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Abstract. Let ~'t . . . . .  3% be m simple Jordan curves in the plane, and let 
K 1 . . . . .  K m be their respective interior regions. It is shown that if each pair of 
curves 7i, ~'j, i ~ j ,  intersect one another in at most two points, then the 
boundary of K =1.)~"= 1Ki contains at most max(2, 6m - 1 2 )  intersection points 
of the curves y,, and this bound cannot be improved. As a corollary, we 
obtain a similar upper bound for the number of points of local nonconvexity 
in the union of rn Minkowski sums of planar convex sets. Following a basic 
approach suggested by Lozano Perez and Wesley, this can be applied to 
planning a collision-free translational motion of a convex polygon B amidst 
several (convex) polygonal obstacles A 1 . . . . .  Am. Assuming that the number 
of corners of B is fixed, the algorithm presented here runs in time O(n log2n), 
where n is the total number of comers of the Ai's. 

I. Introduction 

In this paper  we consider the following restricted instance of the Piano Movers'  
problem [18]: Given a convex polygonal body B, free to translate (but not to 
rotate) in a 2-dimensional open region bounded by a collection of m convex 
polygonal obstacles A 1 . . . . .  A,,, and an initial and final configurations of B, we 
wish to determine whether there exists a (purely translational) continuous ob- 
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stacle-avoiding motion of B between the two given configurations, and if so plan 
such a motion. In the more general problem considered in [18], the object B is 
also free to rotate. This leads to a more difficult problem, whose best solution to 
date runs in time O(n21og n) ([10], [20]; cf. also [14], [15]). Nevertheless, as noted 
in [11], in pragmatic applications it may be sufficient to consider only purely 
translational motions of B, or at most translational motions interleaved with one 
rotation, which is done in areas relatively "free" of obstacles. This simplified 
version of the motion planning problem has been considered by Lozano-Perez 
and Wesley in [11], and also in [16] (where B is assumed to be a circular disc, and 
where an O(n log n) motion planning algorithm is presented for this special case). 
The method presented by Lozano-Perez and Wesley [11] for the case of a 
polygonal object is given only in general terms, and no complexity analysis is 
provided. In this paper we follow the general scheme of [11], but develop it into 
an efficient algorithm which runs in time O(n logan), where n is the number of 
obstacle corners. The algorithm is based on an interesting property of the union 
of  certain Minkowski sums of convex 2-dimensional objects, which, in turn, is a 
simple consequence of the topological theorem for Jordan curves stated in the 
abstract and proved in Section 3. Some higher-dimensional generalizations of this 
result are discussed in Section 6. Section 2 introduces basic notation and 
terminology, and reviews the technique of Lozano-Perez and Wesley. Sections 4 
and 5 present our efficient motion planning algorithm, and concluding remarks 
are given in Section 6. 

2. The Approach of Lozano-Perez and Wesley to Translational Motion Planning 

Before describing this approach, we begin with a few basic definitions. 

Definition 2.1. The Minkowski (vector) difference of two planar sets A and B, 
denoted by A - B, is the set ( Pl - P2 : Pl ~ A, P2 ~ B }. 

Definition 2.2 (see [6]). The point p is a local nonconvexity point of a set S if 
each neighborhood of p contains two points x, y ~ S such that the segments 
(px),(py) c_ S and the segment (xy) is not contained in S. 

We will denote the interior of a set A by int(A), and the boundary of A by 
bd(A). 

The motion planning problem studied in this paper can be stated as follows. 
Let B be a convex polygon in the plane, and let A 1 . . . . .  A,, be m closed convex 
polygonal obstacles, having disjoint interiors. B is free to translate in the plane, 
but  must avoid collision with any of the obstacles. The observation in [11] is that 
we can replace this problem by that of planning a collision-free path for a single 
point between two specified positions amidst the "expanded obstacles" K i = 
A i - B, i --1 . . . . .  m. (In these differences we use a standard placement of B, and 
it is also assumed that the origin falls on a point p of (this placement of) B). This 
modified problem is immediately solved, once we have computed the complement 
of  the union of the expanded obstacles K ~= (UT'=IKi)% which is the set FP of 
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free placements of the reference point p of B. Hence computing K is one of the 
main goals of this work. 

