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Abstract We show that the combinatorial complexity of the union of n infinite cylin-
ders in R

3, having arbitrary radii, is O(n2+ε), for any ε > 0; the bound is almost
tight in the worst case, thus settling a conjecture of Agarwal and Sharir (Discrete
Comput. Geom. 24:645–685, 2000), who established a nearly-quadratic bound for
the restricted case of nearly congruent cylinders. Our result extends, in a significant
way, the result of Agarwal and Sharir (Discrete Comput. Geom. 24:645–685, 2000),
in particular, a simple specialization of our analysis to the case of nearly congruent
cylinders yields a nearly-quadratic bound on the complexity of the union in that case,
thus significantly simplifying the analysis in Agarwal and Sharir (Discrete Comput.
Geom. 24:645–685, 2000). Finally, we extend our technique to the case of “cigars” of
arbitrary radii (that is, Minkowski sums of line-segments and balls) and show that the
combinatorial complexity of the union in this case is nearly-quadratic as well. This
problem has been studied in Agarwal and Sharir (Discrete Comput. Geom. 24:645–
685, 2000) for the restricted case where all cigars have (nearly) equal radii. Based on
our new approach, the proof follows almost verbatim from the analysis for infinite
cylinders and is significantly simpler than the proof presented in Agarwal and Sharir
(Discrete Comput. Geom. 24:645–685, 2000).
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1 Introduction

Let K = {K1, . . . ,Kn} be a collection of n infinite cylinders in R
3, and put C =

{∂K1, . . . , ∂Kn}, where ∂O is the boundary of an object O; with a slight abuse of
notation, we also refer to the elements of C as cylinders, but sometimes use the term
“cylinder boundary” to refer to a boundary of a cylinder when it is not sufficiently
clear from the context. Let A(C) denote the three-dimensional arrangement induced
by the cylinders in C , i.e., the decomposition of 3-space into vertices, edges, faces,
and three-dimensional cells, each being a maximal connected set contained in the
intersection of a fixed subcollection (possibly empty) of the cylinders of C and not
meeting any other cylinder. Let U = ⋃n

i=1 Ki denote the union of K. The combina-
torial complexity of U is the number of vertices, edges, and faces of the arrangement
A(C) appearing on the boundary of the union. The problem studied in this paper is to
obtain a nearly-quadratic upper bound (in the number of cylinders) on the combina-
torial complexity of U .

The case of cylinders of equal radii arises in the motion planning problem of a
ball amid line obstacles in R

3. If the obstacles are n pairwise disjoint cylinders, then
the complement of the union of their Minkowski sums with the moving ball is the
free space for the center of the ball. Since these sums are possibly intersecting cylin-
ders of nonequal radii (where each cylinder radius is the sum of the corresponding
obstacle radius and the ball radius), our result implies that the combinatorial com-
plexity of the free space is O(n2+ε), for any ε > 0. Note that the problem studied
in this paper is more general, in the sense that it extends to any set of (possibly in-
tersecting) cylinders, and not only to settings obtained by the motion planning prob-
lem.

Previous results The problem of determining the combinatorial complexity of the
union of geometric objects has received considerable attention in the past twenty
years, although most of the earlier work has concentrated on the planar case. See [1]
for a recent comprehensive survey of the area.

The case involving pseudodiscs (that is, a collection of simply connected planar
regions, where the boundaries of any two distinct objects intersect at most twice)
arises for Minkowski sums of a fixed convex object with a set of pairwise disjoint
convex objects (which is the problem one faces in translational motion planning of
a convex robot) and has been studied by Kedem et al. [21]. In this case, the union
has only linear complexity in the total input size. Matoušek et al. [23, 24] proved
that the union of n δ-fat triangles (where a triangle is δ-fat if each of its angles is
at least δ) in the plane has only O(n) holes, and its combinatorial complexity is
O(n log logn). The constant of proportionality, which depends on the fatness factor
δ, has later been improved by Pach and Tardos [27]. Very recently Ezra et al. [15]
have improved the O(n log logn) bound to O(n2α(n) log∗ n), where α(·) is the ex-
tremely slowly growing inverse Ackermann function [28]. Extending the study to
the realm of curved objects, Efrat and Sharir [14] studied the union of planar con-
vex fat objects. Here we say that a planar convex object c is γ -fat, for some fixed
γ > 1, if there exist two concentric disks, D ⊆ c ⊆ D′, such that the ratio between
the radii of D′ and D is at most γ . In this case, the combinatorial complexity of the



Discrete Comput Geom (2011) 45: 45–64 47

union of n such objects, such that the boundaries of each pair of objects intersect in
a constant number of points, is O(n1+ε), for any ε > 0. See also Efrat and Katz [13],
Efrat [12], and de Berg [10, 11] for related (and slightly sharper) nearly-linear bounds
in n.

In three and higher dimensions, it was shown by Aronov et al. [6] that the
complexity of the union of k convex polyhedra with a total of n facets in R

3 is
O(k3 + nk logk), and it can be Ω(k3 + nkα(k)) in the worst case. The bound was
improved by Aronov and Sharir [5] to O(nk logk) (and Ω(nkα(k))) when the given
polyhedra are Minkowski sums of a fixed convex polyhedron with k pairwise-disjoint
convex polyhedra. (This problem arises in the case of a translating convex polyhe-
dral robot in R

3 amid a collection of polyhedral obstacles.) Boissonnat et al. [7]
proved that the maximum complexity of the union of n axis-parallel hypercubes in
R

d is Θ(n�d/2�), and that the bound improves to Θ(n�d/2�) if all hypercubes have
the same size. Pach et al. [26] showed that the combinatorial complexity of the union
of n nearly congruent arbitrarily oriented cubes in three dimensions is O(n2+ε), for
any ε > 0 (see also [25] for a subcubic bound on the complexity of the union of
fat wedges in 3-space). Agarwal and Sharir [3] have shown that the complexity of
the union of n congruent infinite cylinders is O(n2+ε), for any ε > 0. In fact, the
more general problem studied in [3] involves the union of the Minkowski sums of
n pairwise disjoint triangles with a ball (where congruent infinite cylinders are ob-
tained when the triangles become lines), and the O(n2+ε) bound is extended in [3]
to this case as well. Aronov et al. [4] showed that the union complexity of n κ-round
objects in R

3 is O(n2+ε), for any ε > 0, where an object c is κ-round if for each
p ∈ ∂c, there exists a ball B ⊂ c that touches p and its radius is at least κ · diam(c).
The bound is O(n3+ε), for any ε > 0, for κ-round objects in R

4. Finally, Ezra and
Sharir [16] have recently shown that the complexity of the union of n δ-fat tetrahedra
(that is, tetrahedra, each of whose four solid angles at its four respective apices is at
least δ) of arbitrary sizes in R

3 is O(n2+ε), for any ε > 0. This result immediately
yields a nearly-quadratic bound on the complexity of the union of arbitrary cubes
and thus generalizes the result of Pach et al. [26], who showed this bound only for
the case where the cubes have nearly equal edge lengths. Each of the above known
nearly-quadratic bounds (for the three-dimensional case) is almost tight in the worst
case.

