riesz
transform in L2(µ) to one of the equivalent criteria for uniform rectifiability in [DS].
Ironically, the condition that we use as a meeting point is an auxiliary condition that is
only briefly mentioned in the David–Semmes book. The result we prove in this paper
reads as follows.

Theorem. Let µ be an AD-regular measure of dimension d in Rd+1. If the asso-
ciated d-dimensional Riesz transform operator

f 7−!K∗(fµ), where K(x) =
x

|x|d+1
,

is bounded in L2(µ), then the non-BAUP cells in the David–Semmes lattice associated
with µ form a Carleson family.

Proposition 3.18 of [DS] (p. 141) asserts that this condition “implies the WHIP and
the WTP” and hence, by Theorem 3.9 (p. 137), the uniform rectifiability of µ. Note that
[DS] talks about AD-regular sets rather than AD-regular measures, so the notation there
is different, and what they denote by E is the support of µ in our setting. We want
to emphasize here that the current paper treats only the “analytic” part of the passage
from the operator boundedness to the rectifiability. The full credit (as well as the full
responsibility) for the other “geometric” part should go to David and Semmes.

There are two key ingredients of our proof that may be relatively novel.

The first one is the flattening lemma (Proposition 6, §11), which ultimately leads
to the conclusion that it is impossible to have many cells on which the support of the
measure is close to a d-plane but the measure itself is distributed in a noticeably different
way from the Lebesgue measure on that plane. The exact formulation of the flattening
lemma we use here is tailored to our particular approach but it takes its origin in the
earlier works by Tolsa [T1] and [T2] on the relations between α-numbers and measure
transportation costs and the boundedness of the Riesz transform.

The second crucial ingredient is the Eiderman–Nazarov–Volberg scheme from [ENV],
which was later exploited by Jaye in [JNV] to show that for the case of a non-integer s∈
(d, d+1), the boundedness in L2(µ) of the s-dimensional Riesz transform associated with
an s-dimensional measure µ in Rd+1 implies the finiteness of some Wolff-type potential
with an exponential gauge function. This scheme allowed one to fully develop the idea
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of Mateu and Tolsa in [MT] and to turn the scales of low density, which were the main
enemy in most previous approaches, into a useful friend.

Roughly speaking, the present paper uses the non-BAUP cells instead of the scales
of high density and the flat cells instead of the scales of low density to introduce a Cantor-
type structure, which is then treated similarly to how it was done in [ENV]. The most
essential deviations and additions are using the holes in the non-BAUP cells to hide the
negative part of R∗(ψm), the alignment of the approximating planes in the stopping
flat cells, the quasi-orthogonality estimates based on flatness instead of smallness of the
density, and the consideration of only the d-dimensional part of the Riesz kernel aligned
with approximating planes.

The main limitation of our approach, which does not allow us to extend our result
to codimensions greater than 1, comes from the reliance of the [ENV] scheme on a
certain maximum principle, of which no analogue is known in codimensions higher than 1.
Extending or bypassing this maximum principle could possibly lead to the full solution
of the problem.

It is worth mentioning here that shortly before our paper was finished, Hofmann,
Martell, and Mayboroda posted a paper [HMM] on arXiv that contains a result equivalent
to ours under the additional assumption that µ is the surface measure on the bound-
ary of a not too weird connected domain in Rd+1. They also expressed the hope that
their techniques may eventually provide an alternative approach to the full rectifiability
conjecture. Unfortunately, their proof is also heavily based on the harmonicity of the
kernel, which seems to make it hard to extend their techniques to the case of higher
codimensions.

Including all the relevant definitions into this introduction would take too much
space, so if the reader has got interested enough at this point to continue reading the
paper, he will find them all in the main body of the article (and if not, all we can do is
to bid him farewell now).

2. Acknowledgements

The present work would not be possible without numerous previous attempts of many
mathematicians. We thank them all for sharing their ideas and techniques with us. The
reader can find the (possibly incomplete) list of their names in the notes [D4] by David
and references therein. To engage here into a detailed description of who did exactly
what and when would be tantamount to writing a book on the history of a subject of
which we have neither sufficient knowledge, nor an unbiased judgement.

Our special thanks go to Ben Jaye for helping us to verify and to straighten some
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delicate technical details in the proof and to Vladimir Eiderman for his unwavering
support and belief in this project.

We also thank the anonymous referee who has read this paper from cover to cover
and made many pertinent remarks, which helped to improve its style and readability.

At last, we are grateful for all the grant support from various organizations we
received during our work on this project.(2)

3. The structure of the paper

We tried to make the paper essentially self-contained. The only thing that the reader is
assumed to be familiar with is the elementary theory of Calderón–Zygmund operators in
homogeneous spaces. Everything else, including such standard for experts things as the
David–Semmes lattice and weak limit considerations, is developed almost from scratch.
The paper is split into reasonably short sections each of which is devoted to one step, one
construction, or one estimate in the proof. We tried to explain the goal of each section
at its beginning and to give each section some meaningful title. We hope that this will
help the reader to easily separate topics he already knows well from those that might
be new to him. We also believed that it would make sense to include extra details or
routine computations even at the cost of making the paper longer if they may spare the
reader some time and headache when checking the argument. However, despite all our
efforts, the text is still fairly dense and the full logic of the proof will reveal itself only
at the end of the last section.

4. The notation

By c and C we denote various positive constants. We usually think of c as of a small
constant used in a bound of some quantity from below and of C as of a large constant
used in a bound from above. The constants appearing in intermediate computations
may change from one occurence to another. Some constants may depend on parameters,
in which case those parameters are always mentioned explicitly and often included in
parentheses after the constant unless such dependence is absolutely clear from the context
like in the case of the dependence on the dimension d: all constants we use do depend
on d but, since d is fixed throughout the entire paper, we hardly ever mention this.

(2) F.N. was partially supported by the U.S. NSF grant DMS-0800243. X.T. was partially sup-
ported by the ERC grant 320501 of the European Research Council (FP7/2007-2013) and by the grants
2009SGR-000420 (Catalonia) and MTM-2010-16232 (Spain). A.V. was partially supported by the U.S.
NSF grant DMS-0758552
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Due to the fact that the Riesz transform operator maps scalar-valued measures (or
functions) to vector-valued functions, scalar- and vector-valued quantities will be heavily
mixed in many formulae. We leave it to the reader to figure out in every particular case
when the product is a product of two scalars and when it is a product of a scalar and
a vector in Rd+1. However, whenever the scalar product of two vector-valued quantities
is meant, we always use angular brackets 〈· , ·〉. Whenever the angular brackets are also
used for the scalar product or duality coupling in some function spaces, we indicate that
by writing something like 〈· , ·〉L2(µ), or merely 〈· , ·〉µ.

We will always denote by B(x, r) an open ball of radius r centered at x∈Rd+1 and
by 
B(x, r) the corresponding closed ball. The notation χE will always be used for the
characteristic function of a set E⊂Rd+1.

By the support suppµ of a measure µ we always mean the closed support. The same
notation and the same convention apply to supports of functions. We always specify the
measure µ in the notation when talking about Lp(µ) norms in the usual sense. However,
we also use the notation ‖f‖L∞(E) for the supremum of |f | over the set E. If we omit E
and just write ‖f‖L∞ , it means that the supremum is taken over the whole space Rd+1.
The same convention applies to integrals: if the domain of integration is not specified,
the integral over the whole space is meant. The Lipschitz norm of a function f on a set
E⊂Rd+1 is defined as

‖f‖Lip(E) = sup
x,y∈E
x6=y

|f(x)−f(y)|
|x−y|

.

If E is omitted in this notation, we mean the Lipschitz norm in the full space Rd+1.
We use the letter m to denote the (d+1)-dimensional Lebesgue measure on Rd+1. The
d-dimensional Lebesgue measure on an affine hyperplane L⊂Rd+1 is denoted mL.

We use the notation dist(x,E) for the distance between a point x∈Rd+1 and a set
E⊂Rd+1. Similarly, we write dist(E,F ) for the distance between two sets E,F⊂Rd+1.

5. The d-dimensional Riesz transform in R
d+1

The goal of this section is to remind the reader (or to acquaint him with) the general
notions of the theory of AD-regular measures and the associated Riesz transform opera-
tors.

Fix a positive integer d. Define the d-dimensional (vector-valued) Riesz kernel in
Rd+1 by K(x)=x/|x|d+1. For a finite signed Borel measure ν in Rd+1, define its Riesz
transform by

Rν=K∗ν=
∫
K(x−y) dν(y).
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The singularity of K at the origin is mild enough to ensure that the integral always
converges absolutely almost everywhere with respect to the (d+1)-dimensional Lebesgue
measure m in Rd+1 and everywhere if ν is sufficiently smooth (say, has a bounded density
with respect to m). Moreover, the Riesz transform Rν is infinitely differentiable in
Rd+1\supp ν and, since

|(∇kK)(x)|6 C(k)
|x|d+k

for all x 6=0 and each k>0, we have

|(∇kRν)(x)|6C(k)
∫

d|ν|(y)
|x−y|d+k

(1)

for each x /∈supp ν, where |ν| stands for the variation of ν.
Note also that the finiteness of the measure is not so important in these estimates,

so the Riesz transform Rν can also be defined for any measure ν satisfying∫
d|ν|(x)
1+|x|d

<∞.

Similarly, using the estimate

|K(x′)−K(x′′)|6C
|x′−x′′|

min{|x′|, |x′′|}d+1
,

we also obtain

|(Rν)(x′)−(Rν)(x′′)|6C

∫
|x′−x′′| d|ν|(y)

min{|x′−y|, |x′′−y|}d+1
.

An immediate consequence of this bound is that if ν satisfies the growth restriction
|ν(B(x, r))|6Crd for all x∈Rd+1, r>0, and if E is any subset of Rd+1 separated from
supp ν, then

‖Rν‖Lip(E) 6
C

dist(E, supp ν)
. (2)

Note that this estimate does not follow from (1) immediately because it may be impossible
to connect x′, x′′∈E by a path of length comparable to |x′−x′′| that stays far away from
supp ν.

In general, the singularity of the kernel at the origin is too strong to allow one
to talk of the values of Rν on supp ν. The usual way to overcome this difficulty is to
introduce regularized kernels Kδ (δ>0). The exact choice of the regularization is not
too important as long as the antisymmetry and the Calderón–Zygmund properties of the
kernel are preserved. For the purposes of this paper, the definition

Kδ(x) =
x

max{δ, |x|}d+1
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is the most convenient one, so we will use it everywhere below. The corresponding
regularized Riesz transforms

Rδν=Kδ∗ν=
∫
Kδ(x−y) dν(y)

are well defined and locally Lipschitz in the entire space Rd+1 for any signed measure ν
satisfying ∫

d|ν|(x)
1+|x|d

<∞.

In particular, if we have a positive measure µ satisfying µ(B(x, r))6Crd for every x∈Rd+1

and r>0 with some fixed C>0, and a function f∈Lp(µ), 1<p<∞, then Rδ(fµ) is
well defined pointwise for all δ>0, so it makes sense to ask whether the corresponding
operators Rµ,δf=Rδ(fµ) are uniformly bounded in Lp(µ).

The standard theory of Calderón–Zygmund operators(3) implies that the answer
does not depend on p∈(1,∞). Moreover, if we know the uniform growth bound

µ(B(x, r))6Crd

and an estimate for the norm ‖Rµ,δ‖Lp0 (µ)!Lp0 (µ) for some p0∈(1,∞), we can explicitly
bound the norms ‖Rµ,δ‖Lp(µ)!Lp(µ) for all other p.

These observations lead to the following definition.

Definition. A positive Borel measure µ in Rd+1 is called C-nice if µ(B(x, r))6Crd

for every x∈Rd+1 and r>0. It is called C-good if it is C-nice and ‖Rµ,δ‖L2(µ)!L2(µ)6C

for every δ>0.

Often we will just say “nice” and “good” without specifying C, meaning that the
corresponding constants are fixed throughout the argument. A few notes are in order.

First, for non-atomic measures µ, the uniform norm bounds

‖Rµ,δ‖L2(µ)!L2(µ) 6C

imply that µ is C ′-nice with some C ′ depending on C only (see [D2], Proposition 1.4,
p. 56).

Second, it follows from the above remarks that despite “goodness” being defined in
terms of the L2-norms, we will get an equivalent definition using any other Lp-norm with

(3) Though the measure µ is not assumed to be doubling at this point, we will apply this theory
only when µ is an AD-regular measure, so we do not really need here the subtler version of the theory
dealing with non-homogeneous spaces.



uniform rectifiability and the riesz transform 245

1<p<∞. What will be important for us below is that for any C-good measure µ, the
operator norms ‖Rµ,δ‖L4(µ)!L4(µ) are also bounded by some constant C ′.

We now can state formally what the phrase “the associated Riesz transform is
bounded in L2(µ)” in the statement of the theorem means. We will interpret it as
“the measure µ is good”. By the classical theory of Calderón–Zygmund operators, this is
equivalent to all other reasonable formulations, the weakest looking of which is, probably,
the existence of a bounded operator T :L2(µ)!L2(µ) such that

(Tf)(x) =
∫
K(x−y)f(y) dµ(y)

for µ-almost all x /∈supp f .
A few words should be said about duality and the adjoint operator R∗. The formal

change of order of integration combined with the antisymmetry of K yields the identity∫
〈Rν, dη〉=

∫ 〈∫
K(x−y) dν(y), dη(x)

〉
=−

∫ (∫
〈K(x−y), dη(y)〉

)
dν(x) =−

∫ ( d+1∑
j=1

〈ej , R〈η, ej〉〉
)
dµ

leading to the formula

R∗η=−
d+1∑
j=1

〈ej , R〈η, ej〉〉, (3)

where ν is a scalar (signed) measure, η is a vector-valued measure, and e1, ..., ed+1 is an
arbitrary orthonormal basis in Rd+1.

This computation is easy to justify if both ν and η are finite and at least one of
them has bounded density with respect to the (d+1)-dimensional Lebesgue measure m
in Rd+1, because then the corresponding double integral converges absolutely and the
classical Fubini theorem applies. This simple observation will be sufficient for us most of
the time. However, in a couple of places the adjoint operator R∗ has to be understood in
the usual sense of functional analysis in the Hilbert space L2(µ) for some good measure µ.
All such cases are covered by the following general scheme (which is, perhaps, even too
general for the purposes of this paper).

The identity

〈Rµ,δf, g〉µ =−
〈
f,

d+1∑
j=1

〈ej , Rµ,δ〈g, ej〉〉
〉
µ

holds for every locally finite measure µ and any bounded functions f (scalar-valued) and
g (vector-valued) with compact supports. If µ is good, both sides of this identity make
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sense and define continuous bilinear forms in L2(µ)×L2(µ). Since these forms coincide
on a dense set of pairs of test functions, they must coincide everywhere. However, the
latter is equivalent to saying that

(Rµ,δ)∗g=−
d+1∑
j=1

〈ej , Rµ,δ〈g, ej〉〉

in the usual sense of functional analysis.
Finally, if the operators Rµ,δ converge at least weakly to some operator Rµ in L2(µ)

as δ!0+, so do the operators (Rµ,δ)∗ and, therefore, the last identity remains valid for
Rµ in place of Rµ,δ.

The upshot of these observation is that all reasonable properties of or estimates for
R, Rµ,δ, or Rµ automatically hold for R∗, (Rµ,δ)∗, or (Rµ)∗, respectively, due to one of
the above identities, so we may (and will) freely refer to the results formally obtained
only for the operators themselves when talking about their adjoints.

In what follows, we will mainly deal with measures µ that satisfy not only the upper
growth bound, but a lower one as well. Such measures are called Ahlfors–David regular
(AD-regular for short). The exact definition is as follows.

Definition. Let U be an open subset of Rd+1. A nice measure µ is called AD regular
in U with lower regularity constant c>0 if for every x∈suppµ∩U and every r>0 such
that B(x, r)⊂U , we have µ(B(x, r))>crd.

The simplest example of a good AD-regular measure µ in Rd+1 is the d-dimensional
Lebesgue measure mL on an affine hyperplane L⊂Rd+1. The next section is devoted to
the properties of the Riesz transform with respect to this measure.

6. The Riesz transform of a smooth measure supported on a hyperplane

Throughout this section, L is a fixed affine hyperplane in Rd+1 and H is the hyperplane
parallel to L passing through the origin.

The main results of this section are the explicit bounds for the L∞-norm and the
Lipschitz constant of the H-restricted Riesz transform RHν of a measure ν=fmL with
compactly supported C2 density f with respect to mL.

If we are interested in the values of RmL,δf on the hyperplane L only, we may just
as well project the kernels Kδ to H and define

KH
δ (x) =

πHx

max{δ, |x|}d+1
,
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where πH is the orthogonal projection from Rd+1 to H. The corresponding operators RHδ
will just miss the orthogonal-to-H component of the difference x−y in the convolution
definition. However, for x, y∈L, this component vanishes anyway.

Note that everything that we said about the full Riesz transform R and its adjoint
R∗ in the previous section applies to the restricted Riesz transform RH as well, except
in the identities relating the adjoint operator (RH)∗ to the operator RH itself where an
orthonormal basis e1, ..., ed of H should be used instead of an orthonormal basis in the
whole space Rd+1.

The theory of the d-dimensional Riesz transform on a hyperplane L in Rd+1 is
mainly just the classical theory of the full-dimensional Riesz transform in Rd. The facts
important for us (which can be found in any decent harmonic analysis textbook) are the
following.

The operators RHmL,δ
are uniformly bounded in every Lp(mL) (1<p<∞). Moreover,

they have a strong limit as δ!0+, which we will denote by RHmL
. This operator is also

bounded in all Lp(mL), is an isometry in L2(mL) (up to a constant factor), and

(RHmL
)∗RHmL

=−c Id

for some c>0. Here, (RHmL
)∗ stands for the adjoint operator to the operator RmL

. Note
that (RHmL

)∗ can also be defined as the strong limit of the pointwise defined operators
(RHmL,δ

)∗.

Lemma 1. Suppose that f is a C2-smooth compactly supported function on L. Then
the functions RHδ (fmL) converge to some limit RH(fmL) uniformly on the entire space
Rd+1 as δ!0+, and RH(fmL) coincides with RHmL

f almost everywhere on L with re-
spect to mL. Moreover, RH(fmL) is a Lipschitz function in Rd+1 harmonic outside
supp(fmL), and we have

sup |RH(fmL)|6CD2 sup
L
|∇2

Hf |

and

‖RH(fmL)‖Lip 6CD sup
L
|∇2

Hf |,

where D is the diameter of supp(fmL) and ∇H is the partial gradient involving only
the derivatives in the directions parallel to H.

Note that the second differential ∇2
Hf and the corresponding supremum on the

right-hand side are considered on L only (the function f in the lemma does not even
need to be defined outside L) while the H-restricted Riesz transform RH(fmL) on the
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left-hand side is viewed as a function on the entire space Rd+1 and its supremum and
the Lipschitz norm are also taken in Rd+1.

It is very important that we consider here the H-restricted Riesz transform RH

instead of the full Riesz transform R. The reason is that the component of R(fmL)
orthogonal to H has a jump discontinuity across L at the points of L where f 6=0. This
switch to the restricted Riesz transform is rather crucial for our proof and is somewhat
counterintuitive given the way the argument will develop later, when we use the bound-
edness of the Riesz transform Rµ in L2(µ) to show, roughly speaking, that almost flat
pieces of µ parallel to H must be aligned. It would seem more natural to do exactly
the opposite and to concentrate on the orthogonal component of R for that purpose.
However, the price one has to pay for its discontinuity is very high and we could not
make the ends meet in that way.

Proof. The statement about the harmonicity of RH(fmL) follows from the obser-
vation that KH(x)=c∇HE(x), where E(x) is the fundamental solution for the Laplace
operator in Rd+1, i.e., E(x)=c log |x| when d=1 and E(x)=−c|x|−(d−1) when d>1. Thus,
KH is harmonic outside the origin together with E, so RHν is harmonic outside supp ν
for every finite signed measure ν (and so is the full Riesz transform Rν).

To prove the other statements of the lemma, note that its setup is translation- and
rotation-invariant, so we may assume without loss of generality that

L=H = {x∈Rd+1 :xd+1 =0}.

We shall start with proving the uniform bounds for the regularized Riesz transforms
RHδ (fmL). Since RHδ (fmL) is a Lipschitz function in the entire space, it is enough to
estimate its value and its gradient at each point x∈Rd+1. By translation invariance and
symmetry, we may assume without loss of generality that x1=...=xd=0 and xd+1=t>0.

We have

[RHδ (fmL)](x) =
∫
L

KH
δ (x−y)f(y) dmL(y) =

∫
L∩B(0,D)

+
∫
L\B(0,D)

= I1+I2.

Note that, for |y|>D, the integrand is bounded by D−d maxL |f | and the mL measure
of the support of f on L is at most CDd, so

|I2|6Cmax
L

|f |.

To estimate I1, note first that∫
L∩B(0,D)

KH
δ (x−y) dmL(y) = 0,
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so we can replace f(y) by f(y)−f(0) and use the inequalities

|f(y)−f(0)|6 sup
L
|∇Hf | |y| and |x−y|> |y|

to get

|I1|6 sup
L
|∇Hf |

∫
L∩B(0,D)

dmL(y)
|y|d−1

6CD sup
L
|∇Hf |.

Adding these bounds and using the inequality supL |f |6D supL |∇Hf |, we get

sup |RHδ (fmL)|6CD sup
L
|∇Hf |.

Note that we have not used that f∈C2(L) here, only that f∈C1(L).
Now we will estimate [∇RHδ (fmL)](x). Note that the partial derivatives ∂/∂xj for

j=1, ..., d that are taken along the hyperplane L can be passed to f , so we have

∂

∂xj
[RHδ (fmL)]=RHδ

([
∂

∂xj
f

]
mL

)
.

Applying the above estimate to ∂f/∂xj instead of f , we immediately obtain

sup |∇HR
H
δ (fmL)|6CD sup

L
|∇2f |.

To get a bound for the remaining vertical derivative ∂/∂xd+1, note that

∂

∂xd+1
KH
δ (x−y) = 0

for all x, y∈L, so the case t=0 is trivial. Assuming t>0, we write[
∂

∂xd+1
RHδ (fmL)

]
(x) =

∫
L

[
∂

∂xd+1
KH
δ (x−y)

]
f(y) dmL(y)

=
∫
L∩B(0,D)

+
∫
L\B(0,D)

= I1+I2.

For y∈L, we can use the inequalities∣∣∣∣ ∂

∂xd+1
KH
δ (x−y)

∣∣∣∣6C
t

|x−y|d+2

and |x−y|>t and note that the integrand in I2 is bounded by supL |f |D−(d+1). Since
the mL measure of the support of f on L is at most CDd, we arrive at the bound

|I2|6CD−1 sup
L
|f |.
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To estimate I1, note that we still have the cancellation property∫
L∩B(0,D)

∂

∂xd+1
KH
δ (x−y) dmL(y) = 0,

so we can replace f(y) by f(y)−f(0) and use the inequalities

|f(y)−f(0)|6 sup
L
|∇Hf | |y| and |x−y|> |y|

to get

|I1|6C sup
L
|∇Hf |

∫
L

t dmL(y)
|x−y|d+1

=C sup
L
|∇Hf |.

Adding these bounds, we get

sup
∣∣∣∣ ∂

∂xd+1
RHδ (fmL)

∣∣∣∣6CD−1
[
sup
L
|f |+D sup

L
|∇Hf |

]
.

To get only supL |∇2
Hf | on the right-hand sides of our estimates, it remains to note that

sup
L
|f |6D sup

L
|∇Hf |6D2 sup

L
|∇2

Hf |.

As the estimates obtained are uniform in δ>0 and as RHδ (fmL) coincides with RH(fmL)
outside the strip of width δ around L, we conclude that RHδ (fmL) converges uniformly
to some Lipschitz function in the entire space Rd+1 and the limiting function satisfies
the same bounds. Since they also converge to RHmL

f in L2(mL), this limiting function
must coincide with RHmL

f almost everywhere with respect to the measure mL.

