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On the uniqueness of a power of a meromorphic function

sharing a small function with the power of its derivative

Abhijit Banerjee, Sujoy Majumder

Abstract. In the paper we discuss the uniqueness of the n-th power of a meromor-
phic function sharing a small function with the power of its k-th derivative and
improve and supplement a result of Zhang-Lü [Complex Var. Elliptic Equ. 53

(2008), no. 9, 857–867]. We also rectify one recent result obtained by Chen and
Zhang in [Kyungpook Math. J. 50 (2010), no. 1, 71–80] dealing with a question
posed by T.D. Zhang and W.R. Lü in [Complex Var. Elliptic Equ. 53 (2008),
no. 9, 857–867].
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1. Introduction. Definitions and results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane C. We adopt the standard notations of the Nevan-
linna theory of meromorphic functions as explained in [5]. It will be convenient to
let E denote any set of positive real numbers of finite linear measure, not necessar-
ily the same at each occurrence. For a non-constant meromorphic function h, we
denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any quantity
satisfying S(r, h) = o{T (r, h)}, as r −→ ∞ and r /∈ E.

Let f and g be two non-constant meromorphic functions and let a be a complex
number. We say that f and g share a CM, provided that f − a and g − a have
the same zeros with the same multiplicities. Similarly, we say that f and g share
a IM, provided that f − a and g − a have the same zeros ignoring multiplicities.
In addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and
we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

A meromorphic function a is said to be a small function of f provided that
T (r, a) = S(r, f), that is T (r, a) = o(T (r, f)) as r −→ ∞, r /∈ E.

In 1979 Mues and Steinmetz proved the following theorem.

Theorem A ([11]). Let f be a non-constant entire function. If f and f
′

share

two distinct values a, b IM then f
′

≡ f .

Considering the uniqueness problem of an entire function sharing one value
with its derivative, the following result was proved in [3].



566 A. Banerjee, S. Majumder

Theorem B ([3]). Let f be a non-constant entire function. If f and f
′

share

the value 1 CM and if N(r, 0; f
′

) = S(r, f) then f
′

−1
f−1 is a nonzero constant.

Later Yang [12], Zhang [15], Yu [14] worked on the uniqueness of meromorphic
functions and their derivative which share one value. To state the next results
we require the following definition known as weighted sharing of values which
measure how close a shared value is to be shared IM or to be shared CM.

Definition 1.1 ([6], [7]). Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and
only if it is an a-point of g with multiplicity n (> k), where m is not necessarily
equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

If a is a small function we define that f and g share a IM or a CM or with
weight l according as f − a and g − a share (0, 0) or (0,∞) or (0, l) respectively.

Though we use the standard notations and definitions of the value distribution
theory available in [5], we explain some definitions and notations which are used
in the paper.

Definition 1.2 ([9]). Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 1.3 ([13]). For a ∈ C ∪ {∞} and a positive integer p we denote by
Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . + N(r, a; f |≥ p). Clearly

N1(r, a; f) = N(r, a; f).

Definition 1.4 ([16]). For a positive integer p and a ∈ C ∪ {∞} we put

δp(a; f) = 1 − lim sup
r−→∞

Np(r, a; f)

T (r, f)
.

Clearly 0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) ≤ . . . ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f).
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Definition 1.5 ([1]). Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p,
a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function

of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting function

of those 1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the counting
function of those 1-points of f and g where p = q ≥ 2, each point in these
counting functions is counted only once. In the same way we can define NL(r, 1; g),

N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 1.6 ([6], [7]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).

With the notion of weighted sharing of values Lahiri-Sarkar [9] improved the
result of Zhang [15]. In [16] Zhang extended the result of Lahiri and Sarkar and
replaced the concept of value sharing by small function sharing.

Recently in [18] Zhang and Lü considered the uniqueness of the n-th power
of a meromorphic function sharing a small function with its k-th derivative and
proved the following theorem.

Theorem C. Let k(≥ 1), n(≥ 1) be integers and f be a non-constant mero-

morphic function. Also let a(z)(6≡ 0,∞) be a small function with respect to f .