The above results indicate that the combinatorial complexity of the union of the
input bodies in these cases is roughly “one order of magnitude” smaller than the
complexity of the full arrangement of their boundaries. While considerable progress
has been made on the analysis of unions in three dimensions, the case of the union of
infinite cylinders of arbitrary radii has so far been remained elusive.

We also note that when the complement of the union of the cylinders is connected,
then one can apply the O(n2+ε) bound established by Halperin and Sharir [19] (see
also [18]) on the boundary of a single cell in an arrangement of cylinders (in fact,
these results are more general and can also be applied to other objects satisfying cer-
tain properties). However, when the complement of the union is not connected, these
techniques do not guarantee the aforementioned bound, and we thus need to resort to
a different approach.
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Our result In this paper we make a significant progress on the problem of bound-
ing the complexity of the union of infinite cylinders of arbitrary radii in 3-space
and show a nearly-quadratic bound (in the input size) on this complexity, thus
settling a conjecture of Agarwal and Sharir [3], who showed this bound only
for the case where the cylinders are (nearly) congruent. Our bound, which is the
first known nontrivial bound for this general problem, is almost tight in the worst
case.

Specifically, we show that the complexity of the union of n cylinders as above
is O(n2+ε), for any ε > 0, where the constant of proportionality depends on ε. The
analysis is based on some of the ideas presented in [3, 16], and on a divide-and-
conquer mechanism, which partitions space into triangular-prism subcells, so that,
on average, the overwhelming majority of the cylinders intersecting a subcell Δ are
“good”, in the sense that they behave as functions within Δ with respect to some di-
rection ρ. Then, using a fundamental property shown in [2, 22], we conclude that the
complexity of the union of the cylinders, bounded by these functions (in the positive
or negative ρ-direction), is only nearly-quadratic in the total number of functions.
It then only remains to analyze the number of other types of vertices (incident to
some of the few “bad” cylinders that intersect Δ), a task which is handled by the
divide-and-conquer mechanism (see below for details).

The problem studied in this paper is a generalization of the case where all the
cylinders are of equal radii—a problem that has been studied by Agarwal and
Sharir [3]. We show that a simple specialization of our analysis to that case yields
the same asymptotic bound on the complexity of the union as above. Note that we
use a variant of some of the ideas given in [3]; however, most of the analysis steps
taken in that previous study are no longer needed.

We extend our analysis to the case of “cigars” of arbitrary radii, that is, Minkowski
sums of line-segments and balls, and show that the bound on the combinatorial com-
plexity of the union is nearly-quadratic in n in this case as well. This problem has
been studied in the previous work by Agarwal and Sharir [3] for the restricted case
where the balls in the Minkowski sum are congruent. Here too, our analysis is signif-
icantly simpler than that of the previous study, and, in particular, the original problem
is much easier to extend to this case using our new approach.

We note that our approach, as well as the preceding approach presented in [3], is
based on the decomposition of space into vertical prisms and then observing that the
overall majority of the union vertices in each prism cell appear on some monotone
surface (with respect to some direction ρ). Nevertheless, the decomposition in the
previous study uses a uniform grid, which, with an additional intricate machinery,
can only handle congruent cylinders, whereas our approach exploits a more sophisti-
cated divide-and-conquer mechanism in order to classify the cylinders as either good
(that is, behave as functions within a cell of the decomposition) or bad (otherwise).
This enables us to capture cylinders of arbitrary radii, and thus we need not rely on
the additional machinery of [3]. We note that our divide-and-conquer mechanism is
somewhat inspired by the approach of [16]. Nevertheless, the decomposition pre-
sented there is different and more intricate than the one used here, which, by com-
bining our new observations, yields the aforementioned nearly-optimal bounds—see
below.
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2 The Complexity of the Union

2.1 Preliminaries and Overview

We first assume that the cylinders in K are in general position, that is, no two of them
have parallel or intersecting axes, no two cylinders are tangent to each other, no curve
of intersection of the boundaries of any two cylinders is tangent to a third one, and
no four cylinder boundaries meet. Following the arguments in [3], this assumption
involves no loss of generality. This general position assumption implies that each
vertex of the arrangement of the cylinders lies on exactly three cylinder boundaries
and is thus incident upon only a constant number of edges and faces. The number
of edges and faces on ∂U that are not incident upon any vertex is O(n2). Thus the
combinatorial complexity of U is O(n2 + |V (C)|), where V (C) is the set of vertices
of A(C) that appear on ∂U . Our main result is:

Theorem 2.1 For any set C of n infinite cylinders in R
3, |V (C)| = O(n2+ε), where

the constant of proportionality depends on ε. The bound is almost tight in the worst
case.

It is relatively easy (using standard techniques; see, e.g., [28]) to construct a set
of n infinite cylinders that yield Ω(n2) vertices on the boundary of their union (see
Fig. 4(a) and [3] for further details). We thus devote the remainder of this section to
deriving the upper bound stated in Theorem 2.1.

We note that it is crucial to assume that the cylinders are infinite. Otherwise, the
combinatorial complexity of their union is Ω(n3) in the worst case. Indeed, sup-
pose we have a set of n cylinders, each of which with a sufficiently large radius
and height that is arbitrarily close to 0. We can now arrange these cylinders in a
(three-dimensional) grid-like structure, resulting in Ω(n3) holes in the union; see
Fig. 1(a).

Fig. 1 (a) Coins in 3-space arranged in a grid-like form. (b) The decomposition into vertical prism cells
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2.2 The Problem Decomposition—An Overview

We use a divide-and-conquer approach, based on (1/r)-cuttings [8, 9, 20]. Given a
collection R of n surface patches in R

d of constant description complexity,1 a (1/r)-
cutting for R is the subdivision of space into pseudo-simplicial subcells (that is,
each subcell is not necessarily piecewise linear but has the topological structure of
a simplex) such that every cell is intersected by at most n/r elements of R, where
1 ≤ r ≤ n is the parameter of the cutting. We call this property the cutting property.
By the random sampling theory of Clarkson and Shor [8, 9], as well as the epsilon-
net theorem of Haussler and Welzl [20], a (1/r)-cutting can be constructed by taking
a random sample of O(r log r) (with a sufficiently large constant of proportionality)
of the elements in R, constructing their arrangement, and then applying a simplicial
decomposition of its cells. The cutting property is then guaranteed to be satisfied with
constant probability. In what follows, we rely on the existence of (1/r)-cuttings of
the above size and just fix a sample of O(r log r) elements that satisfy the cutting
property. In some cases we use a more intricate decomposition than just that of con-
sidering the entire arrangement; nevertheless, the cutting property will still hold in
these cases—see below.