7. The toy flattening lemma

The goal of this section is to prove the result that is, in a sense, the converse to Lemma 1.
We want to show that if RHmL

f is smooth in a large ball on L, then f itself must be
(slightly less) smooth in the four times smaller ball. The exact version we will need is
the following.

Lemma 2. Let f∈L∞(mL)∩L2(mL). Assume that z∈L and RHmL
f coincides with

a C2 function F almost everywhere (with respect to mL) on L∩B(z, 4A) for some A>0.
Then f is Lipschitz on L∩B(z,A) (possibly, after a correction on a set of mL measure 0)
and the norm ‖f‖Lip(L∩B(z,A)) is dominated by

A−1‖f‖L∞(mL)+‖∇HF‖L∞(L∩B(z,4A))+A‖∇2
HF‖L∞(L∩B(z,4A)),

up to a constant factor.
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We will refer to this lemma as the “toy flattening lemma”. By itself, it is rather
elementary but, combined with some weak limit techniques, it will eventually yield the
full flattening lemma for measures that are not necessarily supported on a hyperplane,
which will play a crucial role in our argument.

Proof. Write
f = fχB(z,4A)+fχL\B(z,4A) = f1+f2.

Note that RHmL
f2 is smooth in L∩B(z, 3A), and

‖∇HR
H
mL
f2‖L∞(L∩B(z,3A)) 6CA−1‖f‖L∞(mL)

and
‖∇2

HR
H
mL
f2‖L∞(L∩B(z,3A)) 6CA−2‖f‖L∞(mL).

To see this, just recall the estimate (1) and note that for k>1 and x∈B(z, 3A), we have∫
L\B(z,4A)

|f(y)| dmL(y)
|x−y|d+k

6C(k)‖f‖L∞(mL)A
−k.

Thus, RHmL
f1 is C2-smooth on L∩B(z, 3A) as the difference of F and RHmL

f2. Moreover,
we have

‖∇HR
H
mL
f1‖L∞(L∩B(z,3A)) 6CA−1‖f‖L∞(mL)+‖∇HF‖L∞(L∩B(z,4A))

and
‖∇2

HR
H
mL
f1‖L∞(L∩B(z,3A)) 6CA−2‖f‖L∞(mL)+‖∇2

HF‖L∞(L∩B(z,4A)).

Observe also that, by the L2(mL) boundedness of RHmL
, we have∫

|RHmL
f1|2 dmL 6C

∫
|f1|2 dmL 6CAd‖f‖2

L∞(mL),

whence there exists a point in L∩B(z, 3A) such that |RHmL
f1|6C‖f‖L∞(mL) at that

point. Combining this with the estimate for the gradient, we conclude that

‖RHmL
f1‖L∞(L∩B(z,3A)) 6C

[
‖f‖L∞(mL)+A‖∇HF‖L∞(L∩B(z,4A))

]
.

Let now ϕ0 be a C2-smooth function in Rd+1 supported on B(0, 3) such that 06ϕ061
and ϕ0 is identically 1 on B(0, 2). Put ϕ(x)=ϕ0((x−z)/A). Then |∇kϕ|6C(k)A−k. We
have

−cf1 =(RHmL
)∗RHmL

f1 =(RHmL
)∗[ϕRHmL

f1]+(RHmL
)∗[(1−ϕ)RHmL

f1].
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However, ϕRHmL
f1 is a compactly supported C2 function on L, the diameter of its support

is not greater than 6A and, using the above estimates and the Leibniz formulae for the
derivative of a product, we see that its second gradient ∇2

H [ϕRHmL
f1] is dominated by

A−2‖f‖L∞(mL)+A−1‖∇HF‖L∞(L∩B(z,4A))+‖∇2
HF‖L∞(L∩B(z,4A)),

up to a constant factor. Thus, by Lemma 1, (RHmL
)∗[ϕRHmL

f1] is Lipschitz on L with
Lipschitz constant dominated by the quantity in the statement of the lemma to prove.

To finish the proof of the toy flattening lemma it just remains to observe that,
since (RHmL

)∗[(1−ϕ)RHmL
f1] is a Riesz transform of a function supported outside the

ball B(z, 2A) (or, rather, a finite linear combination of such Riesz transforms), it is
automatically smooth on B(z,A). Moreover, using (1) again, we see that∣∣∇H(RHmL

)∗[(1−ϕ)RHmL
f1]
∣∣

6
∣∣∇(RH)∗[(1−ϕ)(RHmL

f1)mL]
∣∣

6
∫
L\B(z,2A)

1
|x−y|d+1

|RHmL
f1(y)| dmL(y)

6

[∫
L\B(z,2A)

dmL(y)
|x−y|2d+2

]1/2[∫
L\B(z,2A)

|RHmL
f1(y)|2 dmL(y)

]1/2
6 [CA−(d+2)]1/2[CAd‖f‖2

L∞(mL)]
1/2

=CA−1‖f‖L∞(mL).

8. Weak limits

This section has two main goals. The first one is to define the Riesz transform operators
Rµ (and their H-restricted versions RHµ ) in L2(µ) for arbitrary good measures µ as weak
limits of the regularized operators Rµ,δ as δ!0+. The second one is to show that when
a sequence of uniformly good measures µk tends weakly (over the space of compactly
supported continuous functions in Rd+1) to some other measure µ in Rd+1, then the
limiting measure µ is also good and for all compactly supported Lipschitz functions f

(scalar-valued) and g (vector-valued) in Rd+1, we have
∫
〈Rµk

f, g〉 dµk!
∫
〈Rµf, g〉 dµ.

Our starting point is to fix two compactly supported Lipschitz functions f and g in
Rd+1, where f is scalar-valued and g is vector-valued, and to use the antisymmetry of
the kernels Kδ to write the scalar product 〈Rµ,δf, g〉µ as

Iδ(f, g) =
∫∫

〈Kδ(x−y)f(y), g(x)〉 dµ(x) dµ(y) =
∫∫

〈Kδ(x−y),H(x, y)〉 dµ(x) dµ(y),
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where
H(x, y) = 1

2 [f(y)g(x)−f(x)g(y)].

The vector-valued functionH(x, y) is compactly supported and Lipschitz on Rd+1×Rd+1,
so the integral Iδ(f, g) converges absolutely as an integral of a bounded function over a
set of finite measure for every δ>0 and every locally finite measure µ. Moreover, since
H vanishes on the diagonal x=y, we have

|H(x, y)|6C(f, g)|x−y|

for all x, y∈Rd+1.
If µ is nice, then ∫

B(x,r)

dµ(y)
|x−y|d−1

6Cr

for all x∈Rd+1 and r>0. Therefore, denoting supp f∪supp g by S, we get∫∫
x,y:|x−y|<r

|H(x, y)|
|x−y|d

dµ(x) dµ(y) 6C(f, g)
∫
S

(∫
y:|x−y|<r

dµ(y)
|x−y|d−1

)
dµ(x)

6C(f, g)µ(S)r.

In particular, taking r=diamS here, we conclude that the full integral∫∫
|H(x, y)|
|x−y|d

dµ(x) dµ(y) =
∫∫

S×S
<∞.

Since |K(x)|=|x|−d and |Kδ(x)−K(x)|6|x|−dχB(0,δ)(x), we infer that the integral

I(f, g) =
∫∫

〈K(x−y),H(x, y)〉 dµ(x) dµ(y)

converges absolutely and, moreover, there exists a constant C depending on f , g, and
the growth constant of µ only such that |Iδ(f, g)−I(f, g)|6Cδ for all δ>0.

This already allows one to define the bilinear form

〈Rµf, g〉µ = I(f, g)

and to establish the existence of the limit operator Rµ=limδ!0+Rµ,δ as an operator from
the space of Lipschitz functions to its dual for every nice measure µ.

However, if µ is good, we can say much more. Indeed, in this case the bilinear forms

〈Rµ,δf, g〉µ =
∫
〈Rµ,δf, g〉 dµ
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make sense and satisfy the inequality

|〈Rµ,δf, g〉µ|6C‖f‖L2(µ)‖g‖L2(µ)

for all f, g∈L2(µ). Since the space of compactly supported Lipschitz functions is dense
in L2(µ), we can write any L2(µ) functions f and g as f1+f2 and g1+g2, where f1 and
g1 are compactly supported Lipschitz functions in Rd+1, and f2 and g2 have as small
norms in L2(µ) as we want. Splitting

〈Rµ,δf, g〉µ = 〈Rµ,δf1, g1〉µ+[〈Rµ,δf1, g2〉µ+〈Rµ,δf2, g〉µ],

we see that 〈Rµ,δf, g〉µ can be written as a sum of the quantity 〈Rµ,δf1, g1〉µ=Iδ(f1, g1),
which converges to a finite limit I(f1, g1) as δ!0+ and another quantity that stays as
small as we want as δ!0+ if the L2(µ) norms of f2 and g2 are chosen small enough. From
here we conclude that the limit of 〈Rµ,δf, g〉µ as δ!0+ exists for all f, g∈L2(µ). More-
over, this limit is a bilinear form in L2(µ) and it is still bounded by C‖f‖L2(µ)‖g‖L2(µ).
By the Riesz–Fischer theorem, there exists a unique bounded linear operator Rµ in L2(µ)
such that this bilinear form is equal to 〈Rµf, g〉µ. The convergence

〈Rµ,δf, g〉µ! 〈Rµf, g〉µ as δ! 0+

can be restated as the weak convergence of the operators Rµ,δ to Rµ.
Similarly, one can consider the duality coupling of Lp(µ) and Lq(µ), where p, q>1

and p−1+q−1=1, and use the uniform boundedness of the operators Rµ,δ in Lp(µ) to es-
tablish the existence of the weak limit of the operators Rµ,δ in Lp(µ) as δ!0+. Note that,
if f∈Lp1(µ)∩Lp2(µ), then for every g∈L∞(µ) with µ(supp g)<∞, the value 〈Rµ,δf, g〉µ
can be computed using the pointwise integral definition of Rµ,δf as Rδ(fµ), so it does
not depend on whether f is considered as an element of Lp1(µ) or an element of Lp2(µ).
Thus

〈Rµf, g〉µ = lim
δ!0+

〈Rµ,δf, g〉µ

also does not depend upon that (note that g∈Lq1(µ)∩Lq2(µ), so the left-hand side makes
sense in both cases). Since g is arbitrary here, we conclude that Rµf (as a function defined
µ-almost everywhere) is the same in both cases.

Another important observation is that if the pointwise limit limδ!0+Rµ,δf exists on
a set E with µ(E)>0, then Rµf coincides with that limit µ-almost everywhere on E.
To prove it, just observe that, by Egorov’s theorem, we can exhaust E by sets of finite µ
measure on which the convergence is uniform.

At last, if Rµ,δ converges strongly in L2(µ), then the limit is still the same as the
weak limit we constructed.
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The analogous theory can be built for RH , R∗, and (RH)∗. We built it only for
the full operator R because projecting everything to H is trivial and R∗ does not really
require a separate theory due to relation (3), which shows that, at least in principle,
we can always view R∗ just as a fancy notation for the right-hand side of (3). From
now on, we will always understand R(fµ) on suppµ as Rµf whenever µ is good and
f∈Lp(µ) for some p∈(1,∞). As we have shown above, this convention is consistent with
other reasonable definitions in the sense that when some other definition is applicable
somewhere on suppµ as well, the value it gives coincides with Rµf except, maybe, on a
set of zero µ measure.

The idea of defining Rµ as a weak limit of Rµ,δ goes back to Mattila and Verdera
[MV]. They prove its existence in a slightly more general setting and their approach is
somewhat different from ours. They also show that Rµf can be defined pointwise by
some formula that is almost the expression for the principal value

lim
δ!0+

∫
y:|x−y|>δ

K(x−y)f(y) dµ(y)

but not quite. Note that Mattila, Preiss, and Tolsa showed that the existence of the
principal value µ-almost everywhere is strong enough to imply the rectifiability of µ (see
[MP] and [T1]), so for a while there was a hope that the Mattila–Verdera result would
eventually lead to the proof of the rectifiability conjecture. However, as far as we can
tell, nobody still knows how to get a proof in this way and we will use a different route
below.

We have just attained the first goal of this section: the construction of the limiting
operator Rµ for one fixed good measure µ. We now turn to the relations between the
operators Rµ corresponding to different measures µ.

We start with the case when a positive measure ν has a bounded Borel measurable
density p with respect to a good measure µ. Since ν(B(x, r))6‖p‖L∞(µ)µ(B(x, r)), we see
that ν is nice. To show that ν is good, note that for every f∈L2(ν), we have pf∈L2(µ).
Moreover, we have the identity

Rδ(fν) =Rδ(pfµ)

pointwise in Rd+1, whence∫
|Rδ(fν)|2 dν=

∫
|Rδ(pfµ)|2p dµ6C‖p‖L∞(µ)

∫
|pf |2 dµ6C‖p‖2

L∞(µ)

∫
|f |2 dν

due to the goodness of µ. Thus, both operators Rν and Rµ exist. Now take any f, g∈
L2(ν) and write

〈Rν,δf, g〉ν = 〈Rµ,δ(pf), pg〉µ.
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Passing to the limit on both sides as δ!0+, we conclude that

〈Rνf, g〉ν = 〈Rµ(pf), pg〉µ = 〈Rµ(pf), g〉ν

(note that the function Rµ(pf) is defined µ-almost everywhere, so it is also defined ν -
almost everywhere). However, the mapping f 7!Rµ(pf) is a bounded linear operator
from L2(ν) to L2(µ)⊂L2(ν), so we conclude that

Rνf =Rµ(pf) ν -almost everywhere.

This identity is, of course, by no means surprising. Still, since we will use it several
times without mentioning, we decided it would be prudent to include a proof. The next
property we need is a bit subtler.

Suppose that µk (k>1) is a sequence of uniformly nice measures that converges to
some locally finite measure µ weakly over the space C0(Rd+1) of compactly supported
continuous functions in Rd+1. We shall start with showing that µ is also nice. Indeed,
take any ball B(x, r). Then µ(B(x, r)) can be found as the supremum of all integrals∫
f dµ with continuous functions f such that 06f61 and supp f⊂B(x, r). However, for

every such f , we have∫
f dµ= lim

k!∞

∫
f dµk 6 sup

k
µk(B(x, r))6Crd,

where C is the uniform growth constant of µk, so we have the same bound for µ(B(x, r)).
Fix two compactly supported Lipschitz functions f and g. The bilinear form

〈Rµf, g〉µ

can be defined as I(f, g) for every nice measure µ. Once we know that µ is nice, we can
say that

|〈Rµk,δf, g〉µk
−〈Rµk

f, g〉µk
|6Cδ

for all k>1 and also
|〈Rµ,δf, g〉µ−〈Rµf, g〉µ|6Cδ

with some C>0 depending only on f , g, and the uniform growth constant of µk. Note,
however, that for every fixed δ>0,

〈Rµk,δf, g〉µk
=
∫∫

〈Kδ(x−y)f(y), g(x)〉 dµk(x) dµk(y)

and the integrand is a compactly supported Lipschitz function in Rd+1×Rd+1, which is
more than enough to ensure that

〈Rµk,δf, g〉µk
! 〈Rµ,δf, g〉µ
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for every fixed δ>0 as k!∞. Since the convergence 〈Rµk,δf, g〉µk
!〈Rµk

f, g〉µk
as δ!0+

is uniform in k, we conclude that

〈Rµk
f, g〉µk

! 〈Rµf, g〉µ

as well.
It remains to show that if µk are uniformly good, then µ is also good, so all the

bilinear forms in question can be also interpreted as L2(µ) couplings. Return to the
regularized operators Rµ,δ and note that the uniform C-goodness of µk implies that

|〈Rµk,δf, g〉µk
|6C‖f‖L2(µk)‖g‖L2(µk).

Since |f |2 and |g|2 are compactly supported Lipschitz functions, we can pass to the limit
on both sides and get

|〈Rµ,δf, g〉µ|6C‖f‖L2(µ)‖g‖L2(µ).

However, the operators Rµ,δf are well defined pointwise for every f∈L2(µ) and are
bounded from L2(µ) to L2

loc(µ) as soon as µ is merely nice. Using the fact that, for every
bounded open set U , the space of Lipschitz functions compactly supported inside U is
dense in L2(U, µ) and this a-priori boundedness, we conclude that ‖Rµ,δ‖L2(µ)!L2(U,µ)6C

regardless of the choice of U . The monotone convergence lemma then shows that
‖Rµ,δ‖L2(µ)!L2(µ)6C as well, finishing the story.

9. The flatness condition and its consequences

Throughout this section, we shall fix a linear hyperplane H⊂Rd+1. Let z∈Rd+1 and
let A,α, `>0 (we view A as a large number, α as a small number, and ` as a scale
parameter). We will be interested in the situation when the measure µ is close inside
the ball B(z,A`) to a multiple of the d-dimensional Lebesgue measure mL on the affine
hyperplane L containing z and parallel to H.

Definition. We say that a measure µ is geometrically (H,A, α)-flat at the point z
on the scale ` if every point of suppµ∩B(z,A`) lies within distance α` from the affine
hyperplane L containing z and parallel to H and every point of L∩B(z,A`) lies within
distance α` from suppµ.

We say that a measure µ is (H,A, α)-flat at the point z on the scale ` if it is
geometrically (H,A, α)-flat at the point z on the scale ` and, in addition, for every
Lipschitz function f supported on B(z,A`) such that ‖f‖Lip6`−1 and

∫
f dmL=0, we

have ∣∣∣∣∫ f dµ

∣∣∣∣6α`d.
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Note that the geometric (H,A, α)-flatness is a condition on suppµ only. It does not
tell one anything about the distribution of the measure µ on its support. The latter is
primarily controlled by the second, analytic, part in the full (H,A, α)-flatness condition.
These two conditions are not completely independent: if, say, µ is AD-regular, then the
analytic condition implies the geometric one with slightly worse parameters. However,
it will be convenient for us just to demand them separately.

One may expect that, for nice enough functions, (H,A, α)-flatness of µ at z on scale
` would allow one to switch from the integration with respect to µ to that with respect to
mL in various integrals over B(z,A`) making an error controlled by α. This is, indeed,
the case and the following lemmata provide all the explicit estimates of this type that
we will need in the future.

Lemma 3. Let µ be a nice measure. Assume that µ is (H,A, α)-flat at z on scale
` with some A>5 and α∈(0, 1). Let ϕ be any non-negative Lipschitz function supported
on B(z, 5`) with

∫
ϕdmL>0. Put

a=
(∫

ϕdmL

)−1 ∫
ϕdµ and ν= aϕmL.

Let Ψ be any function with ‖Ψ‖Lip(suppϕ)<∞. Then∣∣∣∣∫ Ψ d(ϕµ−ν)
∣∣∣∣6Cα`d+2‖Ψ‖Lip(suppϕ)‖ϕ‖Lip.

As a corollary, for every p>1, we have∣∣∣∣∫ |Ψ|p d(ϕµ−ν)
∣∣∣∣6C(p)α`d+2‖Ψ‖p−1

L∞(suppϕ)‖Ψ‖Lip(suppϕ)‖ϕ‖Lip.

Lemma 4. Assume in addition to the conditions of Lemma 3 that ϕ∈C2, µ is nice
and that the ratio of integrals a is bounded from above by some known constant. Then∣∣∣∣∫ Ψϕ[RH(ϕµ−ν)] dµ

∣∣∣∣6Cα1/(d+2)`d+2
[
‖Ψ‖L∞(suppϕ)+`‖Ψ‖Lip(suppϕ)

]
‖ϕ‖2

Lip,

where C>0 may, in addition to the dependence on d, which goes without mentioning,
depend also on the growth constant of µ and the upper bound for a.

Note that we can use both scalar- and vector-valued functions Ψ in both lemmata
(the product in Lemma 4 should be replaced by the scalar product in the vector-valued
version) and it is enough to prove only the scalar versions because the vector case can
be easily obtained by considering each coordinate separately.
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Though we have combined all powers of ` into one wherever possible to shorten the
formulae, the reader should keep in mind that the scaling-invariant quantities are in fact
‖ · ‖L∞ and `‖ · ‖Lip, so all inequalities actually compare the integrals on the left with `d.

Although we require ϕ∈C2 in Lemma 4, only the Lipschitz norm of ϕ enters the
estimates. The additional smoothness will matter only because we will use Lemma 1 to
show that the integral on the left-hand side can be made sense of.

At last, we want to emphasize that only the norm of ϕ is global and all norms of Ψ
in the bounds are computed on suppϕ only. We can even assume that Ψ is not defined
outside suppϕ because only the product Ψϕ matters anywhere (do not forget that ν
contains the factor ϕ in its definition too).

Proof of Lemma 3. As the signed measure ϕµ−ν is balanced (i.e.,
∫
d(ϕµ−ν)=0),

when proving the first estimate, we may subtract any constant from Ψ, so without loss
of generality we may assume that

∫
Ψ dν=

∫
ΨϕdmL=0.

Note now that

‖Ψϕ‖Lip 6 ‖Ψ‖Lip(suppϕ)‖ϕ‖L∞+‖Ψ‖L∞(suppϕ)‖ϕ‖Lip.

Indeed, when estimating the difference |Ψ(x)ϕ(x)−Ψ(y)ϕ(y)|, it is enough to consider
the case when at least one of the points x and y belongs to suppϕ because otherwise the
difference is 0. By symmetry, we may assume without loss of generality that x∈suppϕ.
Write

|Ψ(x)ϕ(x)−Ψ(y)ϕ(y)|6 |Ψ(x)| |ϕ(x)−ϕ(y)|+|Ψ(x)−Ψ(y)| |ϕ(y)|.

The first term is, clearly, bounded by ‖Ψ‖L∞(suppϕ)‖ϕ‖Lip|x−y|. If y /∈suppϕ, then the
second term is 0. Otherwise, it is bounded by ‖Ψ‖Lip(suppϕ)‖ϕ‖L∞ |x−y|.

The definition of (H,A, α)-flatness at z on scale ` now implies that∣∣∣∣∫ Ψ d(ϕµ−ν)
∣∣∣∣= ∣∣∣∣∫ Ψϕdµ

∣∣∣∣6α`d+1‖Ψϕ‖Lip

6α`d+1
[
‖Ψ‖Lip(suppϕ)‖ϕ‖L∞+‖Ψ‖L∞(suppϕ)‖ϕ‖Lip

]
.

To get rid of the L∞ norms, recall that ϕ is supported on a ball of radius 5`. Thus
‖ϕ‖L∞65`‖ϕ‖Lip (within the distance 5` from any point x∈Rd+1, we can find a point
where ϕ vanishes).

Since
∫

ΨϕdmL=0 and the diameter of suppϕ does not exceed 10`, we have

‖Ψ‖L∞(suppϕ) 6 10`‖Ψ‖Lip(suppϕ).

Plugging these bounds in, we obtain the first estimate.
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The second estimate immediately follows from the first one and the elementary
inequality ∥∥|Ψ|p∥∥

Lip(suppϕ)
6 p‖Ψ‖p−1

L∞(suppϕ)‖Ψ‖Lip(suppϕ).

Lemma 3 is thus fully proved.

Proof of Lemma 4. First of all, we need to ensure that the integral on the left can
be understood in some reasonable sense at all. To this end, split it as

∫
Ψϕ[RH(ϕµ)] dµ−∫

Ψϕ[RHν] dµ. Since RHν=RH(aϕmL) and ϕ∈C2 and is compactly supported, RHν
is well defined and can be viewed as a Lipschitz function on the entire space Rd+1

by Lemma 1. Thus, integrating it against a compactly supported finite measure Ψϕµ
presents no problem. However, if µ is merely nice, the first integral may fail to exist as an
integral of a pointwise defined function. Still, by the discussion in the weak limits section
(§8), we can define it at least as the bilinear form 〈RHµ ϕ,Ψϕ〉µ=I(ϕ,Ψϕ) because both
ϕ and Ψϕ are compactly supported Lipschitz functions in the entire space Rd+1, and
this definition agrees with any reasonable stronger definition whenever the latter makes
sense too.