It  is easily seen that K is bounded by a collection of polygonal curves. Each 
convex corner of K is a convex corner of one of the expanded obstacles Ki, 
whereas the remaining corners of K are points of local nonconvexity, each of 
which is an intersection of the boundaries of two of the expanded obstacles. 

To find the convex corners of K, we can use the well known fact (cf. [2], [7]) 
that the difference A - B of two convex polygons A, B in the plane, having p, q 
corners respectively, is a convex polygon having at most p + q corners. An 
algorithm that finds the corners of A - B in time linear in p + q is presented in 
[21. 

Assume that B has k corners, and that the total number of corners of the 
obstacles A 1 . . . . .  A,, is n = ET'=ln,. The total number of convex corners of K is 
Y~,~l(n, + k )  = n + mk, so that if k is bounded by some fixed constant (as may 
well be the case in practice) then the number of convex corners of K is O(n).  In 
the following section we will show that the number of corners of local nonconvex- 
ity of K is only O(m), where this property also holds for general convex sets 
Ai, B. This will therefore imply that the total number of corners of K is O(n).  

3. The Union of Planar Jordan Regions 

In this section we derive an estimate on the number of points of local nonconvex- 
ity in the union of Minkowski differences of the sort considered above. This 
estimate will imply that the complexity of such a union is not too large, and that 
it can be calculated rather efficiently. 

Theorem 3.1. Let  A 1 . . . .  , A,,, B be closed convex sets in the plane such that 
A 1 . . . . .  A ,  have disjoint interiors, and let K, = A, - B for i =1  . . . . .  n. Then K = 
U~'= IK, has at most max(2,6n - 12) points of  local nonconvexity. 

Theorem 3.1 is, in fact, an easy consequence of a general topological result 
(Theorem 3.2) on families of Jordan curves. To formulate this, we need some 
preparation. 

A collection F =  {'/i}~=1 of simple closed Jordan curves in the plane is 
admissible if for each i 4: j the intersection -f, N "tj consists of two crossing points 
or is empty. 

Remark. A similar notion as defined in [5, p. 55] is that of an arrangement of 
curves in the plane. There one requires every pair of curves ~/i, "/i in the 
arrangement to intersect in two crossing points. Our admissible collections are 
also mentioned in [5, p. 68], and are called there weak arrangements of  curves, but 
the issues that concern us here are not discussed in [5]. 

For a simple closed Jordan curve y let K ( y )  denote the closure of the interior 
region bounded by ~,; thus y = bdK(y ) .  For a collection F = ( ' y i } n =  1 of such 
curves let K ( F )  =UT_IK(~,i). Suppose F is admissible, and let I ( F ) = U ,  ,)(Yi n 
yj), and E ( F )  = I(F)c3 bdK(I ' ) ;  thus I ( F )  is the set of all intersection points of 
the curves in F, whereas E(F)  is the set of all such intersection points which lie 
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on the boundary of K(F) .  Trivially the cardinality # I ( F ) <  n ( n - 1 ) ,  and this 
bound is easily achieved for any n. However, we will prove 

Theorem 3.2. Suppose F =  { i},-1 is an admissible collection of simple closed 
Jordan curves, l f  n > 3 then # E ( F )  < 6n -12 .  Moreover for each n > 3 there exist 
admissible collections I'~ of n curves for which # E ( F , )  = 6n - 12. 

Remark. It is not  hard to modify the proof so that the Theorem also holds for 
any collection F = { "/~ } i% 1 of simple closed Jordan curves for which # (-/t N 7j ) < 2 
for i :~ j .  We will refer to such collections as being weakly admissible. 

Proof of Theorem 3.2. Assume without loss of generality that our curves are in 
generalposition, i.e. no three of them have a point in common. (Otherwise we can 
slightly deform some of the 7~'s, without decreasing # E ( F ) ,  so as to satisfy this 
condition.) A c u r v e  ~/i E I ~ is called redundant if Yi cUj*iK(yj)"  Let 

r l (F  ) = # (redundant curves in F } 

r2(F ) = # { ( i, j) l i  q: j ,  yif3 yj q:~ } 

r3(F ) = # ( ( i ,  j ,  k )li, j ,  k are distinct, K( ' / i )n  K(  y j ) n  K(Yk) ~ }. 

