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Abstract—In this work, we investigate the relationship between

continuous-time autoregressive (AR) models and their sampled

version. We consider uniform sampling and derive criteria for

uniquely determining the continuous-time parameters from sam-

pled data; the model order is assumed to be known. We achieve

this by removing a set of measure zero from the collection of all

AR models and by investigating the asymptotic behavior of the

remaining set of autocorrelation functions. We provide necessary

and sufficient conditions for uniqueness of general AR models,

and we demonstrate the usefulness of this result by considering

particular examples. We further exploit our theory and introduce

an estimation algorithm that recovers continuous-time AR param-

eters from sampled data, regardless of the sampling interval. We

demonstrate the usefulness of our algorithm for various Gaussian

and non-Gaussian AR processes.

Index Terms—Sampling theory, approximation theory, sto-

chastic processes.

I. INTRODUCTION

C ONTINUOUS-TIME autoregressive (AR) models are
widely used in astronomy, geology, quantitative finance,

control theory and signal processing, to name a few. In prac-
tice, the available data is discrete, and one is often required to
estimate continuous-time parameters from sampled data. The
intertwining relations between the continuous-time model and
its sampled version play an important role in such estimation
tasks, and studying these relations is the main focus of this
work.
1) Continuous-to-Discrete Mapping: Within the context of

state space representation, point-wise values of continuous-time
state variables comply with a stochastic difference equation for-
mulation ([2], Chapter 3.10). The exponential relation between
the discrete- and the continuous-time poles can then be utilized
for mapping a stochastic difference equation back to its corre-
sponding stochastic differential equation [4], [7], [8], [32]. This
relation is invariant to the addition of integer multiples of ,
and the mapping of [32] avoids ambiguity by restricting the
imaginary part of the poles to be in the interval . Such a
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restriction also appears in [7], [8], which address the problem of
embedding a discrete-time ARMA model in a continuous-time
one. There is currently no closed-form expression for the zeros
of the sampled model [14], [32]. Their asymptotic properties,
however, are known for the limiting case of infinitesimally small
sampling intervals [36]: the zeros of the sampled model con-
verge to the exponential value of the continuous-domain zeros,
and the sampling process introduces additional zeros that con-
verge to the roots of an Euler-Frobenius polynomial. The rate
of convergence depends on the model order, and this contin-
uous-to-discrete mapping is useful in cases where the sampling
interval is considerably smaller than the characteristic time con-
stants of the model [23]. For larger sampling intervals, however,
one can rely on the exponential spline property of the AR auto-
correlation function and extract the zeros of the sampled model
from the -transform of the corresponding exponential B-spline
[21].
2) Algorithms: The lack of a closed-form expression has

led to the development of numerous estimation algorithms. Fi-
nite difference approximation of the derivative operator, for ex-
ample, was shown in [3] to map a continuous-domain AR(2)
model to a discrete-domain AR(2) model. The latter is then esti-
mated from the data while including a multiplicative correcting
term that accounts for the discretization error. A weighted-fi-
nite-difference approximation was considered for the general

case in [33]. The choice of weights is based on an opti-
mization procedure that maximizes the rate of convergence; the
model fitting is based on a least-squares criterion; and the imag-
inary parts of the complex poles are restricted to be in the in-
terval . Finite difference approximation was also consid-
ered in [28] by extending an estimation algorithm that observes
the data at an arbitrarily fine resolution, i.e., the estimation al-
gorithm assumes a sufficiently high sampling rate. This method
requires bias compensation, too, due to the discrete-domain zero
that is introduced by the sampling process. Taking an indirect
approach (cf. [22]), the algorithm of [27] fits available sample
data of a continuous-time AR(2) process with a discrete-do-
main ARMA(2,1) model and inverse-transforms the discrete-
domain parameters to their continuous-domain AR(2) counter-
parts. The continuous-domain zero is determined by solving a
set of linear equations that stem from the partial fraction decom-
position of the continuous-domain power spectrum; the imagi-
nary parts of the poles are restricted to . Discrete-do-
main ARMA models of higher orders were considered in [32];
the estimation method there relies on partial-fraction decompo-
sition and on restricting the imaginary part to , as well.
Similarly, the algorithms of [13], [39] require a large number of
sample values and a sufficiently high sampling rate.
Model ambiguity was also pointed out in [17] using a fre-

quency-domain point of view. Power spectra which occupy high
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frequencies may result in incorrect estimation, and the estima-
tion approach of [17] designates a bandwidth of validity for car-
rying out the estimation task. While no restrictions were im-
posed on the AR model order , the imaginary parts are still
assumed to be in . The frequency-domain estimator of
[16] approximates the autocorrelation function by means of a
polynomial spline. While demonstrating improved approxima-
tion properties, the polynomial spline model cannot prefer one
bandwidth over the other, and the reconstructed autocorrelation
function has most of its energy in the baseband, i.e., the algo-
rithm assumes a sufficiently high sampling rate. Non-quantita-
tive restrictions were introduced in [19]. Having the input signal
at one’s disposal, the identification method is based on filtering
both the input and the output signals with a set of predetermined
filters. The continuous-domain filtering operations are then ap-
proximated by means of finite-differences, and the model pa-
rameters are fitted with the available input and output values
using regression. Instead of limiting the imaginary part of the
AR poles, the work in [19] assumes that there is no other set
of continuous-domain poles that gives rise to the same input-
output relation; this set, however, is not provided or character-
ized. The estimator of [34] formulates a likelihood function by
means of the discrete-domain innovation process, and the op-
timization procedure is based on numerical approximation of
autocorrelation values. While no restrictions are stated, simula-
tion results describe baseband power spectra only; this implies
that the algorithm assumes a sufficiently high sampling rate.
The estimator of [4] formulates a likelihood function for gen-
eral processes, while relying on the state-space repre-
sentation of the sampled model. The algorithm assumes identi-
fiability (i.e., uniqueness) of the estimated model and convexity
of the likelihood function; yet, no proofs are provided in this re-
gard. A maximum likelihood estimator for a continuous-time
ARMA(2,1) model was proposed in [8] while restricting the
imaginary part of the poles to be in .
3) Evidence That Unique Identification From Sampled Data