To show that the estimate holds, fix δ>0 to be chosen later and split

RH =RHδ`+[RH−RHδ`].

Note now that the kernel KH
δ` is Lipschitz on the entire space and satisfies the estimate

‖KH
δ`‖Lip6δ−(d+1)`−(d+1). Thus,

‖RHδ`(Ψϕµ)‖Lip 6 ‖KH
δ`‖Lip‖Ψϕ‖L1(µ)

6Cδ−(d+1)`−(d+1)‖Ψ‖L∞(suppϕ)‖ϕ‖L∞µ(B(z, 5`))

6Cδ−(d+1)`−1‖Ψ‖L∞(suppϕ)‖ϕ‖L∞

6Cδ−(d+1)‖Ψ‖L∞(suppϕ)‖ϕ‖Lip.

Note that the niceness of µ was used here to bound µ(B(z, 5`)) by C`d.
Now using the antisymmetry and Lemma 3, we get∣∣∣∣∫ Ψϕ[RHδ`(ϕµ−ν)] dµ

∣∣∣∣= ∣∣∣∣−∫ RHδ`(Ψϕµ) d(ϕµ−ν)
∣∣∣∣

6Cα`d+2‖RHδ`(Ψϕµ)‖Lip‖ϕ‖Lip

6Cαδ−(d+1)`d+2‖Ψ‖L∞(suppϕ)‖ϕ‖2
Lip.

Next observe that (again, by Lemma 1) (RH−RHδ`)ν is the uniform limit of (RH∆−RHδ`)ν as
∆!0+. The kernel KH

∆ −KH
δ` is a continuous function dominated by |x|−d and supported

on the ball 
B(0, δ`) for every ∆∈(0, δ`). Moreover, the cancellation property∫
L

[KH
∆ −KH

δ` ](x−y) dmL(y) = 0
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holds for all x∈Rd+1. Thus, for 0<∆<δ`, we can write

∣∣[(RH∆−RHδ`)ν](x)∣∣6 a

∫
y:|y−x|<δ`

|ϕ(x)−ϕ(y)|
|x−y|d

dmL(y) 6Cδ`‖ϕ‖Lip.

Passing to the limit as ∆!0+, we conclude that the same estimate holds for (RH−RHδ`)ν,
so ∣∣∣∣∫ Ψϕ[(RH−RHδ`)ν] dµ

∣∣∣∣6∥∥[RH−RHδ`]ν∥∥L∞‖Ψϕ‖L1(µ)

6Cδ`‖ϕ‖Lip‖Ψ‖L∞(suppϕ)‖ϕ‖L∞µ(B(z, 5`))

6Cδ`d+2‖Ψ‖L∞(suppϕ)‖ϕ‖2
Lip.

Finally, to deal with the integral
∫

Ψϕ[(RH−RHδ`)(ϕµ)] dµ, we will use the same trick
as in the weak limits section and use the antisymmetry to interpret it as the absolutely
convergent integral

1
2

∫∫
(KH−KH

δ`)(x−y)(Ψ(x)−Ψ(y))ϕ(x)ϕ(y) dµ(x) dµ(y).

Since the domain of integration here can be trivially reduced to suppϕ×suppϕ and since
|(KH−KH

δ`)(x−y)|6|x−y|−dχB(0,δ`)(x−y), we get∣∣∣∣∫ Ψϕ[(RH−RHδ`)(ϕµ)] dµ
∣∣∣∣6 1

2
‖Ψ‖Lip(suppϕ)‖ϕ‖2

L∞

∫∫
x,y∈suppϕ
|x−y|<δ`

dµ(x) dµ(y)
|x−y|d−1

6Cδ`d+3‖Ψ‖Lip(suppϕ)‖ϕ‖2
Lip.

Bringing these three estimates together, we finally conclude that∣∣∣∣∫ ΨϕRH(ϕµ−ν) dµ
∣∣∣∣6C(αδ−(d+1)+δ)`d+2

[
‖Ψ‖L∞(suppϕ)+`‖Ψ‖Lip(suppϕ)

]
‖ϕ‖2

Lip.

To get the estimate of Lemma 4, it just remains to choose δ=α1/(d+2).

10. Tangent measures and geometric flattening

Fix some continuous function ψ0: [0,∞)![0, 1] such that ψ0=1 on [0, 1] and ψ0=0 on
[2,∞). For z∈Rd+1, 0<r<R, define

ψz,r,R(x) =ψ0

(
|x−z|
R

)
−ψ0

(
|x−z|
r

)
.

The goal of this section is to prove the following result.
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Lemma 5. Fix five positive parameters A, α, β, c̃, C̃>0. There exists %>0 depending
only on these parameters and the dimension d such that the following implication holds.

Suppose that µ is a C̃-good measure on a ball B(x,R), centered at a point x∈suppµ,
that is AD-regular in B(x,R) with lower regularity constant c̃. Suppose also that∣∣[R(ψz,δR,∆Rµ)](z)

∣∣6β

for all %<δ<∆< 1
2 and all z∈B(x, (1−2∆)R) such that dist(z, suppµ)< 1

4δR.
Then there exist a scale `>%R, a point z∈B(x,R−(A+α)`), and a linear hyperplane

H such that µ is geometrically (H,A, α)-flat at z on the scale `.

Proof. Replacing µ by R−dµ(x+R ·) if necessary, we may assume without loss of
generality that x=0 and R=1. We will start by showing that the absence of geometric
flatness and the boundedness of [R(ψz,δ,∆µ)](z) are inherited by weak limits. More
precisely, let νk be a sequence of C̃-good measures on B(0, 1) and AD-regular there
with lower regularity constant c̃. Assume that ν is another measure on B(0, 1) and
νk!ν weakly in B(0, 1) (i.e.,

∫
F dνk!

∫
F dν for every continuous function F with

suppF⊂B(0, 1)). We have seen in §8 that then ν is also C̃-good and AD-regular in
B(0, 1) with the same lower regularity constant c̃. Our first task will be to prove the
following result.

Claim. • Suppose that for some A′>A and 0<α′<α, the measure ν is geometri-
cally (H,A′, α′)-flat on the scale `>0 at some point z∈B(0, 1−(A′+α)`). Then for all
sufficiently large k, the measure νk is geometrically (H,A, α)-flat at z on the scale `.

• If for some 0<δ<∆< 1
2 and some z∈B(0, 1−2∆) with dist(z, supp ν)< 1

4δ, we
have

∣∣[R(ψz,δ,∆ν)](z)
∣∣>β, then for all sufficiently large k, we also have dist(z, supp νk)<

1
4δ and

∣∣[R(ψz,δ,∆νk)](z)
∣∣>β.

Proof. The reason is, of course, that we can check both conditions in question by
looking at integrals of finitely many continuous functions. It is completely obvious for
the second claim because

[R(ψz,δ,∆ν)](z) =
∫
F dν= lim

k!∞

∫
F dνk = lim

k!∞
[R(ψz,δ,∆νk)](z),

where F (x)=K(z−x)ψz,δ,∆(x). Note that F is compactly supported in B(0, 1) and
continuous because ψz,δ,∆(x)=0 whenever |x−z|<δ or |x−z|>2∆. To ensure that
dist(z, supp νk)< 1

4δ, take F (x)=max
{

1
4δ−|x−z|, 0

}
. Then

∫
F dν>0, so

∫
F dνk>0 for

all sufficiently large k, but the latter is possible only if B
(
z, 1

4δ
)
∩supp νk 6=∅.

Expressing the geometric flatness condition in terms of integrals of continuous func-
tions is only slightly more difficult. To test that B(z,A`)∩supp νk is contained in the
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strip of width α` around the affine hyperplane L containing z and parallel to H, con-
sider any continuous function F : Rd+1![0, 1] such that F (x)=0 whenever |x−z|>A′`
or dist(x, L)6α′`, and F (x)=1 whenever |x−z|6 1

2 (A+A′)` and dist(x, L)> 1
2 (α+α′)`.

Note that suppF⊂B(0, 1) and
∫
F dν=0. Thus

∫
F dνk<c̃(ε`)d for all sufficiently large

k, where ε= 1
2 min{A′−A,α−α′}. However, for all x∈B(z,A`) such that dist(x, L)>α`,

we have F=1 on the ball B(x, ε`). On the other hand, if any such x were contained in
supp νk, we would have

∫
F dνk>νk(B(x, ε`))>c̃(ε`)d by the AD-regularity of ν.

At last, to check that every point of L∩B(z,A`) lies within distance α` from supp νk,
take any finite 1

2 (α−α′)`-net Y in L∩B(z,A`) and for every y∈Y choose any continuous
function Fy(x) that vanishes for |x−y|> 1

2 (α+α′)` and is strictly positive for |x−y|<
1
2 (α+α′)`. Then

∫
Fy dν>0 for all y∈Y and, thereby, for all sufficiently large k, all

the integrals
∫
Fy dνk are positive as well. Take any x∈L∩B(z,A`). Choose y∈Y so

that |x−y|< 1
2 (α−α′)`. Since

∫
Fy dνk>0, there exists x′∈supp νk such that |x′−y|<

1
2 (α+α′)`. But then |x−x′|<α`.

Our next aim is to prove the following result.

Alternative. If ν is any good measure on B(0, 1) that is AD-regular there, then
either for every A,α>0 there exist a scale `>0, a point z∈B(0, 1−(A+α)`), and a linear
hyperplane H such that ν is geometrically (H,A, α)-flat at z on the scale `, or

sup
0<δ<∆<1/2

z∈B(0,1−2∆)

dist(z,supp ν)<δ/4

∣∣[R(ψz,δ,∆ν)](z)
∣∣=∞.

Proof. We will employ the technique of tangent measures developed by Preiss in [P].

Definition. Let ν be any finite measure on B(0, 1). Let z∈B(0, 1). The measure
νz,λ(E)=λ−dµ(z+λE) (E⊂B(0, 1)), which is well defined as a measure on B(0, 1) when-
ever λ61−|z|, is called a λ-blow-up of ν at z. A tangent measure of ν at z is just any
measure on B(0, 1) that can be obtained as a weak limit in B(0, 1) of a sequence of
λ-blow-ups of ν at z with λ!0+.

Note that if ν is C-good and AD-regular in B(0, 1) with lower regularity constant c,
then so are all blow-ups of ν and all tangent measures of ν. Note also that in this case,
if z∈supp ν, then all blow-ups and tangent measures of ν at z have the origin in their
supports. At last, the observations above imply that the (quantitative) negation of either
condition in the alternative we are currently trying to establish for ν is inherited by all
tangent measures of ν (because it is, clearly, inherited by all blow-ups by simple rescaling
and we have just shown that we can pass to weak limits here).
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Now assume that a good AD-regular in B(0, 1) measure ν containing the origin
in its support satisfies neither of the conditions in the alternative. Since ν is finite
and AD-regular in B(0, 1), its support is nowhere dense in B(0, 1). Take any point
z′∈B

(
0, 1

2

)
\supp ν. Let z be a closest point to z′ in supp ν. Note that, since 0∈supp ν,

we have |z−z′|6|z′|, so |z|62|z′|<1. Also, the ball B=B(z′, |z−z′|) does not contain
any point of supp ν. Let n be the outer unit normal to ∂B at z. Consider the blow-ups
νz,λ of ν at z. As λ!0, the supports of νz,λ lie in smaller and smaller neighborhoods of
the half-space S={x∈Rd+1 :〈x, n〉>0} bounded by the linear hyperplane H={x∈Rd+1 :
〈x, n〉=0}. So, every tangent measure of ν at z must have its support in S. On the
other hand, such tangent measures do exist because the masses of νz,λ are uniformly
bounded. At last, the origin is still in the support of every tangent measure of ν at z.
Thus, starting with any measure ν that gives a counterexample to the alternative we are
trying to prove, we can modify it so that it is supported on a half-space. So, we may
assume without loss of generality that ν was supported on such a half-space S from the
very beginning.

Now fix ∆< 1
2 and note that under this assumption,

−〈[R(ψ0,δ,∆ν)](0), n〉>
∫
B(0,∆)\B(0,2δ)

〈x, n〉
|x|d+1

dν(x).

Since the quantity on the left should stay bounded as δ!0, we conclude that∫
B(0,∆)

〈x, n〉
|x|d+1

dν(x)<∞

and, thereby, ∫
B(0,λ)

〈x, n〉
|x|d+1

dν(x)! 0 as λ! 0.

Let now F (x)=〈x, n〉(1−2|x|) for |x|6 1
2 and 〈x, n〉>0, and F (x)=0 otherwise. Then F

is a continuous function supported inside B(0, 1) and∫
F dν0,λ =λ−d

∫
F
(x
λ

)
dν6

∫
B(0,λ)

〈x, n〉
|x|d+1

dν(x),

so the integral of F with respect to any tangent measure of ν at 0 must vanish. Since
those tangent measures are still supported on S, this is possible only if they vanish on
B(0, 1

2 )\H. Taking a 1
2 -blow up of any such tangent measure at 0, we see that we can

just as well assume that our counterexample ν is supported on H.
If we had H∩B

(
0, 1

2

)
⊂supp ν, then for any A,α>0, ν would be geometrically

(H,A, α)-flat at the origin on the scale `=1/2(A+α), which contradicts the assump-
tion that the first part of the alternative does not hold for ν.



uniform rectifiability and the riesz transform 265

Thus, we can find z′∈
(
B
(
0, 1

2

)
∩H

)
\supp ν. Again, let z be the closest point to z′

of supp ν, and let n′ be the outer unit normal to the boundary of the ball B(z′, |z−z′|)
at z. Note that n′∈H. Now repeat all the above steps with this new choice of z. The
condition supp ν⊂H will be preserved at each step but by the end of the whole process
we will also restrict the support of ν to some other linear hyperplane H ′ with the unit
normal n′. Since n′ is perpendicular to n, the support of ν is now restricted to the (d−1)-
dimensional linear plane H∩H ′. However a (d−1)-dimensional linear plane cannot carry
a non-zero measure ν satisfying the growth bound ν(B(x, r))6Crd. This contradiction
finishes the proof of the alternative.

Now we are ready to prove Lemma 5 itself. Suppose that such % does not exist. Then
for each %>0, we can find a C̃-good measure µ% on a ball B(0, 1) that is AD-regular in
B(0, 1) with lower regularity constant c̃ and which satisfies 0∈suppµ% and

∣∣[R(ψz,δ,∆µ%)](z)
∣∣6β

for all %<δ<∆< 1
2 and all z∈B(x, 1−2∆) with dist(z, suppµ%)< 1

4δ, but is not geometri-
cally (H,A, α)-flat at z on any scale `>% at any point z∈B(x, 1−(A+α)`) for any linear
hyperplane H.

Then we can find a sequence %k!0 so that the measures µ%k
converge weakly to

some limit measure ν in B(0, 1). This limit measure would satisfy

∣∣[R(ψz,δ,∆ν)](z)
∣∣6β

for all 0<δ<∆< 1
2 and all z∈B(x, 1−2∆) with dist(z, supp ν)< 1

4δ but would not be geo-
metrically (H,A, α)-flat on any scale `>0 at any point z∈B(x, 1−(A+α)`) for any linear
hyperplane H. But this combination of properties clearly contradicts the alternative we
have just proved.

11. The flattening lemma

The goal of this section is to present a lemma that will allow us to carry out one of the
major steps in our argument: the transition from the absence of large oscillation of RHµ
on suppµ near some fixed point z on scales comparable to ` to the flatness of µ at z on
scale `.

Proposition 6. Fix four positive parameters A, α, c̃, and C̃. There exist numbers
A′, α′>0 depending only on these fixed parameters and the dimension d such that the
following implication holds.
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Suppose that H is a linear hyperplane in Rd+1, z∈Rd+1, L is the affine hyperplane
containing z and parallel to H, `>0, and µ is a C̃-good finite measure in Rd+1 that
is AD-regular in B(z, 5A′`) with the lower regularity constant c̃. Assume that µ is
geometrically (H, 5A′, α′)-flat at z on the scale ` and, in addition, for every (vector-
valued) Lipschitz function g with supp g⊂B(z, 5A′`), ‖g‖Lip6`−1, and

∫
g dµ=0, one

has
|〈RHµ 1, g〉µ|6α′`d.

Then µ is (H,A, α)-flat at z on the scale `.

Before proving this proposition (which we will call the “flattening lemma” from now
on), let us discuss the meaning of the assumptions. In what follows, we will apply this
result to restrictions of a fixed good AD-regular measure µ to open balls at various scales
and locations. The restriction of a good AD-regular measure to a ball may easily fail
to be AD-regular in the entire space Rd+1, which explains why we have introduced the
local notion of Ahlfors–David regularity. Every restriction of a good measure to any set
is, of course, good with the same goodness constant as the original measure.

The first step in proving the rectifiability of a measure is showing that its support
is almost planar on many scales in the sense of the geometric (H, 5A′, α′)-flatness in the
assumptions of the flattening lemma implication. This step is not that hard and we will
carry it out in §15. The second condition involving the Riesz transform means, roughly
speaking, that RHµ 1 is almost constant on suppµ∩B(z,A′`) in the sense that its “wavelet
coefficients” near z on the scale ` are small. There is no canonical smooth wavelet
system in L2(µ) when µ is an arbitrary measure, but mean-zero Lipschitz functions serve
as a reasonable substitute. The boundedness of RHµ in L2(µ) implies that RHµ 1∈L2(µ)
(because for finite measures µ, we have 1∈L2(µ)), so an appropriate version of the Bessel
inequality can be used to show that large wavelet coefficients have to be rare and the
balls satisfying the second assumption of the implication should also be viewed as typical.

Finally, it is worth mentioning that the full (H,A, α)-flatness condition is much
stronger than just the geometric one in the sense that it allows one to get non-trivial
quantitative information about the Riesz transform operator RHµ . The flattening lemma
thus provides the missing link between the purely geometric conditions like those in the
David–Semmes monograph and analytic conditions needed to make explicit estimates.

Proof. Note that the geometric (H,A, α)-flatness of µ is ensured by the geometric
(H, 5A′, α′)-flatness assumption of the flattening lemma implication as soon as A′>A
and α′6α. The real problem is to prove the analytic part of the flatness condition.

To this end, note first that the setup of the flattening lemma is invariant under
translations and dilations, so, replacing the measure µ and the test functions f and g by
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`−dµ(z+` ·), f(z+` ·), and g(z+` ·), respectively, we may always assume without loss of
generality that z=0 and `=1.

Now fix A′>A. Since the set L of all Lipschitz functions f with Lipschitz constant 1
supported on B(0, A) and having zero integral with respect to mL is pre-compact in
C0(Rd+1), for every β>0, we can find a finite family F in L so that every function f∈L
is uniformly β-close to some f ′∈F . As we have the a-priori bound µ(
B(0, A))6C̃Ad,
this β -closeness implies that ∣∣∣∣∫ f dµ

∣∣∣∣6 ∣∣∣∣∫ f ′ dµ

∣∣∣∣+C̃Adβ,
so choosing β< 1

2 C̃
−1A−dα, we see that in the proof of the (H,A, α)-flatness, we can

consider only test functions f∈F if we do not mind showing for them a stronger inequality
with α replaced by 1

2α. Since F is finite, we see that if the flattening lemma is false, we can
find one fixed test function f and a sequence of measures µk satisfying the assumptions
of the flattening lemma implication with our fixed A′ and α′=1/k such that

∫
f dµk> 1

2α

for all k.
Split each µk as

µk =χB(0,5A′)µk+χRd+1\B(0,5A′)µk = νk+ηk.

Note that νk are still C̃-good and AD-regular in B(0, 5A′) with lower AD-regularity
constant c̃. Moreover, supp νk lies within distance 1/k from L and every point in
L∩B(0, 5A′−1/k) lies within distance 1/k from supp νk. Passing to a subsequence,
if necessary, we may assume that νk converge weakly to some measure ν. By the re-
sults of the weak limits section (§8) this limiting measure ν is C̃-good and, obviously,
supp ν⊂L∩
B(0, 5A′).

Fix a point w∈L∩B(0, 5A′) and r>0 such that B(w, r)⊂B(0, 5A′). Take any r′<r
and consider a continuous function h: Rd+1![0, 1] that is identically 1 on B(w, r′) and
identically 0 outside B(w, r). Since w∈B(0, 5A′−1/k) for all sufficiently large k, we can
find a sequence of points wk∈supp νk so that |w−wk|61/k for all sufficiently large k.
Note, however, that B(wk, r′−1/k)⊂B(w, r′), so for all large k, we have∫

h dνk > νk(B(w, r′))> νk

(
B

(
wk, r

′− 1
k

))
> c̃

(
r′− 1

k

)d
.

Passing to the limit, we conclude that ν(B(w, r))>
∫
h dν>c̃(r′)d. Since this inequality

holds for all r′<r, we must have ν(B(w, r))>c̃rd. Combining this with the upper bound
ν(B(w, r))6C̃rd and the inclusion supp ν⊂L, we see that, by the Radon–Nikodym the-
orem applied to ν and mL, the limiting measure ν can be written as ν=pmL for some
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Borel function p on L satisfying ω−1
d c̃6p6ω−1

d C̃ almost everywhere with respect to mL

on L∩B(0, 5A′), where ωd is the d-dimensional volume of the unit ball in Rd.
Fix some non-negative Lipschitz function h with supph⊂B(0, 4A′) and

∫
h dν>0.

Take any Lipschitz vector-valued function g supported on B(0, 4A′) with ‖g‖Lip<1 and∫
g dν=0. Since

∫
h dνk!

∫
h dν>0 as k!∞, the integrals

∫
h dνk stay bounded away

from 0 for sufficiently large k.
Put

ak =
(∫

h dνk

)−1 ∫
g dνk and gk = g−akh.

The functions gk are well defined for all large enough k and satisfy∫
gk dµk =

∫
gk dνk =0 and supp gk ⊂B(0, 4A′).

As
∫
g dνk!

∫
g dν=0, we conclude that ak!0 as k!∞, so

‖gk‖Lip< 1

for large enough k.
Since µk satisfies the assumptions of the flattening lemma implication, we must have

|〈RHµk
1, gk〉µk

|6 1
k

for large k. Taking into account that supp gk⊂B(0, 4A′), we can rewrite this as

|〈RHνk
1, gk〉νk

+〈RHηk, gk〉νk
|6 1

k
.

Note that
〈RHνk

1, gk〉νk
= 〈RHνk

1, g〉νk
−〈RHνk

1, akh〉νk

and that RHνk
1 and RHν 1 coincide with RHνk

ϕ and RHν ϕ, respectively, for any compactly
supported Lipschitz function ϕ that is identically 1 on B(0, 5A′), say. Thus, by the
results of the weak limits section (§8), we get

〈RHνk
1, g〉νk

= 〈RHνk
ϕ, g〉νk

! 〈RHν ϕ, g〉ν = 〈RHν 1, g〉ν .