The proof will proceed by induction on the quadrupoles r ( F ) =  [r,(F)]3=l in 
lexicographical order. The basis for the induction is provided by Proposition 3.3 
below, which assumes that only r2(F ) is nonzero. Each of the remaining induction 
steps in the proof of the theorem proceeds by taking an admissible collection F 
and deforming or eliminating some of its curves to obtain a new admissible 
collection F '  having a simpler structure (that is r ( F ' ) <  r(F)) but such that 
# E ( F ' )  > # E ( F ) ,  so that the induction hypothesis implies the desired inequality 
for F too. 

Proposition 3.3. Suppose F = {Y/}i%l is an admissible collection of curves in 
generalposition, and rt(I" ) = r3(I" ) = O. Then # E ( F )  < 6n - 12. 

Proof. First note that in this special case we have E(F)  = I(F).  For each i ~ j 
the set I~j = "6 N K(yj) is a closed, connected (possibly empty) arc. For each i let 

D i = K(yi) -  ~.J (intyj) .  

Then Di is nonempty and bdD i is a simple closed Jordan curve, and in fact 

For  each i choose an arbitrary point p~ ~ intD i, and for each j #= i, if yj N y~ ~ O 
choose an arbitrary point qij ~ Iji which is not an endpoint. Then we can connect 
p~ to all such qij by simple arcs aij which are pairwise non-intersecting except at 
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~ ~ Y j  Fig. I 

p,, and contained in intD, except for their endpoints q,j. Likewise we can connect 
q,/ to qjj by a simple arc flij = flji contained in the interior of the simple closed 
Jordan curve l,j U 1j, (this interior being also equal to intTi t~ int,6). See Fig. 1 
for an illustration of these concepts. 

We obtain this way a graph G(I') whose vertices are the points pi such that 
for each i 4 : j  for which y;N- / j~ ,  G(F) contains the edge Otijt..)flijl,.)Olji 
connecting Pi and pj. The above discussion plainly implies that G(F) is a planar 
graph. Hence 

e(G(r)) _< 3v(G(F)) - 6, 

where e (G(F) )  and v(G(F)) denote the number of edges and the number of 
vertices of G(F),  respectively. But v ( G ( F ) ) =  n and e ( G ( F ) ) =  ½ # E ( F ) ,  which 
implies the proposition. [] 

Assume now that F is any admissible collection of curves in general position, 
and that Theorem 3.2 is true for all collections with the same properties, 
preceding F lexicographically. 

Step 1. If r l(F ) > 0, then choose a redundant curve 7i in F, and replace F by 
F'= F - (  "6 )- Clearly F'  remains admissible and in general position, #E(F ' )_>  
~=E(F), while r l (F '  ) < rl(F), so that the induction step in this case is completed. 

Step 2. Suppose that F =  {y~}7~, is admissible, in general position, rl(F ) =0 ,  
and r3(F ) > 0. Without loss of generality we may assume that K(y1)N K(y2)A 
K(y3) : ~ ,  and that for some k > 3  we have 3qnK(Yi)  = I i4 :~  for i < k ,  and 
":i n-/, = ~  for i > k. The following lemma is trivial (use e.g. Schoenfliess' 
Theorem, cf. [12]). 

Lemma. Let A = {z ~ C[ ½ < [z[ _< 2}. After applying a homeomorphism of the 
plane onto itself we may assume 

1. 71 is the unit circle S t. 
2. F o r i >  k, K ( ' f i ) N A = O .  
3. For i = 2  . . . . .  k we have K ( y i ) f ~ A = ( z ~ A [ a i < a r g z < b i }  for ap- 

propriate directions a i, b i. (See Fig. 2.) 
Suppose now that I' is as in the Lemma, so that (Ii}~=z are angular intervals 

on S 1. 
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rl 

Fig. 2 

k ilj, Subcase A. If  for some i = 2  . . . . .  k the interval I i is a subset of  Uj~2.j~ 
replace 1'~ by 

= "t, - { z e C l l z l  <_ } u { z e C l l z l =  3 } .  