Is Feasible: Model ambiguity can be overcome by a multi-rate
sampling procedure [12], but the question we are raising in
this work is whether there exists a set of continuous-domain

models for which the uniform sampling operator intro-
duces no ambiguity. The AR(1) model, for example, has an ex-
ponentially decaying autocorrelation function that can be ex-
actly reconstructed from its sampled version [29]. The two con-
tinuous-domain complex poles are mapped upon unit-
interval sampling to two discrete-domain poles and to a single
discrete-domain zero of 0.1155; the poles are
mapped to yet another zero, 0.1201. As a matter of fact, there is
no other pair of poles of the form where

that yields the same discrete-domain
zero as does. Pole ambiguity in such a case can be re-
solved by shifting the identified continuous-domain poles by an
integer multiple of the angular sampling frequency and by com-
paring the zeros of the sampled model with the zeros of the esti-
mated discrete-domain model ([26], Remark 7). This, however,
does not hold true in all cases, and ambiguity arises when con-
tinuous-time AR models are mapped to the same discrete-time
model, e.g., .
A related, yet different, problem is the embedding of dis-

crete-time ARMA models [7], [8], [18]. The problem of em-

bedding is to determine, given a discrete-time process, if there
is a continuous-time ARMA process that has the same autocor-
relation values at the integers. It requires one to find a set of
discrete-time models and a one-to-one mapping to the contin-
uous-time domain that is inverted by the sampling operator. In
our uniqueness problem, however, we seek to find a set of con-
tinuous-time models and a one-to-one mapping that inverts the
sampling operator.
4) Contribution and Organization of the Paper: In this

work, we revisit the ambiguity assumption of sampled con-
tinuous-time AR models by considering two subsets: 1) real
poles, 2) real and complex poles with minimal restrictions. We
show that the former introduces no ambiguity with respect to
all possible AR models, and we provide an explicit criterion
for the non-ambiguity property of the latter. In the AR(2)
case, for example, uniqueness holds for a pair of complex
poles when the imaginary part is an irrational multiple of ,
regardless of the sampling interval. To this aim, we introduce
two alternative AR representations and derive a closed-form
expression for the autocorrelation function. We utilize its
special structure—exponential spline and almost periodic prop-
erties—for extending our previous results on first and second
order processes [37]. Specifically, we provide necessary and
sufficient conditions for uniqueness of almost every
model. We then demonstrate the usefulness of this result by
considering particular values of . Furthermore, we exploit
our theory and introduce an estimation algorithm that recovers
continuous-time AR parameters from sampled data, while
imposing no sampling rate constraints. We successfully apply
it to Gaussian AR processes, as well as to non-Gaussian AR
processes with Lévy-type innovation.
The paper is organised as follows. In Section II, we describe

the estimation problem, and in Section III, we introduce alter-
native representations of AR processes. Section III contains
a closed-form expression for the autocorrelation function
too. In Section IV, we derive uniqueness results for general
trigonometric polynomials, and in Section V, we apply them to

models. We then introduce our estimation algorithm in
Section VI and demonstrate its performance in Section VII.

II. THE PROBLEM

We consider the general continuous-time model with
parameters vector

(1)

where is a Gaussian or non-Gaussian white noise process.
An equivalent representation using a stochastic integral is

(2)

where is a Brownian motion (in the Gaussian case) or a
more general Lévy process (in the non-Gaussian case) [30]. The
connection between both representations is

(3)

The white Lévy noise or innovation is a generalized sto-
chastic process that corresponds to the derivative of in the
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sense of distributions [15]. The shaping filter is given in
the Fourier domain by

(4)

where

(5)

The vector of parameters consists of the poles of . The
real part of each pole is strictly negative, and complex poles ap-
pear in conjugate pairs. Assuming that is white with finite
variance , the autocorrelation function of is given in the
Fourier domain by

(6)

where we assume for approximate stationarity. In this
work, we are interested in estimating from a sampled ver-
sion of while imposing no restrictions on the sampling in-
terval. We first investigate whether two continuous-time
models can yield the same discrete-time model and then intro-
duce an estimation algorithm. Without loss of generality, we as-
sume a unit sampling interval and . For simplicity, we
omit the notation when possible.

III. REVISITING AR REPRESENTATION

A. The Vector of Parameters

In this section, we introduce two new parameter vectors de-
scribing AR processes. The proposed representations are based
on decay rates, modulation, and pole multiplicities.We use them
to give an explicit formula for the autocorrelation functions of
AR processes and to place a measure on the space of
processes. These representations are intended to make the prop-
erties mentioned above more accessible. We therefore use all
three representations ( and the proposed ), as each has its
particular use.
As a starting point, we write

(7)

where the first poles are complex, and conjugate pairs ap-
pear sequentially. Additionally, for a given complex pair, we
require the one with positive imaginary part to be listed first
(Table I). Our first alternative representation is based on decay
rates and modulation values. It extends the AR representation
of [37] in the following manner,

(8)

where are the strictly negative real parts of the
poles, and are the strictly positive imaginary parts.
The vector is a point in and this identification can be made
unique by imposing a dictionary-type ordering:
� ;
� ;
� if , then .

