On the uniqueness of factors of amalgamated products

Oleg Bogopolski and Richard Weidmann^{*}

Let $G = A *_C B$ be an amalgamated product. We study conditions under which the factor B is determined by A and C, i.e. under which the existence of another splitting of G as an amalgamated product $G = A *_C D$ implies B = D or $B \cong D$. We also describe the structure of the family of amalgamated products along a given malnormal subgroup.

There are situations where $D \not\cong B$. We describe them and show that they are the only ones after giving a short account of controlled subgroups as introduced in [FRW]. Mary Jones has independently constructed an example of the type below and Ilya Kapovich has provided an insightful example to a related question. This work was motivated by the first author's work on splittings of surface groups [B].

1 Examples and main results

The two types of examples are similar in that B splits over a subgroup of C and that D is obtained by conjugating a boundary monomorphism with an element of A such that this conjugation cannot be done in B. We describe the amalgamated product and the HNN-extension case.

Case 1. Suppose that $B = B_1 *_{C_1} B_2$ where $C_1 \leq C \leq B_1$ and $a^{-1}C_1a \leq C$ for some $a \in A$. Then $A *_C B = A *_C D$ where

$$D = B_1 *_{a^{-1}C_1 a} a^{-1} B_2 a.$$

This holds since $G = A *_{C} B = A *_{C} (B_{1} *_{C_{1}} B_{2}) = (A *_{C} B_{1}) *_{C_{1}} B_{2} = (A *_{C} B_{1}) *_{a^{-1}C_{1a}} a^{-1}B_{2}a = A *_{C} (B_{1} *_{a^{-1}C_{1a}} a^{-1}B_{2}a) = A *_{C} D.$

Case 2. Suppose that $B = \langle B_1, t | tC_1t^{-1} = C'_1 \rangle$ is an HNN-extension with base group B_1 and associated subgroups C_1 and C'_1 where $C_1 \leq C \leq B_1$ and $a^{-1}C_1a \leq C$ for some $a \in A$. Then $A *_C B = A *_C D$ where

$$D = \langle B_1, ta \, | \, (ta) \cdot a^{-1} C_1 a \cdot (ta)^{-1} = C_1' \rangle.$$

This holds since $G = A *_{C} B = A *_{C} \langle B_{1}, t | tC_{1}t^{-1} = C_{1}' \rangle = \langle A *_{C} B_{1}, t | tC_{1}t^{-1} = C_{1}' \rangle = \langle A *_{C} B_{1}, t | (ta) \cdot a^{-1}C_{1}a \cdot (ta)^{-1} = C_{1}' \rangle = A *_{C} \langle B_{1}, ta | (ta) \cdot a^{-1}C_{1}a \cdot (ta)^{-1} = C_{1}' \rangle = A *_{C} \langle B_{1}, ta | (ta) \cdot a^{-1}C_{1}a \cdot (ta)^{-1} = C_{1}' \rangle$

In the first case we say that the splitting $A *_C D$ is obtained from the splitting $A *_C B$ by a move of type 1, in the second case by a move of type 2.

^{*}The first author was supported by the RFBR grant no. 99-01-00576

It is easy to see that there are situations where such moves yield non-isomorphic B and D. A simple example for a move of type 1 is the following. Suppose that $A = BS(1, 2) = \langle a, x | a^{-1}xa = x^2 \rangle$, that $C = B_1 = \langle x | - \rangle$, that $B_2 = \langle y | - \rangle$ and that $C_1 = \langle x \rangle = \langle y^2 \rangle$. We then have $B = B_1 *_{C_1} B_2 = \langle x | - \rangle *_{\langle x = y^2 \rangle} \langle y | - \rangle \cong \mathbb{Z}$ but $D = B_1 *_{a^{-1}C_1a} a^{-1}B_2a = \langle x | - \rangle *_{\langle x^2 = a^{-1}y^2a \rangle} \langle a^{-1}ya | - \rangle$ which is the fundamental group of the Klein bottle.