(See Fig. 3.) 
The resulting collection is still in general position, r 1 = 0, but r 2 is smaller. 

Indeed  7"  n '/1 = 0  whereas 7i n 71 ~ : ~ ,  and n o  new intersections are added: if 
7,* intersects some 7j for j ~ 1, i so did ~,~. Fur thermore # E ( £ )  has no t  changed, 
since the two eliminated intersections did not belong to E (F ) .  Thus the induction 
step can now be completed in this case. 

Subcase B. Suppose finally that F is as above, but that  for each i = 2 .... , k the 
interval I i is not  contained in U ~ 2  j , i l j .  Since r l (F ) = 0 we may assume that 
1 ~ S l - U ~ , l K ( y i ) .  Let I~ = {z ~ S~]a~ < argz <_ b~}. Since F is in general posi- 
tion, the a~'s and bi's are all distinct. Also, since we now assume that  no I~ is 
conta ined in Uk~2 j~ i i j ,  we may assume that  a 2 < a 3 < b 2 < b 3, and  also that 
0 < a 2 < a 3 < • • • < a k < 2~r. But then we can replace 72 by 

312" = Y2-- (z[  [ z [ < ~ } - -  {z I [ z [ < ~ , a r g z = b 2 }  

U zl I z l = 3 , a 2 < - a r g z < - - - - - - ~  - -  

( 3  3 a2-I-a3} 
u z l - ~ < _ l z l < _ 2 , a r g z = ~  

u(zl izl =3 a 2 + a 3  } 2 ' 2 < argz  < b 2 . 

)"i 

Fig. 3 
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In other words, we pull Y2 and 3'3 somewhat apart, so as to move their 
intersection point within K(3'1 ) to the exterior of that region (see Fig. 4). 

It is easily seen that this deformation of 3'2 keeps rl(F ) equal to zero, and 
does not increase r2(F ). Furthermore, r3(F ) has decreased, because now K(Tt)N 
K(3,2 ) (~ K(y3) = ~5, whereas # E ( F )  has not decreased. Thus the induction step is 
completed in this case too, thereby completing the proof of the first part of 
Theorem 3.2. 

To show that the bound obtained is actually tight in the worst case, we give 
an example in which the curves in F are all circles (F is always (weakly) 
admissible in this case). We draw n >_ 3 circles in the plane as follows. The first 
three circles are drawn so that each pair of them intersect, and such that their 
union is homeomorphic to an annulus, i.e. has a hole in the center. Then, 
inductively, we draw each additional circle inside a hole bounded by three arcs of 
previously drawn circles so that it intersects each of those arcs at two points, 
thereby leaving three smaller holes out of the original hole (see Fig. 5). 

Thus the first three circles contribute six points to E(F)  and each additional 
circle contributes six more points, yielding altogether 6 n - 1 2  points in E(F).  
This completes the proof of the theorem. [] 

Remarks. (1) If we relax the requirement that each pair of the curves in F 
intersect in at most two points, the size of E(F) can increase significantly. For 
example, if each pair of curves in F is allowed to intersect as much as a maximum 
of four times, # E ( F )  can become f~(n2). 

Fig, 5 
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(2) Theorem 3.2 can be generalized to the case of Jordan curves on the unit 
sphere S 2, where each curve 7, partitions S 2 into an "interior" region and an 
"'exterior" one. Indeed, if the union K of the closures K(7~) of the interiors of the 
curves -/~ is the whole of S 2 then there is nothing to prove. Otherwise choose a 
point p in S 2 - K  and map S 2 - ( p }  onto the plane, thereby reducing the 
situation to that assumed in Theorem 3.2. 

(3) As already noted, if each curve y~ is a circle then clearly F = {'/~ },~= 1 is 
admissible. In this special case however the property established in Theorem 3.2 is 
already known; it follows for example from the properties of Voronoi diagrams 
for a set of intersecting discs in the plane (cf. [8], [19], [23]). Another proof was 
given by Pach (cf. [21]). 