TABLE I
THE RELATION BETWEEN AND

Fig. 1. Graphical representation of an AR(3) process: The representation is
composed of a plane and of a line, as shown in (a). The plane is used for de-
scribing two poles, either two reals or a complex conjugate pair, and the line
axis describes a single real pole. A numerical example is given in (b). The rep-
resentation provides a means of measuring subsets of AR models.

The difference in sign between the ’s and ’s allows us to
distinguish the two types of poles, so that there is no confusion.
Our graphical representation of is based on multiple copies of
and . In the case is even, we use copies of . In the

case is odd, we use copies of and one copy of
.
Example 1: The AR(3) model has two possible constella-

tions: (1) three real poles, e.g., , and (2) a
complex pair together with a real pole, e.g.,
(Fig. 1).
The second new parameter vector indicates multiplicities

of poles and will be used for obtaining an explicit formula of
autocorrelation functions. The vector

(9)

will be used to denote an process composed of the dis-
tinct poles . The multiplicity of a pole is represented by the
number following it in the parameter vector.
Definition 1: The collection of all parameter vectors corre-

sponding to models is . This is also the collection
of all parameter vectors or .
With the alternative representation in mind, we view

as a subset of , and the Lebesgue measure on provides a
means of measuring subsets of autocorrelation functions.
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B. The Autocorrelation Function

The rational form of is known to yield an autocorre-
lation function that is a sum of Hermitian symmetric exponen-
tials, as the result of a decomposition in partial fractions. The
explicit formula is obtained as follows.
Proposition 1: Let be a parameter

vector in , and let . A formula for the autocorrela-
tion function is given by

(10)

where

(11)

(12)

(13)

and denotes the principal square root of .
Proof: From (6), we see that

(14)

is a Green’s function for an operator whose symbol is a polyno-
mial in . A general multi-dimensional formula for such func-
tions is given in [6]. Here, we apply that more general result
to (6) in order to obtain the representation above. The corre-
sponding expression for is

(15)

As the order of the Bessel function is half of an odd integer,
an explicit formula is known, and using properties of the Bessel
function, we have

(16)

cf. ([38], p. 80). Inserting (16) into (15), we obtain (10).
Example 2: Let , with . For this set of real

poles, we have , so , and
. This leads to

(17)

Example 3: Let . For this set
of poles, we have , and . Therefore,

(18)

Example 4: Let consist of non-
repeating poles. Then,

(19)

(20)

IV. ASYMPTOTIC PROPERTIES

We characterize the relationship between a continuous-time
AR model and its sampled version in terms of the following
uniqueness property. When we restrict to the collection of
unique continuous-time models, there is a one-to-one mapping
into the discrete domain.
Definition 2: Two parameter vectors are equiv-

alent if there exists such that
for all . If is not equivalent to any distinct , then it is
unique.
The uniqueness property is related to linear combinations of

autocorrelation functions. Closed form expressions for the au-
tocorrelation functions are given in Proposition 1, and in the
examples following the proposition, we see how the structure
of the autocorrelation functions depends on the poles. In (10),
the real parts of the parameters determine exponentially
decaying terms, while the imaginary parts determine periods of
trigonometric polynomials. In the case of multiple poles, a poly-
nomial term multiplies the complex exponential. Linear combi-
nations of these functions also have the same basic structure.
Therefore, in this section we consider a general class of func-
tions that contains such linear combinations as a subset, and we
characterize the asymptotic behavior of this general collection
of functions.
Definition 3: We denote by the class of functions of the

form

(21)

where and each is a trigono-
metric function. The latter is a finite sum of the form

(22)

with real ’s, ’s, ’s, and ’s.
In the previous definition, is an almost periodic function,

which means that for any there are -almost-periods
such that

(23)

cf. [20]. The space of real valued almost periodic functions on
is denoted by , and the building blocks of this space

are the trigonometric polynomials, where the frequencies are
allowed to be arbitrary, as in . Of particular interest is the
fact that uniform samples of almost periodic functions lie in the
normed space of almost periodic sequences (cf. ([9],
Proposition 3.35) and Appendix A), and we exploit this fact to
verify uniqueness.
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Definition 4: ([9], Definition 3.8) The map is
called almost periodic if to any there corresponds a posi-
tive integer with the property that in any set of con-
secutive integers there exists an integer such that

(24)

Definition 5: ([9], pp. 94–95) For any integer , the mean
value of is

(25)

Note that, in this definition, we are free to choose any integer
, and the limit will be independent of this choice. A norm for

is given by

(26)

Theorem 1: If and for all integers , then
the functions must also satisfy .

Proof: Suppose that there are terms
of for which is not the zero sequence. Taking into
account only the monomial and exponential portions of these
terms, let be the onewith slowest decay as .
Since decays the slowest and the functions

are bounded above by a constant, the remaining
terms must be asymptotically bounded above by a constant
multiple of . Therefore the sum of the remaining
terms must satisfy the same bound.
As for all integer values , the slowest decaying

term must be canceled by the sum of
the remaining terms. Therefore,

(27)

(28)

for some constant . It then follows that

(29)

(30)

(31)

Since is an almost periodic sequence with norm
0, it must be identically 0.
The value of Theorem 1 is that it essentially allows us to com-

pare functions from in a segmented fashion, i.e., according
to decay rates. For example, suppose is the autocorrelation
function for an process and assume it contains a term

, where is not identically 0. Then
cannot be equivalent to any autocorrelation function that lacks
a term with similar decay.