Specifically, in our problem we project all the cylinders in K onto the xy-plane,
thereby obtaining a set K0 of n infinite strips. Let L denote the set of their bounding
lines. (We assume that the coordinate system is generic, so none of these lines projects
to a single point.)

We construct a (1/r0)-cutting of the planar arrangement A(L), by taking a sample
R0 (satisfying the cutting property) of O(r0 log r0) lines of L, for some sufficiently
large constant parameter r0 to be fixed shortly, constructing the planar arrangement
A(R0), and triangulating each of its cells, using, e.g., bottom-vertex triangulation.
The number of simplices is proportional to the overall complexity of A(R0) and is
thus O(r0

2 log2 r0). By the cutting property, each simplex of the resulting decompo-
sition is intersected by at most n/r0 lines of L.

We next lift the subtriangles of each of the cells of A(R0) into vertical prisms. Let
Ξ denote the collection of these prism-cells; see Fig. 1(b) for an example.

Our goal is to bound the number of intersection vertices of the union in each cell
of Ξ separately and then sum these bounds over all cells. Fix a cell Δ of Ξ . We
classify each cylinder K ∈ K that intersects Δ as being either wide in Δ if the radius
r of K satisfies r ≥ w/2, where w is the width of Δ, or narrow otherwise.2 See Fig. 2
for an example.

As a consequence, each intersection vertex v of the union that appears in Δ is
classified as either WWW if all three cylinders that are incident to v are wide in Δ,
WWN if two of them are wide and one is narrow, WNN if one of them is wide and two
are narrow, or NNN if all of them are narrow in Δ. In all four cases, the three relevant
cylinders are distinct.

1A set has constant description complexity if it is a semi-algebraic set defined by a constant number of
polynomial equations and inequalities of constant maximum degree.
2Here we slightly deviate from the standard width definition and define it to be the minimum distance
between any pair of parallel vertical planes that bound Δ.
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Fig. 2 The cylinder K is wide within the prism-cell Δ. (a) The pair of the silhouette lines 
1, 
2 of K

do not meet Δ. (b) The projection of this scene onto the xy-plane. The lines 
0
1, 
0

2 are the respective

projections of 
1, 
2, Δ0 is the projection of Δ, and r is the radius of K . The strip bounded by 
0
1, 
0

2
contains Δ0 in its interior

Let Δ be a prism-cell of Ξ . We first observe that if the radius r of a cylinder
K that meets Δ is smaller than w/2 (that is, K is narrow in Δ), at least one of the
two silhouette lines of K (this is the locus of all the vertical tangency points on the
boundary of K) must intersect Δ. Indeed, if both lines do not meet Δ, the diameter
d := 2r of K must be larger than w, as is easily verified, contrary to the assumption
that K is narrow in Δ. We thus charge the crossing of K and Δ to that of 
 and Δ, and
since L is in fact the set of the projections of the silhouette lines onto the xy-plane,
we conclude that Δ meets at most n

r0
narrow cylinders; see once again Fig. 2.

In what follows, for every prism-cell Δ ∈ Ξ , let W = W Δ (resp., N = N Δ) be
the set of the wide (resp., narrow) cylinders within Δ. Put MW = MΔ

W := |W Δ| and
MN = MΔ

N := |N Δ|. As just discussed, MW ≤ n, MN ≤ n
r0

.

2.3 The Overall Recursive Analysis

We now present a recursive decomposition, where in each step, we are given a (par-
ent) cell Δ0 and a set N Δ0 of narrow cylinders that meet Δ0, and we construct
O(r0

2 log2 r0) prism-subcells Δ of Δ0 as above. At the first recursive step, Δ0 equals
to the entire three-dimensional space, and N Δ0 is the entire set of the input cylinders
(and thus |N Δ0 | = n at that step). As the space is progressively cut up into subcells
(which follows by the planar partition that we apply), more and more narrow cylin-
ders become wide, and the size of the set N Δ0 keeps decreasing. During each step
of the recursion, we immediately dispose of any new WWW-, WWN-, and WNN-
vertices within each subcell Δ (that is, vertices that were NNN in the parent cell Δ0)
and continue with bounding the number of the remaining NNN-vertices recursively.
In particular, this implies that we dispose of all the new wide cylinders (that is, cylin-
ders that were narrow in Δ0) in a single step and process only the (remaining) narrow
ones. The recursion bottoms out when MN ≤ c, for some absolute constant c ≥ 3. In
this case the number of the remaining intersection vertices of the union within the
current cell Δ0 is O(c3) = O(1). We show below:
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Lemma 2.2 The overall number of WWW-, WWN-, and WNN-vertices in a subcell Δ

is O((MΔ
N + MΔ

W)2+δ), for any δ > 0.

The bound in Lemma 2.2 implies that the overall number of new WWW-, WWN-,
and WNN-vertices generated within each subcell Δ of Δ0 is O((M

Δ0
N )2+δ) (since

MΔ
W ≤ M

Δ0
N , MΔ

N ≤ M
Δ0
N

r0
), for a total of O(r0

2 log2 r0(M
Δ0
N )2+δ) = O((M

Δ0
N )2+δ)

such vertices (recall that r0 is constant), over all subcells of Δ0. Let U0(MN) denote
the maximum number of intersection vertices that appear on the boundary of the
union at a recursive step involving up to MN narrow cylinders. Then U0 satisfies the
following recurrence:

U0(MN) ≤
{

O(M2+δ
N ) + O(r0

2 log2 r0)U0(MN/r0) if MN > c,

O(1) if MN ≤ c,

where δ > 0 is arbitrary, c ≥ 3 is an appropriate constant as above, and the constant
of proportionality in the nonrecursive term depends on r0 (and on δ).

To solve the recurrence, for a given ε > 0, we substitute r0 = Mε′
N , for ε′ = o(ε).

Then, using induction on MN , it is easy to verify that the solution of this recurrence
is U0(MN) = O(M2+ε

N ), for any ε > 0, slightly larger than δ in the nonrecursive
term, but still arbitrarily close to 0, with a constant of proportionality that depends
on ε (see [17] for similar considerations). Substituting the initial value MN = n, we
conclude that the overall number of vertices of the union is O(n2+ε), for any ε > 0,
as asserted.

We thus devote the remainder of this section to deriving the bound, stated in
Lemma 2.2, on the number of vertices of the first three types, which is the major
part of the analysis.

The number of WWW-vertices of the union Our next goal is to show that the number
of WWW-vertices of the union, contained in the fixed prism-cell Δ, is only nearly-
quadratic in MΔ

W .
Let H , H ′ be the pair of (parallel and vertical) planes that determine the width w

of Δ. We use a simple variant of the analysis given in [3], in order to show that the
WWW-vertices of Δ (in fact, it is sufficient to assume that they lie in the slab bounded
by H , H ′) appear on the boundary of the region enclosed between a lower envelope
of a collection of portions of the wide cylinders and an upper envelope of another such
collection (this is the so-called sandwich region). The analysis of [2] (see also [22])
implies that this complexity is only nearly-quadratic in the total number of cylinder
portions.

