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Abstract

We show that the combinatorial complexity of the union of n “fat” tetrahedra in 3-space
(i.e., tetrahedra all of whose solid angles are at least some fixed constant) of arbitrary sizes,
is O(n2+ε), for any ε > 0; the bound is almost tight in the worst case, thus almost settling
a conjecture of Pach et al. [24]. Our result extends, in a significant way, the result of
Pach et al. [24] for the restricted case of nearly congruent cubes. The analysis uses cuttings,
combined with the Dobkin-Kirkpatrick hierarchical decomposition of convex polytopes, in
order to partition space into subcells, so that, on average, the overwhelming majority of the
tetrahedra intersecting a subcell ∆ behave as fat dihedral wedges in ∆. As an immediate
corollary, we obtain that the combinatorial complexity of the union of n cubes in R

3, having
arbitrary side lengths, is O(n2+ε), for any ε > 0 (again, significantly extending the result
of [24]). Our analysis can easily be extended to yield a nearly-quadratic bound on the
complexity of the union of arbitrarily oriented fat triangular prisms (whose cross-sections
have arbitrary sizes) in R

3. Finally, we show that a simple variant of our analysis implies
a nearly-linear bound on the complexity of the union of fat triangles in the plane.
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1 Introduction

Let T be a collection of n (arbitrarily oriented) tetrahedra of arbitrary sizes in 3-space. Let
A(T ) denote the three-dimensional arrangement induced by the facets of the tetrahedra in T ,
i.e., the decomposition of 3-space into vertices, edges, faces, and three-dimensional cells, each
being a maximal connected set contained in the intersection of a fixed subcollection of facets
of the tetrahedra of T and not meeting any other facet. The combinatorial complexity of the
union of the tetrahedra in T is the number of vertices, edges and faces of the arrangement
appearing on the union boundary. The problem studied in this paper is to obtain a nearly-
quadratic upper bound on the combinatorial complexity of the union, in the special case where
all the given tetrahedra are fat, meaning that the solid angles at their vertices are all at least
some fixed constant α > 0.

Previous results. The problem of determining the combinatorial complexity of the union of
geometric objects has received considerable attention in the past twenty years, although most
of the earlier work has concentrated on the planar case. See [1] for a recent comprehensive
survey of the area.

The case involving pseudodiscs (that is, a collection of simply connected planar regions,
where the boundaries of any two distinct objects intersect at most twice), arises for Minkowski
sums of a fixed convex object with a set of pairwise disjoint convex objects (which is the
problem one faces in translational motion planning of a convex robot), and has been studied by
Kedem et al. [18]. In this case, the union has only linear complexity. Matoušek et al. [21, 22]
proved that the union of n α-fat triangles (where each of their angles is at least α) in the
plane has only O(n) holes, and its combinatorial complexity is O(n log log n). The constant of
proportionality, which depends on the fatness factor α, has later been improved by Pach and
Tardos [25]. Extending the study to the realm of curved objects, Efrat and Sharir [15] studied
the union of planar convex fat objects. Here we say that a planar convex object c is α-fat, for
some fixed α > 1, if there exist two concentric disks, D ⊆ c ⊆ D′, such that the ratio between
the radii of D′ and D is at most α. In this case, the combinatorial complexity of the union of
n such objects, such that the boundaries of each pair of objects intersect in a constant number
of points, is O(n1+ε), for any ε > 0. See also Efrat and Katz [13] and Efrat [12] for related
(and slightly sharper) nearly-linear bounds.

In three and higher dimensions, it was shown by Aronov et al. [5] that the complexity of
the union of k convex polyhedra with a total of n facets in R

3 is O(k3 + nk log k), and it
can be Ω(k3 + nkα(k)) in the worst case. The bound was improved by Aronov and Sharir [4]
to O(nk log k) (and Ω(nkα(k))) when the given polyhedra are Minkowski sums of a fixed
convex polyhedron with k pairwise-disjoint convex polyhedra. (This problem arises in the
case of a translating convex polyhedral robot in R

3 amid a collection of polyhedral obstacles.)
Boissonnat et al. [6] proved that the maximum complexity of the union of n axis-parallel
hypercubes in R

d is Θ
(

n⌈d/2⌉
)

, and that the bound improves to Θ
(

n⌊d/2⌋
)

if all hypercubes
have the same size. Pach et al. [24] showed that the combinatorial complexity of the union of
n nearly congruent arbitrarily oriented cubes in three dimensions is O(n2+ε), for any ε > 0
(see also [23] for a subcubic bound on the complexity of the union of fat wedges in 3-space).
Agarwal and Sharir [2] have shown that the complexity of the union of n congruent infinite
cylinders is O(n2+ε), for any ε > 0. In fact, the more general problem studied in [2] involves
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the union of the Minkowski sums of n pairwise disjoint triangles with a ball (where congruent
infinite cylinders are obtained when the triangles become lines), and the nearly quadratic
bound is extended in [2] to this case as well. Finally, Aronov et al. [3] showed that the union
complexity of n κ-round objects in R

3 is O(n2+ε), for any ε > 0, where an object c is κ-round
if for each p ∈ ∂c there exists a ball B ⊂ c that touches p and its radius is at least κ · diam(c).
The bound is O(n3+ε), for any ε > 0, for κ-round objects in R

4. Each of the above known
nearly-quadratic bounds (for the three-dimensional case) is almost tight in the worst case.

To recap, all of the above results indicate that the combinatorial complexity of the union of
fat objects is roughly “one order of magnitude” smaller than the complexity of the arrangement
that they induce. While considerable progress has been made on the analysis of unions in three
dimensions, the case of the union of fat polyhedra has so far been lagging behind, where only
very few nearly-quadratic bounds are known.

Our results. In this paper we make significant progress on the problem of bounding the
complexity of the union of fat polyhedra, by deriving a nearly-quadratic bound on the com-
binatorial complexity of the union of fat tetrahedra. Our bound, which is the first known
subcubic bound for this general problem, is almost tight in the worst case.

Specifically, a tetrahedron is called α-fat if each of its four solid angles (at its four respective
apices) is at least α. We show that, for any fixed α > 0, the complexity of the union of n
α-fat tetrahedra is O(n2+ε), for any ε > 0, where the constant of proportionality depends on ε
and on α. Our proof technique relies only on the nearly-quadratic bound of the union of α-fat
dihedral wedges, established by Pach et al. [24]; a dihedral wedge is called α-fat if its dihedral
angle is at least α. An immediate application of our result is a nearly-quadratic bound on the
complexity of the union of arbitrary cubes. In particular, the second part of the analysis of
Pach et al. [24], for the specific case of nearly congruent cubes, is not needed any more, since
it is subsumed by our analysis, which does not use that part, and applies in a much wider
context.

The analysis is based on cuttings, which incorporate the Dobkin-Kirkpatrick hierarchi-
cal decomposition scheme for convex polytopes [11], in order to partition space into subcells
(simplices), so that, on average, the overwhelming majority of the tetrahedra intersecting a
subcell ∆ behave as α′-fat dihedral wedges within ∆, where α′ is another constant that de-
pends on α. Since, as shown in [24], the complexity of the union of α′-fat dihedral wedges is
nearly quadratic, it only remains to analyze the number of other types of vertices (incident to
some of the few “bad” tetrahedra that cross ∆), a task which is handled by the cutting-based
divide-and-conquer mechanism (see below for details).

Our analysis can also be applied when the given objects are arbitrarily oriented α-fat

triangular prisms (that is, all the dihedral angles in each prism are at least α) having cross-
sections of arbitrary sizes. In this case, the complexity of the union is nearly-quadratic as
well, and the bound is nearly worst-case tight. We are not aware of any previous known
subcubic bound in this case, except for the nearly-quadratic bound of Aronov and Sharir [4],
for the special case where the prisms are Minkowski sums of lines in 3-space with a fixed (not
necessarily fat) polyhedron.

An immediate consequence of our results is a bound O(n2+ε), for any ε > 0, on the
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complexity of the union of any family of polyhedral objects, so that each of them is the union
of some number of α-fat tetrahedra (or triangular prisms), and the total number of these
tetrahedra or prisms is n.

The problem studied in this paper is a natural extension of the two-dimensional problem
of bounding the complexity of the union of fat triangles, which was studied by Matoušek
et al. [21, 22] and by Pach and Tardos [25]. We show that a simple specialization of our
analysis to the two-dimensional case yields an upper bound O(n1+ε), for any ε > 0, on this
complexity. The analysis, based on the new approach, is almost immediate (albeit yielding a
slightly suboptimal bound), and is significantly simpler than the analysis in [21, 22, 25].