Similarly,
〈RHνk

1, he〉νk
! 〈RHν 1, he〉ν

for every vector e∈H. Since

〈RHνk
1, akh〉νk

=
d∑
j=1

〈ak, ej〉〈RHνk
1, hej〉νk
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for every orthonormal basis e1, ..., ed in H, and ak!0 as k!∞, we conclude that

〈RHνk
1, akh〉νk

! 0

and, thereby,
〈RHνk

1, gk〉νk
! 〈RHν 1, g〉ν

as k!∞.
Note now that the measure ηk is supported outside B(0, 5A′). Together with the

cancellation property
∫
gk dνk=0, this yields

〈RHηk, gk〉νk
= 〈vk, gk〉νk

,

where
vk =RHηk−(RHηk)(0)

is a C∞ function in B(0, 4A′) satisfying vk(0)=0 and

|(∇jvk)(x)|6C

∫
dηk(y)
|x−y|d+j

6
C(j)C̃
(A′)j

whenever x∈B(0, 4A′) and j>0.
Since the set of functions vanishing at the origin with three uniformly bounded

derivatives is compact in C2(B(0, 4A′)), we may (passing to a subsequence again, if
necessary) assume that vk!v in C2(B(0, 4A′)), which is more than enough to conclude
that

〈vk, gk〉νk
! 〈v, g〉ν

(all we need for the latter is the uniform convergence 〈vk, gk〉!〈v, g〉). Thus, we have
found a C2 function v in B(0, 4A′) such that

〈RHν 1, g〉ν =−〈v, g〉ν

for all Lipschitz functions g with supp g⊂B(0, 4A′) and
∫
g dν=0. Moreover,

|∇jv|L∞(B(0,4A′)) 6
CC̃

(A′)j

for j=1, 2. The condition ‖g‖Lip61 can be dropped now because both sides are linear
in g. This equality can be rewritten as

〈RHmL
p, pg〉mL

=−〈v, pg〉mL
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for all Lipschitz functions g with supp g⊂B(0, 4A′) satisfying
∫
L
pg dmL=0. Since p is

bounded from below on L∩B(0, 4A′), the set of such products pg is dense in the space
of all mean-zero functions in L2(L∩B(0, 4A′),mL) and we conclude that RHmL

p differs
from −v only by a constant on L∩B(0, 4A′). By the toy flattening lemma (Lemma 2)
applied with A′ instead of A, this means that p is Lipschitz in L∩B(0, A′) and

‖p‖Lip(L∩B(0,A′)) 6
CC̃

A′
.

But then for the test function f∈F introduced at the beginning of the proof, we have∣∣∣∣∫ f dν

∣∣∣∣= ∣∣∣∣∫ f(p−p(0)) dmL

∣∣∣∣6 CC̃Ad+1

A′
<
α

2

if A′ was chosen large enough. On the other hand, we have∣∣∣∣∫ f dνk

∣∣∣∣= ∣∣∣∣∫ f dµk

∣∣∣∣> α

2

for all k and ∫
f dνk!

∫
f dν as k!∞.

This contradiction finishes the proof.

12. David–Semmes lattices

Let µ be a d-dimensional AD-regular measure in Rd+1. Let E=suppµ.

The goal of this section is to construct a family D of sets Q⊂Rd+1 with the following
properties:

• The family D is the disjoint union of the families Dk (of level-k cells), k∈Z.
• If Q′, Q′′∈Dk, then either Q′=Q′′ or Q′∩Q′′=∅.
• Each Q′∈Dk+1 is contained in some Q∈Dk (necessarily unique due to the previous

property).
• The cells of each level cover E, i.e.,

⋃
Q∈Dk

Q⊃E for every k.
• For each Q∈Dk, there exists zQ∈Q∩E (the “center” of Q) such that

B(zQ, 2−4k−3)⊂Q⊂B(zQ, 2−4k+2).

• For each Q∈Dk and every ε>0, we have

µ{x∈Q : dist(x,Rd+1\Q)<ε2−4k}6Cεγµ(Q),

where C, γ>0 depend on d and the constants in the AD-regularity property of µ only.
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Since all cells in Dk have approximately the same size 2−4k, it will be convenient to
introduce the notation `(Q)=2−4k, where k is the unique index for which Q∈Dk. This
notation, of course, makes sense only after the existence of the lattice D has been estab-
lished. We mention it here just for the readers who may want to skip the construction
and proceed to the next sections where this notation will be used without any comment.

We will call D a David–Semmes lattice associated with µ. Its construction can be
traced back to the papers of David [D1] and Christ [C]. There are several different ways
to define them, some ways being more suitable than other for certain purposes. The
presentation we will give below is tailored to the Cantor-type construction in our proof,
where it is convenient to think that the cells are “thick” sets in Rd+1, not just Borel
subsets of E, so they can carry C2 functions, etc. We use the name “David–Semmes”
for this lattice because it is short enough and emphasizes the link between this paper
and their monograph. However, if one wants to be historically accurate, the full name
for this construction (as well as the title of this section) should include the surnames of
a few other mathematicians as well, of which that of Michael Christ would be the first
to add.

Despite our ultimate goal being to construct the cells Q, we will start with defining
their centers. The construction makes sense for an arbitrary closed set E and the only
place where µ will play any role is the last property asserting that small neighborhoods
of the boundaries have small measures.

For each k∈Z, fix some maximal 2−4k-separated set Zk⊂E. Clearly, Zk is a 2−4k-net
in E (i.e., each point in E lies in the ball B(z, 2−4k) for some z∈Zk). For each z∈Zk,
define the level-k Voronoi cell Vz of z by

Vz =
{
x∈E : |x−z|= min

z′∈Zk

|x−z′|
}
.

Note that
⋃
z∈Zk

Vz=E, Vz⊂B(z, 2−4k), and

dist
(
z,

⋃
z′∈Zk\{z}

Vz′

)
> 2−4k−1.

The first property follows from the fact that every ball contains only finitely many points
of Zk, so every point z∈Zk has only finitely many not completely hopeless competi-
tors z′∈Zk for every given point x∈E and, thereby, the minimum minz′∈Zk

|x−z′| is
always attained. The second property is an immediate consequence of the inequality
minz′∈Zk

|x−z′|<2−4k, which is just a restatement of the claim that Zk is a 2−4k-net
in E. The last property just says that, if |x−z|<2−4k−1 for some z∈Zk, then, for every
other z′∈Zk, we have

|x−z′|> |z−z′|−|z−x|> 2−4k−2−4k−1 =2−4k−1> |x−z|,
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so the inclusion x∈Vz′ is impossible.

Observe also that for each z∈Zk there are only finitely many w∈Zk−1 such that
Vz∩Vw 6=∅ (here, of course, Vw is a level-(k−1) Voronoi cell constructed using Zk−1).
Indeed, if |z−w|>2−4k+2−4(k−1), then even the balls B(z, 2−4k) and B(w, 2−4(k−1)) are
disjoint. However, only finitely many points in Zk−1 lie within distance 2−4k+2−4(k−1)

from z.

Let now z∈Zk and w∈Z`, `>k. We say that w is a descendant of z if there exists a
chain zk, zk+1, ..., z` such that zj∈Zj for all j=k, ..., `, zk=z, z`=w, and Vzj∩Vzj+1 6=∅
for j=k, ..., `−1. Note that each z∈Zk is its own descendant (with the chain consisting
of just one entry z) according to this definition. Let D(z) be the set of all descendants
of z. Put

Ṽz =
⋃

w∈D(z)

Vw.

Note that Ṽz contains Vz and is contained in the 2
∑
`>k 2−4`= 2

152−4k-neighborhood of
Vz. Thus,

dist
(
z,

⋃
z′∈Zk\{z}

Ṽz′

)
> 2−4k−1− 2

15
2−4k > 2−4k−2.

Our next aim will be to define a partial order ≺ on
⋃
k∈Z Zk such that each Zk is linearly

ordered under ≺ and the ordering of Zk+1 is consistent with that of Zk in the sense
that if z′, z′′∈Zk+1 and z′≺z′′, then for every w′∈Zk such that Vw′∩Vz′ 6=∅, there exists
w′′∈Zk such that Vw′′∩Vz′′ 6=∅ and w′�w′′. In other words, the ordering we are after
is analogous to the classical “nobility order” in the society: for A to claim being nobler
than B (which would correspond to B≺A in our notation), he should, at least, be able
to show that his noblest parent in the previous generation is at least as noble as the
noblest parent of B. Only if the noblest parents of A and B have equal nobility (which,
in the case of linear orderings can happen only if they coincide), the personal qualities of
A and B may be taken into account to determine their relative nobility. This informal
observation leads to the following construction.

First, we fix k0∈Z and construct such an order inductively on
⋃
k>k0

Zk. Start with
any partial order a that linearly orders every Zk (the “personal qualities” order). On
Zk0 , put ≺=a. If ≺ is already defined on Zk, for each z∈Zk+1, define w(z)∈Zk as the
top (with respect to ≺) element of Zk for which Vw∩Vz 6=∅. Note that w(z) always exists
because Vz intersects at least one but at most finitely many Voronoi cells Vw with w∈Zk.
Now we say that z′≺z′′ if either w(z′)≺w(z′′), or w(z′)=w(z′′) and z′az′′. It is easy to
check that the order ≺ defined in this way is a linear order on Zk+1 consistent with the
order defined on Zk.
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To define an order on the full union
⋃
k∈Z Zk, consider any sequence ≺k0 of orders

on
⋃
k>k0

Zk defined above. Since the set of comparisons defining an order on
⋃
k∈Z Zk is

countable, we can use a diagonal process to extract a subsequence of ≺k0 with k0!−∞
so that for every finite set Z⊂

⋃
k∈Z Zk, the ordering of Z by ≺k0 is defined and does not

depend on k0 if k06K(Z). Now just define ≺ as the limit of ≺k0 . Note that the linearity
and the consistency conditions are “finite” ones (i.e., they can be checked looking only
at how certain finite subsets of

⋃
k∈Z Zk are ordered), so they will be inherited by the

limit order.
At this point everything is ready to define the David–Semmes cells. For z∈Zk, we

just put
Ez = Ṽz\

⋃
z′∈Zk

z≺z′

Ṽz′ .

It is clear that Ez′ and Ez′′ are disjoint for z′, z′′∈Zk, z′ 6=z′′. Also, the remarks above
imply that

B(z, 2−4k−2)∩E⊂Ez ⊂B(z, 2−4k+1)

for all z∈Zk.
Since

⋃
z∈Zk

Ṽz⊃
⋃
z∈Zk

Vz⊃E and each point x∈E is contained only in finitely many
Ṽz, we have

⋃
z∈Zk

Ez=E (x is contained in Ez with the top z among those for which
x∈Ṽz). Thus, for each fixed k∈Z, the sets Ez, z∈Zk, tile E.

Now fix an element z∈Zk+1 and let w be the top element of Zk among those for
which Vz∩Vw 6=∅. Clearly, D(z)⊂D(w), so Ṽz⊂Ṽw. Take any w′∈Zk with w≺w′. Let
Ch(w′)=D(w′)∩Zk+1 be the set of “children” of w′. The consistency of ≺ implies that
z≺z′ for all z′∈Ch(w′). But then Ch(w′)⊂{z′∈Zk+1 :z≺z′}, so⋃

z′∈Zk+1

z≺z′

Ṽz′ ⊃
⋃

z′∈Ch(w′)

Ṽz′ .

However, we clearly have

D(w′) = {w′}∪
⋃

z′∈Ch(w′)

D(z′)

and
Vw′ ⊂

⋃
z′∈Ch(w′)

Vz′ ⊂
⋃

z′∈Ch(w′)

Ṽz′ ,

so
Ṽw′ ⊂

⋃
z′∈Ch(w′)

Ṽz′ ⊂
⋃

z′∈Zk+1

z≺z′

Ṽz′ .
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Thus, ⋃
w′∈Zk

w≺w′

Ṽw′ ⊂
⋃

z′∈Zk+1

z≺z′

Ṽz′ ,

so Ez⊂Ew.
This shows that the tiling at each level is a refinement of the tiling at the previous

level and we have a nice dyadic structure on E (except that the e cell sizes are powers of
16 instead of the customary powers of 2). We will now expand the cells Ez⊂E to spatial
cells Qz⊂Rd+1 by adding to each cell Ez (z∈Zk) all points x∈Rd+1\E that lie in the
2−4k-neighborhood of Ez and are closer to Ez than to any other cell Ez′ with z′∈Zk.
Note that Qz defined in this way are disjoint at each level, Qz∩E=Ez, and we have
Qz⊂Qw whenever Ez⊂Ew, z∈Zk+1, w∈Zk. To see the last property, just note that the
2−4(k+1) neighborhood of Ez is contained in the 2−4k-neighborhood of Ew and if x /∈E is
closer to Ez than to any other level-(k+1) cell, then it is closer to Ew than to any other
level-k cell as well (every level-k cell is a finite union of level-(k+1) cells). Moreover, for
every z∈Zk, we have

B(z, 2−4k−3)⊂Qz ⊂B(z, 2−4k+2).

The right inclusion follows immediately from the inclusion Ez⊂B(z, 2−4k+1) while the left
one follows from the fact mentioned above that the ball B(z, 2−4k−2) does not intersect
any cell Ez′ with z′∈Zk, z′ 6=z.

The construction of the David–Semmes lattice D is now complete and all that re-
mains to prove is the “small boundary” property. Assume that µ is a C̃-nice measure
that is AD-regular in the entire Rd+1 with the lower regularity constant c̃ and that
E=suppµ. We shall use the notation Dk for the family of the level k cells Q and the
notation `(Q) for 2−4k where Q∈Dk from now on. We will also write z=zQ instead of
Q=Qz, so from this point on, the David–Semmes cells will be viewed as primary objects
and all parameters related to them (like size, center, etc.) as the derivative ones.

Since µ is AD-regular and the cells Q are squeezed between two balls centered at
zQ∈E=suppµ of radii comparable to `(Q), we have

c`(Q)d 6µ(Q) 6C`(Q)d,

where c, C>0 depend only on d, c̃, and C̃. We will now use the induction on m>0 to
show that

µ(Bm(Q))6 (1−c)mµ(Q),

where
Bm(Q) = {x∈Q : dist(x,Rd+1\Q)< 16−2m`(Q)}
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for some c>0. This will yield the small boundary property with

γ=− log(1−c)
2 log 16

.

The base m=0 is trivial regardless of the choice of c∈(0, 1). To make the induction
step from m−1 to m>1, consider the cell Q′ that is two levels below Q and contains zQ.
Its diameter does not exceed 8`(Q′)= 1

32`(Q). Since B
(
zQ,

1
8`(Q)

)
⊂Q, the whole cell Q′

lies at the distance at least
(

1
8−

1
32

)
`(Q)>16−2m`(Q) from the complement of Q. Thus,

Bm(Q)∩Q′=∅. For every other cell Q′′ that is two levels down from Q and contained
in Q, we, clearly, have

Bm(Q)∩Q′′⊂Bm−1(Q′′).

Hence, applying the induction assumption, and taking into account that those cells Q′′

are disjoint and contained in Q\Q′, we get

µ(Bm(Q))6
∑
Q′′

µ(Bm−1(Q′′))6 (1−c)m−1
∑
Q′′

µ(Q′′) 6 (1−c)m−1

(
1−µ(Q′)

µ(Q)

)
µ(Q).

However, µ(Q′)>c`(Q′)d=c`(Q)d>cµ(Q) (all three c here are different but depend on d,
c̃, and C̃ only). If we choose c in the statement to be the last c in this chain, we will be
able to complete the induction step, thus finishing the proof.

13. Carleson families

From now on, we will fix a good AD-regular in the entire space Rd+1 measure µ and a
David–Semmes lattice D associated with it. All constants that will appear in this and
later sections will be allowed to depend on the goodness and the lower AD-regularity
constants of µ in addition to the dependence on the dimension d. This dependence will
no longer be mentioned explicitly on a regular basis though we may remind the reader
about it now and then.

Definition. A family F⊂D is called Carleson with Carleson constant C>0 if, for
every P∈D, we have ∑

Q∈FP

µ(Q) 6Cµ(P ),

where
FP = {Q∈D :Q⊂P}.

Note that the right-hand side can be replaced by C`(P )d because µ(P ) is comparable
to `(P )d for every P∈D. The main goal of this section is the following property of non-
Carleson families.
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Lemma 7. Suppose that F is not Carleson. Then, for every M∈N and η>0, we
can find a cell P∈F and M+1 finite families L0, ...,LM⊂FP so that the following are
true:

• L0={P}.
• No cell appears in more than one of the families L0, ...,LM .
• The cells in each family Lm (m=0, ...,M) are pairwise disjoint.
• Each cell Q′∈Lm (m=1, ...,M) is contained in a unique strictly larger cell Q∈

Lm−1.
•
∑
Q∈LM

µ(Q)>(1−η)µ(P ).

We will usually refer to these Lm as non-Carleson layers.

Proof. Note, first of all, that, when checking the Carleson property of F , it is enough
to restrict ourselves to cells P∈F . Indeed, suppose that the inequality∑

Q∈FP

µ(Q) 6Cµ(P )

holds for every P∈F . Take any P∈D and consider the family F0,P of maximal cells
in FP (i.e., the cells that are not contained in any other cell from FP ). Then the cells
P ′∈F0,P are disjoint and FP=

⋃
P ′∈F0,P

FP ′ . Thus∑
Q∈FP

µ(Q) =
∑

P ′∈F0,P

∑
Q∈FP ′

µ(Q) 6C
∑

P ′∈F0,P

µ(P ′) 6Cµ(P ),

so we automatically have the desired estimate for all cells P∈D with the same constant.
Next, observe that if every finite subfamily F ′⊂F is Carleson with the same Carleson

constant C, then the entire family F is Carleson with the same constant. Indeed, if∑
Q∈FP

µ(Q)>Cµ(P )

for some P∈D, then we can restrict the sum on the left to a finite one and still preserve
the inequality.

Now fix M and η, and assume that F is not Carleson. Then we can find some finite
subfamily F ′⊂F whose Carleson constant is as large as we want (note that every finite
family is Carleson with some Carleson constant).

Take any P∈F ′ and define the families F ′
m,P of cells inductively as follows: F ′

0,P=
{P} and, if F ′

k,P are already defined for k<m, then F ′
m,P is the set of all maximal cells

in F ′
P \
⋃
k<m F ′

k,P . Observe that for every m>0, we have

F ′
P =

m−1⋃
k=0

F ′
k,P ∪

⋃
P ′∈F ′m,P

F ′
P ′ ,
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and that, for each m, the cells in F ′
m,P are pairwise disjoint and (if m>0) each of them is

contained in some unique cell from F ′
m−1,P . Thus, the families F ′

m,P have all properties
of the non-Carleson layers Lm except, maybe, the last one. If we can find a starting cell
P∈F ′ so that ∑

Q∈F ′M,P

µ(Q) > (1−η)µ(P ),

we are done. Let C(F ′) be the best Carleson constant of F ′ (it exists because, to
determine the Carleson constant of F ′, we only need to look for the best constant in
finitely many inequalities corresponding to all cells P∈F ′ ). Take P∈F ′ for which this
Carleson constant is attained and write

C(F ′)µ(P ) =
∑
Q∈F ′P

µ(Q) 6
M−1∑
k=0

∑
Q∈F ′k,P

µ(Q)+
∑

P ′∈F ′M,P

∑
Q∈F ′

P ′

µ(Q).

However, the first sum on the right is at most Mµ(P ) and the second one can be bounded
by

C(F ′)
∑

P ′∈F ′M,P

µ(P ′)

using the Carleson property of F ′. Thus,∑
P ′∈F ′M,P

µ(P ′) >

(
1− M

C(F ′)

)
µ(P ) > (1−η)µ(P ),

provided that F ′ was chosen so that C(F ′)>Mη−1.

It is worth mentioning that although we stated and proved our lemma only in one
direction (non-Carlesonness of a family implies the existence of non-Carleson layers in
that family for arbitrary M,η>0), it is actually a complete characterization of non-
Carleson families. We leave it to the reader to formulate and to prove the converse
statement (which we will not use in this paper).

14. Riesz systems and families

Let ψQ (Q∈D) be a system of Borel L2(µ) functions (either scalar- or vector-valued, as
usual).

Definition. The functions ψQ form a Riesz family with Riesz constant C>0 if∥∥∥∥∑
Q∈D

aQψQ

∥∥∥∥2

L2(µ)

6C
∑
Q∈D

a2
Q

for any real coefficients aQ, only finitely many of which are non-zero.
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Note that if the functions ψQ form a Riesz family with Riesz constant C, then for
every f∈L2(µ), we have ∑

Q∈D
|〈f, ψQ〉µ|2 6C‖f‖2

L2(µ).

Indeed, let F⊂D be any finite collection of David–Semmes cells. Let aQ=〈f, ψQ〉µ
for Q∈F . Put g=

∑
Q∈F aQψQ. Then

∑
Q∈F

〈f, ψQ〉2µ = 〈f, g〉µ 6 ‖f‖L2(µ)‖g‖L2(µ) 6 ‖f‖L2(µ)

[
C
∑
Q∈F

〈f, ψQ〉2µ
]1/2

,

so ∑
Q∈F

〈f, ψQ〉2µ 6C‖f‖2
L2(µ).

Since F was arbitrary here, the same inequality holds for the full sum over D.
Assume next that for each cell Q∈D we have a set ΨQ of L2(µ) functions associated

with Q.

Definition. The family ΨQ (Q∈D) of sets of functions is a Riesz system with Riesz
constant C>0 if for every choice of functions ψQ∈ΨQ, the functions ψQ form a Riesz
family with Riesz constant C.

The goal of this section is to present two useful Riesz systems: the Haar system
Ψh
Q(N) and the Lipschitz wavelet system Ψ`

Q(A), and to show how Riesz systems can be
used to establish that certain families of cells are Carleson.

We shall start with the second task. Suppose that ΨQ is any Riesz system. Fix any
extension factor A>1. For each Q∈D, define

ξ(Q) = inf
E

B(zQ,A`(Q))⊂E
µ(E)<∞

sup
ψ∈ΨQ

µ(Q)−1/2|〈RµχE , ψ〉µ|. (4)

Then, for every δ>0, the family F={Q∈D :ξ(Q)>δ} is Carleson.
Indeed, if P∈D is any cell, then the set

E=B(zP , (4+A)`(P ))

satisfies B(zQ, A`(Q))⊂E for all cells Q⊂P . Choosing ψQ∈ΨQ so that

|〈RµχE , ψQ〉µ|> 1
2δµ(Q)1/2
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and recalling that µ is good and AD-regular, we see that∑
Q∈FP

µ(Q) 6

(
2
δ

)2 ∑
Q∈D
Q⊂P

|〈RµχE , ψQ〉µ|2 6Cδ−2‖RµχE‖2
L2(µ)

6Cδ−2‖χE‖2
L2(µ) 6Cδ−2(A+4)d`(P )d 6Cδ−2(A+4)dµ(P ),

so F is Carleson with Carleson constant Cδ−2(A+4)d.
Let now N be any positive integer. For each Q∈D, define the set of Haar functions

Ψh
Q(N) of depth N as the set of all functions ψ that are supported on Q, are constant

on every cell Q′∈D that is N levels down from Q, and satisfy
∫
ψ dµ=0 and

∫
ψ2 dµ6C.

The Riesz property follows immediately from the fact that D can be represented as a
finite union of the sets D(j)=

⋃
k:k≡j mod N Dk (j=0, ..., N−1) and that for every choice

of ψQ∈Ψh
Q(N), the functions ψQ corresponding to the cells Q from a fixed D(j) form a

bounded orthogonal family.
In the Lipschitz wavelet system, the set Ψ`

Q(A) consists of all Lipschitz functions ψ
supported on B(zQ, A`(Q)) such that

∫
ψ dµ=0 and ‖ψ‖Lip6C`(Q)−d/2−1. Since µ is

nice, we automatically have
∫
|ψ|2 dµ6C(A)`(Q)−dµ(Q)6C(A) in this case.

The Riesz property is slightly less obvious here. Note, first of all, that if Q,Q′∈D
and `(Q′)6`(Q), then, for any two functions ψQ∈Ψ`

Q(A) and ψQ′∈Ψ`
Q′(A), we can have

〈ψQ, ψQ′〉µ 6=0 only if B(zQ, A`(Q))∩B(zQ′ , A`(Q′)) 6=∅, in which case

|〈ψQ, ψQ′〉µ|6C(A)
[
`(Q′)
`(Q)

]d/2+1

.

Now take any coefficients aQ (Q∈D) and write∥∥∥∥∑
Q∈D

aQψQ

∥∥∥∥2

L2(µ)

6 2
∑

Q,Q′∈D
`(Q′)6`(Q)

|aQ| |aQ′ | |〈ψQ, ψQ′〉µ|

6C(A)
∑

Q,Q′∈D
`(Q′)6`(Q)

B(zQ,A`(Q))∩B(zQ′ ,A`(Q
′)) 6=∅

[
`(Q′)
`(Q)

]d/2+1

|aQ| |aQ′ |

6C(A)
∑

Q,Q′∈D
`(Q′)6`(Q)

B(zQ,A`(Q))∩B(zQ′ ,A`(Q
′)) 6=∅

([
`(Q′)
`(Q)

]d+1

|aQ|2+
`(Q′)
`(Q)

|aQ′ |2
)
.