In the sequel, we follow almost verbatim the analysis in [3] and repeat some of
the details there for the sake of completeness. The main difference lies in the cutting-
based decomposition that we use, and, in particular, in the pair of planes H , H ′ for
each cell Δ in the decomposition, which have a crucial role in the analysis, whereas
the decomposition in [3] consists of just a grid of infinite square-prisms whose axes
are parallel to some fixed direction u. The main ideas that we borrow from [3] are
(i) the partition of the boundary of a wide cylinder into “canonical strips” τ and



Discrete Comput Geom (2011) 45: 45–64 53

(ii) the definition of a “good direction” ρ (modified to be matched with our decom-
position) with respect to a strip and to a vertex v of the union (which appears on
the relative interior of a triple of canonical strips). Then, based on these definitions,
we observe that once we enter into a cylinder K , bounded by a strip τ , through a
WWW-vertex v ∈ τ ∩ Δ of the union in the ρ-direction (that is, we draw a ray in the
ρ-direction whose endpoint is at v), we make a sufficiently long way inside K with
respect to the width of Δ (in fact, a more precise description is given in Lemma 2.4).
Then the property that v appears on the sandwich region enclosed between an upper
and a lower envelope of canonical strips (appropriately defined at the ρ-direction)
follows almost immediately—see below.

Let κ be a sufficiently large constant, whose value will be fixed shortly. We parti-
tion each of the wide cylinder boundaries into κ canonical strips (that is, portions of
the cylinder boundary, each of which is bounded by a pair of generator lines, parallel
to the cylinder axis), each with an angular span of 2π/κ in the cylindrical coordinate
frame induced by the cylinder.

Let S
2 be the unit sphere of directions in R

3. We say that a direction ρ ∈ S
2 is

good for a strip τ if the following two conditions hold.

(i) The angle between ρ and the (outer) normal n of either of the planes H , H ′ is
smaller than π/2 − π/κ .

(ii) Each line tangent to (the relative interior of) τ forms an angle of at least π/κ

with ρ.

In other words, the first condition implies that the inner product ρ ·n is sufficiently
large (in particular, they are not orthogonal), and the second condition implies that
when we enter into the cylinder K , which contains τ as a bounding strip, in the ρ-
direction from a point on τ , we do not remain close to the boundary of K (and, in
particular, to τ ). Intuitively, these two conditions imply that when we move in the
ρ-direction, we expect to leave the strip enclosed between H , H ′ relatively soon, but
make a sufficiently long way inside K .

We say that ρ is a good direction for a vertex v of the union, incident upon three
canonical strips, if it is good for each of these strips; see Fig. 3. Using similar consid-
erations as in [3], the set Bτ of bad directions for a fixed strip τ is the union B1 ∪ B2,
where

(a) B1 is contained in a spherical band consisting of all points lying at spherical
distance at most π/κ from the great circle on S

2 normal to n (in fact, this circle is
obtained by intersecting S

2 with a plane parallel to H (or H ′) through its center).
(b) B2 is contained in a spherical band consisting of all points lying at spherical

distance at most 2π/κ from a great circle on S
2; see [3] for the easy proof.

Claim 2.3 (Agarwal and Sharir [3]) The following properties hold:

1. The area of B1 is 4π sin (π/κ).
2. The area of B2 is 4π sin (2π/κ).
3. The area of the set of good directions for v is at least 4π[1 − 3 sin (2π/κ) −

sin (π/κ)].
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Fig. 3 The vector ρ is a good
direction for the vertex v of the
union, incident upon three
canonical strips τ1, τ2, τ3,
where n is the normal to the
planes H , H ′

As observed in [3], the set of the good directions contains a spherical cap of some
constant opening angle δ if κ is sufficiently large. It then implies that there exists a set
Z of O(1/δ2) points on S

2 such that each vertex v on the boundary of the union has
at least one good direction taken from Z , for some sufficiently small value of δ that
depends on κ . Note that the above considerations do not assume that v is a vertex of
type WWW. For each fixed ρ ∈ Z , let VΔ(ρ) be the subset of all vertices (of any of
the above four types) of the union that lie inside Δ, for which ρ is a good direction.

Let σ be the slab enclosed between H , H ′. We now partition σ (and thus Δ) into
congruent subslabs σ ′ by adding t > 1

sin2 (π/κ)
planes parallel to H inside σ at equal

distances. Our next goal is to show that the strips τ for which ρ is a good direction
behave as functions (with respect to that direction) within σ ′. The following lemma
is a simple variant of [3, Lemma 2.9]:

Lemma 2.4 (Agarwal and Sharir [3]) Let σ ′ be a subslab of σ , and let v be a WWW-
vertex of the union, contained in σ ′ ∩ Δ and incident upon three strips τ1, τ2, τ3. Let
ρ ∈ Z be a good direction for v. Then any line parallel to ρ intersects τ1 in at most
one point. Moreover, for any point u ∈ τ1 ∩σ ′, in which we enter into the cylinder K1
bounded by τ1 in the direction parallel to ρ, we reach ∂σ ′ before exiting K1. Similar
properties hold for τ2, τ3.

Proof Suppose first that there is a line parallel to ρ that intersects τ1 twice. This
would imply that τ1 must have a tangent in the ρ-direction, which can be obtained
by just translating this line until it exits K1 (through a point on τ1), contrary to the
assumption that ρ is a good direction.

As to the second assertion of the lemma, let u′ be the other intersection point of
∂K1 and the line passing through u and parallel to ρ. It is easy to verify that |uu′|
is minimized when uu′ is orthogonal to the axis of K1 and forms an angle π/κ with
the tangent plane to K1 at u (this latter property is determined by condition (ii) that ρ

satisfies as a good direction). It thus follows that |uu′| ≥ 2r1 sin (π/κ), where r1 is the
radius of K1. On the other hand, since uu′ forms an angle of at most π/2 −π/κ with
the normal n (to either of the two bounding planes of σ ′), it follows that the length of
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the projection of uu′ on n is at least |uu′| sin (π/κ) ≥ 2r1 sin2 (π/κ) ≥ w sin2 (π/κ),
where w is the width of σ (that is, the distance between H , H ′). Thus, if we choose
t > 1

sin2 (π/κ)
, u′ must lie outside σ ′. This completes the proof of the lemma. �

We now denote by Tσ ′(ρ) the set of canonical strips τ that intersect the subslab
σ ′ and have at least one vertex in VΔ(ρ). We clip all the strips to Δ ∩ σ ′. A (clipped)
strip τ in Tσ ′(ρ) is ρ-upper (resp., ρ-lower) if, for any point u ∈ τ , the point u + αρ

lies in the exterior (resp., interior) of the cylinder K whose boundary contains τ , for
sufficiently small values of α > 0. Let T +