By now, the arsenal of techniques for analyzing the complexity of the union of geometric
objects in 3-space is quite rich: It includes, for example, the technique of Aronov et al. [3], for
bounding the combinatorial complexity of the union of n κ-round objects in R

3, by reducing
the problem to subproblems involving sandwich regions between upper and lower envelopes
(see also [2]), and the technique of Pach et al. [24] for bounding the complexity of the union
of n cubes in 3-space by bounding the number of “special cubes” in the arrangement of these
cubes (see also [5]). However, we were unable to extend any of these alternative techniques to
our context, and had to develop new machinery. We believe it to be of independent interest,
and hope that it will find additional applications to related problems.

2 The Union of Fat Tetrahedra

2.1 Preliminaries and overview

We borrow the following notation from Pach et al. [24] (some of which has already been
mentioned in the introduction). A dihedral (resp., trihedral) wedge is the intersection of two
(resp., three) halfspaces. A dihedral (resp., trihedral) wedge is α-fat if its dihedral (resp., solid)
angle is at least α. A trihedral wedge is also associated with the three dihedral angles at its
edges. It is easily verified that there exists constant α′ > 0, which depends only on α, such
that, for any α-fat trihedral wedge, each of its three dihedral angles is at least α′ 1.

Similar definitions and observations apply to α-fat tetrahedra, namely, tetrahedra all of
whose solid angles are at least α. In particular, there exist (the same) constant α′ > 0, such
that, for any α-fat tetrahedron, each of its six dihedral angles is at least α′.

Let T = {T1, . . . , Tn} be a collection of n α-fat tetrahedra in 3-space, and let U =
⋃

T
denote their union. For simplicity of the analysis, we assume that the given tetrahedra are
in general position (see [5] for an argument that this involves no loss of generality). This
general position assumption implies that each vertex of the arrangement A(T ) of the (facets
of the) tetrahedra of T lies on exactly three tetrahedra facets, and is thus incident upon only
a constant number of edges and faces. This is easily seen to imply that the combinatorial
complexity of U is O(|V (T )|), where V (T ) is the set of vertices of A(T ) that appear on the
boundary of the union.

1By intersecting the wedge with a sphere centered at it apex, this amounts to asserting that if the (normalized)
area of a spherical triangle is at least α then each of its angles is at least α

′.
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∆

Ci+1

v

Ci

Figure 1: Illustrating a step in the construction of the Dobkin-Kirkpatrick hierarchical decomposition: The
vertex v is peeled off Ci, the convex hull of the “hole” that it leaves is constructed, and the new facets are
connected to v by tetrahedra that fill up this portion of Ci \ Ci+1.

We classify the vertices of A(T ) as in [5]: An intersection vertex v of A(T ) (i.e., not a
vertex of one of the tetrahedra of T ) is said to be an outer vertex if it is the intersection of
an edge of one tetrahedron and the relative interior of a facet of another tetrahedron, or an
inner vertex, if v is the intersection of the relative interiors of three facets of three distinct
tetrahedra. Trivially, the number of outer vertices in the entire arrangement A(T ) is O(n2),
so our main goal is to bound the number of inner vertices that appear on ∂U . The main result
of the paper is:

Theorem 2.1 The complexity of the union of n α-fat tetrahedra in R
3 is O(n2+ε), for any

ε > 0, where the constant of proportionality depends on ε and α. The bound is almost tight in

the worst case.

It is relatively easy (using standard techniques; see, e.g., [26]) to construct a set of n α-fat
tetrahedra that yield Ω(n2α(n)) vertices on the boundary of their union (see also [23, 24] for
further details). We thus devote the remainder of this section to deriving the upper bound
stated in Theorem 2.1.

Curve-sensitive cuttings. We use a divide-and-conquer approach, based on a simple vari-
ant of “curve-sensitive” cuttings [19]. Specifically, let F be the set of all facets of the tetrahe-
dra in T . For any r ≤ n there exists a (1/r)-cutting Ξ for F , which is a partition of R

3 into
O(r3 log3 r) simplices, such that every simplex (also referred to as a cell of Ξ) is crossed by at
most n/r facets of F , with the additional property that any edge of a tetrahedron in T crosses
at most O(r log2 r) cells of Ξ.

One can obtain such a cutting using the following (simple) construction2. We first draw
a random sample R of O(r log r) of the planes containing the facets of F , and add to that
collection four additional planes that define a sufficiently large simplex σ0 that encloses all the
vertices of A(F). We form the arrangement A(R) of R, consider only its portion within σ0,

2For simplicity, we do not use the refined technique of [7, 20], which improves the size of the cutting down to
O(r3), since it does not affect the asymptotic bound that we obtain on the complexity of the union, and since
the analysis is cleaner without this refinement.
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and triangulate each of its cells C contained in σ0, using the Dobkin-Kirkpatrick hierarchical
decomposition of convex polytopes [11].

The number of simplices is proportional to the overall complexity of A(R), and is thus
O(r3 log3 r). The ε-net theory [8, 17] implies that, with high probability, each simplex of the
resulting decomposition is crossed by at most n/r (planes containing) facets of F . We pick
one sample R for which this property holds, and fix it in the foregoing analysis.

So far, the use of the Dobkin-Kirkpatrick hierarchy is not essential—many other triangu-
lation schemes for the cells of A(R) (e.g., bottom-vertex triangulation) would do equally well.
However, the Dobkin-Kirkpatrick hierarchy is crucial for our divide-and-conquer approach in
a manner that will be described later on.

Here is a brief review of the technique, given for the sake of completeness, and also because
we will exploit several features of the construction in our analysis. Let C ⊆ σ0 be a fixed
(bounded) cell of A(R), which is a convex polytope. The hierarchical decomposition of C is a
sequence C1, . . . , Ck of k ≥ 1 convex polytopes, such that (i) C1 = C and Ck is a simplex, (ii)
Ci+1 ⊂ Ci, for 1 ≤ i < k, (iii) V (Ci+1) ⊂ V (Ci), for 1 ≤ i < k, where V (P ) is the set of the
vertices of a polytope P , and (iv) the vertices in V (Ci) \ V (Ci+1) form an independent set in
the planar skeleton graph of ∂Ci, for 1 ≤ i < k.

It is shown in [11] that there always exists a hierarchical decomposition for C that satisfies
k = O(log |V (Ci)|),

∑k
i=1 |V (Ci)| = O(|V (C)|), and maxi maxv∈V (Ci)\V (Ci+1) deg(v,Ci) ≤ c,

for some absolute constant c ≥ 3, where deg(v,Ci) is the degree of v in the skeleton graph
of ∂Ci. Specifically, we obtain Ci+1 from Ci by the following steps: (a) Find an independent
subset V ∗

i ⊆ V (Ci) of vertices of degree at most c, whose size is Θ(|V (Ci)|) (e.g., an independent
set of size |V (Ci)|/24 whose vertices have degree at most 11 can be shown to exist, as a simple
consequence of Euler’s polyhedral formula). (b) For each v ∈ V ∗

i , remove v and its adjacent
edges and facets from Ci. (c) The removal of such a vertex v leaves a “hole” in Ci. The
convex hull of the set of neighboring vertices of v is constructed, and its outer (triangular)
facets are added as new facets of Ci+1, thereby closing the hole that v has left 3. (d) Finally,
the gap between ∂Ci and Ci+1 in the neighborhood of v (formally, the connected component
of int(Ci) \Ci+1 whose closure contains v) is triangulated into O(1) simplices by connecting v
with each of the new facets of Ci+1 that bound the gap; see Figure 1 for an illustration.

A simplicial subcell ∆ is said to be generated at step i if it has a vertex v that is removed
from Ci; that is, ∆ is one of the simplices that fill up the gap formed by the removal of v. Note
that the three other vertices of ∆ belong to Ci+1.

The Dobkin-Kirkpatrick decomposition has several useful properties that we will exploit.
One of these properties is that a line that crosses a cell τ of A(R) crosses only O(log r) of
its simplices (it can visit at most two gaps of Ci \ Ci+1, for each of the logarithmically many
indices i). Since a line (or, rather, an edge of a tetrahedron in T ) crosses at most O(r log r)
cells of A(R) (it has to cross a plane of R to move from one cell to another), it crosses at most
O(r log2 r) simplices, as claimed.

3The independence of V
∗

i guarantees that the holes, and their hulls, are openly pairwise disjoint.

5



The problem decomposition—an overview. We construct the cutting Ξ, as just de-
scribed, with a sufficiently large constant value of r, and bound the number of inner vertices
of the union in each cell of Ξ separately. Fix a cell ∆ of Ξ. We classify each facet F ∈ F that
intersects ∆ as being either long in ∆, if ∂F ∩ ∆ = ∅, or short, otherwise. As just discussed,
the number of cells ∆ in which F is short is O(r log2 r).