On the other hand there is a situation where we can guarantee that B and D are isomorphic, namely in the case that the conjugation by the element could have been done by an element of B_1 , i.e. if there exists an element $b \in B_1$ such that $b^{-1}c_1b = a^{-1}c_1a$ for all $c_1 \in C_1$. This is clear since then $D = B_1 *_{a^{-1}C_1a} a^{-1}B_2a \cong B_1 *_{b^{-1}C_1b} b^{-1}B_2b = B$. It is further clear that in this case there exists an isomorphism $\phi : B \to D$ such that $\phi|_{B_1} = \mathrm{Id}_{B_1}$, namely the extension of the map $\phi|_{B_1} = \mathrm{Id}_{B_1}$ and the map $\phi|_{b^{-1}B_2b}$ that maps $b^{-1}b_2b$ to $(a^{-1}b)b^{-1}b_2b(b^{-1}a) = a^{-1}b_2a$. These two maps extend to a homomorphism $\phi : B \to D$ since by assumption $a^{-1}c_1a = b^{-1}c_1b$ for all $c_1 \in C_1$, i.e. they coincide when restricted to the amalgam. This extension is clearly an isomorphism.

Our main result is the following.

Theorem 1. Suppose that $G = A *_C B = A *_C D$ where G and C are finitely generated. Then the splitting $A *_C D$ can be obtained from the splitting $A *_C B$ by a finite number of moves of type 1 or 2.

If any conjugation of subgroups of C in A can already be done in C, then our observation above immediately yields the following corollary.

Corollary. Let $G = A *_C B$ where G and C are finitely generated and suppose that for any $C_1 \leq C$ and $a \in A$ with $aC_1a^{-1} \leq C$ there exists an element $c \in C$ such that $ac_1a^{-1} = cc_1c^{-1}$ for all $c_1 \in C_1$.

Then $G = A *_C D$ implies that there exists an isomorphism $\phi : B \to D$ such that $\phi|_C = \mathrm{Id}_C$.

The hypothesis of the Corollary is clearly fulfilled if C is a malnormal subgroup of A, i.e. if $aCa^{-1} \cap C = 1$ for all $a \in A - C$. In the case of a malnormal subgroup we are able to give the following stronger result.

Theorem 2. Let G be a finitely generated group and $C \neq 1$ be a malnormal subgroup that does not lie in a proper free factor of G. If G is a nontrivial amalgamated product over C, then there exists a unique decomposition of type $G = \underset{i=1}{\overset{n}{\ast}_{C}}G_{i}$ where $C \neq G_{i}$, such that for any splitting $G = A \ast_{C} B$ we have that $A = \underset{i \in I_{1}}{\overset{\ast}{\ast}_{C}}G_{i}$ and $B = \underset{i \in I_{2}}{\overset{\ast}{\ast}_{C}}G_{i}$ where $I_{1} \cup I_{2} = \{1, \ldots, n\}$ and $I_{1} \cap I_{2} = \emptyset$.

2 Controlled subgroups

We will assume familiarity of the reader with the Bass-Serre theory. Details can be found in [Sr]. Suppose that G acts minimally, simplicially and without inversion on a simplicial tree T. Let U be a subgroup of G. We define T_U to be a vertex fixed under the action of U if U acts with a global fixed point and to be the minimal U-invariant subtree of Totherwise. The induced splitting of U is the splitting corresponding to the action of U on T_U . For a graph Γ we denote the set of vertices of Γ by $V\Gamma$ and the set of edges by $E\Gamma$. For $x, y \in VT$ we denote by [x, y] the geodesic segment joining x and y and by (x, y) the segment without its boundary. For $x \in VT \cup ET$ we denote by Stab(x) the stabilizer of x in G.

We follow [FRW] and describe a situation where the induced splitting can be read off information that comes with U. In the definition below the tree T_1 corresponds to a lift of a maximal subtree of $U \setminus T_U$ to T_U , the tree T_2 corresponds to a subtree in T_U whose edge set projects bijectively onto the edge set of $U \setminus T_U$ and the elements t_v to the stable letters.

We say that the subgroup U of G is *controlled* by the tuple

$$(T_1, T_2, \{G_v | v \in VT_2\}, \{t_v | v \in VT_2 - VT_1\})$$

if

- 1. T_1 and T_2 are subtrees of $T, T_1 \subseteq T_2$.
- 2. For any $v \in VT_2 VT_1$ there exists an edge $e_v \in ET_2$ with initial vertex v and terminal vertex in VT_1 .
- 3. $G_v \leq G$ and $G_v v = v$ for all $v \in VT_2$.
- 4. U is generated by the G_v and the t_v .
- 5. $G_v \cap \text{Stab}(e) = G_w \cap \text{Stab}(e)$ for all edges $e \in ET_2$ with initial vertex v and terminal vertex w.
- 6. For every $v \in VT_2 VT_1$ there exists a $x_v \in VT_1$ such that $t_v v = x_v$ and $G_v = t_v^{-1}G_{x_v}t_v$.
- 7. $t_v e_v \neq t_w e_w$, $t_v e_v \notin T_2$ and $t_w e_w \notin T_2$ for all $v, w \in VT_2 VT_1$ and $v \neq w$.
- 8. All edges of $T_3 := T_2 \cup \{t_v e_v \mid v \in VT_2 VT_1\}$ emanating at a vertex $x \in VT_1$ are G_x -inequivalent.
- 9. There exists no vertex $x \in VT_1$ such that a component C of $T_1 \{x\}$ is also a component of $T_3 \{x\}$ and that $G_v \leq G_x$ for all $v \in VC$.