σ ′ (ρ) (resp., T −
σ ′ (ρ)) be the set of the ρ-upper

(resp., ρ-lower) strips of Tσ ′(ρ). The ρ-upper envelope of T +
σ ′ (ρ) is the set of points

u on the strips of T +
σ ′ (ρ) such that a ray from u in the (+ρ)-direction does not meet

any other strip in T +
σ ′ (ρ). The ρ-lower envelope of T −

σ ′ (ρ) is defined analogously.
Following the analysis of [3] and Lemma 2.4, each WWW-vertex v ∈ VΔ(ρ) must

lie on the boundary of the sandwich region enclosed between the ρ-upper envelope of
the strips in T +

σ ′ (ρ) and the ρ-lower envelope of the strips in T −
σ ′ (ρ), and, according

to the results of [2, 22], the number of these vertices v is O(M2+ε
W ), for any ε > 0,

with a constant of proportionality that depends on κ and ε. Repeating the analysis
for all subslabs σ ′ and all good directions ρ ∈ Z , we obtain a similar bound on the
overall number of WWW-vertices of the union that are contained in Δ.

Remark We note that it is crucial to process only the strips that have at least one
vertex v of the union for which ρ is a good direction and construct the ρ-lower and
ρ-upper envelopes only with respect to these strips. All the remaining strips should
not be considered at that step, since ρ is not necessarily a good direction for them, and
they thus may not behave as graphs of bivariate functions at that direction (within σ ′).
In particular, we ignore wide cylinders whose corresponding strips do not contain any
such vertices v.

The number of WWN-vertices of the union We next establish a nearly-quadratic
bound (to be specified below) on the number of WWN-vertices of the union, with
respect to a fixed prism-cell Δ. Let us first fix a good direction ρ ∈ Z and a subslab σ ′.
We bound the number of WWN-vertices in each subcell Δ′ = Δ ∩ σ ′ separately and
then sum these bounds over all these subcells. Note that some of the narrow cylinders
within Δ may become wide in Δ′, nevertheless, we regard them as narrow; this does
not effect the analysis. We thus have, at each step of the analysis, a prism-cell Δ′
(confined to a slab σ ′), a set W = W Δ′

of MW wide cylinders, and a set N = N Δ′

of MN narrow cylinders.
Since each WWN-vertex v ∈ VΔ′(ρ) (where VΔ′(ρ) is the subset of all vertices of

the union that lie inside Δ′ for which ρ is a good direction) involves a wide cylinder,
it must lie on the boundary of the sandwich region enclosed between the ρ-upper and
ρ-lower envelopes of the strips in T +

σ ′ (ρ) and T −
σ ′ (ρ), respectively (recall that these

sets are related only to the wide cylinders). Moreover, v is obtained as the intersection
of an edge of the sandwich region and a narrow cylinder in Δ′.

We now apply a second decomposition step, in which we partition Δ′ into sub-
prisms Δ′′ (clipped to within Δ′), so that each of them contains a relatively small
number of both narrow and wide cylinders, as follows.
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We draw two samples R+(ρ) ⊆ T +
σ ′ (ρ), R−(ρ) ⊆ T −

σ ′ (ρ) (satisfying the cutting
property) of O(r log r) strips each, for some sufficiently large constant parameter r ,
and construct the overlay Mρ of the respective minimization diagrams of the ρ-
upper and ρ-lower envelopes of the strips in R+(ρ) and R−(ρ); these diagrams are
obtained on a plane Hρ⊥ perpendicular to the ρ-direction. By the results of [2, 22],
the overall complexity of Mρ is O(r2+ε), for any ε > 0. We next refine the overlay
Mρ by projecting the narrow cylinders in Δ′ onto the plane Hρ⊥ , taking a sample
R (satisfying the cutting property) of O(r log r) of their bounding lines, and then
overlaying Mρ with the lines in R; we thus draw three samples in total. Let MR

ρ be
the refined decomposition. We first show:

Lemma 2.5 The overall number of vertices in MR
ρ is O(r2+ε), for any ε > 0.

Proof The overall complexity of the arrangement A(R) of the lines in R is
O(r2 log2 r), and, as noted above, the overall complexity of Mρ is O(r2+ε), for
any ε > 0. We next show that the overall number of edge-crossings between Mρ and
A(R) is O(r log rλ6(r log r)) = O(r2 polylog r), where λs(q) is the maximal length
of Davenport–Schinzel sequences of order s on q symbols (see [28]). This will assert
the bound in the lemma.

Indeed, let HR be the set of the O(r log r) planes containing the lines in R and
parallel to the ρ-direction. Each plane H ∈ HR intersects each of the strips in R+(ρ),
R−(ρ) in an elliptic arc (clipped to within Δ′). Let Γ +

H be the set of these ρ-upper
arcs, and let Γ −

H be the set of these ρ-lower arcs. Since H is parallel to the ρ-
direction, it must meet (i) any edge e on the boundary of the ρ-upper envelope of
the strips of R+(ρ) in a vertex that appears along the boundary of the upper envelope
of the arcs in Γ +

H (in the coordinate frame of H ), (ii) any edge e′ on the boundary
of the ρ-lower envelope of the strips of R−(ρ) in a vertex that appears along the
boundary of the lower envelope of the arcs in Γ −

H (in the coordinate frame of H ),
and (iii) any edge e′′ on the boundary of the sandwich region, enclosed between the
ρ-upper envelope of the strips in R+(ρ) and the ρ-lower envelope of the strips in
R−(ρ), in a vertex that appears along the boundary of the sandwich region enclosed
between the upper envelope of the arcs in Γ +

H and the lower envelope of the arcs in
Γ −

H (in the coordinate frame of H ). Each of these vertices is projected on the plane
Hρ⊥ , perpendicular to the ρ-direction, to an edge-crossing between Mρ and A(R).