Let us fix a tetrahedron T ∈ T . For each cell ∆ of Ξ, either (i) ∆ is disjoint from T ,
or (ii) ∆ is fully contained in T , or (iii) ∆ intersects only one or two facets of T , or (iv) ∆
intersects at least three facets of T . In case (i) T has no effect on the union within ∆. In case
(ii) ∆ is fully covered and does not contain any portion of the boundary of the union. In case
(iii) we say that T meets ∆ as a dihedral wedge (which can also be a halfspace), and call T
a D-tetrahedron in ∆, and in case (iv) we say that T meets ∆ as a tetrahedron or a trihedral
wedge, and call T a T-tetrahedron in ∆.

If ∆ meets only one facet F of T , we replace T by the halfspace bounded by that facet
and containing T . Similarly, if ∆ meets two facets of T , we replace T by the dihedral wedge
formed by the planes supporting these facets and containing T . Clearly, these replacements do
not affect the union of the tetrahedra within ∆. The case where at least three facets of T meet
∆ (case (iv)) is more involved—this is after all the situation we started with. What saves us
is the property that the number of T-tetrahedra is small on average. This is one of the main
technical insights in our analysis, and is established below in Lemmas 2.3 and 2.4.

Each inner intersection vertex v of the union that appears in ∆ is consequently classified
as either DDD, if all three facets that are incident to v belong to three respective D-tetrahedra
in ∆, DDT, if two of these facets belong to two respective D-tetrahedra and one belongs to a
T-tetrahedron, DTT, if one of these facets belongs to a D-tetrahedron and two belong to two
respective T-tetrahedra, or TTT, if all three facets belong to three respective T-tetrahedra. In
all four cases, the three relevant tetrahedra are distinct.

2.2 T-tetrahedra are scarce

Our next goal is to show that, for each tetrahedron T ∈ T , the overall number of simplices ∆ of
Ξ, such that T crosses ∆ and is a T-tetrahedron in ∆, is only O(r log2 r). We emphasize that
this part of the analysis does not use the fatness of T — the bound holds for any tetrahedron
T .

Let us fix a tetrahedron T of T , and consider the set of simplices ∆ in Ξ that meet at least
three facets of T . It suffices to consider only simplices ∆ in which all facets of T are long: The
edge-sensitivity of the cutting implies that the overall number of simplices ∆ that are crossed
by an edge of T is O(r log2 r).

We establish the above bound in two steps, in the respective Lemmas 2.3 and 2.4. In
the first step (Lemma 2.3) we bound the number of cells of the untriangulated arrangement
A(R) that meet at least three facets of T ; a crucial ingredient of the analysis is established in
Lemma 2.2. Then we fix such a cell C, and bound (in Lemma 2.4) the number of sub-simplices
of Ξ in C that have this property. We first prove the following geometric property:

6



e0
3

Q

h0
2

e0
2

F0
2

Q′

Q0
a0

F0
1

e0
1

h0
1

ℓ0

ρ

a0

F0
1

F0
2 Q′

e0
1

e0
3

h0
2

h0
1

e0
2

Q

F0
3

Q0

ℓ0

λ

(a) (b)

Figure 2: The proof of Lemma 2.2.

Lemma 2.2 Let W be a trihedral wedge with apex a, let h1, h2 be two planes, whose intersec-

tion line crosses W . For i = 1, 2, denote by h+
i the halfspace bounded by hi and containing

a, and by h−
i the complementary halfspace. Then at least one of the wedges C = h+

1 ∩ h−
2 ,

C ′ = h−
1 ∩ h+

2 is crossed by at most two facets of W .

Proof: Project everything onto some plane h0 orthogonal to both h1, h2, and denote the
projection of object u by u0. The line ℓ = h1 ∩ h2 projects to a point ℓ0, and h0

1, h
0
2 are

two lines passing through ℓ0 and partitioning h0 into four quadrants, so that one of them,
Q0, contains a0, and the two quadrants Q,Q′ adjacent to Q0 are the projections of C, C ′,
respectively.

Let F1, F2, F3 be the facets of W , and let ei denote the edge incident to Fi and Fi+1, for
i = 1, 2, 3 (where e3 is incident to F3 and F1, and we also denote it by e0). The edges ei project
to three respective rays e0

i that emanate from a0. Note that, due to the assumption that ℓ
crosses W , ℓ0 must be contained in the projection of W . We next consider the following two
possibilities:

(a) e0
1, e

0
2, e

0
3 are contained in a common halfplane, bounded by a line λ through a0. Assume,

without loss of generality, that e0
2 lies between e0

1 and e0
3. Then F 0

1 and F 0
2 are openly disjoint,

so at least one of them, say F 0
1 , does not contain ℓ0; see Figure 2(a). In this case the ray ρ from

a0 through ℓ0 is disjoint from F 0
1 (except for its apex). We next claim that F 0

1 lies fully in one
of the halfplanes bounded by (the line containing) ρ. It will then easily follow that F 0

1 cannot
meet both Q and Q′, because each of them is fully contained on a different side of the line
containing ρ. Indeed, if the ray opposite to ρ is contained in F 0

1 , then it implies that ℓ0 and
F 0

1 lie on different sides of λ, but then ℓ0 is disjoint from the projection of W , contradicting
our assumption.

(b) e0
1, e

0
2, e

0
3 are not contained in a common halfplane. In this case, all three projections F 0

1 ,
F 0

2 , F 0
3 are openly disjoint and cover h0, so ℓ0 is contained in exactly one of them, say F 0

2 . See
Figure 2(b). The line λ through a0 and ℓ0 fully contains one of the two other facets, say F 0

3 ,
on one side. As in (a), each of the quadrants Q, Q′ lies fully on one (distinct) side of this line.
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Figure 3: (a) The cross section of a cell of A(H) on F1, and the pair of lines ℓ1, ℓ2 that it charges. (b)
The vertices v1,2 and v3,4 cannot both be edges of G, because the polygon P3,4 (partially shaded) is fully
contained in the wedge spanned by the respective planes containing ℓ1, ℓ2 (and opposite to the wedge that
contains P1,2), which meets only two facets of W .

Hence, one of these quadrants cannot meet F 0
3 , a contradiction that completes the proof. 2

Lemma 2.3 Let T be an arbitrary tetrahedron. The overall number of cells C of A(R), for

which at least three facets of T meet C, each as a long facet in C, is O(r log r).

Proof: Let F1, F2, F3 be a triple of facets of T , let W be the trihedral wedge induced by these
facets, and let a denote its apex (which is a vertex of T ). We show below that the overall
number of cells C of A(R), for which all three facets of W meet C, each as a long facet in
C, is O(r log r) (note that if Fi is long in C then the extended facet of W is also long). By
repeating this argument for each triple of facets of T , the lemma follows.

Let H0 denote the set of all the planes in R that intersect W . Each such plane intersects
W in either a wedge or a triangle (which might be unbounded). We first dispose of all planes
that intersect W in a wedge. Each such plane h is disjoint from one of the facets of W , and
thus one of the halfspaces that it induces, say, the positive side h+ of h, meets only two facets
of W . Thus all the cells of A(R) under consideration are contained in h−. Hence all these
cells lie in the convex polyhedron K, which is the intersection of the respective halfspaces h−

induced by the above “good” planes h.

Let H denote the set of “bad” planes in H0; each of them intersects W in a (possibly
unbounded) triangle. Let C denote the collection of all cells of A(H) that meet all three facets
of W but do not meet any edge of W . Fix a facet F1 of W , form the intersections C∩F1, over all
cells C ∈ C, and denote by C1 the resulting collection of polygons. Note that C1 is a collection
of cells of the 2-dimensional arrangement, within the plane hF1

containing F1, of the set L1 of
the intersection lines between the planes of H and hF1

. The number of unbounded polygons
in C1 is thus O(|H|) = O(r log r), so we focus on the bounded elements of this collection. Fix
such a polygon P , and let v be its vertex which is the most counterclockwise as seen from the
apex a (from some fixed side of hF1

). Denote the two intersection lines that are incident to v
and bound P by ℓ1, ℓ2, where ℓ1 separates P and a within hF1

, and ℓ2 does not separate them;

8



see Figure 3(a). We then charge P to the pair (ℓ1, ℓ2); clearly, the charge is unique (the two
respective planes h1, h2, which intersect hF1

in ℓ1, ℓ2, can intersect only once on F1).

Let G be the graph whose vertices are the intersection lines ℓ ≡ h ∩ hF1
, for h ∈ H, and

whose edges are all the charged pairs (ℓ1, ℓ2) just defined. We claim that G is planar. It will
then follow that the number of edges of G is at most 3|H| − 6 = O(r log r), which thus also
bounds the number of cells of A(H) that meet all three facets of W . Any such cell C induces
at most one cell of A(R) that can touch all three facets of W , namely the intersection C ∩K.
Hence the number of such cells of A(R) is also O(r log r).