V. UNIQUENESS PROPERTIES

This section has two main results: 1) We prove uniqueness of
AR models with real poles only. 2) We derive explicit unique-
ness criteria for a large subset of AR models, ,

whose complement has Lebesgue measure 0. Finally, as an ex-
ample, we use the criteria to prove uniqueness of AR(3) models
and to numerically validate uniqueness of some AR(4) models.

A. Real Poles

Lemma 1: Consider two functions and of the form

(32)

where each is a nonzero polynomial and . If there is
a linear combination

(33)

such that for all integers , then is identically 0.
Proof: Any linear combination must be of the form of

(32), where each is a (possibly zero) polynomial. By The-
orem 1, each polynomial must satisfy for all inte-
gers . Therefore all of the polynomials are 0, and hence
is identically 0.
Theorem 2: The elements of that are composed entirely

of real poles are unique.
Proof: First, suppose are composed entirely

of real poles and that they are equivalent. Then there is a linear
combination

(34)

such that for all integers . Then Lemma 1 implies
that is identically 0, i.e., .
Now, it suffices to show that any , composed entirely of

real poles, is not equivalent to any that contains a
complex pair of poles. Let us write

(35)

(36)

for . Furthermore, suppose that the set
is equal to the set of distinct elements
and that the set is equal

to the set of distinct elements . Then the
autocorrelation functions are of the form

(37)

(38)

For each decay rate, we determine the growth of the sequences
and . In particular, for , let

denote the smallest integer such that

(39)

Similarly, for let denote the
smallest integer such that

(40)
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Now, since is composed of real poles

(41)

and since contains a complex pair of poles,

(42)

Hence, there must be a decay rate such that either
�
� or and

.
Suppose the first condition holds (i.e., has a decay rate that
does not appear in ), then Theorem 1 implies that is not
equivalent to . If the second condition holds (e.g., the multi-
plicities of poles differ), then for the decay rate is
growing faster than , so again Theorem 1 implies is
not equivalent to .

B. Real and Complex Poles With Minimal Restrictions

Definition 6: Let be the collection of parameter vectors
satisfying:

� for ;
� each is an irrational multiple of .
Theorem 3: As a subset of , the complement of in
has Lebesgue measure 0.
Proof: Suppose there exists that is not in .

Then there are two possibilities:
� for some ;
� or there exists such that .

In the first case, is contained in a finite union of hyperplanes
in

(43)

In the second case, is contained in a countable union of hyper-
planes in

(44)

In both cases, we arrive at the conclusion that the complement
of has measure 0. Furthermore, as we are excluding
dimensional hyperplanes, the Hausdorff dimension of the com-
plement is at most .
Lemma 2: If an admissible vector is equivalent

to a vector , then must have the same number of
complex pairs of poles as . Furthermore, the complex pairs
should exist at the same decay rates.

Proof: Suppose is equivalent to

(45)

(46)

for . Then there is a decay rate , with , such
that . Due to the fact that is

an irrational multiple of , Theorem 1 implies that no linear
combination of and can be identically 0. This
is a contradiction.
Suppose is equivalent to a for . Then

consists of terms with non-zero samples at distinct expo-
nential decay rates, while can have terms with non-zero
samples for at most distinct decay rates. By Theorem
1, this is a contradiction.
Lemma 3: Suppose

(47)

is equivalent to

(48)

Then for all .
Proof: Note that has the form

(49)

and since each is an irrational multiple of , the sample values
cannot be identically zero. Therefore Theorem 1 implies
for .

Proposition 2: The autocorrelation function for every
can be written as a finite sum of the form

(50)

for real numbers and complex .
Lemma 4: Let and be functions of the form

(51)

(52)

where are non-zero complex numbers, are positive
real numbers, and is an irrational multiple of . If

for all non-negative integers , then there is an integer
such that one of the following holds:
� and ;
� and .
Proof: The proof of Lemma 4 follows the same lines as the

proof of uniqueness of AR(2) processes, as discussed in ([37],
Theorem 2: Case F).
We define

(53)

which satisfies the conditions of Lemma 5. The lemma is
then valid due to Lemma 5, Lemma 6, and Lemma 7 from
Appendix B.
Notice that the autocorrelation function corresponding to

an element of is relatively simple since the exponential
decay rates are distinct. Lemma 3 implies that any process
equivalent to an process also has this simplified form.
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Proposition 3: A process of the form (47) can be represented
as

where for

and for

Theorem 4: Let be defined by (47), and suppose
that is equivalent to .
i.
ii. Let the autocorrelation functions and
be defined by coefficients and , respectively, as in
Proposition 3. Then there is a positive number such that

(54)

for .
Proof: Since is equivalent to , it is defined as

(55)

by Lemma 3. Furthermore, equivalence implies that there exists
such that for each non-negative

integer . From Theorem 1, we see that

(56)

for and for . Lemma 4 then implies that
or for every .

Lemma 4 also guarantees that there are integers such that
, so .

Theorem 4 provides criteria for uniqueness of general AR
models in terms of systems of polynomial equations. In partic-
ular, in (54) there are two possibilities for each complex coef-
ficient. Therefore, we obtain systems of equations, which
we denote ; the systems are indexed by a multi-integer

. We use these systems of equations to give necessary
and sufficient conditions for uniqueness of ARmodels in .