It remains to note that the sums∑
Q′∈D

`(Q′)6`(Q)

B(zQ,A`(Q))∩B(zQ′ ,A`(Q
′)) 6=∅

[
`(Q′)
`(Q)

]d+1

and
∑
Q∈D

`(Q′)6`(Q)

B(zQ,A`(Q))∩B(zQ′ ,A`(Q
′)) 6=∅

`(Q′)
`(Q)
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are bounded by some constants independent of Q and Q′, respectively.

15. Abundance of flat cells

Fix A,α>0. We shall say that a cell Q∈D is (geometrically) (H,A, α)-flat if the measure
µ is (geometrically) (H,A, α)-flat at zQ on the scale `(Q).

The goal of this section is to show that there exists an integer N , a finite set H of
linear hyperplanes in Rd+1, and a Carleson family F⊂D (depending on A and α) such
that, for every cell P∈D\F , there exist H∈H and an (H,A, α)-flat cell Q⊂P that is at
most N levels down from P .

We remind the reader that the measure µ has been fixed since §13 and all constants
and constructions may depend on its parameters in addition to any explicitly mentioned
quantities.

Fix A′>1, α′∈(0, 1), and β>0 to be chosen later. We want to show first that if
N>N0(A′, α′, β), then there exists a Carleson family F1⊂D and a finite set H of linear
hyperplanes such that every cell P∈D\F1 contains a geometrically (H, 5A′, α′)-flat cell
Q⊂P at most N levels down from P for some linear hyperplane H∈H that may depend
on P .

Let R= 1
16`(P ). According to Lemma 5, we can choose %>0 so that either there is

a scale `>%R and a point z∈B
(
zP , R−16

[
(5A′+5)+ 1

3α
′]`)⊂P such that µ is geometri-

cally
(
H ′, 16(5A′+5), 1

3α
′)-flat at z on the scale ` for some linear hyperplane H ′, or there

exist ∆∈
(
0, 1

2

)
, δ∈(%,∆), and a point z∈B(zP , (1−2∆)R) with dist(z, suppµ)< 1

4δR

such that |[R(ψz,δR,∆Rµ)](z)|>β, where ψz,δR,∆R is the function introduced in the be-
ginning of §10.

In the first case, take any point z′∈suppµ such that |z−z′|< 1
3α

′` and choose the
cell Q with `(Q)∈[`, 16`) that contains z′. Since z′⊂B(zP , R)⊂P and `(Q)<`(P ), we
must have Q⊂P . Also, since |zQ−z′|64`(Q), we have |z−zQ|<4`(Q)+ 1

3α
′`<5`(Q).

Note now that, if µ is geometrically (H, 16A,α)-flat at z on the scale `, then it is
geometrically (H,A, α)-flat at z on every scale `′∈[`, 16`).

Note also that the geometric flatness is a reasonably stable condition with respect
to shifts of the point and rotations of the plane. More precisely, if µ is geometrically
(H ′, A+5, α)-flat at z on the scale `, then it is geometrically (H,A, 2α+Aε)-flat at z′ on
the scale ` for every z′∈B(z, 5`)∩suppµ and every linear hyperplane H with unit normal
vector n such that the angle between n and the unit normal vector n′ to H ′ is less than ε.
To see this, it is important to observe first that, although the distance from z to z′ may
be quite large, the distance from z′ to the affine hyperplane L′ containing z and parallel
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to H ′ can be only α`, so we do not need to shift L′ by more than this amount to make
it pass through z′. Combined with the inclusion B(z′, A`)⊂B(z, (A+5)`), this allows us
to conclude that µ is (H ′, A, 2α)-flat at z′ on the scale `. After this shift, we can rotate
the plane L′ around the (d−1)-dimensional affine plane containing z′ and orthogonal
to both n and n′ by an angle less than ε to make it parallel to H. Again, no point of
L′∩B(z,A`) will move by more than Aε` and the desired conclusion follows.

Applying these observations with `′=`(Q), z′=zQ, ε=α′/3A, and choosing any finite
ε-net Y on the unit sphere, we see that µ is geometrically (H, 5A′, α′)-flat at zQ on the
scale `(Q) with some H whose unit normal belongs to Y . Note also that the number of
levels between P and Q in this case is log16(`(P )/`(Q))6log16 %

−1+C.
In the second case, let z′ be a point of suppµ such that |z−z′|< 1

4δR. Note that z′∈
B(zP , 2R)⊂P . Let now Q and Q′ be the largest cells containing z′ under the restrictions
that `(Q)< 1

32∆R and `(Q′)< 1
32δR. Since both bounds are less than `(P ) and the first

one is greater than the second one, we have Q′⊂Q⊂P .
Now take any set E⊃B(z, 2R) with µ(E)<∞ and consider the difference of the

averages of RµχE over Q and Q′ with respect to the measure µ.
We can write χE=ψz,δR,∆R+f1+f2, where |f1|, |f2|61, supp f1⊂
B(z, 2δR), and

supp f2∩B(z,∆R)=∅.
Note that∫

|f1|2 dµ6µ(
B(z, 2δR))6C(δR)d 6C`(Q′)d 6Cµ(Q′) 6Cµ(Q),

so we have the same bound for
∫
|Rµf1|2 dµ, whence the averages of Rµf1 over Q and

Q′ are bounded by some constant.
Note also that Q⊂B(z′, 8`(Q))⊂B

(
z′, 1

4∆R
)
⊂B

(
z, 1

2∆R
)
, so the distance from Q

to supp f2 is at least 1
2∆R>`(Q). Thus,

‖R(f2µ)‖Lip(Q) 6C`(Q)−1,

so the difference of any two values of R(f2µ) on Q is bounded by a constant and, thereby,
so is the difference of the averages of Rµf2 over Q and Q′.

To estimate the difference of averages of Rµψz,δR,∆R, note first that

‖Rµψz,δR,∆R‖2
L2(µ) 6C‖ψz,δR,∆R‖2

L2(µ) 6C(∆R)d 6C`(Q)d 6Cµ(Q),

so the average over Q is bounded by a constant. On the other hand,

Q′⊂B(z′, 8`(Q′))⊂B
(
z′, 1

4δR
)
⊂B

(
z, 1

2δR
)
.
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Since the distance from B
(
z, 1

2δR
)

to suppψz,δR,∆R is at least 1
2δR, we have

‖R(ψz,δR,∆Rµ)‖Lip(B(z,δR/2)) 6C(δR)−1.

Thus, all values of Rµψz,δR,∆R on Q′⊂B
(
z, 1

2δR
)

can differ from [R(ψz,δR,∆Rµ)](z) only
by a constant and the average over Q′ is at least β−C in absolute value.

Bringing all these estimates together, we conclude that the difference of averages
of RµχE over Q and Q′ is at least β−C in absolute value for every set E⊃B(z, 2R)
and, thereby, for every set E⊃B(zP , 5`(P )). Observe now that this conclusion can be
rewritten as

µ(P )−1/2|〈RµχE , ψP 〉µ|> c%d/2(β−C),

where

ψP = [%`(P )]d/2
(

1
µ(Q)

χQ−
1

µ(Q′)
χ′Q

)
and that ψP ∈Ψ`

Q(N), where, as before, Ψ`
P (N) is the Haar system of depth N , with

N = log16

`(P )
`(Q′)

6 log16 %
−1+C

(the normalizing factor %d/2 in the definition of ψP is just enough to make the norm
‖ψP ‖L2(µ) bounded by a constant and all the other properties of a Haar function are
obvious).

Thus, we conclude that for such P , the quantity ξ(P ) defined by (4) using the Haar
system of depth N and the extension factor 5 is bounded from below by a fixed positive
constant, provided that β has been chosen not too small. Consequently, the family F1

of such cells P is Carleson.
As we have seen, for P /∈F1, we can find a geometrically (H, 5A′, α′)-flat cell Q⊂P

at most log16 %
−1+C levels down from P with H from some finite family H of linear

hyperplanes (depending on the choice of A′ and α′, of course). If we use the parameters
A′ and α′ determined by the flattening lemma (Proposition 6), then the only case in
which we cannot conclude that this cell is (H,A, α)-flat is the case when for every set
E⊃B(zQ, (A+α+5A′+α′)`(Q)) with µ(E)<∞, we can find a mean-zero (with respect
to µ) Lipschitz function g supported on B(zQ, 5A′`(Q)) with ‖g‖Lip6`(Q)−1 such that
|〈RµχE , g〉µ|=|〈RχEµ1, g〉χEµ|>α′`(Q)d (otherwise the flattening lemma is applicable to
the measure χEµ whose (H,A, α)-flatness at zQ on the scale `(Q) is equivalent to the
(H,A, α)-flatness of µ itself).

However the last inequality can be rewritten as

µ(P )−1/2|〈RµχE , ψP 〉µ|>c%d+1α′,
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where

ψP = %`(P )−d/2g.

Note that ‖ψP ‖Lip6C`(P )−d/2−1 and

suppψP ⊂B(zQ, 5A′`(Q))⊂B(zQ, R)⊂B(zP , 5`(P )),

so we see that in this case we again have ξ(P ) bounded from below by a fixed constant,
but now with respect to the Lipschitz wavelet system Ψ`

Q(5) and the extension factor
A+α+5A′+α′+5, say. Thus the family F2 of such exceptional cells is Carleson as well,
and it remains to put F=F1∪F2 to finish the proof of the main statement of this section.

16. Alternating non-BAUP and flat layers

Recall that our goal is to prove that the family of all non-BAUP cells P∈D is Carleson. In
view of the result of the previous section, it will suffice to show that we can choose A,α>0
such that for every fixed linear hyperplane H and for every integer N , the corresponding
family F=F(A,α,H,N) of all non-BAUP cells P∈D containing an (H,A, α)-flat cell Q
at most N levels down from P is Carleson. The result of this section can be stated as
follows.

Lemma 8. If F is not Carleson, then for every positive integer K and every η>0,
there exist a cell P∈F and K+1 alternating pairs of finite layers Pk,Qk⊂D (k=
0, ...,K) such that

• P0={P}.
• Pk⊂FP for all k=0, ...,K.
• All layers Qk consist of (H,A, α)-flat cells only.
• Each individual layer (either Pk or Qk) consists of pairwise disjoint cells.
• If Q∈Qk, then there exists P ′∈Pk such that Q⊂P ′ (k=0, ...,K).
• If P ′∈Pk+1, then there exists Q∈Qk such that P ′⊂Q (k=0, ...,K−1).
•
∑
Q∈QK

µ(Q)>(1−η)µ(P ).

In other words, each layer tiles P up to a set of negligible measure and they have
the usual Cantor-type hierarchy (due to this hierarchy, it suffices to look only at the very
bottom layer to evaluate the efficiency of the tiling for all of them). The construction
in this section is rather universal and does not depend on the meaning of the words
“non-BAUP” in any way. All that we need to know here is that some cells are BAUP
and some are not. Note that we do not exclude here the possibility that the same cell is
used in several different layers. This will never really happen because the non-BAUPness
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condition is, in fact, just a particular quantitative negation of the flatness condition, so,
when finally choosing our parameters, we will ensure that no non-BAUP cell can be an
(H,A, α)-flat cell as well, thus guaranteeing that we always go down when moving from
each layer to the next. Also our construction will be done in such a way that no two
different P layers can contain the same cell. However, the disjointness of layers is not
a part of the formal statement we have just made and the results of this and the next
sections remain perfectly valid even if all layers we construct here consist of the single
starting cell P , which, in that case, must be simultaneously non-BAUP and (H,A, α)-flat.

Proof. Suppose F is not Carleson. By Lemma 7, for every η′>0 and every positive
integer M , we can find a cell P∈F and M+1 non-Carleson layers L0, ...,LM⊂FP that
have the desired Cantor-type hierarchy and satisfy

∑
P ′∈LM

µ(P ′)>(1−η′)µ(P ) (see §13
for details).

We shall start with describing the main step of the construction, which will allow us
to go from each layer Pk to the next layer Pk+1 creating the intermediate layer Qk on the
way. Let m be much smaller than M , so that there are as many available non-Carleson
layers down from m as we may possibly need. Fix a large integer S>0.

Let L′m⊂Lm. We shall call a cell P ′′∈Lm+sN (s=1, ..., S) exceptional if it is con-
tained in some cell P ′∈L′m but there is no (H,A, α)-flat cell Q∈D such that P ′′⊂Q⊂P ′.
We claim that for each s=1, ..., S, the sum of µ-measures of all exceptional cells in Lm+sN

does not exceed (1−c16−Nd)sµ(P ).
The proof goes by induction on s. To prove the base s=1, just recall that every cell

P ′∈L′m⊂Lm contains some (H,A, α)-flat cell Q(P ′)∈D at most N levels down from P ′.
Since every cell P ′′∈Lm+N that is contained in P ′∈L′m must be at least N levels down
from P ′ (the non-Carleson layers constructed in §13 cannot have repeating cells), we
conclude that every cell P ′′∈Lm+N contained in P ′ is either contained in Q(P ′) or
disjoint to Q(P ′). In the first case P ′′ is, certainly, not exceptional, so the sum of the
measures of all exceptional cells in Lm+N that are contained in P ′ is at most

µ(P ′)−µ(Q(P ′))6 (1−c16−Nd)µ(P ′),

whence the total sum of measures of all exceptional cells in Lm+N is at most

(1−c16−Nd)
∑

P ′∈L′m

µ(P ′) 6 (1−c16−Nd)µ(P ).

To make the induction step, assume that we already know that the claim holds
for some s. Note that every exceptional cell P ′′∈Lm+(s+1)N is contained in some cell
P̃ ′′∈Lm+sN . We claim that P̃ ′′ must be exceptional as well. Indeed, let P ′ be the cell



uniform rectifiability and the riesz transform 285

in L′m containing P ′′. Then P̃ ′′∩P ′ 6=∅, which, due to the hierarchy of the non-Carleson
layers, is possible only if P̃ ′′⊂P ′. If there had been any (H,A, α)-flat cell Q satisfying
P̃ ′′⊂Q⊂P ′, we would also have P ′′⊂Q⊂P ′, so the cell P ′′ would not be exceptional. Now
it remains to note that P ′′ must also be disjoint to Q(P̃ ′′) and to repeat the argument
above to conclude that the sum of measures of all exceptional cells in Lm+(s+1)N is at
most (1−c16−Nd) times the sum of measures of all exceptional cells in Lm+sN . It remains
to apply the induction assumption and to combine two factors into one.

Now let L′m+SN⊂Lm+SN be the set of all cells in Lm+SN that are contained in
some cell from L′m but are not exceptional. Then, for every cell P ′′∈L′m+SN and the
corresponding cell P ′∈L′m containing P ′′, there exists an (H,A, α)-flat cell Q∈D such
that P ′′⊂Q⊂P ′. Let Q be the set of all cells Q that can arise in this way and let Q∗ be
the set of all maximal cells in Q (i.e., cells that are not contained in any larger cell from
Q). Then the cells Q∈Q∗ are pairwise disjoint and form an intermediate layer between
L′m and L′m+SN in the sense that every Q∈Q∗ is contained in some cell P ′∈L′m and
every P ′′∈L′m+SN is contained in some cell Q∈Q∗.

Moreover,∑
P ′′∈L′m+SN

µ(P ′′) >
∑

P ′′∈Lm+SN

−
∑

P ′′∈Lm+SN

P ′′ 6⊂P ′ for any P ′∈L′m

−
∑

P ′′∈Lm+SN

P ′′ is exceptional

> (1−η′)µ(P )−
[
µ(P )−

∑
P ′∈L′m

µ(P ′)
]
−(1−c16−Nd)Sµ(P )

=
∑

P ′∈L′m

µ(P ′)−[η′+(1−c16−Nd)S ]µ(P ).

Now assume that M>(K+1)SN . Then we can start with L′0=L0={P} and apply
this construction inductively with m=0, SN, 2SN, ...,KSN . The resulting layers L′kSN
(k=0, ...,K) will satisfy all properties of Pk and the intermediate layers Q∗ (one of those
will arise during each step) will satisfy all properties of Qk except, perhaps, the measure
estimate.

However, since L′0 covers P completely and during each step the total measure loss
is bounded by [η′+(1−c16−Nd)S ]µ(P ), we have∑

Q∈QK

µ(Q) >
∑

P ′∈L′(K+1)SN

µ(P ′) >µ(P )−(K+1)[η′+(1−c16−Nd)S ]µ(P )

and it remains to note that for any fixed K, we can always make

(K+1)[η′+(1−c16−Nd)S ]

less than η if we choose η′ small enough and S large enough.
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17. Almost orthogonality

From now on we will assume that the family F defined in the previous section is not
Carleson, and so we have a cell P∈D and alternating layersBk,Qk⊂D as in the previous
lemma. We will eventually show that this leads to a contradiction.

Fix K. Choose ε>0, A,α>0 and η>0 in this order and run the construction of
the previous section. In this section we will be primarily interested in the flat layers Qk
ignoring the non-BAUP layers Pk almost entirely.

For a cell Q∈D and t>0, define

Qt = {x∈Q : dist(x,Rd+1\Q) > t`(Q)}.

Note that µ(Q\Qt)6Ctγµ(Q) for some fixed γ>0 (see §12). Let ϕ0 be any C∞ function
supported on B(0, 1) and such that

∫
ϕ0 dm=1, where m is the Lebesgue measure in

Rd+1. Put
ϕQ =χQ2ε ∗

1
(ε`(Q))d

ϕ0

( ·
ε`(Q)

)
.

Then ϕQ=1 on Q3ε and suppϕQ⊂Qε. In particular, the diameter of suppϕQ is at most
8`(Q). In addition,

‖ϕQ‖L∞ 6 1, ‖∇ϕQ‖L∞ 6
C

ε`(Q)
, and ‖∇2ϕQ‖L∞ 6

C

ε2`(Q)2
.

From now on, we will be interested only in the cells Q from the flat layers Qk. With each
such cell Q we will associate the corresponding approximating plane L(Q) containing zQ
and parallel to H and the approximating measure νQ=aQϕQmL(Q), where aQ is chosen
so that

νQ(Rd+1) =
∫
ϕQ dµ.

Note that, since B
(
zQ,

(
1
8−3ε

)
`(Q)

)
⊂Q3ε and Q⊂B(zQ, 4`(Q)), both integrals∫

ϕQ dmL(Q) and
∫
ϕQ dµ

are comparable to `(Q)d, provided that ε< 1
48 , say. In particular, in this case, the nor-

malizing factors aQ are bounded by some constant.
Define

Gk =
∑
Q∈Qk

ϕQR
H [ϕQµ−νQ], k=0, ...,K.

We remind the reader of our convention to understand RH(ϕQµ) as RHµ ϕQ on suppµ
(see §8) and of Lemma 1 that shows that RHνQ can be viewed as a Lipschitz function
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in the entire space Rd+1. In what follows, we will freely integrate various expressions
including both RH(ϕQµ) and RHνQ with respect to µ, which makes sense in view of
what we just said. However, we will be very careful with the integration of expressions
involving RH(ϕQµ) with respect to νQ and always make sure that for each point x in
the integration domain, x is not contained in the support of any function ϕQ for which
RH(ϕQµ) in the integrand is not multiplied by some cutoff factor vanishing in some
neighborhood of x.

Now put

Fk =Gk−Gk+1 for k=0, ...,K−1 and FK =GK .

Note that
K∑
m=k

Fm =Gk.

The objective of this section is to prove the following result.

Proposition 9. Assuming that ε< 1
48 , A>5, and α<ε8, we have

|〈Fk, Gk+1〉|6σ(ε, α)µ(P )

for all k=0, ...,K−1, where σ(ε, α) is some positive function such that

lim
ε!0+

lim
α!0+

σ(ε, α) = 0.

In plain English, the double limit condition on σ(ε, α) means that we can make
σ(ε, α) as small as we want by first choosing ε>0 small enough and then choosing α>0
small enough. The exact formula for σ(ε, α) will be of no importance for the rest of the
argument, so we do not even mention it here despite it being explicitly written in the
end of the proof.

The assumptions ε< 1
48 and A>5 are there to ensure that all the results of §9 can be

freely applied with ϕQ in the role of ϕ and νQ in the role of ν. The assumption α<ε8 is
just used to absorb some expressions involving α and ε into constants instead of carrying
them around all the time.

Several tricks introduced in this section will be used again and again in what follows
so we suggest that the reader goes over all details of the proof because here they are
presented in a relatively simple setting unobscured by any other technical considerations
or logical twists. Also, there is a technical lemma in the body of the proof (Lemma 10)
that will be used several times later, despite the fact that it is not formally proclaimed
as one of the main results of this section.
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Proof. We start with showing that, under our assumptions, ‖Gk‖pLp(µ)6Cµ(P ) for
p=2, 4 and all k=0, ...,K. Since

Gk =
∑
Q∈Qk

ϕQR
H [ϕQµ−νQ]

and the summands have pairwise disjoint supports, it will suffice to prove the inequality

‖ϕQRH(ϕQµ−νQ)‖pLp(µ) 6Cµ(Q)

for each individual Q∈Qk and then observe that
∑
Q∈Qk

µ(Q)6µ(P ).
Since we shall need pretty much the same estimate in §20, we will state it as a

separate lemma here.

Lemma 10. Let p=2 or p=4. For each k=0, ...,K and for each cell Q∈Qk, we
have

‖ϕQRHνQ‖pLp(µ) 6 ‖χQRHνQ‖pLp(µ) 6Cµ(Q).

As a corollary, we have

‖ϕQRH(ϕQµ−νQ)‖pLp(µ) 6 ‖χQRH(ϕQµ−νQ)‖pLp(µ) 6Cµ(Q).

Proof. As we have already mentioned in §5, RHµ is bounded in both L2(µ) and L4(µ),
so we even have

‖RHµ ϕQ‖
p
Lp(µ) 6C‖ϕQ‖pLp(µ) 6Cµ(Q)

for both values of p we are interested in and the cutoffs ϕQ and χQ can only diminish the
left-hand side. Thus, we only need to prove the first chain of inequalities in the lemma.

The left inequality is trivial because ϕQ6χQ pointwise. To prove the right inequality,
fix any Lipschitz function ϕ̃0: Rd+1![0, 1] such that ϕ0=1 on B(0, 4) and ϕ0=0 outside
B(0, 5), put

ϕ̃Q(x) = ϕ̃0

(
x−zQ
`(Q)

)
,

and write
‖χQRHνQ‖pLp(µ) =

∫
Q

|RHνQ|p dµ6
∫
ϕ̃Q|RHνQ|p dµ.

Let

ãQ =
(∫

ϕ̃Q dmL(Q)

)−1 ∫
ϕ̃Q dµ.

Note that both integrals in the definition of ãQ are comparable to `(Q)d, so ãQ6C. Put

ν̃Q = ãQmL(Q).
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Since RHmL(Q)
is bounded in Lp(mL(Q)), we have∫

|RHνQ|p dν̃Q 6C

∫
|RHνQ|p dmL(Q) 6C‖ϕQ‖pLp(mL(Q))

6C`(Q)d 6Cµ(Q).

On the other hand, the C2-estimates for ϕQ in the beginning of this section combined
with Lemma 1 imply that

‖RHνQ‖L∞ 6
C

ε2
and ‖RHνQ‖Lip 6

C

ε2`(Q)
.

In addition, we clearly have ‖ϕ̃Q‖Lip6C/`(Q). Thus, when α<ε8<1, Lemma 3 immedi-
ately yields∫

|RHνQ|p d(ϕ̃Qµ−ν̃Q) 6Cα`(Q)d+2 1
ε2(p−1)

1
ε2`(Q)

1
`(Q)

=Cαε−2p`(Q)d 6Cµ(Q)

for p=2, 4, so∫
ϕ̃Q|RHνQ|p dµ=

∫
|RHνQ|p d(ϕ̃Qµ)

=
∫
|RHνQ|p dν̃Q+

∫
|RHνQ|p d(ϕ̃Qµ−ν̃Q) 6Cµ(Q),

as required.