To establish the claim, assume, without loss of generality, that a is the origin in hF1
, and

apply the standard duality transform that maps points (u, v) to the respective lines ux+vy+1 =
0 and vice versa (where lines through a are ignored). This duality maps the lines ℓ in L1 to
points ℓ∗, and each of the above pairs (ℓ1, ℓ2) is mapped to the segment connecting the points
ℓ∗1, ℓ∗2 dual to the respective lines ℓ1, ℓ2. By construction, and by the properties of this duality,
any point q within the polygon P ∈ C1 which is represented by (ℓ1, ℓ2), is mapped to a line
q∗ that separates the origin o and ℓ∗1, and has ℓ∗2 on the same side as the origin. That is,
q∗ intersects the segment ℓ∗1ℓ

∗
2. Conversely, for any line q∗ that separates ℓ∗1 and ℓ∗2 as above,

its primal point q must lie in the wedge between ℓ1 and ℓ2 that contains P . Moreover, if q∗

separates ℓ∗1 and ℓ∗2 in the opposite way (i.e., so that the origin and ℓ∗1 lie on the same side of
q∗), q lies in the opposite wedge between ℓ1 and ℓ2.

The collection of dual segments, as constructed above, defines a straight-line embedding of
G in the dual plane, and we claim that this drawing is crossing-free. Indeed, suppose to the
contrary that two edges ℓ∗1ℓ

∗
2, ℓ∗3ℓ

∗
4 of the drawing cross each other. The preceding discussion

then implies that, back in the primal plane hF1
, each of the resulting vertices v1,2 = ℓ1 ∩ ℓ2,

v3,4 = ℓ3 ∩ ℓ4 lies in the double wedge of the other vertex that does not contain a. Denote by
P1,2 (resp., P3,4) the polygon of C1 whose most counterclockwise vertex is v1,2 (resp., v3,4). In
particular, one of these vertices, say v1,2 lies clockwise to the other vertex v3,4, in which case
v1,2 must lie in the wedge of ℓ3, ℓ4 that contains P3,4, and v3,4 must lie in the wedge of ℓ1, ℓ2

opposite to the one containing P1,2. Let C1,2 (resp., C3,4) denote the cell of A(H) that contains
P1,2 (resp., P3,4); also, for i = 1, . . . , 4, let hi denote the plane of H containing ℓi. Then, since
C1,2 meets all three facets of W , it follows by Lemma 2.2 that the wedge spanned by h1, h2,
and opposite to the wedge containing P1,2 (and C1,2), meets only two facets of W , but then
C3,4 (which is clearly contained in this wedge, since it meets the wedge, and, being a cell of
A(H), cannot cross h1 or h2) cannot meet all three facets of W , contrary to assumption; see
Figure 3(b). This contradiction implies that G is planar, and this, as argued above, implies
the assertion of the lemma. 2

Remark: As already noted, Lemma 2.3 is fairly general, and makes no assumption about
fatness of T . In fact, we believe that in certain circumstances it might also be generalized to
situations where T is the boundary of a non-polyhedral convex shape. In this case, the assertion
would be that the number of cells of A(R) that touch at least three pairwise disjoint connected
sub-regions on T is O(r log r) (perhaps with some additional restrictions on these sub-regions,
or with a larger number of sub-regions). We consider the lemma to be of independent interest,
and believe that it (and/or extensions of it of the kind just suggested) will find additional
applications in related problems.
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F2

F3

F∆

F1

Figure 4: One facet F∆ of ∆ meets all three facets of T , in the depicted manner.

Lemma 2.4 Let T ∈ T be a fixed tetrahedron, and let C be a cell of A(R) that meets at least

three facets of T , but not any vertex of T . Then the number of simplicial subcells ∆ of C that

meet at least three facets of T , each as a long facet in ∆, is O(log r).

Proof: As in Lemma 2.3, it is sufficient to assume that T is a trihedral wedge, and to show
that the number of simplicial subcells ∆ of C that meet all three facets of T , each as a long
facet in ∆, is O(log r).

We first claim that if all the three facets F1, F2, F3 of T are long in ∆, there must be one
(triangular) facet F∆ of ∆ that meets all these facets. This easily follows from the fact that
each of these facets intersects ∆ in either a triangle or a quadrilateral, which yields at least 9
intersections between facets of T and facets of ∆. Since ∆ has four facets, at least one of them
must meet all three facets of T , as claimed. In addition, each of F1, F2, F3 intersects F∆ in a
distinct pair of edges, as is easily verified; see Figure 4.

Let Ci denote the convex polytope obtained from C after i − 1 steps of the Dobkin-
Kirkpatrick hierarchical decomposition, for i ≥ 1 (see [11] and earlier in this section). Recall
that a simplicial subcell ∆ is said to be generated at step i if it has a vertex v that is removed
from Ci; that is, v belongs to the independent set of vertices of Ci collected at the i-th step.
Recall also that v and its adjacent edges and facets are removed, they leave a hole in Ci. The
convex hull of the other vertices of that hole is constructed, and its (triangular) facets are
connected to v to form O(1) simplices that fill up the corresponding gap between Ci and Ci+1,
and ∆ is one of these simplices. Note that the three other vertices of ∆ belong to Ci+1, and
that all three edges of ∆ incident to v lie on the boundary of Ci. See Figure 1.

In what follows, we fix a decomposition step i, and show that there are only O(1) simplices
∆ of C that are generated at step i and have the properties in the lemma. The discussion
above implies that for each such simplex ∆, the corresponding facet F∆ appears either on the
boundary of Ci, or on the boundary of Ci+1, or as an “internal” facet of a hole of Ci that is
connected to the peeled-off vertex v of ∆, as described above.

Let u denote the apex of T . By assumption, u /∈ C. Let F (i) denote the collection of all
facets F∆ of simplicial subcells ∆ of C that are generated at step i, such that F∆ meets all
three facets of T and such that these facets are all long in ∆. To simplify the analysis, we first
prune away facets from F (i), until F (i) has the property that, for each peeled-off vertex v of
Ci there is at most one simplex ∆ incident to v, generated at step i, and contributing a facet

10



Ci+1

ρ

u

F∆

q

F∆′
q′

u

ρ

ρ′

F∆
q

Ci+1
q′

F∆′

(a) (b)

Figure 5: (a) The facets F∆, F∆′

are internal to two distinct holes generated at step i, and are fully

visible from u (with Ci+1 opaque). The ray ρ that hits F∆ at q and then F∆′

at q′ must cross ∂Ci at least
twice between q and q′, which is impossible. (b) Illustrating the proof that no ray from u can cross two

distinct facets in F
(i)
7 .

to F (i). By construction, this reduces the size of F (i) by at most a constant factor.

We partition F (i) into the following seven subcollections:

• F
(i)
1 , which consists of all facets of Ci in F (i) that are visible from u (regarding Ci itself

as opaque); that is, the relative interiors of all the segments connecting u to points on any

F∆ ∈ F
(i)
1 do not meet ∂Ci;

• F
(i)
2 , which consists of all facets of Ci in F (i) that are invisible from u; that is, all the segments

connecting u to any F∆ ∈ F
(i)
2 cross ∂Ci (once) before reaching F∆;

• F
(i)
3 , which consists of all facets of Ci+1 in F (i) that are not facets of Ci and are visible from

u (regarding Ci+1 itself as opaque); that is, the relative interiors of all the segments connecting

u to points on any F∆ ∈ F
(i)
3 do not meet ∂Ci+1; any such segment crosses ∂Ci (once) before

reaching F∆;

• F
(i)
4 , which consists of all facets of Ci+1 in F (i) that are not facets of Ci and are invisible

from u; that is, all the segments connecting u to any F∆ ∈ F
(i)
4 cross ∂Ci+1 (once) before

reaching F∆; as in the previous case, any such segment also crosses ∂Ci (once) before reaching
F∆;

• F
(i)
5 , which consists of all facets in F (i) that are internal to the holes (components of Ci\Ci+1)

generated at step i, and are fully visible from u (in the presence of Ci+1 as an opaque object);

• F
(i)
6 , same as F

(i)
5 , but consisting of facets that are fully invisible from u (fully occluded by

Ci+1); and

• F
(i)
7 , same as F

(i)
5 , F∆

6 , but consisting of facets that are partially visible from u (partially
occluded by Ci+1).
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τ

l2

l1

l3

Figure 6: The centrally projected facets of some F
(i)
k , and the central projections l1, l2, l3 of the three

respective facets F1, F2, F3 of T . The triangle τ is the unique triangle that meets all three edges l1, l2, l3.

We next claim that each subset F
(i)
k consists of at most one facet. This implies that F (i)

has constant size, which, since the decomposition has only O(log r) steps, implies the bound
stated in the lemma. We first need the following easy technical claim.

Claim: If we project the triangles of F
(i)
k , for any fixed 1 ≤ k ≤ 7, centrally from u, the

projected triangles are pairwise disjoint.