We next use the following property. Let Q, Q′ be two respective collections of
m arcs each, where each pair of arcs intersect in at most s points (for some integer
parameter s > 0). Then the number of vertices that appear in the overlay of the min-
imization diagrams of the respective upper and lower envelopes of these two collec-
tions is O(λs+2(m)). In fact, this is also the bound on the complexity of the envelope
of each individual family, as well as the complexity of the sandwich region enclosed
between these two envelopes; see, e.g., [28] for details. We thus conclude that since
each pair of arcs in Γ +

H ∪ Γ −
H intersect in at most four points (as they are elliptic

arcs), the overall number of the aforementioned vertices is O(λ6(r log r)). Summing
this bound over all planes H ∈ HR yields the asserted bound. �

We next triangulate each of the cells of MR
ρ (in the coordinate frame of Hρ⊥ ) and

lift each of these simplices in the ρ-direction, thereby obtaining a collection Ξ of



Discrete Comput Geom (2011) 45: 45–64 57

O(r2+ε) triangular prism-subcells. We collect all these prisms that lie in the sandwich
region enclosed between the ρ-upper envelope of the strips in R+(ρ) and the ρ-lower
envelope of the strips in R−(ρ). Each of these prisms is bounded in the ρ−- and ρ+-
directions (either by the boundary of Δ′ or) by strips τ+ ∈ R+(ρ) appearing on the ρ-
upper envelope and τ− ∈ R−(ρ) appearing on the ρ-lower envelope, respectively. We
thus obtain a decomposition of the above sandwich region (within Δ′) into O(r2+ε)

triangular prisms.
We observe that each cylinder K that is wide in Δ′ continues to be wide in each

clipped prism-subcell Δ′′, since the width of Δ′′ cannot exceed that of Δ′ (or of Δ).
By the cutting property, each prism-subcell Δ′′ of the resulting decomposition is
intersected by at most O(MW/r) strips in T +

σ ′ (ρ) and by at most O(MW/r) strips in
T −

σ ′ (ρ), with a constant of proportionality that depends linearly on κ (recall that κ is
a sufficiently large constant that represents the number of canonical strips resulting
in the partition of a single cylinder boundary).

We next bound the number of wide cylinders within a prism-subcell Δ′′. The strips
in T +

σ ′ (ρ) ∪ T −
σ ′ (ρ) are said to be good, and all the remaining strips (of the wide

cylinders within Δ′) are said to be bad. Clearly, the number of wide cylinders K

in Δ′′ that have at least one good strip that meets Δ′′ is at most MW/r , since we
can charge K to that good strip. The number of the remaining (wide) cylinders K

in Δ′′ cannot be bounded in the above manner, as the bad strips are not part of our
sample, and thus the cutting properties do not apply for them. Nevertheless, we can
ignore such cylinders K in the subsequent analysis of Δ′′. This does not violate the
bound on the number of (original) WWN-vertices v in Δ′′, since each such vertex is
obtained on the boundary of the sandwich region enclosed between the ρ-upper and
ρ-lower envelopes of the good strips, and thus v does not lie on ∂K ∩ Δ′′. We thus
continue the subsequent analysis within Δ′′ with at most MW/r wide cylinders.

Each cylinder K that is narrow in Δ′ either becomes wide in Δ′′ or continues to be
narrow in that cell. Let Lρ be the set of the ρ-silhouette lines of the narrow cylinders
within Δ′ (that is, the locus of all the ρ-tangency points on the boundary of the
cylinder). Applying similar arguments as above, a narrow cylinder K within a prism-
subcell Δ′′ of the decomposition must have a ρ-silhouette line 
, whose projection on
Hρ⊥ meets the projection of Δ′′ on that plane. We thus charge the crossing of K and
Δ′′ to that of the respective projections of 
 and Δ′′, and conclude that the number of
narrow cylinders within Δ′′ is at most MN/r , by the cutting property. We have thus
shown:

Lemma 2.6 The number of wide cylinders within a subcell Δ′′ of Δ′ that contribute
WWN-vertices to the union is at most MW/r , and the number of narrow cylinders in
that subcell is at most MN/r .

We bound the number of WWN-vertices of the union by applying a recursive
decomposition scheme, where in each step we construct O(r2+ε) prism-cells Δ′′,
using (1/r)-cutting of the good strips (taken from the current set of wide cylinders
that we process in Δ′) and the boundary projections of the narrow cylinders, as above,
where each subproblem consists of at most MW/r wide cylinders and at most MN/r

narrow cylinders. In each step we dispose immediately of all the new WWW-vertices
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in Δ′′ (that is, vertices that were WWN in the parent cell Δ′ and have just became
WWW) and continue to process in recursion the remaining WWN-vertices. Thus
cylinders that were narrow in the parent cell of Δ′′ and became wide in Δ′′ need not
be processed in any further recursive step, the only wide cylinders that we process
are those of the original problem. The recursion bottoms out when either MW ≤ c, or
MN ≤ c, for some absolute constant c ≥ 3. We then bound by brute-force the number
of the (remaining) WWN-vertices and thus obtain an overall bound of O(M2

WMN),
which is O(M2

W + MN) on the number of these vertices.
The number of new WWW-vertices in Δ′′ is O((MN +MW)M1+δ

W ), for any δ > 0.
Indeed, the number of new wide cylinders within Δ′′ is at most MN , and the number
of the old wide cylinders (cylinders that were wide in the parent cell of Δ′′) is at most
MW . Assume first that MN ≤ MW . Following the considerations given in the WWW-
case, we conclude that the number of new WWW-vertices in Δ′′ is O(M2+δ

W ), for any

δ > 0. If MN > MW , we partition the set of the narrow cylinders into � MN

MW
� (roughly)

equal subsets, each of which containing at most MW elements. Each new WWW-
vertex v involves a pair of old wide cylinders and a new wide cylinder within Δ′′. We
thus apply the nearly-quadratic bound in Δ′′ on the set of the old wide cylinders and
each of the subsets of new wide cylinders separately, and then sum these bounds over
all subsets, thereby obtaining an overall bound of O(MNM1+δ

W ), for any δ > 0 (see
also [3, 16] for similar considerations). The bound now follows. Since r is constant,
we obtain that the overall number of new WWW-vertices, over all prism-subcells Δ′′,
is also O((MN + MW)M1+δ

W ).
Let U1(MN,MW) denote the maximum number of WWN-vertices that appear on

the boundary of the union at a recursive step involving up to MN narrow cylinders
and MW wide cylinders. Then U1 satisfies the following recurrence:

U1(MN,MW) ≤

⎧
⎪⎪⎨

⎪⎪⎩

O((MN + MW)M1+δ
W ) + O(r2+ε)U1(

MN

r
,

MW

r
)

if min{MN,MW } > c,

O(MN + M2
W) if min{MN,MW } ≤ c,

where ε > 0, δ > 0 are arbitrary, c ≥ 3 is an appropriate constant, and where the
constant of proportionality in the first expression depends on (ε, δ, κ , and on) r . It is
straightforward to verify (see the arguments given earlier in this section and [16, 17])
that the solution of this recurrence is U1(MN,MW) = O((MN +MW)M1+ε

W ), for any
ε > 0 (slightly larger than δ in the nonrecursive term and the ε in the recursive term,
but still arbitrarily close to 0), with a constant of proportionality that depends on ε

and on κ .
Summing this bound over all Δ′ = Δ ∩ σ ′ and over all good directions ρ ∈ Z , we

obtain that the overall number of WWN-vertices in Δ is O((MN + MW)M1+ε
W ), for

any ε > 0, with a constant of proportionality that depends on ε and κ .