Definition 7: Suppose is a positive integer, and let
be a non-negative integer not greater than . For

and
defined as in Proposition 3, we define the polynomials

(57)

for , and for we define

(58)

Definition 8: Let be defined as

(59)

(60)

For each , we define the system of
equations

in the variables
.

Corollary 1: Let be known, and let be the
systems of equations, from Definition 8, in the variables

under the constraints

Then the AR model is unique if and only if every solution of
every system satisfies for .
Corollary 2: Consider the equations , from Definition 8,

in the variables

under the constraints

Then the collection is unique if and only if for every
the solutions of every system satisfy

for .
Example 5: Using the formulation of Corollary 2, we show,

here, that every element of is unique. The equations of
are
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As and contain non-linear polynomial equations, we
use techniques from computational algebraic geometry to ana-
lyze their solutions. In particular, we use the slimgb algorithm
of the software SINGULAR [11] to find reduced Gröbner bases
[10] of the polynomial ideals corresponding to and .
The bases are computed using the degree reverse lexicographic
monomial order, with the variables ordered as: .
The corresponding Gröbner basis systems are

(61)

(62)

(63)

Any solution of the system must be a zero of the first poly-
nomial. Due to the constraints on the variables, this polynomial
can only be zero for . For , the first polynomial has
no solutions. Therefore, uniqueness holds.
Example 6: Applying the procedure of the previous example,

we verify uniqueness for . The systems of equations ,
described in Definition 8, are defined by the polynomials

We compute Gröbner bases of the polynomial ideals corre-
sponding to and . The bases are computed using the
degree reverse lexicographic monomial order, with the vari-
ables ordered as: .
For , the resulting Gröbner basis contains the polynomial

(64)

and any solution of the system must be a zero of this poly-
nomial. Due to the constraints on the variables, this polynomial
can only be zero for .
For , the resulting Gröbner basis contains the polynomial

(65)

and as in the previous case, this polynomial can only be zero for
. Therefore, uniqueness holds.

The relationship between the coefficients of the autocorre-
lation functions in Theorem 4 is an essential component in the
proof of known uniqueness results for models. Since this
theorem is valid for all values of , we conjecture that unique-
ness of holds in general. In fact, we can apply the Gröbner
basis approach of Example 6 for validating specific cases of the
conjecture.
Example 7: The AR(4) model

is unique. We verified this property by utilizing
the Gröbner basis approach of Example 6. The model

is unique, as well.
We note that computational complexity limits the use of

Gröbner basis methods in general; however, there are other
ways of exploring the polynomial ideals of Corollary 2 that
could potentially be used for proving uniqueness for arbitrary
AR model orders.

Fig. 2. Error map : Shown here are logarithmic values of the error
between uniform samples of and where and

. The grid resolution is 0.05 for and 0.1 for . in this case
describes a unique process and the global minimum is the dark red pixel that
appears at . The sampling interval is . The yellow
markers indicate the multiple initialization points that were used to minimize

in Fig. 3 (only part of them are shown due to limited resolution).

C. Interpolation Error Properties

Fig. 2 depicts the following error measure

(66)

where and takes a range of values. The
error map consists of several local minima. A single global min-
imum can be observed, however, at the correct position. This is
in accordance with Theorem 4. The error map is essentially con-
stant for small values of , i.e., for large decay rates. This is due
to the fact that the small values of make the sampled version
of the autocorrelation function almost zero, except at the origin.
In order to find the global minimum, we minimize the error

measure using multiple initializations, as depicted in Fig. 3. The
initialization parameters consist of (the real part of the com-
plex pole) and (the imaginary part of the complex pole). We
avoid the constant region of the error map by assigning a value
to that is larger than the oracle, e.g., . Initial values
for the imaginary part varied linearly between 1 and 20 in incre-
ments of 0.1. For each initial condition we minimized the error
measure until reaching a local minimum. What stands out is the
two clusters of local minima values. Each local minimum that
belongs to the cluster of low values (less than ) corresponds
to the oracle parameters. This is an important property from an
algorithmic point of view. It means that the performance of the
algorithm does not depend on a particular initialization point,
and that by sweeping over the values of we are guaranteed to
find the correct AR parameters. This is not the case in the second
example of the figure, though, which depicts estimation results
for a non-unique AR model. There, we still observe two clus-
ters; but the one with the low values is relatively wide, spanning
ten orders of magnitude. Moreover, not all local minima there
correspond to the oracle parameters. In the next section, we uti-
lize this local minima structure of the error measure for
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Fig. 3. Local minima in AR model estimation: The sampled version of was used for estimating . The sampling interval is and the number of

samples was . The estimated parameters are (the two left columns). The estimation error is (the right column). Shown here are
estimation results for various initial values of ; the initial value of was . When is unique, we observe a cluster of local minima that are lower than
(dashed red ellipse). Each local minimum in that cluster corresponds to the oracle parameters. In a non-unique case, as in the second row, we still observe two
clusters. Nevertheless, the cluster having the low values spans more than ten orders of magnitude, and not all of the local minima there correspond to the oracle
parameters.

estimating from sampled data, while imposing no restriction
on the sampling interval.