(4) A result related to Theorem 3.2, concerning the maximal number of 
"osculation points" of admissible collections of Jordan curves appears in [4]. 

Proof  o f  Theorem 3.1. By an easy compactness argument, it suffices to prove the 
assertion in the special case where (i) the sets A 1 . . . . .  A,, are disjoint, and (ii) each 
of A 1 . . . . .  A n and B has a smooth, strictly convex boundary. However, in this 
case we have 

Proposition 3.4. For every pair i, j (1 < i 4: j <  n ), bd ( A , - B )  and bd ( A j - B)  
have at most two points in common. 

Proof. Assume the contrary, and let c 0 = supc, where the supremum is taken 
over all c > 0 for which Ibd(Aj  - c 'B)N b d ( A j  - c'B)l < 2 for all c ' <  c. 

If there exists a point p ~ bd(A~ - c o B ) A  b d ( A j  - cob  ) such that Aa - coB 
and Aj - coB have a common supporting halfplane at p, then it is easy to show 
that A t A Aj :~ O, which contradicts our assumptions. If such a point does not 
exist, then it is easy to check that one can find a sufficiently small positive 8 with 
the property that l b d ( A ~ - c B ) n b d ( A j - c B ) l  is constant on the interval 
(c o - 8, c o + 8), contradicting the definition of c 0. Details are left to the reader. [] 

Proposition 3.4 implies that {bdK i }~'_ 1 is a (weakly) admissible collection of 
closed Jordan curves. (As a matter of fact, slightly perturbing B we can also 
assume that (bdK i }7= 1 is admissible.) Since every point of local nonconvexity of 
K =LI~_IK i is an intersection of two different b d K / s ,  Theorem 3.1 now follows 
immediately from Theorem 3.2. [] 

Remark. Going back to the original problem of planning a purely translational 
motion of a convex object B amidst convex interior-disjoint obstacles A 1 . . . . .  An, 
Theorem 3.1 can now be interpreted as stating that there exist at most 6 n -  12 
positions of B in which it touches simultaneously two distinct obstacles, assuming 
that these obstacles are in general position, meaning that no two sides of the 
expanded obstacles K~ overlap. 

4. Efficient Calculation of K 

In this section we describe an efficient algorithm which calculates the contour (i.e. 
boundary) of K =[.I~.IK ~ (see Section 2). The algorithm is based on a method 
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due to Ottman, Widmeyer and Wood [17] for calculating the boundary of the 
union of several superimposed polygonal planar regions, which is related to a 
technique due to Bentley and Ottmann [3] for counting and reporting intersec- 
tions in a collection of planar line segments. These techniques run in time 
O((n + t)logn), where n is the number of line segments, and t is the number of 
intersection points between these segments. Since naive application of these 
techniques to the expanded polygons bdK 1 ... . .  bdK,,, may encounter quadrati- 
cally many intersections of these sets, we therefore combine this technique with 
the following divide-and-conquer approach. 

Algorithm (Divide and conquer algorithm for the calculation of UK~.) 
1. Calculate all the K~'s. 
2. Recursively find G =13, ~gK i and H =UiEhKi, where 

3. Find the contour of K = G U H, using the Ottmann-Widmeyer-Wood 
approach. 

Following Theorem 3.1, step 3 of the algorithm runs in time O(n log n), since 
it implies that the number of corners in G and H, as well as the number t of 
intersection points between them, is O(n). Hence the algorithm's time complexity 
is O(n log2n). 

Remark. The above algorithm can be generalized in a straightforward manner, 
to yield an efficient algorithm for the calculation of the union K(F) for an 
admissible collection F of Jordan curves, assuming that each of the curves "t~ in F 
has a relatively simple shape. 

5. The Connected Regions of FP 

In this section we sketch an algorithm that provides us with a convenient 
representation of the connected components of FP, using an "inclusion tree" 
which can be constructed in time O(n logn). K =(3K, is a general, possibly not 
connected, planar region with polygonal boundaries. Since each edge of K is a 
border line between an expanded obstacle and FP, it is more convenient to 
describe the boundary of K as a set of simple polygons of two types: free simple 
polygons L, whose interior, in a sufficiently small neighborhood of L, is con- 
tained in FP, whereas their exterior, in a similarly sufficiently small neighbor- 
hood, is contained in the expanded obstacles, and non-free simple polygons that 
border expanded obstacles on their interior side and FP on their exterior side (see 
Fig. 6; in non-general positions of A~ .... , A n, B the structure of K may become 
more degenerate, but still manageable). 