There is a simple way to read the induced splitting of U off the above tuple. This graph of groups has as the underlying graph the graph obtained from T_2 by identifying v and x_v for every $v \in VT_2 - VT_1$. The vertex and edge groups are simply the groups G_v and G_e given above. The number of edges of the induced splitting coincides with the number of edges of T_2 and the groups G_v coincide with $\operatorname{Stab}(v) \cap U$ for all v; see [FRW] for details. Conversely for every subgroup U of G their exists such a tuple that makes Ucontrolled.

We say that a subtree T^U of T is a generating tree for U if there exists a generating set M of U such that $mT^U \cap T^U \neq \emptyset$ for all $m \in M$. It is clear that UT^U is connected and U-invariant. In particular UT^U contains the minimal U-invariant subtree T_U , it follows that UT^U has at least as many U-equivalence classes of edges as T_U . It is further clear that gT^U is a generating tree of gUg^{-1} iff T^U is a generating tree for U. We have shown the following lemma.

Lemma 1. Let T^U be a generating tree for U. Then the induced splitting of U has at most as many edges as T^U .

3 The proofs

Proof of Theorem 1. We study the action of D on the Bass–Serre tree T associated to the splitting $G = A *_C B$. We assume that the number of edges of the induced splitting of D with respect to the action on T is minimal among all groups D' such that the splitting $A *_C D'$ can be obtained from $A *_C D$ by a finite numbers of moves of type 1 or 2. Such D' must exist since any splitting of a finitely generated group contains only finitely many edges and D is finitely generated since G and C are finitely generated.

Let x be the vertex fixed under the action of A, y be the vertex fixed under the action of B and e = [x, y] be the edge fixed under the action of C. Let further $T_D \subset T$ be as in section 2. We distinguish the cases that T_D lies in the component of $T - \{x\}$ containing y, that T_D lies in a component of $T - \{x\}$ not containing y and that T_D contains x where the last case has the subcases that T_D contains y and that it doesn't.

Case 1: T_D lies in the component of $T - \{x\}$ containing y. Choose the vertex z of T_D that has minimal distance to x, possibly we have y = z, but by assumption $z \neq x$. Choose a tuple $(T_1, T_2, \{G_v | v \in VT_2\}, \{t_v | v \in VT_2 - VT_1\})$ that makes D controlled such that $z \in VT_1$. It is clear that $C \leq G_z$, otherwise $T_D \cap cT_D = \emptyset$ for any $c \in C - G_z$ as c fixes x but not z. This contradicts the D-invariance of T_D .

It is easy to check that the subgroup generated by A and D is controlled by the tuple $(T'_1, T'_2, \{G_v | v \in VT'_2\}, \{t_v | v \in VT'_2 - VT'_1\})$ where T'_i is the tree spanned by T_i and x, the t_v are as before, $G_x = A$, $G_v = C$ for all $v \in VT'_2 - VT_2$ with $v \neq x$ and all other G_v are as before. This subgroup however is G by assumption. It follows that the induced splitting has two vertices and therefore $VT'_1 = VT'_2 = \{x, y\}$ which implies that D fixes y, i.e. $D \leq B$, and therefore D = B since otherwise A and D do not generate G.

Case 2: T_D lies in a component of $T - \{x\}$ not containing y. Choose z and $(T_1, T_2, \{G_v | v \in VT_2\}, \{t_v | v \in VT_2 - VT_1\})$ as in the first case.

We argue as in the first case to show that D fixes a vertex z adjacent to x. Clearly $y \neq z$. So, there is an $a \in A$ such that ae = [x, z]. We have $D \leq \operatorname{Stab}(z) = aBa^{-1}$ and $C \leq \operatorname{Stab}(ae) = aCa^{-1}$. Now, $G = A *_C D = (A *_C C) *_C D = (A *_{aCa^{-1}} aCa^{-1}) *_C D = A *_{aCa^{-1}} (aCa^{-1} *_C D)$. We also clearly have $G = A *_C B = A *_{aCa^{-1}} aBa^{-1}$. Note, that the equality $X *_Z Y = X *_Z Y_1$ with $Y \leq Y_1$ implies $Y = Y_1$ for any amalgamated product. Therefore $aCa^{-1} *_C D = aBa^{-1}$. Hence $B = C *_{a^{-1}Ca} a^{-1}Da$.