Proof: The claim easily follows for F
(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
4 by definition and by the convex-

ity of Ci, Ci+1. Consider F
(i)
5 , and assume to the contrary that it contains two facets F∆, F∆′

,

such that a ray ρ emanating from u meets both of them, hitting, say, first F∆ and then F∆′

at two respective points q, q′. By the initial pruning process, F∆ and F∆′
lie in different holes

of Ci \ Ci+1. By definition of F
(i)
5 , qq′ is disjoint from Ci+1, and is fully contained in Ci, by

convexity. This, however, is impossible, because qq′ has to cross from some hole of Ci \ Ci+1

to a different one, and the boundary of such a hole is contained in ∂Ci ∪ ∂Ci+1, and thus qq′

must cross ∂Ci (at least twice), a contradiction; see Figure 5(a) for an illustration.

The case of F
(i)
6 is argued similarly. Here again qq′ is disjoint from Ci+1, because uq must

have already crossed ∂Ci+1 twice. Finally, for F
(i)
7 , we argue as follows. As above, the segment

qq′ is fully contained in Ci and crosses from one hole of Ci \ Ci+1 to another hole, so it must
cross ∂Ci+1 twice. Since F∆ is partially occluded by Ci+1, there exists another ray ρ′ from u
that first crosses ∂Ci+1 and then hits F∆. This, however, is impossible, since it would have
implied that F∆ and ∂Ci+1 cross each other; this is proved by continuity, moving ρ towards
ρ′, within the plane that they span, and is illustrated in Figure 5(b). This completes the proof
of the claim. 2

Let us now fix one of the subsets F
(i)
k . The central projection of ∂T from u is a triangle

whose three edges l1, l2, l3 are the “head-on” projections of the respective facets F1, F2, F3.

Each facet F∆ ∈ F
(i)
k projects to a triangle that meets all three edges l1, l2, l3. However, since

the projections of the facets F∆ of F
(i)
k are pairwise disjoint, at most one of them can touch

all three edges l1, l2, l3, as is easily checked; see Figure 6.

As argued above, this completes the proof of the lemma. 2

We have thus established the following theorem:
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Theorem 2.5 For any tetrahedron T , the overall number of simplicial cells ∆ of Ξ that meet

at least three facets of T is O(r log2 r).

Proof: Lemma 2.3 shows that only O(r log r) cells C of A(R) meet three facets of T . Of those,
at most four contain an apex of T , and they have a total of O(r log r) sub-simplices. For any
other cell, only O(log r) of its simplices have this property, as shown in Lemma 2.4. 2

Remark: With some additional care, the proof of Lemma 2.4 can be extended to the case
where C contains an apex of T . However, as just argued, the validity of Theorem 2.5 does not
require this stronger property.

2.3 The overall recursive analysis

We now apply the following recursive scheme (a similar scheme has been presented in [16]).
Each step of the analysis involves a simplex ∆0, which, in the initial step, is the entire 3-space,
(or, rather, a sufficiently large simplex that contains all the vertices in the arrangement of the
tetrahedra), and in further recursive steps is a cell of a cutting of some larger simplex, from
the preceding recursive level.

We construct a (1/r)-cutting Ξ of the arrangement of the planes that support facets of
the tetrahedra that cross ∆0, using the Dobkin-Kirkpatrick hierarchical decomposition of each
cell of the corresponding arrangement, as described above. Let ∆ be a simplicial cell of Ξ
and let D∆ (resp., T ∆) denote the set of D-tetrahedra (resp., T-tetrahedra) within ∆. Put
ND = N∆

D := |D∆|, and NT = N∆
T := |T ∆|. (In the actual construction of the cutting we draw

two respective random samples of O(r log r) planes, where the first sample is taken from the
facets of the D-tetrahedra in ∆0, and second one is taken from the facets of the T-tetrahedra
in ∆0. This guarantees, with high probability, the property that the number of D-tetrahedra

(resp., T-tetrahedra) in each subcell of ∆0 is at most |D∆0 |
r (resp., |T ∆0 |

r )).

During each step of the recursion, after partitioning ∆0 into smaller subcells ∆, we imme-
diately dispose of any new DDD and DDT vertices within each subcell ∆, and show that the
overall number of these vertices is O

(

(ND + NT )NT
1+ε

)

, for any ε > 0. These vertices are
not considered during any further recursive substep, but only the remaining DTT and TTT
vertices.

The recursion bottoms out when NT ≤ c, for some absolute constant c ≥ 3. In this case we
bound the number of the remaining inner DTT and TTT vertices of the union in a brute-force
manner, and thus obtain an overall bound of O(NT

2ND + NT
3) = O(ND + 1) on the number

of these vertices.

To bound the number of DDD vertices in ∆, we replace each tetrahedron in D∆ by the
equivalent halfspace or dihedral wedge, and face the problem of bounding the overall number of
vertices appearing on the boundary of the union of ND halfspaces and α′-fat dihedral wedges4

(where, as argued earlier, α′ > 0 is a constant that depends only on α). As shown in [24],
the number of such vertices is O(N2+ε

D ), for any ε > 0, where the constant of proportionality

4Clearly, any DDD-vertex of the full union in ∆ is also a vertex of the union of D∆.
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depends on ε and α. In an additional major step of the analysis, we derive, in Section 2.4
below, a similar bound on the number of DDT-vertices.

The recursive scheme. With all this machinery at hand, we can now proceed to the proof
of Theorem 2.1. The analysis begins with the initial cell ∆0, with N∆0

T = n, N∆0

D = 0, and
recursively subdivides ∆0, using a (1/r)-cutting of the preceding kind, for some sufficiently
large constant parameter r.

For simplicity, write in what follows n
T

= N∆0

T , and n
D

= N∆0

D . Theorem 2.5 implies that
there are only O(rn

T
log2 r) crossings between the cells of Ξ and their T-tetrahedra. It thus

follows that, for any r2 log2 r ≤ s ≤ M = O(r3 log3 r), where M is the size of Ξ, the number

of cells in Ξ that are crossed by at least
rn

T
log2 r

s
T-tetrahedra is at most O(s). (The case

s < r2 log2 r cannot arise, since each cell of Ξ is intersected by at most
n

T

r tetrahedra of T ∆0.)

We partition the set of cells of Ξ into at most log
(

M
r2 log2 r

)

= Θ(log r) subsets, so that the i-th

subset Ξi contains O(2ir2 log2 r) cells ∆ of Ξ, each of which satisfies

n
T

2ir
≤ N∆

T = |T ∆| ≤
2n

T

2ir
,

for i = 1, . . . , log
(

M
r2 log2 r

)

. Note that |T ∆| = O
(n

T

r2

)

for each of the O(r3 log3 r) cells ∆ in

the last subset. For the number of D-tetrahedra in any cell ∆, we use the bound N∆
D = |D∆| ≤

n
D

+n
T

r , for each ∆ ∈ Ξ.

As in [16], we recurse in each cell ∆ of Ξ, where the goal of the recursive step at ∆ is to
obtain an upper bound for the number of DTT and TTT vertices in ∆ (including vertices of
these kinds that appear on ∂∆). Thus, before entering the recursion, we need to bound the
number of new DDD and DDT vertices within ∆ (or on its boundary). These are vertices v
that were DTT or TTT vertices at the parent cell ∆0 of ∆, but have become DDT or DDD
vertices at ∆. Partition D∆0 into k = ⌈n

D
/n

T
⌉ subsets D1, . . . ,Dk, each consisting of at most

n
T

D-tetrahedra. The preceding observations imply that any new DDD or DDT vertex in ∆
must be a DDD or a DDT vertex of the union of the wedges and tetrahedra of Dj∪T

∆0, clipped
to ∆, for some j = 1, . . . , k (because it was a DTT or a TTT-vertex in ∆0, and so involves at
most one wedge of D∆0). By the results of [24] and of Section 2.4, the number of such vertices,
for any fixed j, is thus O(n

T

2+ε), for any ε > 0. Hence, summing over j = 1, . . . , k, the overall
number of new DDD and DDT vertices in ∆ is O(kn

T

2+ε) = O((nD + n
T
)n

T

1+ε), for any
ε > 0. Repeating the analysis to each subcell ∆ of ∆0, and recalling that r is a constant, the
overall number of new DDD and DDT vertices within the children of ∆0 is

O(r3 log3 r · (n
D

+ n
T
)n

T

1+ε) = O((n
D

+ n
T
)n

T

1+ε),

for any ε > 0.

Let U(NT , ND) denote the maximum number of DTT- and TTT-vertices that appear on
the boundary of the union at a recursive step involving up to NT T-tetrahedra and ND D-
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tetrahedra. Then U satisfies the following recurrence:

U(NT , ND) ≤



























O
(

(ND + NT )N1+ε
T

)

+
∑

log
“

M

r2 log2 r

”

i=0 O(2ir2 log2 r)U
(

2NT

2ir
, ND+NT

r

)

, if NT > c,

O(ND + 1), if NT ≤ c,

where ε > 0 is arbitrary, c ≥ 3 is an appropriate constant, and where the constant of propor-
tionality in the first expression depends on (ε, α and on) r. It is straightforward to verify (see
also [16]), that the solution of this recurrence is U(NT ,ND) = O(NT (NT + ND)1+ε), for any
ε > 0, with a constant of proportionality that depends on ε and on α.