Suppose fn − a and f (k) − a share (0, l). If l = ∞ and

(1.1) (3 + k) Θ(∞; f) + 2 Θ(0; f) + δ2+k(0; f) > 6 + k − n

or l = 0 and

(1.2) (6 + 2k) Θ(∞; f) + 4 Θ(0; f) + 2δ2+k(0; f) > 12 + 2k − n

then fn ≡ f (k).

In the same paper Zhang and Lü [18] raised the following question: What will

happen if fn and [f (k)]m share a small function?
To answer the above question recently Chen and Zhang [4] obtained the fol-

lowing result.

Theorem D. Let k(≥ 1), n(≥ 1), m(≥ 1) be integers and f be a non-constant

meromorphic function. Also let a(z)(6≡ 0,∞) be a small function with respect

to f . Suppose fn − a and [f (k)]m − a share (0, l). If l = ∞ and

(1.3) (3 + k) Θ(∞; f) + δ2(0; f) + 2δ2+k(0; f) > 5 + k − n

or l = 0 and

(1.4) (6 + 2k) Θ(∞; f) + 3 Θ(0; f) + 2δ2+k(0; f) > 11 + 2k − n
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then fn ≡ [f (k)]m.

Theorem D seems to be fine but there are some mistakes in the proof. For
example in the proof of Theorem 2, Subcase 1.1 in [4] the estimations of the zeros

of the counting function of G
′

is not correct when m ≥ 2. The same things happen
after the equation (4.1) in Subcase 1.2. As a result (1.3)–(1.4) is not correct. So it
will be a natural inquisition to find the correct inequalities for which the conclusion
of Theorem D holds good. Here we are taking up this problem. We also improve
and supplement Theorem C by relaxing the nature of sharing and at the same
weakening inequality (1.2). The following theorems are the main results of the
paper.

Theorem 1.1. Let k(≥ 1), n(≥ 1) be integers and f be a non-constant mero-

morphic function. Also let a(z)(6≡ 0,∞) be a small function with respect to f .

Suppose fn − a and f (k) − a share (0, l). If l = 2 and

(1.5) (3 + k) Θ(∞; f) + 2 Θ(0; f) + δ2+k(0; f) > 6 + k − n

or l = 1 and

(1.6)

(

7

2
+ k

)

Θ(∞; f) +
5

2
Θ(0; f) + δ2+k(0; f) > 7 + k − n

or l = 0 and

(1.7) (6 + 2k) Θ(∞; f) + 4 Θ(0; f) + δ1+k(0; f) + δ2+k(0; f) > 12 + 2k − n

then fn ≡ f (k).

Theorem 1.2. Let k(≥ 1), n(≥ 1), m(≥ 2) be integers and f be a non-constant

meromorphic function. Also let a(z)(6≡ 0,∞) be a small function with respect

to f . Suppose fn − a and [f (k)]m − a share (0, l). If l = 2 and

(1.8) (3 + 2k) Θ(∞; f) + 2 Θ(0; f) + 2δ1+k(0; f) > 7 + 2k − n

or l = 1 and

(1.9)

(

7

2
+ 2k

)

Θ(∞; f) +
5

2
Θ(0; f) + 2δ1+k(0; f) > 8 + 2k − n

or l = 0 and

(1.10) (6 + 3k) Θ(∞; f) + 4 Θ(0; f) + 3δ1+k(0; f) > 13 + 3k − n

then fn ≡ [f (k)]m.
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote by
H the following function

(2.1) H =

(

F
′′

F ′
−

2F
′

F − 1

)

−

(

G
′′

G′
−

2G
′

G − 1

)

.

Lemma 2.1 ([17]). Let f be a non-constant meromorphic function and p and k
two positive integers. Then

Np

(

r, 0; f (k)
)

≤ T
(

r, f (k)
)

− T (r, f) + Np+k(r, 0; f) + S(r, f),

Np

(

r, 0; f (k)
)

≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.2 ([2]). Let f , g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) + N(r,∞; f) + S(r, f).