This implies that the splitting $A *_C D$ is obtained from the splitting $A *_C B$ by a move of type 1.

Case 3: T_D contains x and y. Note that in this case D is not elliptic with respect to the action on T because T_D is by definition the minimal D-invariant subtree. Since minimal subtrees cannot contain valence 1 vertices it follows that T_D must contain an edge ae = a[x, y] = [ax, ay] = [x, z] different from e. It follows that D splits over the subgroup $C_1 := \text{Stab} (ae) \cap D = \text{Stab} (ae) \cap (D \cap \text{Stab} (x)) = aCa^{-1} \cap C$. Since $D \cap \text{Stab} (x) = D \cap A = C$ we further get that ae is not $(D \cap \text{Stab} (x))$ -equivalent to e.

In the case that D splits as an amalgamated product $D = D_1 *_{C_1} D_2$ we can choose a tuple $(T_1, T_2, \{G_v | v \in VT_2\}, \{t_v | v \in VT_2 - VT_1\})$ such that $ae \in ET_1$ and $e \in ET_2$ and that the two components T^1 and T^2 of $T_2 - (x, z)$ are generating trees for D_1 and D_2 , where we choose D_1 to be the group corresponding to the component containing xand therefore also e. This implies in particular that $C \leq D_1$. We define $\overline{D}_2 := a^{-1}D_2a$ and $\overline{D} = \langle D_1, \overline{D}_2 \rangle$. The subtree $\overline{T} := T^1 \cup a^{-1}T^2$ is connected since a^{-1} maps $z \in T^2$ to $y \in T^1$, it follows that \overline{T} is a generating tree for \overline{D} . Since \overline{T} has less edges than T_1 it follows from Lemma 1 that the induced splitting of \overline{D} has fewer edges than the induced splitting of D. In order to get a contradiction to the minimality assumption we have to show that $G = A *_C \overline{D}$ and that the splitting $G = A *_C \overline{D}$ can be obtained from the splitting $G = A *_C D$ by a move of type 1.

We have $G = A *_{C} D = A *_{C} (D_{1} *_{C_{1}} D_{2}) = (A *_{C} D_{1}) *_{C_{1}} D_{2} = (A *_{C} D_{1}) *_{a^{-1}C_{1}a} a^{-1}D_{2}a = (A *_{C} D_{1}) *_{C_{2}} \overline{D}_{2} = A *_{C} (D_{1} *_{C_{2}} \overline{D}_{2}) = A *_{C} \overline{D}$ where $C_{2} = a^{-1}C_{1}a = a^{-1}(C \cap aCa^{-1})a = a^{-1}Ca \cap C \leq C$. This calculation shows in particular that $\overline{D} = D_{1} *_{C_{2}} \overline{D}_{2}$.

In the case that D splits as a HNN-extension $D = D_{1}*_{C_{1}}$ we can choose a tuple $(T_{1}, T_{2}, \{G_{v}|v \in VT_{2}\}, \{t_{v}|v \in VT_{2} - VT_{1}\})$ such that $ae = [x, z] \in ET_{2} - ET_{1}$ and $e \in ET_{2}$. In particular $T^{1} = T_{2} - (x, z]$ is connected and is a generating tree for D_{1} . We have $D = \langle D_{1}, t_{z} | t_{z}c_{1}t_{z}^{-1} = \psi(c_{1})$ for all $c_{1} \in C_{1}\rangle$ where ψ maps C_{1} isomorphically to a subgroup of D_{1} . We define $\overline{D} = \langle D_{1}, t_{z} a \rangle$. Since t_{z} maps z to a vertex x_{z} of T^{1} it follows $t_{z}a$ maps y to x_{z} which implies that T^{1} is a generating tree for \overline{D} which implies that the induced splitting of \overline{D} has fewer edges than the induced splitting of D. In order to get a contradiction to the minimality we have to check that $G = A *_{C} \overline{D}$ and that the splitting $G = A *_{C} \overline{D}$ can be obtained from the splitting $G = A *_{C} D$ by a move of type 2. The proof is analogous to the case of an amalgamated product.