Substituting the initial values NT = n, ND = 0, we conclude that the overall combinatorial
complexity of the union is O(n2+ε), for any ε > 0, as asserted. This completes the proof of
Theorem 2.1. modulo the still missing analysis of the number of DDT-vertices.

Since a cube in 3-space can be partitioned into a constant number of α-fat tetrahedra, for
some appropriate constant parameter α > 0, we obtain the following extension of the bound
in [24]:

Corollary 2.6 The complexity of the union of n arbitrarily oriented cubes in R
3, of arbitrary

side lengths, is O(n2+ε), for any ε > 0, where the constant of proportionality depends on ε.

Similar results can be obtained for any collection of polyhedral objects that can be decom-
posed into, or covered by, a total of n α-fat tetrahedra.

A similar, almost verbatim, analysis yields the bound O(n2+ε), for any ε > 0, for the
complexity of the union of n α-fat trihedral wedges. For the sake of completeness, we state
this result explicitly:

Corollary 2.7 The complexity of the union of n α-fat trihedral wedges is O(n2+ε), for any

ε > 0, where the constant of proportionality depends on ε and α.

Our analysis can easily be extended to the problem of bounding the complexity of the union
of n α-fat arbitrarily oriented triangular prisms, with cross-sections of arbitrary sizes. In this
case, we apply a similar decomposition scheme as in the case of α-fat tetrahedra, exploiting
similar properties to those stated in Lemmas 2.3 and 2.4 for the case where T is a triangular
prism (rather than a trihedral wedge) — simply think of a prism as a wedge with apex at
infinity. A lower bound construction that yields Ω(n2α(n)) vertices on the boundary of the
union can be supplied using similar techniques as in the original problem. We thus obtain:

Corollary 2.8 The complexity of the union of n arbitrarily oriented α-fat triangular prisms,

with cross-sections of arbitrary sizes, in R
3, is O(n2+ε), for any ε > 0, where the constant of

proportionality depends on ε and α. The bound is almost tight in the worst case.

Similar results can be obtained for any collection of polyhedral prisms that can be decom-
posed into, or covered by a total of n α-fat triangular prisms.
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2.4 The number of DDT-vertices

In this section we provide the missing ingredient of the preceding analysis, showing that the
number of DDT-vertices is nearly-quadratic.

We thus have, at each step of the analysis, a simplex ∆, a set D = D∆ of ND α′-fat
dihedral wedges, and a set T = T ∆ of NT α-fat tetrahedra5. Our goal is to obtain a nearly-
quadratic bound on the number of DDT vertices on the boundary of the union of D∪T within
∆. We may assume that NT ≤ ND. Otherwise, we apply (in “reverse”) the partitioning
trick used in the preceding analysis. That is, we partition T arbitrarily into k = ⌈NT /ND⌉
subsets T1, . . . , Tk, of size at most ND each, establish a bound O(N2+ε

D ) on the number of
DDT-vertices on each union D ∪ Ti, i = 1, . . . , k, and add up the bounds, to obtain an overall
bound of O(NT N1+ε

D ). In other words, the goal is to establish the upper bound O(N2+ε
D ) on

the number of DDT-vertices, assuming that NT ≤ ND.

Let L denote the set of the xy-projections of the edges (lines) of the wedges in D. (We
assume that the coordinate system is generic, so none of these lines projects to a single point.)
We construct a (1/r)-cutting Ξ of the planar arrangement A(L), by taking a random sample
R of O(r log r) lines of L, for some sufficiently large constant parameter r, constructing the
planar arrangement A(R), and triangulating each of its cells using the two-dimensional version
of the Dobkin-Kirkpatrick hierarchical decomposition of a convex polygon [11]. We obtain
O(r2 log2 r) triangles, and we may assume that the sample R is such that each triangle is
crossed by at most ND/r lines of L (this indeed happens with high probability). We lift each
cell of A(R), and each of its sub-triangles, into a vertical prism (or rather its portion within the
current simplex ∆ ). Each triangular prism σ is crossed by at most ND/r edges of the wedges
of D. Any other wedge either misses σ altogether, or each of its bounding halfplanes that
meets σ crosses σ completely, cutting it into two disconnected pieces (as if it were a plane).

We now claim that, given a fixed tetrahedron T ∈ T , the overall number of vertical tri-
angular prisms σ, erected over the cells of Ξ, such that σ meets at least three facets of T , is
O(r log2 r). Indeed, a facet F of T whose bounding edges do not meet σ must intersect σ in a
triangle whose boundary is contained in ∂σ. Since T ∩ σ is convex, there can be at most two
such facets. Hence σ meets at least one of the edges e of T . That is, the projection e∗ of e
crosses the triangular cell of Ξ which is the base of σ. However, applying a simplified version
of the argument used above for 3-dimensional arrangements, e∗ can cross only O(r log r) cells
of A(R), and only O(log r) triangles within each cell, from which the claim follows.

Summing up, we have so far O(r2 log2 r) subproblems, each defined within a triangular
prism σ, and involves the following sets of objects: (i) The set Dσ of dihedral wedges of D
whose edges cross σ; (ii) the set Pσ of dihedral wedges of D that cross σ but whose edges do
not cross σ (we can think of each member of Pσ as either a halfspace or a region enclosed
between a pair of planes crossing σ); (iii) the set T σ of tetrahedra such that at least three of
their facets cross σ; and (iv) the set Wσ of tetrahedra that cross σ, and at most two of their
facets cross σ. Put NDσ := |Dσ|, NPσ := |Pσ |, NT σ := |T σ|, and NWσ := |Wσ |. As just
argued,

∑

σ NT σ = O(NT · r log2 r).

5Some of these tetrahedra may be trihedral wedges, in case only three of the facets of a tetrahedron T appear
in ∆. However, to simplify the presentation, we will refer in what follows to all the elements of T as tetrahedra.
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The goal is to bound the number of inner vertices v, within σ, of the union Dσ∪Pσ∪T σ∪Wσ,
such that v is incident to the boundaries of two objects in Dσ∪Pσ, and of one object in T σ∪Wσ.
We classify each inner vertex v in σ of this kind as either DDW, if v is incident to the boundaries
of two objects in Dσ and one object in Wσ, DPW, if the three objects whose boundaries are
incident to v are in Dσ, Pσ , and Wσ, respectively, PPW, if two of these objects are in Pσ and
one in Wσ, DDT, if two of these objects are in Dσ and one in T σ, DPT, if the objects are in
Dσ, Pσ , and T σ, respectively, or PPT, if two of the objects are in Pσ and one in T σ.

Since each vertex of type DDW, DPW, or PPW lies on the boundary of the union of α′-fat
dihedral wedges (or halfspaces), it follows, by applying the results of [24], that the number of
such vertices is O((NDσ +NPσ +NWσ)2+ε), for any ε > 0. Summing over all prisms σ, and using
the facts that r is constant and that NT ≤ ND, we obtain the overall bound O(N2+ε

D ), for any
ε > 0. The general bound, using the partitioning trick described above, is O((ND +NT )N1+ε

D ),
for any ε > 0. We next show how to bound the number of the remaining types of vertices.

Assume for the moment that we have managed to establish a nearly-quadratic bound, of
the form O((ND +NT )N1+ε

D ), for any ε > 0, on the number of PPT-vertices and DPT-vertices
(which will be accomplished in the next two steps of the analysis). Then we are only left with
the task of bounding the number of DDT-vertices within σ, which we do recursively. To recap,
there are O(r2 log2 r) such recursive subproblems, over all triangular prisms σ, in each of which
we apply the nearly-quadratic bound on the number of vertices of all the remaining types, and
continue to bound the number of DDT-vertices in a recursive manner.

The recursion bottoms out when either NT ≤ c or ND ≤ c, for some absolute constant
c ≥ 3. We then bound the number of the remaining vertices of the union under consideration
(that is, inner vertices whose type is still DDT) in a brute-force manner, and thus obtain an
overall bound of O(ND

2NT ) = O(N2
D + NT ) on the number of these vertices.