Lemma 2.3 ([10]). Let f be a non-constant meromorphic function and let

R(f) =

∑n

k=0 akfk

∑m

j=0 bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}
where an 6= 0 and bm 6= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n, m}.

3. Proofs of the theorems

Proof of Theorem 1.2: Let F = fn

a
and G = [f(k)]m

a
. Then F − 1 = fn

−a

a

and G − 1 = [f(k)]m−a

a
. Since fn − a and [f (k)]m − a share (0, l) it follows that

F , G share (1, l) except the zeros and poles of a(z). Now we consider the following
cases.

Case 1. Let H 6≡ 0.

Subcase 1.1. l ≥ 1.
From (2.1) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are
different (iii) those poles of F and G whose multiplicities are different, (iv) zeros

of F
′

(G
′

) which are not the zeros of F (F − 1) (G(G − 1)).
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Since H has only simple poles we get

(3.1)

N(r,∞; H) ≤ N(r,∞; F ) + N(r, 1; F |≥ l + 1) + N(r, 0; F |≥ 2)

+ N(r, 0; G |≥ 2) + N0(r, 0; F
′

) + N0(r, 0; G
′

)

+ N(r, 0; a) + N(r,∞; a),

where N0(r, 0; F
′

) is the reduced counting function of those zeros of F
′

which are

not the zeros of F (F − 1) and N0(r, 0; G
′

) is defined similarly. Let z0 be a simple
zero of F −1 but a(z0) 6= 0,∞. Then z0 is a simple zero of G−1 and a zero of H .
So

(3.2)
N(r, 1; F |= 1) ≤ N(r, 0; H) + N(r,∞; a) + N(r, 0; a)

≤ N(r,∞; H) + S(r, f).

By the second fundamental theorem we see that

(3.3)

T (r, F ) + T (r, G) ≤ N(r,∞; F ) + N(r,∞; G) + N(r, 0; F ) + N(r, 0; G)

+ N(r, 1; F ) + N(r, 1; G) − N0(r, 0; F
′

) − N0(r, 0; G
′

)

+ S(r, F ) + S(r, G).

Using (3.1) and (3.2) we get

(3.4)

N(r, 1; F ) + N(r, 1; G) ≤ N(r, 1; F |= 1) + NL(r, 1; F ) + NL(r, 1; G)

+ N
(2

E (r, 1; F ) + N(r, 1; G) + S(r, f)

≤ N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N(r,∞; F )

+ 2NL(r, 1; F ) + 2NL(r, 1; G) + N
(2

E (r, 1; F )

+ N(r, 1; G) + N0(r, 0; F
′

) + N0(r, 0; G
′

)

+ S(r, f).

While l ≥ 2 we obtain

(3.5) 2NL(r, 1; F )+2NL(r, 1; G)+N
(2

E (r, 1; F )+N(r, 1; G) ≤ N(r, 1; G)+S(r, f).

So noting that N2(r, 0; G) ≤ 2N(r, 0; f (k)) + S(r, f) using (3.4) and (3.5) in (3.3)
and in view of Lemma 2.1 we obtain

T (r, F ) ≤ (3 + 2k) N(r,∞; F ) + 2N(r, 0; f) + 2N1+k(r, 0; f) + S(r, f),

that is

(3 + 2k)Θ(∞; f) + 2Θ(0; f) + 2δ1+k(0; f) ≤ 7 + 2k − n,

which contradicts (1.8).
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While l = 1, (3.5) changes to

(3.6)
2NL(r, 1; F ) + 2NL(r, 1; G) + N

(2

E (r, 1; F ) + N(r, 1; G)

≤ N(r, 1; G) + NL(r, 1; F ) + S(r, f).

Noting that

NL(r, 1; F ) ≤
1

2
N(r, 0; F

′

| F 6= 0) ≤
1

2
(N(r, 0; F ) + N(r,∞; F )),

using (3.4) and (3.6) in (3.3) and in view of Lemma 2.1 we have

T (r, F ) ≤

(

7

2
+ 2k

)

N(r,∞; F ) +
5

2
N(r, 0; f) + 2N1+k(r, 0; f) + S(r, f),

that is
(

7

2
+ 2k

)

Θ(∞; f) +
5

2
Θ(0; f) + 2δ1+k(0; f) ≤ 8 + 2k − n,

which contradicts (1.9).