We have $G = A *_C D = A *_C \langle D_1, t_z | t_z C_1 t_z^{-1} = \psi(C_1) \rangle = \langle A *_C D_1, t_z | t_z C_1 t_z^{-1} = \psi(C_1) \rangle = \langle A *_C D_1, t_z a | (t_z a) \cdot a^{-1} C_1 a \cdot (a^{-1} t_z^{-1}) = \psi(C_1) \rangle = A *_C \langle D_1, t_z a | (t_z a) \cdot a^{-1} C_1 a \cdot (a^{-1} t_z^{-1}) = \psi(C_1) \rangle$. We have shown that $G = A *_C D = A *_C \overline{D}$ where $\overline{D} = \langle D_1, t_z a | (t_z a) \cdot a^{-1} C_1 a \cdot (a^{-1} t_z^{-1}) = \psi(C_1) \rangle$.

Case 4: T_D contains x but not y. In this case we proceed as in case 3. In both cases the new group \overline{D} has a generating tree containing y that has at most as many edges as the induced splitting of D. It follows that either $T_{\overline{D}}$ contains y in which the statement follows from one of the above cases or the induced splitting of \overline{D} has less edges than the induced splitting of D which contradicts our minimality assumption.

We conclude with the proof of Theorem 2.

Proof of Theorem 2. Corollary 1 of [W] states that rank (G) - 1 is an upper bound on the number of factors of a decomposition of G as an amalgamated product of type $*_C G_i$ provided that $C \neq 1$, $C \neq G_i$ and that $C \leq G$ is malnormal. This guarantees the i=1 existence of a decomposition $G = *_C G_i$ where $C \neq G_i$ with maximal n. This also follows from Z. Sela's acylindrical accessibility result [SI]. Suppose $G = A *_C B$ is an arbitrary nontrivial splitting. In order to prove Theorem 1 it clearly suffices to show that for any $i \in \{1, \ldots, n\}$ either $G_i \leq A$ or $G_i \leq B$.

Choose T, x, y and e be as in the proof of Theorem 1. We have to show that G_i fixes either x or y. Define $T_i := T_{G_i}$. Let z be the vertex of T_i that is in minimal distance to e. As in the proof of Theorem 1 we see that $C \leq G_i \cap \text{Stab}(z)$. Since the action of G on T is 1-acylindrical, i.e. does not fix a segment of length 2, this implies that z = x or that z = y. Without loss of generality we can assume that z = x. We have to show that G_i fixes x. As $C \leq \text{Stab}(x) \cap G_i$, it follows that C is a subgroup of a vertex group of the induced splitting of G_i . This implies that the induced splitting of G_i does not contain a trivial edge group since otherwise C is contained in a free factor of G_i and therefore in a free factor of G which contradicts the assumption.

We show that every edge of T_i is G_i -equivalent to e. If T_i contains an edge this implies that G_i splits as an amalgamated product over C which contradicts the maximality of the splitting ${}^n_{C}G_i$. Note that in this case G_i cannot split as a HNN-extension since x and yare not G-equivalent. If T_i contains no edge then T_i consists of the vertex x and therefore fixes x which finishes the proof.

Let f be an edge of T_i and choose $w \in G$ such that we = f. Since all edge stabilizers are non-trivial there exists a nontrivial element $g \in G_i$ such that gf = f, in particular $g \in wCw^{-1}$, i.e. $g = wcw^{-1}$ for some $c \in C$. The malnormality of C implies the malnormality of G_i , i.e. $G_i \cap wG_iw^{-1} = 1$ for all $w \in G - G_i$. Since $g \in G_i$ and $c \in C \leq G_i$ it follows that $w \in G_i$. Thus e and f are G_i -equivalent. \Box

References

- [B] O.Bogopolski. Decompositions of the fundamental groups of closed surfaces into free constructions. Preprint 72, Institute of mathematics of Siberian Branch of Russian Academy of Sc., Novosibirsk, 2000.
- [FRW] B.Fine, G.Rosenberger and R.Weidmann. Two generated subgroup of free products with commuting subgroups, accepted to J. Pure Appl. Algebra.
- [SI] Z.Sela. Acylindrical accessibility for groups. Invent. Math. **129**, 1997, 527-565.
- [Sr] J.P.Serre. *Trees.* New York, 1980.
- [W] R.Weidmann. On the rank of amalgamated products and product knot groups. Math. Ann. **312**, 1999, 761-771.

Oleg Bogopolski Institute of Mathematics, Novosibirsk, 630090 Russia E-mail: groups@math.nsc.ru

Richard Weidmann Fakultät für Mathematik Ruhr-Universität Bochum D-44780 Bochum Germany E-mail: richard.weidmann@ruhr-uni-bochum.de