Let U1(NT , ND) denote the maximum number of DDT-vertices that appear on the bound-
ary of the union at a recursive step involving ND dihedral wedges and NT tetrahedra. Then
U1 satisfies the recurrence:

U1(NT , ND) ≤















O
(

(ND + NT )N1+ε
D

)

+
∑

log
“

M

r log2 r

”

i=0 O(2ir log2 r)U1

(

2NT

2i , ND

r

)

, if min{NT , ND} > c,

O(N2
D + NT ), if min{NT , ND} ≤ c,

(1)

where ε > 0 is arbitrary, c ≥ 3 is an appropriate constant, M = O(r2 log2 r) is the overall
number of prisms in the decomposition, and where the constants of proportionality in the
non-recursive terms depend on r (and on ε, α). This follows from the fact that the number of
prisms σ with NT

2i ≤ NT σ < 2NT

2i is at most O(2ir log2 r). As above, it is easy to verify that

the solution of this recurrence is U1(NT ,ND) = O((ND + NT )N1+ε
D ), for any ε > 0, with a

constant of proportionality that depends on ε and on α.

The number of PPT-vertices. To bound the number of PPT vertices, we launch a new
recursive analysis, which, as the analysis in Section 2.3, is based on cuttings in arrangements of
planes in 3-space. Recycling for the moment some of the previous notations, we have, at each

17



step, a subproblem within some simplex ∆0, involving a set P = P∆0 of pairs of planes, at
least one of which crosses ∆0 (but their intersection line does not cross ∆0), and a set T = T ∆0

of tetrahedra, so that, for each T ∈ T , at least three of its facets cross ∆0. Put NP = |P∆0 |,
NT = |T ∆0 |. Initially, ∆0 is the (clipped) vertical triangular prism σ of some specific recursive
instance of the above recursion that handles DDT vertices.

We first draw a random sample R ⊂ P∆0 of O(r log r) pairs of planes, for some sufficiently
large constant parameter r, and construct the sampled arrangement A(R) within ∆0. We then
collect only the cells in the complement of the union of the wedges enclosed between each sam-
pled pair of planes (within ∆0). Since the wedges are all α′-fat, the analysis of [24] implies that
the overall number of these cells is O(r2+ε), for any ε > 0. Furthermore, since R is a collection
of planes within ∆0, each cell that we consider is a convex (possibly unbounded) polyhedron.
We next triangulate each of these cells C using the Dobkin-Kirkpatrick hierarchical decompo-
sition of convex polytopes (see the beginning of this section and [11]), and obtain an overall
number of O(r2+ε) simplicial subcells. Using similar considerations as in the original problem,
we may assume that each simplicial cell ∆ of the resulting decomposition is crossed by at most
NP /r wedge boundaries (pairs of planes) in P∆0 , and each edge of any tetrahedron in T ∆0

crosses at most O(r log2 r) cells. In addition, Theorem 2.5 implies that the overall number of
simplicial cells, each of which meets at least three facets of any fixed tetrahedron T ∈ T ∆0, is
O(r log2 r).

Note that, in this problem, the decomposition generates only two types of vertices, PPW
and PPT. We thus apply the above decomposition recursively, where we dispose immediately
(i.e., derive a nearly-quadratic bound on the number) of all PPW-vertices within each cell ∆ of
the decomposition, and bound the number of the (remaining) PPT-vertices recursively. At the
bottom of the recurrence we bound the number of PPT-vertices by brute force, as above. An
appropriate variant of the preceding analysis leads to a recurrence relationship similar to (1),
with the difference that (i) NP replaces ND, and (ii) the upper bound on M is O(r2+ε), rather
than O(r2 log2 r); this, however, has no effect on the asymptotic solution of the recurrence.
That is, we obtain that the maximum number of PPT-vertices that appear on the boundary
of the union at a recursive step, involving NP α′-fat dihedral wedges (which behave like pairs
of planes) and NT α-fat tetrahedra, is O((NP + NT )N1+ε

P ), for any ε > 0.

The number of DPT-vertices. Here too we bound the number of DPT-vertices using a
separate recursive analysis, where, at each step, we have a subproblem within some simplex
∆0, involving a set D = D∆0 of dihedral wedges whose boundary edges cross ∆0, a set P = P∆0

of pairs of planes, at least one of which crosses ∆0, and a set T = T ∆0 of tetrahedra, so that,
for each T ∈ T , at least three of its facets cross ∆0. Put ND = |D∆0|, NP = |P∆0 |, and
NT = |T ∆0 |. Initially, ∆0 is a (clipped) vertical triangular prism, as above.

We choose some sufficiently large constant parameter r, and draw three random samples,
each of which consists of O(r log r) planes, which contain the facets of the wedges of D∆0,
the facets of the wedges of P∆0 , and the facets of the tetrahedra of T ∆0 , respectively. Let R
denote the union of the three samples. We form the arrangement A(R), and triangulate each
of its cells, using, as usual, the Dobkin-Kirkpatrick hierarchical decomposition.

We obtain O(r3 log3 r) simplicial cells in the decomposition. Assuming that the drawn

18



samples are good, we may assume consequently that each of these cells ∆ is crossed by at most
ND/r dihedral wedges of D∆0, at most NP /r dihedral wedges (bounded by the pairs of planes)
of P∆0 , and at most NT /r tetrahedra of T ∆0. Each edge of any tetrahedron in T ∆0 crosses at
most O(r log2 r) cells, and the overall number of simplicial cells, each of which meets at least
three facets of a fixed tetrahedron T ∈ T ∆0 , is O(r log2 r). Each edge ℓ of a dihedral wedge of
D∆0 crosses only O(r log2 r) cells, so the overall number of wedge-cell crossings, for which the
edge of the wedge appears in the cell, is O(ND · r log2 r). In any other crossing of a cell ∆ by
a dihedral wedge, the wedge behaves like a pair of planes, at least one of which crosses ∆.

The decomposition therefore generates, within each simplicial cell ∆, vertices of type PPW,
DPW, PPT, and DPT. The number of vertices of the first three types is nearly-quadratic, by
the bound in [24] and by the preceding analysis, and the number of DPT-vertices, within each
cell ∆, is bounded recursively. As in the original recursive scheme, presented in Section 2.3, at
each step of the recursion, we only need to bound the number of new PPW, DPW, and PPT
vertices within ∆. Each such vertex is incident to the boundary of a dihedral wedge in D∆0, a
plane in (a pair in) P∆0 , and a tetrahedron in T ∆0. We can refine the quadratic bound on the
number of these vertices using the following variant of the partition trick. That is, suppose,
without loss of generality, that ND ≤ NP ≤ NT . Partition T ∆0 into ⌈NT /NP ⌉ sets, each of
size at most NP . Bound separately the number of DPT vertices of the above kind for D∆0,
P∆0 , and each subset of T ∆0 . The bound is O(N2+ε

P ), for any ε > 0, within each of these
subproblems, for a total of

O

(

N2+ε
P ·

NT

NP

)

= O(NT N1+ε
P ),

for any ε > 0. Considering also the other symmetric cases, we have thus shown that the number
of new PPW, DPW, and PPT vertices is O ((NDNP + NDNT + NP NT ) · max{ND,NP ,NT }

ε),
for any ε > 0.

We do not have to process in further recursive steps dihedral wedges of D∆0 whose edge
does not meet the current cell ∆, as well as tetrahedra of T ∆0 with at most two facets meeting
∆, since the DPT-vertices that they induce have already been counted.

At the bottom of the recursion (when min{ND,NP ,NT } ≤ c, for some absolute constant
c ≥ 3), we bound the number of the remaining inner DPT-vertices of the union in a brute-force
manner, and thus obtain an overall bound of O(NDNP NT ) = O(NDNP + NDNT + NP NT ) on
this number.

Let U2(ND, NP , NT ) denote the maximum number of DPT-vertices that appear on the
boundary of the union at a recursive step within some simplex ∆0, involving a set D∆0 of ND

dihedral wedges, a set P∆0 of NP pairs of planes (dihedral wedges whose edge does not cross
∆0), and a set T ∆0 of NT tetrahedra. For each i ≥ 1, consider those cells ∆ for which

1

2ir
< max

{

ND∆

ND
,
NT ∆

NT

}

≤
1

2i−1r
.

Since, as argued above,
∑

∆ ND∆ = O(ND ·r log2 r), and
∑

∆ NT ∆ = O(NT ·r log2 r), it follows

that the number of cells ∆, satisfying the above inequalities, is O(2ir2 log2 r). Moreover, all
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cells appear in these counts, because, by construction, we have ND∆ ≤ ND/r and NT ∆ ≤ NT /r,
for each cell ∆. Hence, U2 satisfies the following recurrence:

U2(ND, NP , NT ) ≤























O ((NDNP + NDNT + NP NT ) · max{ND, NP , NT }ε)+

∑
log

“

M

r2 log2 r

”

i=0 O(2ir2 log2 r)U2

(

2ND

2ir
, NP

r
, 2NT

2ir

)

, if min{ND, NP , NT } > c,

O(NDNP + NDNT + NP NT ), if min{ND, NP , NT } ≤ c,

where ε > 0 is arbitrary, c ≥ 3 is an appropriate constant, M = O(r3 log3 r) is the overall
number of cells in the decomposition (at the current recursive step), and the non-recursive
terms also depend on r (and on ε, α). Again, it is easy to verify that the solution of this
recurrence is U2(ND, NP , NT ) = O ((NDNP + NDNT + NP NT ) · max{ND,NP ,NT }

ε), for any
ε > 0, with a constant of proportionality that depends on ε and on α (see also [16] for similar
considerations).