Subcase 1.2. l = 0.
In this case F and G share (1, 0) except the zeros and poles of a(z). It is easy to
see that

N
1)
E (r, 1; F ) = N

1)
E (r, 1; G) + S(r, f)

N
(2

E (r, 1; F ) = N
(2

E (r, 1; G) + S(r, f)

and

(3.7) N
1)
E (r, 1; F ) ≤ N(r,∞; H) + S(r, f).

Here in view of Lemma 2.2, (3.4) changes into

(3.8)

N(r, 1; F ) + N(r, 1; G)

≤ N
1)
E (r, 1; F ) + N

(2

E (r, 1; F ) + NL(r, 1; F ) + NL(r, 1; G)

+ N(r, 1; G) + S(r, f)

≤ N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N(r,∞; F ) + N
(2

E (r, 1; F )

+ 2NL(r, 1; F ) + 2NL(r, 1; G) + N(r, 1; G) + N0(r, 0; F
′

)

+ N0(r, 0; G
′

) + S(r, f)

≤ N(r,∞; F ) + N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + 2 NL(r, 1; F )

+ NL(r, 1; G) + N(r, 1; G) + N0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f)

≤ 4 N(r,∞; F ) + N2(r, 0; F ) + N(r, 0; F ) + N2(r, 0; G) + T (r, G)

+ N0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f).
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So using (3.8) in (3.3) we get in view of Lemma 2.1 that

T (r, F ) ≤ (6+3k) N(r,∞; F )+N2(r, 0; fn)+2N(r, 0; f)+3N1+k(r, 0; f)+S(r, f),

that is

(6 + 3k)Θ(∞; f) + 4Θ(0; f) + 3δ1+k(0; f) ≤ 13 + 3k − n.

This contradicts (1.10).

Case 2. Let H ≡ 0.
By integration we get from (2.1)

(3.9)
1

F − 1
≡

C

G − 1
+ D,

where C, D are constants and C 6= 0. We first show that D = 0. Suppose that
there exist a pole z0 of f with multiplicity p which is not a pole or a zero of a(z).
Then z0 is the pole of F with multiplicity np and the pole of G with multiplicity
m(p + k). We assume that np 6= m(p + k), since otherwise we know from (3.9)
that D = 0 and we are done.

Subcase 2.1. Suppose D 6= 0.
Since np 6= m(p + k), we get a contradiction from (3.9). So,

N(r,∞; f) ≤ N(r, 0; a) + N(r,∞; a) = S(r, f),

and hence Θ(∞; f) = 1. Also it is clear that N(r,∞; F ) = N(r,∞; G) = S(r, f).
From (1.8)–(1.10) we know respectively

2Θ(0; f) + 2δ1+k(0; f) > 4 − n,(3.10)

5

2
Θ(0; f) + 2δ1+k(0; f) >

9

2
− n(3.11)

and

(3.12) 4Θ(0; f) + 3δ1+k(0; f) > 7 − n.

Since D 6= 0, from (3.9) we get

−
D
(

F − 1 − 1
D

)

F − 1
≡ C

1

G − 1
.

So

N

(

r, 1 +
1

D
; F

)

= N(r,∞; G) = S(r, f).
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Subcase 2.1.1. D 6= −1.
Using the second fundamental theorem for F we get

T (r, F ) ≤ N(r,∞; F ) + N(r, 0; F ) + N(r, 1 +
1

D
; F )

≤ N(r, 0; F ) + S(r, f),

that is

nT (r, f) ≤ N(r, 0; f) + S(r, f).

If n > 1 we have a contradiction from above. So we have n = 1 and so Θ(0; f) = 0,
which contradicts (3.10)–(3.12).

Subcase 2.1.2. D = −1.
Then

(3.13)
F

F − 1
≡ C

1

G − 1
.