VI. PARAMETERS ESTIMATION FROM SAMPLED DATA

Our algorithm estimates from sample values of a contin-
uous-time AR process. The input to the algorithm is: sample
values, model order , and the maximum allowed value of the
imaginary part of the poles. The main stages of the algorithm
are: decay rate estimation and multiple minimization.
Slowest Decay Rate Estimation: We estimate the autocorre-

lation sequence by

(67)

where and . We then fit
the values of with a regression line; the slope of the
line indicates the slowest decay rate of the autocorrelation func-
tion. The number of values is chosen such that all values

are smaller than (Fig. 4). In order to accom-
modate for oscillating autocorrelation sequences, we restrict
to have a user-defined minimum value . We also restrict
its maximum value by .
We assume that the order of the ARmodel is known, and we

construct the initialization points by taking all possible pole con-
stellations into account. For an AR(1) model, we have a single

Fig. 4. Autocorrelation sequence of an AR(2) model with two complex poles
and aGaussian process: The estimated autocorrelation sequence

starts deviating from the model with increasing values of . This sequence is
used for determining the slowest decay rate of the model and the number of
accurate samples (six samples in this example). The first segment of the solid
line is obtained by linear regression, and it provides an initial estimate of the
decay rate. The second segment indicates an accuracy threshold for values that
will not be used for estimation.

real pole. We therefore use a single initialization point and set it
to be the negative value of the estimated decay rate, divided by
two, namely . For an AR(2) process, we may have
two real poles or two complex conjugate poles. Denoting the
estimated decay rate , the initialization points are

(68)
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The number of initial complex pairs is defined by the user
(we set it in our simulations to be 200). For an AR(3) model,
we may have three real poles or a complex conjugate pair with
a real pole. The initialization points in such a case are

(69)

For an AR(4) process we construct the initialization points by
permuting two lists of AR(2) points with the necessary modifi-
cations. Specifically, we have

(70)

We follow the same multiple minimization principle for
higher-order models as well. During the numerical minimiza-
tion of the error criterion, we make sure that we reach a local
minimum that corresponds to the same constellation of poles
that we started with. This is done by restricting the elements of
to have the same sign. Practically, we restrict the negative

initial elements to be in , and the positive elements
to be in .
Once we establish the set of initialization points, we numer-

ically minimize the log value of the least-squares fit between
the points of the estimated autocorrelation sequence and the
first points of the AR model. We repeat this minimization for
every point, and we choose the estimated parameters that yield
the best fit.
Our algorithm is related to the estimation approach of [26].

The latter resolves aliasing ambiguity by shifting the identi-
fied poles by an integer multiple of the angular sampling fre-
quency and by minimizing the difference between the coeffi-
cients vector and its projection onto a subspace of a matrix (Re-
mark 7 in Section VII.B). However, our approach is based on
multiple minimizations of the autocorrelation fit criterion. Our
algorithm extends the results of [4], as well: it is computation-
ally efficient; it characterizes the local minima of the cost func-
tion; it proposes a way of determining the multiple initial vec-
tors; and it is based on a quantitative measure of uniqueness.

VII. EXPERIMENTAL RESULTS

A. Non-Gaussian Continuous-Time AR Generation

We consider four different Lévy processes as input for
the computation of the stochastic integral (2): Gaussian, com-
pound Poisson, variance-gamma and Student’s t-distribution.
These processes have the same power spectrum, but differ in
their sparsity properties [35]. We generate their differences

(71)

and approximate (2) by the sum

(72)

These differences are known to be independent and to follow
an infinitely divisible distribution [31]. The sampling interval is
and the integration step size is . The parameter

is determined by ensuring and is an
integer number.
We simulate the Gaussian process by generating independent

Gaussian increments of variance . The variance-gamma
process is composed of unit-period increments that are condi-
tionally normally distributed with respect to the variance pa-
rameter, which is a gamma random variable [25]. We set the
variance random variable to be , where is a gamma
process with a unit mean value and variance . The variance-
gamma process is equivalent to a difference of two independent
gamma processes , while setting their mean
to and their variance to [24]. This is the way
we generate the sample values of the process. The compound
Poisson process is defined by integrating Dirac distributions
that appear at arbitrary locations. We used the Poisson distribu-
tion to determine the total number of jumps. The mean value is

where is the sampling interval, is the number
of sampling points and is the average number of jumps per
time-unit. The location of each jump is a uniform random vari-
able in , and its amplitude is yet another uniform
random variable in . The Student’s process is gen-
erated using independent increments with a Student’s param-
eter . The filter is analytically calculated from the contin-
uous-time poles by means of a partial fraction decomposition of
its transfer function.

B. Estimation Results and Discussion

We validated the proposed algorithm on simulated Gaussian
and non-Gaussian AR processes (Table II). Our Monte-Carlo
experiments consist of 20 realizations for each set of poles. The
error measure consists of two criteria: number of successful es-
timations, i.e., recall, and average error. A successful estimation

is defined by where is the estimated vector
of parameters at the -th Monte Carlo simulation. This mea-
sure accounts for cases where the algorithm cannot overcome
aliasing. The average error includes successful estimations only,
and it is given by

(73)

where is the -th parameter of the estimated vector of
parameters at the -th Monte Carlo simulation. The parameter

is the number of successful estimations. The user-defined
parameters were: ; imaginary part values
in [0.01, 20], real part value in ; step size along
the search line was 0.1. We examined numerous AR models of
varying orders and varying power-spectra. The models we ex-
amined consist of both real and imaginary poles. We focused on
three decay rates: and . Higher decay rates make
the sampled version of the autocorrelation function resemble the
Kronecker delta, and the fitting process suffers from numerical
limitations in such cases. The range of the modulation values
that we examined is relatively large, corresponding to various
constellations of power-spectra aliasing.
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TABLE II
ESTIMATION: RESULTS