The root of the inclusion tree T is the outermost boundary of K, if K c is 
bounded, or the entire plane otherwise, and is always free. A simple polygon L 1 
is a direct son of another polygon L 2 if L 1 is immediately contained in L2, i.e. 
there does not exist another simple boundary polygon contained in L 2 that 
includes L r 
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Fig. 6 

Each connected component C of FP can then be represented by a free node 
L of T and its direct (non-free) children L 1 . . . . .  t p .  Here L is the exterior 
boundary of C and L 1 . . . . .  Lp are the connected components of its interior 
boundary. This representation of K is easy to construct in time O(n log n) using a 
straightforward sweeping technique. 

Specifically, we sort all the corners of the boundary of FP in ascending x 
order, and process them from left to right, updating the list of intersections of FP 
with a vertical scan-line as it sweeps through each of these corners, in a manner 
similar to that described in [13]. Whenever the sweeping process encounters a 
leftmost corner of some component L of the boundary of FP, it locates the two 
boundary components L 1, L 2 lying immediately above and below L. Suppose L 
is non-free, if either LI or L 2 is free, then it must be the father of L in T; 
otherwise L1 and L 2 are both brothers of L in T; this enables us to insert L 
properly into 7". Similar and symmetric rules govern the handling of a free 
component L. 

Having this representation available, we can easily solve the original transla- 
tional motion planning problem as follows: given two placements Z1, Z 2 of (the 
reference point p on) B in FP, draw the segment ZIZ  2, and find the boundary 
component L~ (respectively L2) intersecting Z1Z 2 nearest to Z~ (respectively 
Z2). (If no such component exist, obviously B can be moved to Z 2 from Z~ along 
Z1Z2). Then locate L~, L 2 in the inclusion tree T, and determine from their 
relationship in T whether they bound the same connected component C of FP. If 
not, no motion between Z~ and Z 2 is possible. Otherwise a canonical (but 
non-optimal) motion of B from Z~ to Z 2 can be constructed in linear time by 
moving along Z~ Z 2, and by going around each boundary component of C which 
intersects Z~Z 2 from one such intersection to the next one; (see Fig. 7). 

Fig. 7 
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(The step that just decides whether Z 1 and Z 2 lie in the same connected 
component of FP can be performed by a faster (O(logn)) point location 
algorithm (as in [9]), after an alternative O(n log n) preprocessing of K).  

If one seeks optimal (shortest) motion from Z 1 to Z 2, one then faces the 
problem of computing shortest paths in 2-dimensional polygonal spaces, which 
can be done in time O(q 2) = O(n2), where q is the number of corners in the 
connected component C of FP containing Z 1, Z~ (see [1], [22]). 

6. Generalizations, Concluding Remarks 

Let X = (o, }'i'=1 be a collection of two dimensional surfaces in E 3 which satisfy 
the following properties: 

(i) Each o i is homeomorphic to the unit sphere S 2. 
(ii) For  each i ~ j ,  o, ¢3 oj is either homeomorphic to S 1 or is empty. 

(iii) For  each triple i, j ,  k of distinct indices, a, n oj n o k is either homeomor- 
phic to S o or is empty. 

For example, if each of the o, is a sphere then conditions (i)-(iii) hold, 
assuming non-degeneracy of the configuration of these spheres (that is, assuming 
that no pair of spheres is tangent to one another and that no sphere is tangent to 
the intersection curve of two other spheres; nevertheless, as in the 2-dimensional 
case, Theorem 6.1 below will also hold if such a degeneracy occurs). 