Now represent Fk as

Fk =
( ∑
Q∈Qk

ϕQR
H
µ ϕQ−

∑
Q∈Qk+1

ϕQR
H
µ ϕQ

)
−
∑
Q∈Qk

ϕQR
HνQ+

∑
Q∈Qk+1

ϕQR
HνQ

=F
(1)
k −F (2)

k +F (3)
k .

Note that

‖RHµ (ϕQ−χQ)‖pLp(µ) 6C‖ϕQ−χQ‖pLp(µ) 6Cµ(Q\Q3ε) 6Cεγµ(Q)

for p=2, 4. Also

‖(ϕQ−χQ)RHµ χQ‖2
L2(µ) 6 ‖ϕQ−χQ‖2

L4(µ)‖R
H
µ χQ‖2

L4(µ)

6C‖ϕQ−χQ‖2
L4(µ)‖χQ‖

2
L4(µ)

6Cµ(Q\Q3ε)1/2µ(Q)1/2

6Cεγ/2µ(Q).
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Thus,

‖ϕQRHµ ϕQ−χQRHµ χQ‖2
L2(µ) 6 2[‖ϕQRHµ (ϕQ−χQ)‖2

L2(µ)+‖(ϕQ−χQ)RHµ χQ‖2
L2(µ)]

6C[εγ+εγ/2]µ(Q) 6Cεγ/2µ(Q).

If we now set

F̃
(1)
k =

( ∑
Q∈Qk

χQR
H
µ χQ−

∑
Q∈Qk+1

χQR
H
µ χQ

)
,

we immediately see that

‖F̃ (1)
k −F (1)

k ‖2
L2(µ) 6Cεγ/2µ(P ).

Combined with the estimate ‖Gk+1‖2
L2(µ)6Cµ(P ), this yields

|〈F̃ (1)
k −F (1)

k , Gk+1〉µ|6 ‖F̃ (1)
k −F (1)

k ‖L2(µ)‖Gk+1‖L2(µ) 6Cεγ/4µ(P ).

Now we can write

〈F̃ (1)
k , Gk+1〉µ =

∑
Q∈Qk

Q′∈Qk+1

Q′⊂Q

〈χQRHµ χQ−χQ′RHµ χQ′ , ϕQ′RH(ϕQ′µ−νQ′)〉µ

because all other scalar products correspond to pairs of functions with disjoint supports,
and, thereby, evaluate to 0.

Fix Q∈Qk. For each Q′∈Qk+1 contained in Q, we have χQ=χQ′=1 on suppϕQ′ ,
so, when writing the scalar product as an integral, we can leave only the factor ϕQ′ in
front of the product of Riesz transforms, which allows us to combine two of them into
one and represent the scalar product as

〈RH(χQ\Q′µ), ϕQ′RH(ϕQ′µ−νQ′)〉µ.

The next estimate is worth stating as a separate lemma.

Lemma 11. Suppose that F is any bounded function and Q∈Qk. Then

∑
Q′∈Qk+1

Q′⊂Q

|〈RH(χQ\Q′Fµ), ϕQ′RH(ϕQ′µ−νQ′)〉µ|6Cα1/(d+2)ε−3‖F‖L∞(Q)µ(Q).
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Proof. Let ΨQ′=RH(χQ\Q′Fµ). By Lemma 4, we have

|〈ΨQ′ϕQ′ , R
H(ϕQ′µ−νQ′)〉µ|

6Cα1/(d+2)`(Q′)d+2[‖ΨQ′‖L∞(suppϕQ′ )
+`(Q′)‖ΨQ′‖Lip(suppϕQ′ )

]‖ϕQ′‖2
Lip.

Note now that, by (2),

‖ΨQ′‖Lip(suppϕQ′ )
6

C‖F‖L∞(Q)

dist(suppϕQ′ , Q\Q′)
6
C‖F‖L∞(Q)

ε`(Q′)

and
‖ϕQ′‖Lip 6

C

ε`(Q′)
.

Thus, in our case, the bound guaranteed by Lemma 4 does not exceed

Cα1/(d+2)`(Q′)dε−2[‖ΨQ′‖L∞(suppϕQ′ )
+ε−1‖F‖L∞(Q)],

so, taking into account that `(Q′)d6Cµ(Q′), we get∑
Q′∈Qk+1

Q′⊂Q

|〈RH(χQ\Q′Fµ), ϕQ′RH(ϕQ′µ−νQ′)〉µ|

6Cα1/(d+2)ε−2
∑

Q′∈Qk+1

Q′⊂Q

[‖ΨQ′‖L∞(suppϕQ′ )
+ε−1‖F‖L∞(Q)]µ(Q′)

6Cα1/(d+2)ε−2

[
ε−1‖F‖L∞(Q)µ(Q)+

∑
Q′∈Qk+1

Q′⊂Q

‖ΨQ′‖L∞(suppϕQ′ )
µ(Q′)

]
.

Since the L∞ norm of a Lipschitz function on a set does not exceed the average of the
absolute value of the function over the set plus the product of the Lipschitz norm of the
function on the set and the diameter of the set, we have

‖ΨQ′‖L∞(suppϕQ′ )
6Cε−1‖F‖L∞(Q)+

[(∫
ϕQ′ dµ

)−1 ∫
|ΨQ′ |2ϕQ′ dµ

]1/2
=Cε−1‖F‖L∞(Q)+J(Q′).

However, ∫
ϕQ′ dµ> c`(Q′)d > cµ(Q′)

and ∫
|ΨQ′ |2ϕQ′ dµ6 2

[∫
Q′
|RHµ (FχQ)|2 dµ+

∫
Q′
|RHµ (FχQ′)|2 dµ

]
.
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Since RHµ is bounded in L2(µ), we have∫
Q′
|RHµ (FχQ′)|2 dµ6C‖FχQ′‖2

L2(µ) 6C‖F‖2
L∞(Q)µ(Q′)

for each Q′⊂Q, and

∑
Q′∈Qk+1

Q′⊂Q

∫
Q′
|RHµ (FχQ)|2 dµ6

∫
Q

|RHµ (FχQ)|2 dµ6C‖FχQ‖2
L2(µ) 6C‖F‖2

L∞(Q)µ(Q).

So we get ∑
Q′∈Qk+1

Q′⊂Q

J(Q′)2µ(Q′) 6C‖F‖2
L∞(Q)µ(Q).

Now it remains to apply Cauchy–Schwarz inequality to conclude that∑
Q′∈Qk+1

Q′⊂Q

J(Q′)µ(Q′) 6C‖F‖L∞(Q)µ(Q),

thus completing the proof of the lemma.

Applying this lemma with F=1, we immediately get∑
Q′∈Qk+1

Q′⊂Q

|〈RH(χQ\Q′µ), ϕQ′RH(ϕQ′µ−νQ′)〉µ|6Cα1/(d+2)ε−3µ(Q).

It remains to sum these bounds over Q∈Qk and to combine the result with the previously
obtained estimate for 〈F̃ (1)

k −F (1)
k , Gk+1〉µ to conclude that

|〈F (1)
k , Gk+1〉µ|6C(εγ/4+α1/(d+2)ε−3)µ(P ).

To estimate 〈F (2)
k , Gk+1〉µ, note once more that by Lemma 1, RHνQ is a Lipschitz func-

tion in Rd+1 with ‖RHνQ‖L∞6C/ε2 and ‖RHνQ‖Lip6C/ε2`(Q). Since for any two
Lipschitz functions f and g one has

‖fg‖L∞ 6 ‖f‖L∞‖g‖L∞ and ‖fg‖Lip 6 ‖f‖Lip‖g‖L∞+‖f‖L∞‖g‖Lip,

we get

‖ϕQRHνQ‖L∞ 6
C

ε2
and ‖ϕQRHνQ‖Lip 6

C

ε3`(Q)
.
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Using Lemma 4 again and taking into account that `(Q′)6`(Q) for Q′⊂Q, we get

|〈ϕQRHνQ, ϕQ′RH(ϕQ′µ−νQ′)〉µ|6Cα1/(d+2)`(Q′)d+2

[
1
ε2

+`(Q′)
1

ε3`(Q)

](
1

ε`(Q′)

)2
6Cα1/(d+2)ε−5`(Q′)d 6Cα1/(d+2)ε−5µ(Q′).

Writing 〈F (2)
k , Gk+1〉µ as ∑

Q∈QK

Q′∈Qk+1

Q′⊂Q

〈ϕQRHνQ, ϕQ′RH(ϕQ′µ−νQ′)〉µ

(all other scalar products correspond to functions with disjoint supports) and summing
the corresponding upper bounds for the absolute values of summands, we get

|〈F (2)
k , Gk+1〉µ|6Cα1/(d+2)ε−5µ(P ).

Finally, we can write 〈F (3)
k , Gk+1〉µ as∑
Q′∈Qk+1

〈ϕQ′RHνQ′ , ϕQ′RH(ϕQ′µ−νQ′)〉µ.

The argument we used to estimate 〈F (2)
k , Gk+1〉µ can be applied here as well. The only

essential difference is that we will now have `(Q′) instead of `(Q) in the denominator
of the bound for ‖ϕQ′RHνQ′‖Lip, so instead of the lax cancellation `(Q′)/`(Q)61 in
the main bound for individual summands, we will have to use the tight cancellation
`(Q′)/`(Q′)=1. The final inequality

|〈F (3)
k , Gk+1〉µ|6Cα1/(d+2)ε−5µ(P )

has exactly the same form and it remains to bring all three inequalities together to finish
the proof of the desired almost orthogonality property with

σ(ε, α) =C[εγ/4+α1/(d+2)ε−5].

18. Reduction to the lower bound for ‖Fk‖2
L2(µ)

At this point, we need to know that the non-BAUPness condition depends on a positive
parameter δ. We will fix that δ from now on in addition to fixing the measure µ. Note
that despite the fact that we need to prove that the family of non-BAUP cells is Carleson
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for every δ>0, the David–Semmes uniform rectifiability criterion does not require any
particular rate of growth of the corresponding Carleson constant as a function of δ.

We have the identity

‖G0‖2
L2(µ) =

∥∥∥∥ K∑
k=0

Fk

∥∥∥∥2

L2(µ)

=
K∑
k=0

‖Fk‖2
L2(µ)+2

K−1∑
k=0

〈Fk, Gk+1〉µ.

As we have seen, ‖G0‖2
L2(µ)6Cµ(P ) under the conditions of Proposition 9 and the scalar

products can be made arbitrarily small by first choosing ε>0 small enough and then
taking a sufficiently small α>0 depending on ε. So we will get a contradiction if we
are able to bound ‖Fk‖2

L2(µ) for k=0, ...,K−1 from below by τ2µ(P ), with some τ=
τ(δ)>0 (as usual, the dependence on the dimension d and the regularity constants of µ
is suppressed) under the assumptions that A>A0(δ), ε<ε0(δ), η<η0(ε), and α<α0(ε, δ).
We will call any set of such bounds “restrictions of admissible type”. Note that we may
impose any finite number of such restrictions and we will still be able to choose some
positive values of parameters to satisfy all of them.

Assuming that we have this lower bound, we will start with choosing K so that
Kτ2 is very large. Then we will fix A>A0(δ) and choose ε<ε0(δ) and α<α0(ε, δ) in this
order to make sure that the sum of the scalar products is significantly less than Kτ2, for
which it would suffice to make each individual scalar product much less than τ2. If we
are allowed to choose ε first and α afterwards, the restrictions ε<ε0(δ) and α<α0(ε, δ)
can never cause us any trouble. Finally, we can choose η<η0(ε), thus completing the
formal choice of parameters.

Since the constructions of §15 and §16 can be carried out with any choices of K, A,
α, and η under the only assumption that the family of non-BAUP cells is not Carleson,
we will end up with a clear contradiction.

The proof of the uniform lower bound for ‖Fk‖2
L2(µ) is rather long and technical and

will be done in several steps. We shall start with an elementary reduction that will allow
us to restrict our attention to a single cell Q∈Qk that is tiled with its subcells Q′∈Qk+1

almost completely.

19. Densely and loosely packed cells

Fix k∈{0, 1, ...,K−1}. We can write the function Fk as

Fk =
∑
Q∈Qk

FQ,

where
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FQ =ϕQR
H(ϕQµ−νQ)−

∑
Q′∈Qk+1

Q′⊂Q

ϕQ′R
H(ϕQ′µ−νQ′).

We shall call a cell Q∈Qk densely packed if
∑
Q′∈Qk+1Q′⊂Q

µ(Q′)>(1−ε)µ(Q). Other-
wise we shall call the cell Q loosely packed. The main claim of this section is that the
loosely packed cells constitute a tiny minority of all cells in Qk if η6ε2. Indeed, we have

∑
Q∈Qk

Q is packed loosely

µ(Q) 6 ε−1
∑
Q∈Qk

µ

(
Q\

⋃
Q′∈Qk+1

Q′⊂Q

Q′

)
= ε−1

[ ∑
Q∈Qk

µ(Q)−
∑

Q′∈Qk+1

µ(Q′)
]

6 ε−1

[
µ(P )−

∑
Q′∈Qk+1

µ(Q′)
]

6
η

ε
µ(P ) 6 εµ(P ).

We can immediately conclude from here that∑
Q∈Qk

Q is densely packed

µ(Q) =
∑
Q∈Qk

µ(Q)−
∑
Q∈Qk

Q is loosely packed

µ(Q)

> (1−η)µ(P )−εµ(P ) > (1−2ε)µ(P ).

From now on, we will fix the choice η=ε2. We claim now that to estimate ‖Fk‖2
L2(µ)

from below by τ2µ(P ), it suffices to show that for every densely packed cell Q∈Qk, we
have ‖FQ‖2

L2(µ)>2τ2µ(Q). To see this, just write

‖Fk‖2
L2(µ) =

∑
Q∈Qk

‖FQ‖2
L2(µ) >

∑
Q∈Qk

Q is densely packed

‖FQ‖2
L2(µ)

>
∑
Q∈Qk

Q is densely packed

2τ2µ(Q) > 2(1−2ε)τ2µ(P ) > τ2µ(P ),

provided that ε< 1
4 .

20. Approximating measure

From now on, we will fix k∈{0, ...,K−1} and a densely packed cell Q∈Qk. We denote
by Q the set of all cells Q′∈Qk+1 that are contained in the cell Q. We will also always
assume that the assumptions of Proposition 9 are satisfied.

The goal of this section is to show that there exists a subset Q′ of Q such that∑
Q′∈Q′

µ(Q′) > (1−Cε)µ(Q)
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and
‖FQ‖L2(µ) > 1

2‖R
H(ν−νQ)‖L2(ν)−σ(ε, α)

√
µ(Q),

where ν=
∑
Q′∈Q′ νQ′ and σ(ε, α) is some positive function such that

lim
ε!0+

lim
α!0+

σ(ε, α) = 0.

Proof. The proof is fairly long and technical, so we will split it into several steps.

Step 1. The choice of Q′.

For Q′∈Q, define

g(Q′) =
∑
Q′′∈Q

[
`(Q′′)

D(Q′, Q′′)

]d+1

,

where
D(Q′, Q′′) = `(Q′)+`(Q′′)+dist(Q′, Q′′)

is the “long distance” between Q′ and Q′′.
We have∑

Q′∈Q

g(Q′)µ(Q′) =
∑

Q′,Q′′∈Q

`(Q′′)d+1 µ(Q′)
D(Q′, Q′′)d+1

6C
∑

Q′,Q′′∈Q

`(Q′′)d+1

∫
Q′

dµ(x)
[`(Q′′)+dist(x,Q′′)]d+1

6C
∑
Q′′∈Q

`(Q′′)d+1

∫
dµ(x)

[`(Q′′)+dist(x,Q′′)]d+1

6C
∑
Q′′∈Q

`(Q′′)d

6C
∑
Q′′∈Q

µ(Q′′)

6Cµ(Q).

Let Q∗={Q′∈Q:g(Q′)>ε−1} and Q′=Q\Q∗. Then, by Chebyshev’s inequality,∑
Q′∈Q∗

µ(Q′) 6Cεµ(Q),

so ∑
Q′∈Q′

µ(Q′) > (1−Cε)µ(Q),

as required.
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Put
Φ =

∑
Q′∈Q′

ϕQ′ and Φ̃ =
∑
Q′∈Q′

χQ′ε .

Step 2. The first modification of FQ: from ϕ to χ.

Our next aim will be to show that

‖FQ‖L2(µ) > ‖F̃Q‖L2(µ)−Cεγ/4
√
µ(Q),

where
F̃Q =Φ̃RHµ Φ−

∑
Q′∈Q′

χQ′εR
H
µ ϕQ′+

∑
Q′∈Q′

χQ′εR
HνQ′−χQRHνQ.

Recall first that, by Lemma 10, we have

‖ϕQ′RH
(
ϕQ′µ−νQ′)‖2

L2(µ) 6 ‖RH(ϕQ′µ−νQ′)‖2
L2(ϕQ′µ) 6Cµ(Q′)

for all Q′∈Q. Thus,∥∥∥∥ ∑
Q′∈Q∗

ϕQ′R
H(ϕQ′µ−νQ′)

∥∥∥∥2

L2(µ)

=
∑

Q′∈Q∗

‖ϕQ′RH(ϕQ′µ−νQ′)‖2
L2(µ)

6C
∑

Q′∈Q∗

µ(Q′) 6Cεµ(Q).

This allows us to drop the terms ϕQ′RH(ϕQ′µ−νQ′) corresponding to Q′∈Q∗ in the
definition of FQ at the cost of decreasing the L2(µ) norm by at most Cε1/2

√
µ(Q).

Next we bound the norm ‖ϕQRHµ ϕQ−Φ̃RHµ Φ‖L2(µ). First, note that, for p>1, we
have

‖ϕQ−Φ‖pLp(µ) 6µ(Q\Q3ε)+µ
(
Q\

⋃
Q′∈Q′

Q′
)

+µ
( ⋃
Q′∈Q′

(Q′\Q′3ε)
)

6Cεγµ(Q)+Cεµ(Q)+Cεγ
∑
Q′∈Q′

µ(Q′) 6Cεγµ(Q),
(5)

and the same estimate holds for ‖ϕQ−Φ̃‖pLp(µ). Using the boundedness of RHµ in Lp(µ)
for p=2, 4, we get

‖ϕQRHµ (ϕQ−Φ)‖2
L2(µ) 6C‖ϕQ−Φ‖2

L2(µ) 6Cεγµ(Q)

and

‖(ϕQ−Φ̃)RHµ Φ‖2
L2(µ) 6 ‖ϕQ−Φ̃‖2

L4(µ)‖R
H
µ Φ‖2

L4(µ)

6C‖ϕQ−Φ̃‖2
L4(µ)‖Φ‖

2
L4(µ) 6Cεγ/2µ(Q).
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Bringing these two estimates together and using the triangle inequality, we get

‖ϕQRHµ ϕQ−Φ̃RHµ Φ‖L2(µ) 6Cεγ/4
√
µ(Q).

This allows us to replace the term ϕQR
H(ϕQµ) in the definition of FQ by the term

Φ̃RHµ Φ appearing in the definition of F̃Q at the cost of decreasing the L2(µ) norm by at
most Cεγ/4

√
µ(Q).

Next note that for every Q′∈Q′, we have

‖χQ′RH(ϕQ′µ−νQ′)‖4
L4(µ) 6Cµ(Q′)

by Lemma 10, so

‖(ϕQ′−χQ′ε)R
H(ϕQ′µ−νQ′)‖2

L2(µ) 6 ‖ϕQ′−χQ′ε‖
2
L4(µ)‖χQ′R

H(ϕQ′µ−νQ′)‖2
L4(µ)

6Cµ(Q′\Q′3ε)1/2µ(Q′)1/2 6Cεγ/2µ(Q′).

Thus,∥∥∥∥ ∑
Q′∈Q′

(ϕQ′−χQ′ε)R
H(ϕQ′µ−νQ′)

∥∥∥∥2

L2(µ)

=
∑
Q′∈Q′

‖(ϕQ′−χQ′ε)R
H(ϕQ′µ−νQ′)‖2

L2(µ)

6Cεγ/2
∑
Q′∈Q′

µ(Q′) 6Cεγ/2µ(Q).

This allows us to replace all the remaining terms ϕQ′RH(ϕQ′µ−νQ′) (Q′∈Q′) in the
definition of FQ by the terms χQ′εR

H(ϕQ′µ−νQ′) appearing in the definition of F̃Q at
the cost of decreasing the L2(µ) norm by at most Cεγ/4

√
µ(Q) again.

At last, using the bound ‖χQRHνQ‖4
L4(µ)6Cµ(Q) (the same Lemma 10), we get

‖(ϕQ−χQ)RHνQ‖2
L2(µ) 6 ‖ϕQ−χQ‖2

L4(µ)‖χQR
HνQ)‖2

L4(µ)

6Cµ(Q\Q3ε)1/2µ(Q)1/2 6Cεγ/2µ(Q).

So, we can make the final replacement of ϕQRHνQ with χQRHνQ at the cost of decreasing
the L2(µ) norm by at most Cεγ/4

√
µ(Q).

Step 3. The second modification of FQ: from RH(ϕµ) to RHν.

Recall that we finally want to switch from µ to the measure

ν=
∑
Q′∈Q′

νQ′ .
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Our next goal will be to show that

‖F̃Q−(Φ̃RHν−χQRHνQ)‖L2(µ) 6Cαε−d−3
√
µ(Q).

Note first of all that

Φ̃RHµ Φ−
∑
Q′∈Q′

χQ′εR
H
µ ϕQ′ =

∑
Q′∈Q′

χQ′εR
H(ΦQ′µ),

where

ΦQ′ =
∑

Q′′∈Q′

Q′′ 6=Q′

ϕQ′′ .

Fix some Q′∈Q′. Let x∈Q′ε. Then, for every Q′′∈Q′\{Q′}, we have

[RH(ϕQ′′µ−νQ′′)](x) =
∫

Ψx d(ϕQ′′µ−νQ′′),

where

Ψx(y) =KH(x−y) =
πH(x−y)
|x−y|d+1

.

Since |x−y|>εD(Q′, Q′′) for all y∈suppϕQ′′⊂Q′′ε , we have

‖Ψx‖Lip(suppϕQ′′ )
6

C

εd+1D(Q′, Q′′)d+1
,

whence, by Lemma 3,∣∣∣∣∫ Ψx d(ϕQ′′µ−νQ′′)
∣∣∣∣6Cα`(Q′′)d+2‖Ψx‖Lip(suppϕQ′′ )

‖ϕQ′′‖Lip

6Cαε−d−2

[
`(Q′′)

D(Q′, Q′′)

]d+1

.

Therefore, for every Q′∈Q′, we have∣∣∣∣∣RH(ΦQ′µ)−
∑

Q′′∈Q′

Q′′ 6=Q′

RHνQ′′

∣∣∣∣∣6Cαε−d−2g(Q′) 6Cαε−d−3

on Q′e. Thus, making a uniform error of at most Cαε−d−3, we can replace

Φ̃RHµ Φ−
∑
Q′∈Q′

χQ′εR
H
µ ϕQ′ =

∑
Q′∈Q′

χQ′εR
H(ΦQ′µ)
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by ∑
Q′∈Q′

χQ′ε

( ∑
Q′′∈Q′

Q′′ 6=Q′

RHνQ′′

)
=
∑
Q′∈Q′

χQ′εR
H(ν−νQ′).

Combining each term in this sum with the corresponding term χQ′εR
HνQ′ , we get the

sum ∑
Q′∈Q′

χQ′εR
Hν=Φ̃RHν.

It remains to note that the uniform bound we got is stronger than the L2(µ) bound we
need.

Step 4. The final effort : from L2(µ) to L2(ν).

It remains to compare

‖Φ̃RHν−χQRHνQ‖L2(µ) with ‖RH(ν−νQ)‖L2(ν).

Since 06Φ61 and both Φ̃ and χQ are identically equal to 1 on suppΦ, we trivially have

‖Φ̃RHν−χQRHνQ‖L2(µ) > ‖Φ̃RHν−χQRHνQ‖L2(Φµ) = ‖RH(ν−νQ)‖L2(Φµ).