Our estimation algorithm was able to correctly estimate the
AR parameters in all cases, and with a high recall value. In cases
where the success rate is less than 20/20, the estimated imagi-
nary part was at least larger than the oracle value; the decay
rate was properly estimated, though. A comparison between the
different innovation models indicates that there is not much dif-
ference in terms of performance between the Gaussian and the
non-Gaussian innovation. The heavy tail student’s-t distribu-

tion is more challenging, as it requires more sampling values
for achieving similar estimation results. The estimation error
is very small compared to the oracle values. In some cases,
however, its elements reach values larger than 10%, e.g., in

. Two sources of this error are: (1) esti-
mating the autocorrelation values from sample data, and (2) nu-
merical limitations in simulating the data. Regarding the latter,
the independent increments should, in principle, exhibit an auto-
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Fig. 5. An example of an almost periodic function: Shown here in (a) is the function . The function possesses an almost
periodic property, which is demonstrated in (b) and in (c). The solid line indicates a sampling grid of 0.01 and the dots indicate a sampling grid of unit value. (a)

, (b) , (c) .

correlation sequence that is the Kronecker delta. In practice, this
sequence does not vanish, so the autocorrelation sequence of the
sampled AR process does not exactly follow the model. This
limitation can be observed in Fig. 4, where the estimated values
(circles) deviate from autocorrelation model values (dots). It
then follows that the algorithm can use only the first few values
of the estimated autocorrelation sequence.
We observed a similar situation when estimating the poles

of the Rao-Garnier ARMA(4,1) model. This model was
used as a benchmark in [26], and it consists of four poles

and a single zero 0.25. Fo-
cusing on the AR part, we verified its uniqueness by means
of Theorem 4. We then simulated sample data based on

and applied our algorithm in
the same way we generated Table II. We used
sample values and estimated the first ten autocorrelation
values of (67). These values deviate from the or-
acle autocorrelation values of Proposition 1 by

%, which results in estimated
parameters of . Although
different, they correspond to a continuous-time power spectrum
that is very similar to the oracle. The main difference between
the two is an additional side lobe that appears at
[rad/time-unit]. The difference between the two power
spectra is 3.5%, and it reduces to 1.4% when excluding radial
frequencies higher than 10 [rad/time-unit]. When, however,
using the first ten values of the oracle autocorrelation function,
the error in estimating is, as expected, very small—less than
0.001 for each element.
The Gaussian maximum likelihood estimator of [21] can be

interpreted as an autocorrelation fitting, and it performs as well
as the proposed algorithm. We demonstrate its performance in
Appendix C. The advantage of the proposed approach, however,
is its computational complexity; it runs, on average, five times
faster than the likelihood minimization algorithm.

VIII. CONCLUSION

In this work, we investigated the intertwining relations be-
tween continuous-time AR models and their sampled versions.
We introduced two new model representations that allowed us
to derive a closed-form expression for the autocorrelation func-
tion and to associate a measure with subsets of AR models. We

then focused on two subsets: AR models with real poles, and
ARmodels with minimal restrictions. The latter is defined by re-
moving a set of measure zero from the collection of AR models.
We characterized the models by a uniqueness property, which is
the ability to map the parameters of the sampled model back to
their continuous-time counterpart with no ambiguity. We then
proved that an AR model with real poles is unique. We also
provided uniqueness criteria for AR models with complex and
real poles. To this aim, we exploited the decay rate property and
the almost-periodic structure of the AR autocorrelation func-
tion. We utilized our theory for introducing an estimation algo-
rithm that recovers continuous-time AR parameters from sam-
pled data, regardless of the sampling interval. We then demon-
strated its usefulness for general Gaussian and non-Gaussian
AR processes. Our experimental results indicate that the unique-
ness property of sampled continuous-time AR processes could
provide a valuable tool for designing sampling-invariant algo-
rithms for signal and image processing tasks.

APPENDIX A
NOTES ON ALMOST PERIODIC TRIGONOMETRIC SEQUENCES

Example ([1], Appendix B): Consider the trigonometric poly-
nomial . It is not peri-
odic because the two periods and are incom-
mensurable. However, looks similar to a periodic function
(Fig. 5), and if we allow for a certain error between and

, then we can find a value of satisfying

(74)

The figure depicts the error for .
Almost periodicity of sampled trigonometric polynomials is

related to Kronecker’s approximation theorem. In the following,
denotes the distance to the greatest integer smaller than or

equal to .
Theorem (Kronecker’s Approximation Theorem [5]):

1. If the real numbers are linearly independent
over , then for real and there are arbitrarily
large real for which

(75)
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Fig. 6. An example of Kronecker’s approximation theorem: is the irrational
period of a trigonometric function. Considering a sampling step of unit value,
the sequence is dense in the interval .

2. If the numbers are linearly independent
over , then in part 1, can be taken to be an arbitrarily
large integer.

Consider a single trigonometric function
:

� If is rational, then the sequence
takes a finite number of values in a periodic fashion.

� If is irrational, then by Kronecker’s theorem,
can be made arbitrarily close to an integer value for an
arbitrarily large integer value of , say . This means that
, in Fig. 6, can be made arbitrarily small. It then follows

that with an arbitrary precision due to
the continuity of .