Remark The recursive mechanism is such that we sample the strips that belong to
the wide cylinders and not the actual wide cylinders, since we have to take only those
strips that have vertices v of the union, for which ρ is a good direction, and then
recursively construct out of them the sandwich region that they induce. The role of the
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wide cylinders is in bounding the number of new WWW-vertices created in a subcell
Δ′′ of the current cell Δ′. We thus recurse with the wide cylinders but construct the
cutting with their good strips.

The number of WNN-vertices of the union As in the WWN-case, we fix a good
direction ρ ∈ Z and a subslab σ ′, and bound the number of WNN-vertices in each
subcell Δ′ = Δ∩σ ′ separately. We then sum these bounds over all these subcells and
over all ρ. Here too, we observe that since each WNN-vertex v ∈ VΔ(ρ) involves a
wide cylinder, it must lie on the boundary of the sandwich region enclosed between
the ρ-upper and ρ-lower envelopes of the strips in T +

σ ′ (ρ) and T −
σ ′ (ρ), respectively.

Using similar notation as in the WWN-case, we apply a similar decomposition,
where we recursively construct O(r2+ε) cells Δ′′, each of which meets at most
MW/r wide cylinders and at most MN/r narrow cylinders. At each recursive step,
we dispose immediately of all the new WWW- and WWN-vertices (that is, ver-
tices v that were WNN-vertices at the parent cell of Δ′′ and have become either
WWW- or WWN-vertices at Δ′′) and continue to process in recursion the (remaining)
WNN-vertices. Applying similar considerations as above, the overall number of new
WWW- and WWN-vertices in the subcells Δ′′, over all Δ′′, is O((MN +MW)M1+δ

N ),
for any δ > 0. At the bottom of the recursion (when either MW ≤ c or MN ≤ c,
for some absolute constant c ≥ 3), we bound by brute-force the number of the
(remaining) WNN-vertices, obtaining an overall bound of O(MWM2

N), which is
O(MW + M2

N), on the number of these vertices. Letting U2(MN,MW) denote the
maximum number of WNN-vertices that appear on the boundary of the union at a re-
cursive step involving up to MN narrow cylinders and MW wide cylinders, we have:

U2(MN,MW) ≤

⎧
⎪⎪⎨

⎪⎪⎩

O((MN + MW)M1+δ
N ) + O(r2+ε)U2(

MN

r
,

MW

r
)

if min{MN,MW } > c,

O(M2
N + MW) if min{MN,MW } ≤ c,

where, as above, ε > 0, δ > 0 are arbitrary, c ≥ 3 is an appropriate constant, and
where the constant of proportionality in the first expression depends on (ε, δ, κ ,
and on) r . Here too, it is easy to verify that the solution of this recurrence is
U2(MN,MW) = O((MN + MW)M1+ε

N ), for any ε > 0 (slightly larger than δ in the
nonrecursive term and the ε in the recursive term, but still arbitrarily close to 0), with
a constant of proportionality that depends on ε and on κ .

Remarks (1) The WWN- and WNN-cases, albeit being similar, cannot be handled
at the same recursive step and need to be analyzed separately. When a WNN-vertex
v becomes WWN in a subcell Δ′′, we need to consider the envelopes with respect
to a (possibly, new) good direction ρ′, not necessarily equal to ρ. These envelopes
correspond to the old and the new wide cylinders in Δ′′, and we need to continue with
the recursive decomposition described for the WWN-case, according to the direction
ρ′, with the set of these wide cylinders and the narrow ones that have survived when
passing from Δ′ to Δ′′.

(2) The only part of the analysis in which we explicitly use the geometric structure
of the cylinders is in the WWW-case. The analysis for the WWN- and WNN-cases
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only uses the property that the vertices lie on the boundary of the sandwich region
enclosed between two envelopes of the good strips.

2.4 The Case of Congruent Cylinders

We now study the case where all the cylinders have equal radii and show that a simple
specialization of our approach leads to a bound of O(n2+ε), for any ε > 0, on the
complexity of their union.

We only need to make the following simple observation. We apply the decompo-
sition described in Sect. 2.2 and observe that, since all cylinders are of equal radii,
all of them are either wide or narrow in a fixed cell Δ of the decomposition. Thus
all vertices of the union inside Δ are either of type WWW or of type NNN. We thus
construct this decomposition recursively, where in each step we dispose of all the
new WWW-vertices within each subcell Δ, and continue to bound the number of
NNN-vertices recursively. Here we do not need to apply the second decomposition
step described for the WWN- and WNN-cases.

We note that these arguments can easily be extended to the case of nearly congru-
ent cylinders, that is, when the radii of the cylinders are different but vary between
some constant α < 1 and 1. In this case, a cell Δ that contains both narrow and
wide cylinders implies that the smallest radius r of a cylinder that meets Δ satisfies
r > αw/2, where w is the width of Δ. That is, a narrow cylinder cannot be “too nar-
row” in this case. Following the notation of Sect. 2.3, we elaborate Lemma 2.4 by
refining the decomposition of the slab σ and adding at least 1

α sin2 (π/κ)
planes paral-

lel to H , thereby obtaining subslabs σ ′ of smaller width. The analysis then proceeds
verbatim as in the original problem.

3 An Extension to the Case of Cigars

We now extend the analysis to the following case. We are given a set S = {s1, . . . , sn}
of n line-segments in 3-space and a set B = {B1, . . . ,Bn} of n balls of arbitrary radii.
The set C = {s1 ⊕ B1, . . . , sn ⊕ Bn} consisting of the Minkowski sums of si ∈ S and
Bi ∈ B (that is, si ⊕ Bi = {x + y | x ∈ si , y ∈ Bi}), for i = 1, . . . , n, is the input set to
our problem. The elements of C are also referred to as cigars in this case. We show:

Theorem 3.1 The combinatorial complexity of the union of n cigars of arbitrary
radii in 3-space is O(n2+ε), for any ε > 0, where the constant of proportionality
depends on ε. The bound is almost tight in the worst case.

We devote this section to the proof of Theorem 3.1.
We first assume that the cigars in C are in general position. As discussed in [3],

this excludes the cases where a pair of the segments in S are parallel or intersect, two
cigars in C are tangent to each other, a curve of intersection of the boundaries of any
two cigars is tangent to a third one, a triple intersection of the boundaries of the cigars
lie on a circle separating the cylindrical and spherical portions of one of the cigars,
and four boundaries meet at a point.
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As a result, each vertex v of the union U = ⋃
C∈C C is the intersection point of

either (i) three cylinder boundaries, (ii) a pair of cylinder boundaries and one spherical
boundary, (iii) a cylinder boundary and a pair of spherical boundaries, or (iv) three
spherical boundaries. We refer to each of these vertices as being of type CCC, CCS,
CSS, or SSS, respectively. Vertices that are obtained by the intersection of the circle
separating the cylindrical and spherical portions of one cigar, and the boundary of
another cigar are discarded from further consideration, as the overall number of such
vertices in the entire arrangement is O(n2). In the analysis of [3], these four cases are
handled separately; however, using our new approach, we show that all these cases
can be analyzed simultaneously. Note that in the SSS-case, each vertex v of the union
lies on the boundary of the union of three distinct spheres, and thus the problem is
reduced in this case to bounding the complexity of the union of 2n balls in 3-space,
which is known to be O(n2) (see, e.g., [28]); however, this case is subsumed by our
analysis.