To make the transition from L2(Φµ) to L2(ν), we will use the following comparison
lemma.

Lemma 12. Let F be any Lipschitz function and let p>1. Then∣∣∣∣∫ |F |p d(Φµ−ν)
∣∣∣∣6C(p)αε−1

[
‖F‖pLp(Φµ)+

[
max
Q′∈Q′

`(Q′)‖F‖Lip(suppϕQ′ )

]p
µ(Q)

]
.

Proof. Set M=maxQ′∈Q′ `(Q′)‖F‖Lip(suppϕQ′ )
, S(Q′)=‖F‖L∞(suppϕQ′ )

. We have∫
|F |p d(Φµ−ν) =

∑
Q′∈Q′

∫
|F |p d(ϕQ′µ−νQ′).

By Lemma 3,∣∣∣∣∫ |F |p d(ϕQ′µ−νQ′)
∣∣∣∣6C(p)α`(Q′)d+2S(Q′)p−1 M

`(Q′)
‖ϕQ′‖Lip

6C(p)αε−1S(Q′)p−1M`(Q′)d

6C(p)αε−1S(Q′)p−1Mµ(Q′)

6C(p)αε−1[S(Q′)p+Mp]µ(Q′)
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for each Q′∈Q′. Thus,

∣∣∣∣∫ |F |p d(Φµ−ν)
∣∣∣∣6C(p)αε−1

∑
Q′∈Q′

[S(Q′)p+Mp]µ(Q′)

6C(p)αε−1

[
Mpµ(Q)+

∑
Q′∈Q′

S(Q′)pµ(Q′)
]
.

It remains to note that, for each Q′∈Q′, we have
∫
ϕQ′ dµ>c`(Q′)d>cµ(Q′) and

S(Q′)p 6
[

min
suppϕQ′

|F |+8`(Q′)‖F‖Lip(suppϕQ′ )

]p
6C(p)

[(
min

suppϕQ′
|F |
)p

+Mp
]
,

so

∑
Q′∈Q′

S(Q′)pµ(Q′) 6C(p)
∑
Q′∈Q′

(
min

suppϕQ′
|F |
)p
µ(Q′)+C(p)Mp

∑
Q′∈Q′

µ(Q′)

6C(p)
∑
Q′∈Q′

(
min

suppϕQ′
|F |
)p ∫

ϕQ′ dµ+C(p)Mpµ(Q)

6C(p)
∫
|F |p d(Φµ)+C(p)Mpµ(Q).

Thus, we need to get a decent bound for the Lipschitz norm of RH(ν−νQ) on
suppϕQ′ . We already know (Lemma 1) that

‖RHνQ‖Lip 6
C

ε2`(Q)
6

C

ε2`(Q′)
and ‖RHνQ′‖Lip 6

C

ε2`(Q′)
.

Now note that

RH(ν−νQ′) =
∑

Q′′∈Q′

Q′′ 6=Q′

∫
Ψy dνQ′′(y),

where Ψy(x)=KH(x−y). As |x−y|>εD(Q′, Q′′) for all x∈suppϕQ′ and all y∈suppϕQ′′ ,
we have

‖Ψy‖Lip(suppϕQ′ )
6

C

εd+1D(Q′, Q′′)d+1
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for all y∈supp νQ′′ . Thus

‖RH(ν−νQ′)‖Lip(suppϕQ′ )
6
∑

Q′′∈Q′

Q′′ 6=Q′

∫
‖Ψy‖Lip(suppϕQ′ )

dνQ′′(y)

6C
∑

Q′′∈Q′

Q′′ 6=Q′

νQ′′(Q′′)
εd+1D(Q′, Q′′)d+1

=C
∑

Q′′∈Q′

Q′′ 6=Q′

µ(Q′′)
εd+1D(Q′, Q′′)d+1

6Cε−d−1

∫
dµ(y)

[`(Q′)+dist(y,Q′)]d+1

6Cε−d−1`(Q′)−1.

Bringing these three estimates together, we conclude that

`(Q′)‖RH(ν−νQ)‖Lip(suppϕQ′ )

6 `(Q′)[‖RH(ν−νQ′)‖Lip(suppϕQ′ )
+‖RHνQ′‖Lip(suppϕQ′ )

+‖RHνQ‖Lip(suppϕQ′ )
]

6Cε−d−1

for all Q′∈Q′. Lemma 12 applied with p=2 and F=RH(ν−νQ) now yields∣∣∣∣∫ |RH(ν−νQ)|2 d(Φµ−ν)
∣∣∣∣6Cαε−1[‖RH(ν−νQ)‖2

L2(Φµ)+[Cε−d−1]2µ(Q)]

6Cαε−1‖RH(ν−νQ)‖2
L2(Φµ)+Cαε

−2d−3µ(Q),

whence

‖RH(ν−νQ)‖2
L2(ν) 6 (1+Cαε−1)‖RH(ν−νQ)‖2

L2(Φµ)+Cαε
−2d−3µ(Q)

6 (1+Cαε−1)
[
‖RH(ν−νQ)‖L2(Φµ)+Cα1/2ε−(2d+3)/2

√
µ(Q)

]2
.

Assuming that Cαε−1<3, which is a restriction of the type α<α0(ε), and taking the
square root, we finally get

‖RH(ν−νQ)‖L2(Φµ) > 1
2‖R

H(ν−νQ)‖L2(ν)−Cα1/2ε−(2d+3)/2
√
µ(Q).

Combined with the bounds from steps 2 and 3, this yields the result stated as the objective
of this section with

σ(ε, α) =C[εγ/4+α1/2ε−(2d+3)/2+αε−d−3].
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21. The reflection trick

For ∆>0 to be chosen below, fix a hyperplane L parallel to H at the distance 2∆`(Q)
from suppµ∩Q. The reader should think of ∆ as small compared to ε and large compared
to α. Let S be the (closed) half-space bounded by L that contains suppµ∩Q. For x∈S,
denote by x∗ the reflection of x about L. Define the kernels

K̃H(x, y) =KH(x−y)−KH(x∗−y), x, y ∈S,

and denote by R̃H the corresponding operator. We will assume that α<∆, so the ap-
proximating hyperplanes L(Q′) (Q′∈Q′) and L(Q), which lie within the distance α`(Q)
from suppµ∩Q are contained in S and lie at the distance ∆`(Q) or greater from the
boundary hyperplane L.

The goal of this section is to show that, for some appropriately chosen ∆=∆(α, ε)>0,
and under our usual assumptions about ε, A, and α, we have

‖RH(ν−νQ)‖L2(ν) > ‖R̃Hν‖L2(ν)−σ(ε, α)
√
µ(Q),

where, again, σ(ε, α) is some positive function such that

lim
ε!0+

lim
α!0+

σ(ε, α) = 0.

Thus, if ‖RH(ν−νQ)‖L2(ν) is much smaller than
√
µ(Q) and ε and α are chosen so

that σ(ε, α) is small, then ‖R̃Hν‖L2(ν) must also be small. Again, the exact formula for
σ(ε, α) is not important for the rest of the argument.

Note that the correction kernel KH(x∗−y) is uniformly bounded as long as x or y
stay in S away from the boundary hyperplane L, so it defines a nice bounded operator in
L2(µQ), where µQ=χQµ, and we can define the operator R̃HµQ

with the kernel K̃H(x, y) as
the difference of the operator RHµQ

and the integral operator T with the kernelKH(x∗−y).
Our first observation is that the norm of the operator R̃HµQ

in L2(µQ) is bounded
by some constant depending only on the dimension and the goodness parameters of µ.
Indeed, all we need is to bound the norm of the integral operator T . Note however that

KH(x∗−y) =KH
∆`(Q)(x−y)+[KH(x∗−y)−KH

∆`(Q)(x−y)].

The first term on the right corresponds to the operator RHµQ,∆`(Q), whose norm is bounded
by some constant independent of ∆ according to our definition of a good measure. On
the other hand, we have

|KH(x∗−y)−KH
∆`(Q)(x−y)|6

C∆`(Q)
[∆`(Q)+|x−y|]d+1
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for all x, y∈S with dist(x, L),dist(y, L)∈(∆`(Q), 4∆`(Q)), and all points x, y∈suppµQ
satisfy this restriction, provided that α<∆. Since this bound is symmetric in x and y

and since ∫
∆`(Q)

[∆`(Q)+|x−y|]d+1
dµ(y) 6C

independently of the choice of ∆, we conclude that the norm of the operator correspond-
ing to the second term in the decomposition of KH(x∗−y) in L2(µQ) is bounded by some
fixed constant as well.

Note now that K̃H(x, y)=0 whenever x∈L or y∈L. We also have the antisymmetry
property

K̃H(y, x) =−K̃H(x, y).

At last K̃H(x, y) is harmonic in each variable as long as x, y∈S, x 6=y.
The next important thing to note is that the correction term KH(x∗−y) is uniformly

bounded and Lipschitz in x∈S as long as y∈S and dist(y, L)>∆`(Q). More precisely,
for all such y,

‖KH( ·∗−y)‖L∞(S) 6
1

∆d`(Q)d
and ‖KH( ·∗−y)‖Lip(S) 6

C

∆d+1`(Q)d+1
.

To pass from the smallness of ‖RH(ν−νQ)‖L2(ν) to that of ‖R̃Hν‖L2(ν), it suffices to
estimate the norm ‖RHνQ−Tν‖L2(ν).

We start with showing that RHνQ−TνQ is uniformly bounded by C∆ε−2 on S.
Indeed, using the identities KH(x∗−y)=KH(x−y∗) (x, y∈S) and y∗=y−z (y∈L(Q)),
where z is the inner normal vector to the boundary of S of length 2 dist(L(Q), L)6
6∆`(Q), we get

[TνQ](x) =
∫
KH(x−y∗) dνQ(y) =

∫
KH(x+z−y) dνQ(y) = [RHνQ](x+z),

whence, by Lemma 1,

|[RHνQ](x)−[TνQ](x)|= |[RHνQ](x)−[RHνQ](x+z)|6 ‖RHνQ‖Lip|z|6
C∆
ε2

.

Now we will estimate ‖TνQ−Tν‖L2(ν). Note that

‖T (νQ−ν)‖Lip(S) 6 sup
y∈supp ν∪supp νQ

‖KH( ·∗−y)‖Lip(S)(ν(Rd+1)+νQ(Rd+1))

6
C

∆d+1`(Q)d+1
µ(Q) 6

C

∆d+1`(Q)
.
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Similarly,

‖T (νQ−ν)‖L∞(S) 6 sup
y∈(supp ν∪supp νQ)

‖KH( ·∗−y)‖L∞(S)(ν(Rd+1)+νQ(Rd+1))

6
C

∆d`(Q)d
µ(Q) 6

C

∆d
.

Thus, by Lemma 3,∣∣∣∣∫ |T (νQ−ν)|2 d(ϕQ′µ−νQ′)
∣∣∣∣6Cα`(Q′)d+2 1

∆d

1
∆d+1`(Q)

1
ε`(Q′)

6Cα∆−2d−1ε−1`(Q′)d 6Cα∆−2d−1ε−1µ(Q′).

Summing over Q′∈Q′, we get∫
|T (νQ−ν)|2 dν6

∫
|T (νQ−ν)|2 d(Φµ)+Cα∆−2d−1ε−1µ(Q),

so
‖T (νQ−ν)‖L2(ν) 6 ‖T (νQ−ν)‖L2(Φµ)+Cα1/2∆−(2d+1)/2ε−1/2

√
µ(Q).

On the other hand, applying Lemma 3 again, we see that, for every x∈suppµQ,

|[T (ϕQµ−νQ)](x)|=
∣∣∣∣∫ KH(x∗−·)d(ϕQµ−νQ)

∣∣∣∣
6Cα`(Q)d+2‖KH(x∗−·)‖Lip(S)‖ϕQ‖Lip

6Cα`(Q)d+2 1
∆d+1`(Q)d+1

1
ε`(Q)

6Cα∆−d−1ε−1,

because
‖KH(x∗−·)‖Lip(S) 6

C

∆d+1`(Q)d+1

as long as x∈S and dist(x, L)>∆`(Q) (this is the same inequality as we used before only
with the roles of x and y exchanged).

Similarly, for every Q′∈Q′, we have

|[T (ϕQ′µ−νQ′)](x)|=
∣∣∣∣∫ KH(x∗−·)d(ϕQ′µ−νQ′)

∣∣∣∣
6Cα`(Q′)d+2‖KH(x∗−·)‖Lip(S)‖ϕQ′‖Lip

6Cα`(Q′)d+2 1
∆d+1`(Q)d+1

1
ε`(Q′)

6Cα∆−d−1ε−1 `(Q
′)d

`(Q)d

6Cα∆−d−1ε−1µ(Q′)
µ(Q)

.
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Summing these inequalities over Q′∈Q′, we get

|[T (Φµ−ν)](x)|6Cα∆−d−1ε−1

for all x∈suppµQ.
Relaxing the L∞ bounds to the L2 ones, we conclude that

‖T (νQ−ν)‖L2(Φµ) 6 ‖T ((ϕQ−Φ)µ)‖L2(µQ)+‖T (ϕQµ−νQ)‖L2(µQ)+‖T (Φµ−ν)‖L2(µQ)

6 ‖T ((ϕQ−Φ)µ)‖L2(µQ)+Cα∆−d−1ε−1
√
µ(Q).

However, since the operator norm of T in L2(µQ) is bounded by a constant, we have

‖T ((ϕQ−Φ)µ)‖L2(µQ) 6C‖ϕQ−Φ‖L2(µ) 6Cεγ/2
√
µ(Q)

by (5). Thus, we finally get

‖RH(ν−νQ)‖L2(ν)

> ‖R̃Hν‖L2(ν)−C[εγ/2+∆ε−2+α1/2∆−(2d+1)/2ε−1/2+α∆−d−1ε−1]
√
µ(Q).

Putting ∆=ε3, say, we obtain the desired bound with

σ(ε, α) =C[εγ/2+ε+α1/2ε−3d−2+αε−3d−4].

22. The intermediate non-BAUP layer

Until now, we worked only with a flat cell Q∈Qk and the family Q′ of flat cells Q′∈Qk+1

contained in Q, completely ignoring the non-BAUP layer Pk+1. At this point, we finally
bring it into the play. We will start with the definition of a δ-non-BAUP cell.

Definition. Let δ>0. We say that a cell P∈D is δ-non-BAUP if there exists a point
x∈P∩suppµ such that for every hyperplane L passing through x, there exists a point
y∈B(x, `(P ))∩L for which B(y, δ`(P ))∩suppµ=∅.(4)

Note that in this definition the plane L can go in any direction. In what follows, we
will only need planes parallel to H but, since H is determined by the flatness direction of
some unknown subcube of P , we cannot fix the direction of the plane L in the definition
of non-BAUPness from the very beginning. For every non-BAUP cell P ′∈Pk+1, we will
denote by xP ′ the point x from the definition of the non-BAUPness for P ′ and by yP ′

the point y corresponding to x=xP ′ and L parallel to H.

(4) The reader should compare this definition with Definition 3.14 in §3.2 (p. 139) of [DS] where
the BAUP (Bilateral Approximation by Unions of Planes) condition is introduced.
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The goal of this section is to show that under our usual assumptions (ε is sufficiently
small in terms of δ, A is sufficiently large in terms of δ, α is sufficiently small in terms
of ε and δ), there exists a family P′⊂Pk+1 such that

• every cell P ′⊂P′ is contained in Qε and satisfies `(P ′)62αδ−1`(Q);
•
∑
P ′∈P′ µ(P ′)>cµ(Q);

• the balls B(zP ′ , 10`(P ′)), P ′∈P′, are pairwise disjoint ;
• the function

h(x) =
∑
P ′∈P′

[
`(P ′)

`(P ′)+dist(x, P ′)

]d+1

satisfies ‖h‖L∞6C.

Proof. We start with showing that every δ-non-BAUP cell P ′ contained in Q has
much smaller size than Q. Indeed, we know that suppµ∩B(zQ, A`(Q)) is contained in
the α`(Q)-neighborhood of L(Q) and that

B(y, α`(Q))∩suppµ 6= ∅

for every y∈B(zQ, A`(Q))∩L(Q). Suppose that P ′⊂Q is δ-non-BAUP. If A>5, then

B(xP ′ , `(P ′))⊂B(zQ, 5`(Q))⊂B(zQ, A`(Q)).

Moreover, since yP ′−xP ′∈H, we have

dist(yP ′ , L(Q))= dist(xP ′ , L(Q))6α`(Q).

Let y∗P ′ be the projection of yP ′ to L(Q). Then

|y∗P ′−yP ′ |6α`(Q) and |y∗P ′−zQ|6 |yP ′−zQ|<A`(Q).

Thus, the ball B(yP ′ , 2α`(Q))⊃B(y∗P ′ , α`(Q)) intersects suppµ, so δ`(P ′)<2α`(Q), i.e.,
`(P ′)62αδ−1`(Q).

Let now P={P ′∈Pk+1 :P ′⊂Q}. Consider the function

g(P ′) =
∑
P ′′∈P

[
`(P ′′)

D(P ′, P ′′)

]d+1

(the same function as the one we used in §20, only corresponding to the family P instead
of Q). The same argument as in §20 shows that∑

P ′∈P

g(P ′)µ(P ′) 6C1µ(Q)
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for some C1>0 depending on the dimension d and the goodness parameters of µ only.
Define

P∗ = {P ′ ∈P :P ′⊂Qε and g(P ′) 6 3C1}.

Note that ∑
P ′∈P∗

µ(P ′) >
∑
P ′∈P

µ(P ′)−
∑
P ′∈P

P ′ 6⊂Qε

µ(P ′)−
∑
P ′∈P

g(P ′)>3C1

µ(P ′).

However, ∑
P ′∈P

µ(P ′) >
∑
Q′∈Q

µ(Q′) > (1−ε)µ(Q).

Further, since the diameter of each P ′∈P is at most 8`(P ′)68αδ−1`(Q), every cell P ′∈P
that is not contained in Qε is contained in Q\Q2ε, provided that α< 1

8εδ. Thus, under
this restriction, ∑

P ′∈P

P ′ 6⊂Qε

µ(P ′) 6µ(Q\Q2ε) 6Cεγµ(Q).

Finally, by Chebyshev’s inequality,

∑
P ′∈P

g(P ′)>3C1

µ(P ′) 6
µ(Q)

3
.

Bringing these three estimates together, we get the inequality
∑
P ′∈P∗ µ(P ′)> 1

2µ(Q),
provided that A, ε and α satisfy some restrictions of the admissible type.

Now we will rarefy the familyP∗ a little bit more. Consider the balls B(zP ′ , 10`(P ′)),
P ′∈P∗. By the classical Vitali covering lemma, we can choose some subfamily P′⊂P∗

such that the balls B(zP ′ , 10`(P ′)), P ′∈P′, are pairwise disjoint but⋃
P ′∈P′

B(zP ′ , 30`(P ′))⊃
⋃

P ′∈P∗

B(zP ′ , 10`(P ′))⊃
⋃

P ′∈P∗

P ′.

Then we will still have∑
P ′∈P′

µ(P ′) > c
∑
P ′∈P′

`(P ′)d > c
∑
P ′∈P′

µ(B(zP ′ , 30`(P ′)))> c
∑

P ′∈P∗

µ(P ′) > cµ(Q).

It only remains to prove the bound for the function h. Take any x∈Rd+1. Let P ′ be a
nearest-to-x cell in P′. We claim that for every cell P ′′∈P′, we have

dist(x, P ′′)+`(P ′′) > 1
4D(P ′, P ′′).
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Indeed, if P ′=P ′′, the inequality trivially holds even with 1
2 in place of 1

4 . Otherwise,
the disjointness of the balls B(zP ′ , 10`(P ′)) and B(zP ′′ , 10`(P ′′)) implies that

dist(P ′, P ′′) > |zP ′−zP ′′ |−4(`(P ′)+`(P ′′))

> 10(`(P ′)+`(P ′′))−4(`(P ′)+`(P ′′))= 6(`(P ′)+`(P ′′)),

so
D(P ′, P ′′) =dist(P ′, P ′′)+`(P ′)+`(P ′′) 6 2 dist(P ′, P ′′).

On the other hand,

dist(P ′, P ′′) 6dist(x, P ′)+dist(x, P ′′) 6 2 dist(x, P ′′).

Thus
dist(x, P ′′)+`(P ′′) >dist(x, P ′′) > 1

4D(P ′, P ′′).

Now it remains to note that

h(x) =
∑

P ′′∈P′

[
`(P ′′)

`(P ′′)+dist(x, P ′′)

]d+1

6
∑

P ′′∈P′

[
4`(P ′′)

D(P ′, P ′′)

]d+1

6Cg(P ′) 6C.

23. The function η

Fix the non-BAUPness parameter δ∈(0, 1). Fix any C∞ radial function η0 supported in
B(0, 1) such that 06η061 and η0=1 on B

(
0, 1

2

)
. For every P ′∈P′, define

ηP ′(x) = η0

(
1

δ`(P ′)
(x−xP ′)

)
−η0

(
1

δ`(P ′)
(x−yP ′)

)
.

Note that ηP ′ is supported in the ball B(zP ′ , 6`(P ′)). This ball is contained in Q,
provided that 12αδ−1<ε (recall that `(P ′)62αδ−1`(Q) and P ′⊂Qε). Also ηP ′>1 on
B
(
xP ′ ,

1
2δ`(P

′)
)

and the support of the negative part of ηP ′ is disjoint with suppµ. Put

η=
∑
P ′∈P′

ηP ′ .

Since even the balls B(zP ′ , 10`(P ′)) corresponding to different P ′∈P′ are disjoint, we
have −16η61.

The goal of this section is to show that, under our usual assumptions, we have
supp η⊂S, dist(supp η, L)>∆`(Q)=ε3`(Q), and∫

η dν> c(δ)µ(Q)

with some c(δ)>0 (we remind the reader that we suppress the dependence of constants
on the dimension d and the goodness parameters of the measure µ in our notation).
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Proof. The first part of our claim is easy because, for every P ′∈P′, we have

supp ηP ′ ⊂B(zP ′ , 6`(P ′))

and
dist(zP ′ , L)−6`(P ′) > 2∆`(Q)−12αδ−1`(Q) >∆`(Q),

as long as 12α<δ∆=δε3.
To get the second part, recall that, by Lemma 3, for every Q′∈Q′, we have∣∣∣∣∫ η d(ϕQ′µ−νQ′)

∣∣∣∣6Cα`(Q′)d+2‖η‖Lip(suppϕQ′ )
‖ϕQ′‖Lip

6Cαε−1µ(Q′)`(Q′)‖η‖Lip(suppϕQ′ )
.

So our first step will be to show that, for every Q′∈Q′, we have

‖η‖Lip(suppϕQ′ )
6

C

δε`(Q′)
.

Since the building blocks ηP ′ (P ′∈P′) of the function η have disjoint supports, it suffices
to check this inequality for each ηP ′ separately.

Since ‖ηP ′‖Lip6C/δ`(P ′), the inequality is trivial if 2`(P ′)>ε`(Q′). Otherwise, we
cannot have Q′⊂P ′, so we must have Q′∩P ′=∅. However, supp ηP ′ is contained in
the 2`(P ′)-neighborhood of P ′, so it cannot reach suppϕQ′⊂Q′ε and, thereby, ηP ′=0 on
suppϕQ′ in this case.

Now, we get∫
η dν=

∑
Q′∈Q′

∫
η dνQ′

>
∑
Q′∈Q′

[∫
η d(ϕQ′µ)−Cαδ−1ε−2µ(Q′)

]
>
∫
η d(Φµ)−Cαδ−1ε−2µ(Q).

On the other hand, since supp η⊂Q and supp η−∩suppµ=∅, we have∫
η d(Φµ) =

∫
η+ d(Φµ) >

∫
η+ dµ−

∫
(χQ−Φ) dµ.