Consider now a sum of two trigonometric functions
:

� If both are rational, then is periodic.
� If is rational and is irrational, then we de-
note the period of as . It then follows
by Kronecker’s theorem that can be made
arbitrarily close to an integer value, say by setting
to be . Defining , we then have that

.
� If both are irrational and
— if are independent over , then
and can be made arbitrarily close to an integer by
Kronecker’s theorem.

— if are dependent over , then it must
hold that for some integer
numbers , which are not all zero. This, in
turn, means that is periodic with an irrational
period , and one can apply the same
reasoning as was done for the single trigonometric
function.

In a similar manner, Kronecker’s approximation theorem can
be used to show that the sum of more than two trigonometric
functions yields an almost periodic sequence, as well.

APPENDIX B
LEMMAS

Lemma 5: Define by

(76)

where are non-zero complex numbers. Also, let be
positive real numbers, where is an irrational multiple of . If
the collection of zeros of includes

(77)

Fig. 7. Due to the periodicity of , each zero of corresponds to a lattice of
zeros. The plus signs indicate zeros for a particular example.

then there are integers with and such
that

(78)

Proof: First, suppose that are linearly inde-
pendent over the field of rational numbers, which will lead to a
contradiction. Notice that the function of (76) is 1-periodic
in each variable. We therefore define its unit fundamental do-
main to be . Due to the periodicity, for each zero

, there correspond an infinite number of zeros
lying on a lattice (see Fig. 7); i.e., for any

(79)

is also a zero of . For each zero, we shall be primarily
concerned with the associated lattice point lying in the
unit fundamental domain. Specifically, for each zero of

, let and be integers such
that

(80)

lies in . Now the linear independence assumption
together with Kronecker’s approximation theorem (cf. [5]) im-
plies that is dense in the unit fundamental
domain. As is continuous, the zero set of contains the en-
tire region , and the periodicity of implies that
is everywhere 0. In particular, the zero set contains the line

. This implies that

(81)

which is a contradiction. Hence, must be linearly
dependent over the field of rational numbers; i.e., there exist
integers (not all 0), with , such that

(82)

To finish the proof, we must show that . For if this
is indeed the case, then the irrationality of will imply that

and is irrational. To see that , we assume
, and we shall derive a contradiction.

Under the assumption , we must have that is
a rational number. Now, define as in (80). As is ra-
tional, takes only a finite number of
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Fig. 8. Plus signs indicate zeros of the function on a line of slope .
The point is a zero of lying outside of the fundamental domain, and is a
translated version of , which is also a zero of .

values. However, is irrational, so Kronecker’s approxima-
tion theorem implies that
is dense in [0,1). As each is a zero of , we have

(83)

The left-hand side of (83) takes an infinite number of values,
while the right-hand side takes a finite number of values. This
is a contradiction.
Lemma 6: Under the assumptions of Lemma 5, one of the

following holds:
� and
� and
Proof: A subset of the zeros from (77) is given by consid-

ering only those integers that are multiples of :

(84)

Note that this particular collection of zeros has the alternative
representation

(85)

due to (78). Then the periodicity of implies that there are zeros
at

(86)

We can see that each of these points lies on the line
(see Fig. 8). For the remainder of the proof, we

shall be particularly concerned with the zeros lying on this line.
Furthermore, the domain will be of primary
importance, so we denote this as the fundamental domain of .
Note that, here, we are assuming . The case is
similar, and it will be handled below.
Now, if a zero of lies outside of the fundamental domain,

then there is an integer such that lies in
the fundamental domain. The point is also a zero of , and
it lies on the line (see Fig. 8). For each positive
integer , define the integer such that

(87)

TABLE III
GAUSSIAN MAXIMUM LIKELIHOOD ESTIMATION OF AN AR MODEL WITH

GAUSSIAN AND NON-GAUSSIAN INNOVATION

lies in the fundamental domain. Since is irrational,
Kronecker’s approximation theorem implies that the set

(88)

is dense in . Therefore the set is dense
on the line within the fundamental domain. As
is a continuous function, the line segment of

within the fundamental domain is a zero set for . Periodicity
of then implies that the entire line is a zero set
for . This means

(89)

Considering this equation in the Fourier domain, we see that
we must have , so

(90)

Finally, by the uniqueness of Fourier series, .
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For the case , we can apply similar techniques. In this
case, one can show that the line is a zero set
for , by translating the zeros of to the fundamental domain

. As in the previous case, this implies (89),
which can only hold if . Therefore

(91)

and uniqueness of Fourier series implies .
Lemma 7: Under the assumptions of Lemma 5, we have that
is a multiple of . That is, there exists an integer such

that
� if
� if .
Proof: As both cases are similar, we prove only the first

one. Combining the results of Lemma 5 and Lemma 6, we know
that there are integers , with , such that

(92)

Since the function of (76) is zero for points in (77), we have

(93)

We then use (92) to reduce this to

(94)

As this is true for any positive integer , it must hold for
for any positive integer ; i.e.,

(95)

which can be written as

(96)

where

(97)

Since is an irrational multiple of , Kronecker’s approxima-
tion theorem implies that

(98)

takes a non-zero value for some value of , unless . There-
fore must be 0, and hence is an integer multiple of .

APPENDIX C
COMPARISONWITH GAUSSIAN LIKELIHOOD ESTIMATOR

We provide estimation results of an estimator that min-
imizes a Gaussian likelihood function of the sampled data
[21]. Table III describes estimation results for AR models that
are driven by continuous-time Gaussian innovation. It also
describes the minimization of the same Gaussian likelihood
function for AR models that are driven by yet another contin-
uous-time innovation process—the compound Poisson process.
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