We now apply a similar decomposition scheme to that of Sect. 2.2. That is, we
project all the cigars in C onto the xy-plane and construct a (1/r0)-cutting for the
boundaries of these projections, for some sufficiently large constant parameter r0,
thereby obtaining a set of O(r0

2 log2 r0) pseudo-triangles, which we lift into vertical
prisms.

We next use a similar definition of wideness as in the case of cylinders. That is,
a cigar C ∈ C that intersects a prism-cell Δ is wide in Δ if its radius r is at least w/2
(where w is the width of Δ), and narrow otherwise. Here too, it is easy to verify that
the silhouette of a narrow cigar in a cell Δ must intersect that cell.

We apply a similar recursive mechanism as in Sect. 2.3. The major difference
in the analysis with respect to the case of cylinders is in bounding the number of
WWW-vertices. We use here similar ideas to those presented in [3] for bounding the
complexity of cigars of equal radii. Let κ be the same constant as in Sect. 2.3. We
partition each of the cylinder boundaries of the cigars C into κ canonical strips as
before, and we cover (both) hemispherical portions of C by O(κ2) spherical caps,
each of opening angle at most π/κ , so that no point lies in more than a constant
number of caps. We define a good direction for a cap in a similar manner as for strips
(see conditions (i)–(ii) in the WWW-case in Sect. 2.3). The set of bad directions for
such a spherical cap τ is again the union B1 ∪ B2, where B1 is defined as in the
case of cylinders, and B2 is defined as the spherical band consisting of all points at
spherical distance at most 2π/κ from a great circle Bτ on S

2, where Bτ corresponds
to the plane parallel to the tangent plane of the cap τ at its center.

Following the reasonings in Sect. 2.3 and the notation there, each vertex v of the
union has at least one good direction ρ, taken from a set Z of O(1) directions. It
is now easy to verify that the analog to Lemma 2.4 in this extended case continues
to hold as well. That is, using the notation of Lemma 2.4, where now each of τ1,
τ2, τ3 is either a canonical strip or a spherical cap bounding a cigar K1, K2, K3,
respectively, when we enter into the cigar Ki , i = 1,2,3, through a point u ∈ τi ∩ σ ′
in the direction parallel to ρ, we reach ∂σ ′ before leaving Ki , i = 1,2,3.

Let us fix a prism-cell Δ of the decomposition and a good direction ρ, and let σ ,
σ ′, VΔ(ρ), T +

σ ′ (ρ), T −
σ ′ (ρ) be as in Sect. 2.3. Following this notation, let S +

σ ′(ρ) be
the set of the ρ-upper spherical caps that intersect the subslab σ ′ and contribute at
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least one vertex to VΔ(ρ). We define S −
σ ′(ρ) in an analogous manner. It now follows

that each vertex v ∈ VΔ(ρ) must appear on the boundary of the sandwich region
enclosed between the ρ-upper envelope of the strips and caps in T +

σ ′ (ρ) ∪ S +
σ ′(ρ)

and the ρ-lower envelope of the strips and caps in T −
σ ′ (ρ) ∪ S −

σ ′(ρ). Repeating the
analysis for all good directions ρ, we obtain a nearly-quadratic bound on the overall
number of WWW-vertices of the union in a prism-cell Δ.

The remaining steps of the analysis follow almost verbatim from the analysis for
the case of cylinders. In this case we need to replace T +

σ ′ (ρ) with T +
σ ′ (ρ) ∪ S +

σ ′(ρ),
and T −

σ ′ (ρ) with T −
σ ′ (ρ) ∪ S −

σ ′(ρ). We leave the relatively easy details to the reader.
This concludes the proof of Theorem 3.1.

4 Concluding Remarks and Open Problems

The only part of the analysis in which we have explicitly used the geometric struc-
ture of the cylinders is in the WWW-case. The analysis in the WWN- and WNN-cases
only uses the property that the vertices lie on the boundary of the sandwich region en-
closed between two envelopes of the good strips, where the major step of the analysis
in these cases relies on the decomposition that we apply. Thus our machinery can be
extended to any set of bodies in 3-space, for which there is a natural definition for
wideness (reps., narrowness), from which one can derive similar properties to those
of Lemma 2.4. One such problem concerns the union of cones. In this case we say
that a cone is wide with respect to a fixed cell Δ if the silhouette of the cone does not
meet Δ. Nevertheless, it is not known if Lemma 2.4 can be extended to this scenario,
in order to show a nearly-quadratic upper bound on the number of WWW-vertices of
the union within a cell Δ.

Another related problem is the case of kreplach, where in this setting, we modify
the definitions from Sect. 3, so that now S consists of n pairwise-disjoint triangles.
This problem was addressed by Agarwal and Sharir [3], who presented an upper
bound of O(n2+ε), for any ε > 0, on the complexity of the union where the balls in
the Minkowski sum have the same radii. We note, however, that for arbitrary radii,
the complexity is Ω(n3) in the worst case. Indeed, consider a set of n disjoint (de-
generate) triangles in 3-space that consists of three (roughly) equal-size classes. The
first class consists of lines drawn in the plane z = 0 and parallel to the x-axis. The
distance between each pair of consecutive lines is slightly smaller than 1. The second
class is a copy of the first one, rotated by 90 degrees (so now these lines are parallel to
the y-axis), and placed on the plane z = 1. The third class is a set of planes parallel to
the xy-plane, placed within equal distances in the range 0 < z < 1. We next construct
the Minkowski sum of each of the lines (in either of the first two classes) with a ball
of unit radius and obtain two respective classes of infinite cylinders; see Fig. 4(a). We
leave the elements at the third class intact. Each such plane h intersects each of the
cylinders from the first class in a horizontal strip (in the coordinate frame of h) and
each of the cylinders at the second class in a vertical strip; see Fig. 4(b). It is easy to
verify that the intersection points of these strips appear on the boundary of the union,
and thus each plane h contributes Ω(n2) vertices to the union, for a total of Ω(n3)

vertices. As is easily seen, this lower bound construction continues to hold when we
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Fig. 4 (a) The Minkowski sum of a unit ball and each of the lines at the first two classes. (b) The cross
section of these cylinders with a plane parallel to the xy-plane, lying between z = 0 and z = 1

replace each plane h with a sufficiently large triangle T (parallel to the xy-plane) and
then construct the Minkowski sum of T and a ball of infinitesimally small radius.
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