However, ∫
η+ dµ> c

∑
P ′∈P′

(δ`(P ′))d > cδd
∑
P ′∈P′

µ(P ′) > cδdµ(Q),

while, as we have seen in the beginning of step 2 in §20,∫
(χQ−Φ) dµ= ‖χQ−Φ‖L1(µ) 6Cεγµ(Q).

So, we end up with ∫
η dν> [cδd−C(εγ+αδ−1ε−2)]µ(Q) > cδdµ(Q),

provided that we demand that ε>0 is small in terms of δ, and α>0 is small in terms of
δ and ε, as usual.
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24. The vector field ψ

Let m denote the Lebesgue measure in Rd+1.

The goal of this section is to construct a Lipschitz compactly supported vector field
ψ such that

• ψ=
∑
P ′∈P′ ψP ′ , suppψ⊂S and dist(suppψ,L)>∆`(Q)=ε3`(Q);

• ψP ′ is supported in the 2`(P ′)-neighborhood of P ′ and satisfies∫
ψP ′ =0, ‖ψP ′‖L∞ 6

C

δ`(P ′)
and ‖ψP ′‖Lip 6

C

δ2`(P ′)2
;

•
∫
|ψ| dm6Cδ−1µ(Q);

• (RH)∗(ψm)=η;
• ‖T ∗(ψm)‖L∞(supp ν)6Cαδ−2ε−3d−3;
• ‖R̃H(|ψ|m)‖L2(ν)6Cδ−1

√
µ(Q).

Proof. Fix P ′∈P′. Let eP ′ be the unit vector in the direction yP ′−xP ′ . Note that
KH=−cd∇HU , where U is the fundamental solution of the Laplace operator in Rd+1,
so for every C∞0 function u in Rd+1, we have

KH ∗(∆u) =−cd∇H [U ∗(∆u)]=−cd∇Hu.

In particular,
〈RH [(∆u)m], eP 〉=−cd∇eP

u.

Note that for every reasonable finite vector-valued measure σ, we have

(RH)∗σ=−
d∑
j=1

〈RH〈σ, ej〉, ej〉,

where e1, ..., ed is any orthonormal basis in H. If we apply this identity to

σ=−c−1
d (∆u)eP ′m,

and choose the basis e1, ..., ed so that e1=eP ′ , we will get

(RH)∗[−c−1
d (∆u)eP ′m] =−c−1

d 〈RH [(∆u)m], eP ′〉=∇eP ′u.

We will now define a function uP ′∈C∞0 for which ∇eP ′u=ηP ′ . To this end, we just put

uP ′(x) =
∫ 0

−∞
ηP ′(x+teP ′) dt.
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Since the restriction of ηP ′ to any line parallel to eP ′ consists of two opposite bumps,
the support of uP ′ is contained in the convex hull of B(xP ′ , δ`(P ′)) and B(yP ′ , δ`(P ′)).
Also, since ‖∇jηP ′‖L∞6C(j)[δ`(P ′)]−j and since supp ηP ′ intersects any line parallel to
eP ′ over two intervals of total length 4δ`(P ′) or less, we have

|∇juP ′(x)|6
∫ 0

−∞
|(∇jηP ′)(x+teP ′)| dt6

C(j)
[δ`(P ′)]j−1

for all j>0. Define the vector fields

ψP ′ =−c−1
d (∆uP ′)eP ′ and ψ=

∑
P ′∈P′

ψP ′ .

Then, clearly, (RH)∗(ψm)=η and we have all other properties of the individual vector
fields ψP ′ we need (the mean-zero property holds because the integral of any Laplacian of
a compactly supported C∞ function over the entire space is 0 and the support property
holds because even the balls B(zP ′ , 6`(P ′)) lie deep inside S). We also have∫

|ψ| dm=
∑
P ′∈P′

∫
|ψP ′ | dm6C

∑
P ′∈P′

[δ`(P ′)]−1m(B(zP ′ , 6`(P ′)))

6Cδ−1
∑
P ′∈P′

`(P ′)d 6Cδ−1
∑
P ′∈P′

µ(P ′) 6Cδ−1µ(Q).

To get the uniform estimate for T ∗(ψm), note that for every vector-valued Lipschitz
function F in S and every P ′∈P′, we have∣∣∣∣∫ 〈F,ψP ′〉 dm

∣∣∣∣= ∣∣∣∣∫ 〈F−F (zP ′), ψP ′〉 dm
∣∣∣∣

6 6‖F‖Lip(S)`(P ′)
∫
|ψP ′ | dm6Cδ−1‖F‖Lip(S)`(P ′)d+1.

Since the kernel of T is still antisymmetric, we have

|[T ∗(ψP ′m)](x)|=
∣∣∣∣∫ 〈KH(x∗−·), ψP ′〉 dm

∣∣∣∣6Cδ−1‖KH(x∗−·)‖Lip(S)`(P ′)d+1

6Cδ−1∆−d−1 `(P
′)d+1

`(Q)d+1
6Cαδ−2∆−d−1µ(P ′)

µ(Q)

for every x∈supp ν (we remind the reader that `(P ′)62αδ−1`(Q)). Adding these esti-
mates up and recalling our choice ∆=ε3, we get

‖T ∗ψ‖L∞(supp ν) 6Cαδ−2ε−3d−3
∑
P ′∈P′

µ(P ′)
µ(Q)

6Cαδ−2ε−3d−3.
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It remains to bound R̃H(|ψ|m) in L2(ν). As usual, we will prove the L2(µ) bound first
and then use the appropriate Lipschitz properties to switch to the L2(ν) bound.

Recall that for every P ′∈P′, we have
∫
|ψP ′ | dm6Cδ−1`(P ′)d. Hence, we can choose

constants bP ′∈(0, Cδ−1) so that |ψP ′ |m−bP ′χP ′µ is a balanced signed measure, i.e.,∫
|ψP ′ | dm= bP ′

∫
χP ′ dµ.

Let
f =

∑
P ′∈P′

bP ′χP ′ .

Note that ‖f‖2
L2(µ)6Cδ

−2µ(Q). For each P ′∈P′, denote by V (P ′) the set of all points
x∈Rd+1 such that dist(x, P ′)6dist(x, P ′′) for all P ′′∈P′. Note that the sets V (P ′) are
closed and cover the entire space Rd+1, possibly, with some overlaps. Introduce some
linear order ≺ on the finite set P′ and put

V ′(P ′) =V (P ′)\
⋃

P ′′∈P′

P ′′≺P ′

V (P ′′).

Then the Borel sets V ′(P ′)⊂V (P ′) form a tiling of Rd+1.
Let x∈V ′(P ′). We have

[R̃H(|ψ|m−fµ)](x)

= [R̃H(|ψP ′ |m)](x)−[R̃H(bP ′χP ′µ)](x)+
∑

P ′′∈P′

P ′′ 6=P ′

[R̃H(|ψP ′′ |m−bP ′′χP ′′µ)](x).

We have seen in §22 that for every P ′′∈P′\{P ′}, we have

dist(x, P ′′) > 1
4D(P ′, P ′′) > 1

4`(P
′′).

Thus,∣∣[RH(|ψP ′′ |m−bP ′′χP ′′µ)](x)
∣∣= ∣∣∣∣∫ KH(x−·) d(|ψP ′′ |m−bP ′′χP ′′µ)

∣∣∣∣
=
∣∣∣∣∫ [KH(x−·)−KH(x−zP ′′)] d(|ψP ′′ |m−bP ′′χP ′′µ)

∣∣∣∣
6 2‖KH(x−·)−KH(x−zP ′′)‖L∞(P ′′)

∫
|ψP ′′ | dm

6
C`(P ′′)

dist(x, P ′′)d+1
δ−1`(P ′′)d

6Cδ−1

[
`(P ′′)

`(P ′′)+dist(x, P ′′)

]d+1

,
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and the same estimate (with the same proof) holds for [T (|ψP ′′ |m−bP ′′χP ′′µ)](x).
Hence, ∑

P ′′∈P′

P ′′ 6=P ′

∣∣[R̃H(|ψP ′′ |m−bP ′′χP ′′µ)](x)
∣∣6Cδ−1h(x) 6Cδ−1

for all x∈V ′(P ′) (here h is the function introduced in §22).
Note also that

‖R̃H(|ψP ′ |m)‖L∞ 6Cδ−1

(this is just the trivial bound C`(P ′) for the integral of the absolute value of the kernel
over a set of diameter 12`(P ′) multiplied by the bound C/δ`(P ′) for the maximum of
|ψP ′ |).

Thus, we have the pointwise (or, more precisely, µ-almost everywhere) estimate∣∣R̃H(|ψ|m)
∣∣6Cδ−1+|R̃H(fµ)|+

∑
P ′∈P′

χV ′(P ′)|R̃H(bP ′χP ′µ)|,

which converts into

‖R̃H(|ψ|m)‖2
L2(µ) 6C

[
δ−2µ(Q)+‖f‖2

L2(µ)+
∑
P ′∈P′

‖bP ′χP ′‖2
L2(µ)

]
6Cδ−2µ(Q).

Due to Lemma 12, it only remains to bound the quantities

`(Q′)‖R̃H(|ψ|m)‖Lip(suppϕQ′ )
, Q′ ∈Q′,

by some expression depending on δ and ε only (plus, of course, the dimension and the
goodness constants of µ, which go without mentioning).

Note first of all that for every P ′∈P′, we have

‖R̃H(|ψP ′ |m)‖Lip 6Cδ−2`(P ′)−1,

because
∣∣∇|ψP ′ |∣∣6|∇ψP ′ |6Cδ−2`(P ′)−2 and suppψP ′⊂B(zP ′ , 6`(P ′)). We also have

another estimate

‖R̃H(|ψP ′ |m)‖Lip(Q′ε) 6
Cδ−1`(P ′)d

dist(Q′ε, suppψP ′)d+1
,

because
∫
|ψP ′ | dm6Cδ−1`(P ′)d.

To estimate ‖R̃H(|ψ|m)‖Lip(Q′ε), we fix Q′∈Q′ and split

R̃H(|ψ|m) =
∑

P ′:Q′ε∩B(zP ′ ,8`(P
′)) 6=∅

R̃H(|ψP ′ |m)+
∑

P ′:Q′ε∩B(zP ′ ,8`(P
′))=∅

R̃H(|ψP ′ |m).
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Notice that each P ′ in the first sum satisfies `(P ′)> 1
8ε`(Q

′). Indeed, if `(P ′)<`(Q′),
then we must have P ′∩Q′=∅ and zP ′ /∈Q′ whence 8`(P ′)>dist(zP ′ , Q′ε)>ε`(Q

′). On the
other hand, if the cell P ′ in the first sum satisfies `(P ′)>2`(Q′) then zQ′∈B(zP ′ , 10`(P ′)).
However, the balls B(zP ′ , 10`(P ′)) are pairwise disjoint, so there may only be one cell
P ′ in the first family with this property. Thus, the total number of cells P ′ in the first
sum is bounded by Cε−d. Since each corresponding function R̃H(|ψP ′ |m) has Lipschitz
norm at most Cδ−2`(P ′)−16Cδ−2ε−1`(Q′)−1, we conclude that the Lipschitz constant
of the first sum on Q′ε is bounded by Cε−d−1δ−2`(Q′)−1.

For each P ′ in the second sum, we have

‖R̃H(|ψP ′ |m)‖Lip(Q′ε) 6
Cδ−1µ(P ′)

dist(Q′ε, suppψP ′)d+1
6

Cδ−1µ(P ′)
[εD(Q′, P ′)]d+1

.

Thus, the Lipschitz constant of the first sum on Q′ε is bounded by

Cδ−1ε−(d+1)

∫
dµ(x)

[`(Q′)+dist(x,Q′)]d+1
6Cδ−1ε−(d+1)`(Q′)−1.

25. Smearing of the measure ν

The goal of this section is to replace the measure ν by a compactly supported measure ν̃
that has a bounded density with respect to the (d+1)-dimensional Lebesgue measure m in
Rd+1. More precisely, for every �>0, we will construct a measure ν̃ with the following
properties:

• ν̃ is absolutely continuous and has bounded density with respect to m;
• supp ν̃⊂S and dist(supp ν̃, L)>∆`(Q);
• ν̃(S)=ν(S)6µ(Q);
•
∫
η dν̃>

∫
η dν−�;

•
∫ ∣∣R̃H(|ψ|m)

∣∣2 dν̃6
∫ ∣∣R̃H(|ψ|m)

∣∣2 dν+�;
•
∫
|R̃H ν̃|2 dν̃6

∫
|R̃Hν|2 dν+�.

It is important to note that this step is purely qualitative. The boundedness of the
density dν̃/dm will be used to show the existence of a minimizer in a certain extremal
problem and the continuity of the corresponding Riesz potential but the bound itself will
not enter any final estimates.

Fix some radial non-negative C∞ function ϕ1 with suppϕ1⊂B(0, 1) and
∫
ϕ1 dm=1.

For 0<s61, define
ϕs(x) = s−d−1ϕ1(s−1x)

and
νs = ν∗ϕs.
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Clearly, all the supports of the measures νs are contained in some compact set and νs

converge to ν weakly as s!0+. If s is much less than ∆`(Q), we have supp νs⊂S and
dist(supp νs, L)>∆`(Q). Also, the total mass of νs is the same as the total mass of ν for
all s.

Note that both η and
∣∣R̃H(|ψ|m)

∣∣2 are continuous functions in S, so the weak con-
vergence is enough to establish the convergence of the corresponding integrals. What is
less obvious is that the integrals

∫
|R̃Hνs|2 dνs also converge to the integral

∫
|R̃Hν|2 dν

because formally it is a trilinear form in the measure argument with a singular kernel.
Note, however, that for every finite measure σ, we have R̃Hσ=RH(σ−σ∗), where

σ∗ is the reflection of the measure σ about the boundary hyperplane L of S, that is,
σ∗(E)=σ(E∗), with E∗={x∗ :x∈E}. Moreover, RH commutes with shifts and, since ϕs
is radial (all we really need is the symmetry about H), we have (ν∗ϕs)∗=ν∗∗ϕs.

Hence,

R̃Hνs =RH [ν∗ϕs−ν∗∗ϕs] =RH [(ν−ν∗)∗ϕs] = [RH(ν−ν∗)]∗ϕs.

However, by Lemma 1, RH(ν−ν∗) is a bounded Lipschitz function, so the convergence
[RH(ν−ν∗)]∗ϕs!RH(ν−ν∗) as s!0+ is uniform on compact sets and so is the conver-
gence |[RH(ν−ν∗)]∗ϕs|2!|RH(ν−ν∗)|2. Thus, despite all the singularities in the kernel,
|R̃Hνs|2 converges to |R̃Hν|2 uniformly, which is enough to ensure that∫

|R̃Hνs|2 dνs!
∫
|R̃Hν|2 dν

as s!0+. So, we can take ν̃=νs with sufficiently small s>0.

26. The extremal problem

Fix λ=λ(δ)∈(0, 1) to be chosen later (as usual, the dependence on the dimension and
the goodness parameters of µ is suppressed) and assume that∫

|R̃Hν|2 dν <λµ(Q).

Then, choosing a sufficiently small �>0, we can ensure that the measure ν̃ constructed
in the previous section, satisfies∫

|R̃H ν̃|2 dν̃ <λµ(Q),
∫
η dν̃> θµ(Q) and

∫ ∣∣R̃H(|ψ|m)
∣∣2 dν̃6Θµ(Q),

where θ,Θ>0 are two quantities depending only on δ (plus, of course, the dimension d

and the goodness and AD-regularity constants of µ).
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Our aim is to show that if λ=λ(δ)>0 is chosen small enough, then these three
conditions are incompatible. Then, since the last two inequalities hold, the first one
should fail, that is, we must have∫

|R̃Hν|2 dν>λµ(Q).

We can next deduce from the estimates in §21 that

‖RH(ν−νQ)‖2
L2(ν) > [λ−σ(ε, α)]µ(Q).

Combining this inequality with the results from §20, we obtain the estimate

‖FQ‖2
L2(µ) >

[
1
2λ−σ(ε, α)

]
µ(Q) = 2τ2µ(Q)

for every densely packed cell Q∈Qk, where the last identity is the definition of the
constant τ . As explained in §18 and §19, this finishes the proof of our theorem. So, the
rest of the paper will be devoted just to the proof of the incompatibility in question.

For non-negative a∈L∞(m), define ν̃a=aν̃ and consider the extremal problem

Ξ(a) =λµ(Q)‖a‖L∞(m)+
∫
|R̃H ν̃a|2dν̃a!min

under the restriction
∫
η dν̃a>θµ(Q). Note that since ν̃ is absolutely continuous and has

bounded density with respect to m, the measure ν̃a is well defined and has the same
properties.

The goal of this section is to show that the minimum is attained and for every
minimizer a, we have ‖a‖L∞(m)62 and

|R̃H ν̃a|2+2(R̃H)∗[(R̃H ν̃a)ν̃a]6 6λθ−1

everywhere in S.

Take any minimizing sequence ak∈L∞(m). Note that we can assume without loss
of generality that ‖ak‖L∞(m)62 because otherwise Ξ(ak)>2λµ(Q)>Ξ(1). Passing to a
subsequence, if necessary, we can also assume that ak!a weakly in L∞(m) (considered
as L1(m)∗).

Then R̃H ν̃ak
!R̃H ν̃a uniformly on supp ν̃, because the set of functions

K̃H(x−·) dν̃
dm
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(x∈supp ν̃) is compact in L1(m) as it is the image of the compact set supp ν̃ under the
continuous map

S 3x 7−! K̃H(x−·) dν̃
dm

∈L1(m).

Thus ∫
|R̃H ν̃ak

|2 dν̃ak
!
∫
|R̃H ν̃a|2 dν̃a.

Also a>0, ‖a‖L∞(m)6lim infk!∞ ‖ak‖L∞(m), and
∫
η dν̃ak

!
∫
η dν̃a.

Combining these observations, we see that a satisfies all restrictions of the extremal
problem and

Ξ(a) 6 lim inf
k!∞

Ξ(ak).

As ak was a minimizing sequence, we conclude that a is a minimizer of the functional Ξ.
Note that for every (admissible) a in the domain of minimization, the function R̃H ν̃a

is continuous in S. Moreover, its maximum and modulus of continuity are controlled by
‖a‖L∞(m) (although the exact constant in this control can be very large).

Let U⊂Rd+1 be any Borel set with ν̃a(U)>0. For t∈(0, 1), consider the function
at=(1−tχU )a. In general, it is not admissible, but it is still non-negative and satisfies
‖at‖L∞(m)6‖a‖L∞(m).

Note that∫
|R̃H ν̃at |2dν̃at

=
∫
|R̃H ν̃a|2dν̃a−t

[∫
U

|R̃H ν̃a|2dν̃a+2
∫
〈R̃H ν̃a, R̃H(χU ν̃a)〉 dν̃a

]
+O(t2)

=
∫
|R̃H ν̃a|2dν̃a−t

∫
U

[ |R̃H ν̃a|2+2(R̃H)∗[(R̃H ν̃a)ν̃a]] dν̃a+O(t2)

as t!0+. For small t>0, consider

ãt =
(

1−t ν̃a(U)
θµ(Q)

)−1

at.

Since a is admissible and η61, we have∫
ηãt dν̃=

θµ(Q)
θµ(Q)−tν̃a(U)

(∫
η dν̃a−t

∫
U

η dν̃a

)
>

θµ(Q)
θµ(Q)−tν̃a(U)

[
θµ(Q)−tν̃a(U)

]
= θµ(Q).

Hence, ãt is admissible. On the other hand,

‖ãt‖L∞(m) 6

(
1−t ν̃a(U)

θµ(Q)

)−1

‖a‖L∞(m)
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and ∫
|R̃H ν̃ãt |2 dν̃ãt =

(
1−t ν̃a(U)

θµ(Q)

)−3 ∫
|R̃H ν̃at |2 dν̃at .

Thus,

Ξ(ãt) 6

[
1−t ν̃a(U)

θµ(Q)

]−3

Ξ(at)

6Ξ(a)+t
[
3Ξ(a)

ν̃a(U)
θµ(Q)

−
∫
U

[ |R̃H ν̃a|2+2(R̃H)∗[(R̃H ν̃a)ν̃a]] dν̃a

]
+O(t2)

as t!0+.
Since a is a minimizer, the coefficient at t must be non-negative:∫
U

[ |R̃H ν̃a|2+2(R̃H)∗[(R̃H ν̃a)ν̃a]] dν̃a 6
3Ξ(a)
θµ(Q)

ν̃a(U) 6
6λµ(Q)
θµ(Q)

ν̃a(U) 6 6λθ−1ν̃a(U).

As this inequality holds for every set U of positive ν̃a measure, we conclude that

|R̃H ν̃a|2+2(R̃H)∗[(R̃H ν̃a)ν̃a]6 6λθ−1

almost everywhere with respect to the measure ν̃a. However, the left-hand side is a
continuous function (another use of the fact that the density of ν̃ with respect to m is
bounded), and, thereby, the last estimate extends to supp ν̃a by continuity. Since the
left-hand side is subharmonic in S\supp ν̃a, vanishes on the hyperplane L, and tends to
zero at infinity, the classical maximum principle for subharmonic functions allows us to
conclude that the last inequality holds everywhere in the half-space S.

27. The contradiction

Integrate the last inequality against |ψ| dm, where ψ is the vector field constructed in
§24. We get∫

|R̃H ν̃a|2 |ψ| dm+2
∫

(R̃H)∗[(R̃H ν̃a)ν̃a] |ψ| dm6 6λθ−1

∫
|ψ| dm6Cλθ−1δ−1µ(Q).

Rewrite the second integral on the left as∫
〈R̃H ν̃a, R̃H(|ψ|m)〉 dν̃a.

Then, by the Cauchy–Schwarz inequality,∫
(R̃H)∗[(R̃H ν̃a)ν̃a] |ψ| dm6

[∫
|R̃H ν̃a|2 dν̃a

]1/2[∫ ∣∣R̃H(|ψ|m)
∣∣2 dν̃a]1/2

6Ξ(a)1/2
[∫ ∣∣R̃H(|ψ|m)

∣∣2 dν̃a]1/2.
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Recall that ‖a‖L∞(m)62, so we can replace ν̃a by ν̃ in the last integral losing at most a
factor of 2. Taking into account that∫ ∣∣R̃H(|ψ|m)

∣∣2 dν̃6Θµ(Q),

we get ∣∣∣∣∫ (R̃H)∗[(R̃H ν̃a)ν̃a] |ψ| dm
∣∣∣∣6C[λΘ]1/2µ(Q).

Thus, ∫
|R̃H ν̃a|2 |ψ| dm6C(δ)λ1/2µ(Q).

Using the Cauchy–Schwarz inequality again, we obtain∫
〈R̃H ν̃a, ψ〉 dm6

[∫
|R̃H ν̃a|2|ψ| dm

]1/2[∫
|ψ| dm

]1/2
6C(δ)λ1/4µ(Q).

However, the integral on the left equals∫
(R̃H)∗(ψm) dν̃a =

∫
(RH)∗(ψm) dν̃a−

∫
T ∗(ψm) dν̃a >

∫
η dν̃a−σ(ε, α)ν̃a(S)

(see §24). This yields∫
(R̃H)∗(ψm) dν̃a > θµ(Q)−σ(ε, α)ν̃a(S) > [θ−2σ(ε, α)]µ(Q) >

θ

2
µ(Q),

if ε and α are chosen small enough (in this order). Thus, if λ has been chosen smaller
than a certain constant depending on δ only (so that C(δ)λ1/4< 1

2θ, i.e., the upper
bound for

∫
〈R̃H ν̃a, ψ〉 dm is less than the lower bound for the same quantity), we get a

contradiction. This completes the proof of the main theorem of this paper.

There, still, may be some other results one can obtain using these and some addi-
tional (yet unknown) ideas, more wonderful than any you can find in this paper; but
now, when we try to get a clear view of those, they are gone before we can catch hold of
them. Even though we part with even the most patient and the most faithful readers at
this point, it is not really Good-bye, because, as it was once said at the end of another
much better known tale, the Forest will always be there ... and anybody who is Friendly
with Bears can find it.
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