This finally completes the analysis, and establishes Theorem 2.1. 2

3 The Union of α-Fat Triangles in the Plane

Let T be a collection of n α-fat triangles in the plane (i.e., each angle of any triangle is at
least α). In this section we follow a simple variant of our approach to the three-dimensional
problem, and derive a nearly-linear bound on the combinatorial complexity of the union of the
triangles in T .

We first draw a random sample R of O(r log r) of the lines containing the edges of the tri-
angles in T , for some sufficiently large constant parameter r, and form the arrangement A(R).
We then triangulate each cell of the arrangement, using, e.g., bottom-vertex triangulation.
The number of the resulting triangles (we will call them simplices, to avoid confusion with
the triangles of T ) is M = O(r2 log2 r), and, with high probability, each of these simplices is
crossed by at most n/r edges of the triangles in T . We can therefore assume that our sample
has this property. Thus the resulting decomposition is a (1/r)-cutting for the edges of T , and
the simplices are the cells of this cutting.

Similarly to the original problem, we fix a triangle T ∈ T , and a cell ∆ of the cutting
that T meets, and classify T as being either a W-triangle in ∆, if ∆ meets only one or two
edges of T , or a T-triangle in ∆, if ∆ meets all the three edges of T . As a consequence, each
intersection vertex v of the union boundary that appears in ∆ is classified as being either WW,
if the two edges that are incident to v belong to two respective W-triangles in ∆, WT, if one
of these edges belongs to a W-triangle and the other belongs to a T-triangle, or TT, if both of
these edges belong to two respective T-triangles. (In all three cases, the relevant triangles are
distinct.)

We next observe the easy fact that, for any triangle T ∈ T , there is only a single cell of the
cutting that meets all three edges of T ; see Lemma 2.4 and Figure 6.

We now apply a recursive scheme, similar to that used in the three-dimensional setup. Let
∆ be a simplex of the cutting and let W∆ (resp., T ∆) denote the set of W-triangles (resp.,
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T-triangles) within ∆. Put N∆
W := |W∆|, and N∆

T := |T ∆|. The preceding observation implies
that

∑

∆ N∆
T ≤ NT , where NT is the overall number of triangles.

During each step of the recursion, we immediately dispose of any new WW- and WT-
vertices within each subcell ∆, and continue to bound the number of TT-vertices recursively.
The recursion bottoms out when NT ≤ c, for some absolute constant c ≥ 2. In this case the
number of the remaining intersection vertices of the union (within the current ∆) is O(1).

To bound the number of WW-vertices in ∆, we replace each triangle in W∆ by the equiv-
alent halfplane or wedge, and face the problem of bounding the overall number of vertices
appearing on the boundary of the union of N∆

W halfplanes and α-fat wedges (that is, wedges
whose angle is at least α). As shown in [14], the number of such vertices is O(N∆

W ). As we
will shortly show, the number of WT-vertices in ∆ is O

(

(N∆
T + N∆

W ) · (N∆
W )ε

)

, for any ε > 0.
Summing over all ∆, and using the fact that r is a constant, we get the overall bound O(N1+ε

T ),
for any ε > 0.

Let U1(NT ) denote the maximum number of intersection vertices that appear on the bound-
ary of the union at a recursive step involving NT triangles. For each 1 ≤ i ≤ log (M/r), where
M = O(r2 log2 r) is the overall number of cells in the cutting, the number of cells ∆ with
NT

r2i < N∆
T ≤ 2NT

r2i is at most 2ir, and this also holds for the set of all the remaining cells

(with N∆
T ≤ 2NT

r2i , where i = log (M/r) + 1). Recall also that N∆
T ,N∆

W ≤ NT

r always holds, by
construction. Hence U1 satisfies the recurrence:

U1(NT ) ≤











O
(

N1+ε
T

)

+
∑1+log (M

r )
i=1 2ir · U1

(

NT

r2i−1

)

, if NT > c,

O(1), if NT ≤ c,

where ε > 0 is arbitrary, c ≥ 2 is an appropriate constant, and the constants of proportionality
in the non-recursive terms depend on r (and on ε, α). Note that we process recursively only
the T-triangles, since vertices incident to W-triangles are estimated and discarded immediately
before processing the new recursive step.

It is easy to verify that the solution of this recurrence is U1(NT ) = O(N1+ε
T ), for any ε > 0

(slightly larger than the ε in the non-recursive term, but still arbitrarily close to 0), with a
constant of proportionality that depends on ε and on α.

The number of WT-vertices. To complete the analysis, we next establish a near-linear
bound on the number of WT-vertices. The analysis somewhat resembles the derivation of
the upper bound on the number of PPT-vertices in Section 2.4. We have, at each step, a
subproblem within some simplex ∆0, involving a set W = W∆0 of wedges, whose boundaries
cross ∆0, and a set T = T ∆0 of triangles, so that, for each T ∈ T , all three of its edges cross
∆0. Put NW = |W∆0 |, NT = |T ∆0|.

We first draw a random sample R ⊂ W∆0 of O(r log r) wedges, for some sufficiently large
constant parameter r, form and triangulate the arrangement A(R), and collect only the cells
in the complement of the union of these wedges. Since the wedges are all α-fat, it follows by
the analysis of [14] that the overall number of these cells is O(r log r) (where the constant of
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proportionality depends on α). Arguing as above, we may assume that each subcell ∆ of the
resulting decomposition is crossed by at most NW /r wedge boundaries in W∆0 , and there is
at most one cell that meets all three edges of any fixed triangle T ∈ T ∆0 .

In this problem, the decomposition generates only two types of vertices that we need to
bound: new WW-vertices (those that are incident to the boundary of at least one triangle
that had been a T-triangle in the parent cell), which we dispose of immediately, and WT-
vertices, which we process recursively. Using [14] and arguing as above, the number of new
WW-vertices is O(NW + NT ). The recurrence bottoms out when min{NT ,NW } ≤ c, for some
constant c ≥ 2; we then bound the number of the (remaining) WT-vertices, using brute force,
by O(NW + NT ).

Let U2(NT , NW ) denote the maximum number of WT-vertices that appear on the boundary
of the union at a recursive step within some simplex ∆0, involving a set W∆0 of NW wedges
and a set T ∆0 of NT triangles. Arguing as above, one can show that U2 satisfies the following
recurrence:

U2(NT , NW ) ≤











O(NW + NT ) +
∑1+log M

i=1 2i · U2

(

2NT

2i , NW

r

)

, if min{NT , NW } > c,

O(NW + NT ), if min{NT , NW } ≤ c,

where M = O(r log r) is the overall number of cells in the decomposition (at the current
recursive step), c ≥ 2 is an appropriate constant, and the non-recursive terms depend also on
r (and on α). Again, it is easy to verify that the solution of this recurrence is U2(NT ,NW ) =
O ((NT + NW ) · NW

ε), for any ε > 0, with a constant of proportionality that depends on ε
and on α. This completes the analysis, and establishes the following result:

Theorem 3.1 The complexity of the union of n α-fat triangles in the plane is O(n1+ε), for

any ε > 0, where the constant of proportionality depends on ε and α. The bound is almost

tight in the worst case.

Remark: The bound is not as sharp as the one obtained in [22, 25]. We note that the
dependence on α is the same as that for the union of α-fat wedges. Since the latter dependence
is only proportional to 1

α log 1
α [25], the same holds for the union of fat triangles.

4 Conclusions

In this paper we have solved a major open problem in the study of the union of objects in
three dimensions, which has resisted a solution for over a decade. Yet, there is still a small
remaining gap between our upper bound on the complexity of the union of n α-fat tetrahedra
and the corresponding lower bound Ω(n2α(n)) (which we conjecture to be tight). Closing this
gap remains a challenging open problem.

A natural open problem is to extend the new machinery presented in this paper to the
problem of bounding the union of other families of geometric objects in 3-space. One such
problem concerns the union of cylinders (with arbitrary radii); a nearly-quadratic bound is
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known only when all the cylinders have equal radii [2]. Another related problem is to obtain a
nearly-quadratic bound on the complexity of the union of n arbitrary α-fat convex objects of
constant description complexity (that is, convex objects c, for which there exist two concentric
balls, B ⊆ c ⊆ B′, such that the ratio between the radii of B′ and B is at most α, for some
fixed α > 1). Weaker goals would be to prove this only for nearly equal objects of this kind,
or obtaining a subcubic bound for the union of such objects of arbitrary sizes.

Acknowledgments. The authors wish to thank Boris Aronov for useful discussions concern-
ing the problem, which have led to an earlier simple proof of Lemma 2.3. The authors also wish
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