Let K(oi)  be the closure of the interior region bounded by o,, and let 
K(E)  =U~'=aK(o,). Denote by I ( ~ )  the set of all points of triple intersection of 
the surfaces in ~., and let E ( Z ) =  I ( X ) n  bdK(T£). We have trivially # 1 ( F ) <  
n ( n - 1 ) ( n - 2 ) / 3  and this bound can be easily achieved for an appropriate 
collection of n spheres. However we have 

Theorem 6.1. / f  X = { o, } 7= 1, n >_ 4, is a collection of two dimensional surfaces in 
3-space satisfying conditions (i)-(iii) listed above, then #E(Y.)  < 2n(n - 3). 

Proof Fix one of the surfaces o i and consider the collection of curves 3'j = oi n oj, 
j ~: i, drawn on it. Some of these curves can be empty, but each nonempty ),s is a 
closed Jordan curve on ai, and for each j ~ k 4= i we have #( l ' j  n ~k) -< 2. Hence 
we can define K(2/j) = oi t~ K(oj), for j ~ i, and apply Theorem 3.2 (or rather its 
generalization as in Remark (2) in Section 3) to the collection 17 = ( y } ,  i, to 
obtain # ( E ( X ) f 5  el) < 6(n - 1 ) -  12 = 6(n - 3). Repeating this argumen(for each 
of the surfaces o~, and observing that each point in E (E)  will be counted that way 
three times, we conclude that # E ( X )  < n /3 .6 ( n  - 3 )  = 2n(n -3 ) .  [] 

Corollary 6.2. Given n distinct balls B 1 . . . . .  B n in 3-space, no pair of which are 
tangent to one another, the number of triple intersections of these balls which lie on 
the boundary of their union is at most 2n(n - 3 ) .  

Remarks. (1) We do not know whether this bound is tight. However, even when 
the surfaces in X are all spheres, E(E)  can contain fl(n 2) points, so that in the 
worst case the above bound is tight up to a multiplicative constant. To see such 
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an example, let n = 2k; let ax,... ,  a k be k spheres whose centers are the points 
[cos(21ri/k), sin(2~ri/k),O], i= 1 . . . . .  k, and whose radii are all equal to some r 0 
lying strictly between sin(~r/k) and 1, so that the boundary of the union 
K 0 = t.J~= 1K(ai) is homeomorphic to a torus. Note that the intersection curves of 
these first k spheres, which lie on the boundary of K 0, are k circles ~'z . . . . .  ~'k of 
equal radii, such that the planes containing them all pass through the z-axis, and 
such that all these circles can be obtained by a revolution of one of them about 
the z-axis. The remaining k spheres are arranged so that their centers all lie on 
the z-axis, and such that each of them intersects each of the curves ~/i at a pair of 
points. By choosing the centers and the radii of these k additional spheres in an 
appropriate manner, we can ensure that each of these intersection points belongs 
to E(Y.), so that #E(Y.) = 2k 2 = nZ/2. 

(2) Theorem 6.1 can be generalized to surfaces of arbitrary dimension, in a 
straightforward way. In particular, this generalization will imply that for any 
collection of n (d - 1)-spheres in E d, the total number of points of intersection of 
d of these spheres which lie on the boundary of their union is O(nd-1). 

(3) The motion planning algorithm described in Section 4 has a straightfor- 
ward generalization to the case in which the obstacles A, can be non-convex. This 
follows from the fact that any non-convex polygonal obstacle is the union of 
openly disjoint convex sets, and Theorem 3.1 is valid for collections like that, too. 

(4) If the moving body B is non-convex, then FP can have ~(n  2) connected 
components. For example, take B to be an object consisting of two orthogonal 
segments meeting at a common endpoint, and let the obstacles be arranged as in 
Fig. 8. (We are indebted to S. Sifrony for this observation). 

(5) The generalization of the problems studied in this paper to three dimen- 
sions leads to the problem of planning collision-free translational motion of a 
convex polyhedral body among a collection of convex polyhedral obstacles in 
3-space. The problem of obtaining sharp bounds on the number of corners of the 
union of the corresponding expanded obstacles is still open. 
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Note added in proof  A n o t h e r  p r o o f  o f  C o r o l l a r y  6.2 is g iven  in [23]. I n  fact ,  the  
resul ts  o f  [23] i m p r o v e  the b o u n d  for  E d in R e m a r k  (2) a b o v e  to  O(n[d/2t) .  