Clearly we know from above that N(r, 0; F ) = N(r,∞; G) = S(r, f) and hence
N(r, 0; f) = S(r, f). If C 6= −1 we know from (3.13) that N(r, 1 + C; G) =
N(r,∞; F ) = S(r, f). So from Lemma 2.1 and the second fundamental theorem
we get

mT (r, f (k)) = T (r, G) + S(r, f)

≤ N(r,∞; G) + N(r, 0; G) + N(r, 1 + C; G) + S(r, f)

≤ N(r, 0; f (k)) + S(r, f)

≤ T (r, f (k)) − T (r, f) + N1+k(r, 0; f) + S(r, f),

that is

(m − 1)T
(

r, f (k)
)

+ T (r, f) ≤ (k + 1)N(r, 0; f) + S(r, f) = S(r, f),

which is absurd. So C = −1 and we get from (3.13) that FG ≡ 1, which ultimately

yields
[

f(k)

f

]m

= a2

fn+m .

In view of the first fundamental theorem we get from above

(n + m)T (r, f) ≤ mT

(

r,
f (k)

f

)

+ S(r, f)

= mN

(

r,∞;
f (k)

f

)

+ S(r, f)

≤ mk[N(r,∞; f) + N(r, 0; f)] + S(r, f) = S(r, f),

which is impossible.
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Subcase 2.2. D = 0 and so from (3.9) we get

G − 1 ≡ C (F − 1).

If C 6= 1, then

G ≡ C

(

F − 1 +
1

C

)

and

N(r, 0; G) = N

(

r, 1 −
1

C
; F

)

.

By the second fundamental theorem and Lemma 2.1 for p = 1 and Lemma 2.3 we
have

nT (r, f) + S(r, f) = T (r, F )

≤ N(r,∞; F ) + N(r, 0; F ) + N

(

r, 1 −
1

C
; F

)

+ S(r, G)

≤ N(r,∞; f) + N(r, 0; F ) + N(r, 0; G) + S(r, f)

≤ N(r, 0; f) + N1+k(r, 0; f) + (1 + k)N(r,∞; f) + S(r, f).

Hence

(1 + k)Θ(∞; f) + Θ(0; f) + δ1+k(0; f) ≤ 3 + k − n.

So, it follows that

(3 + 2k)Θ(∞; f) + 2Θ(0; f) + 2δ1+k(0; f)

≤ (2 + k)Θ(∞; f) + Θ(0; f) + δ1+k(0; f) + (1 + k)Θ(∞; f)

+ Θ(0; f) + δ1+k(0; f)

≤ 7 + 2k − n,

(

7

2
+ 2k

)

Θ(∞; f) +
5

2
Θ(0; f) + 2δ1+k(0; f) ≤ 8 + 2k − n

and

(6 + 3k)Θ(∞; f) + 4Θ(0; f) + 3δ1+k(0; f) ≤ 13 + 2k − n.

This contradicts (1.8)–(1.10). Hence C = 1 and so F ≡ G, that is fn ≡ [f (k)]m.
This completes the proof of the theorem. �

Proof of Theorem 1.1: Let F = fn

a
and G = f(k)

a
. Then F − 1 = fn

−a
a

and

G − 1 = f(k)
−a

a
. Since fn − a and f (k) − a share (0, l) it follows that F , G share

(1, l) except the zeros and poles of a(z). Now we consider the following cases.



On the uniqueness of a power of a meromorphic function 575

Case 1. Let H 6≡ 0.
First we note that in view of Lemma 2.1 here

N2(r, 0; G) = N2

(

r, 0; f (k)
)

+ S(r, f) ≤ N2+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Now following the same procedure as adopted in the proof of Case 1 of Theorem 1.2
with m = 1 we can easily deduce a contradiction corresponding to (1.5)–(1.7).

Case 2. Let H ≡ 0.
Proceeding in the same way as done in the proof of Case 1.2 of Theorem 1.2 with
m = 1 and using (1.5)–(1.7) instead of (1.8)–(1.10), we can easily prove fn = f (k)

and so we are omitting the details of the proof. �
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