On the uniqueness of factors of amalgamated products

Oleg Bogopolski and Richard Weidmann*

Let $G=A *_{C} B$ be an amalgamated product. We study conditions under which the factor B is determined by A and C, i.e. under which the existence of another splitting of G as an amalgamated product $G=A *_{C} D$ implies $B=D$ or $B \cong D$. We also describe the structure of the family of amalgamated products along a given malnormal subgroup.

There are situations where $D \neq B$. We describe them and show that they are the only ones after giving a short account of controlled subgroups as introduced in [FRW]. Mary Jones has independently constructed an example of the type below and Ilya Kapovich has provided an insightful example to a related question. This work was motivated by the first author's work on splittings of surface groups [B].

1 Examples and main results

The two types of examples are similar in that B splits over a subgroup of C and that D is obtained by conjugating a boundary monomorphism with an element of A such that this conjugation cannot be done in B. We describe the amalgamated product and the HNN-extension case.

Case 1. Suppose that $B=B_{1} *_{C_{1}} B_{2}$ where $C_{1} \leqslant C \leqslant B_{1}$ and $a^{-1} C_{1} a \leqslant C$ for some $a \in A$. Then $A *_{C} B=A *_{C} D$ where

$$
D=B_{1} *_{a^{-1} C_{1} a} a^{-1} B_{2} a .
$$

This holds since $G=A *_{C} B=A *_{C}\left(B_{1} *_{C_{1}} B_{2}\right)=\left(A *_{C} B_{1}\right) *_{C_{1}} B_{2}=$ $\left(A *_{C} B_{1}\right) *_{a^{-1} C_{1} a} a^{-1} B_{2} a=A *_{C}\left(B_{1} *_{a^{-1} C_{1} a} a^{-1} B_{2} a\right)=A *_{C} D$.

Case 2. Suppose that $B=\left\langle B_{1}, t \mid t C_{1} t^{-1}=C_{1}^{\prime}\right\rangle$ is an HNN-extension with base group B_{1} and associated subgroups C_{1} and C_{1}^{\prime} where $C_{1} \leqslant C \leqslant B_{1}$ and $a^{-1} C_{1} a \leqslant C$ for some $a \in A$. Then $A *_{C} B=A *_{C} D$ where

$$
D=\left\langle B_{1}, t a \mid(t a) \cdot a^{-1} C_{1} a \cdot(t a)^{-1}=C_{1}^{\prime}\right\rangle .
$$

This holds since $G=A *_{C} B=A *_{C}\left\langle B_{1}, t \mid t C_{1} t^{-1}=C_{1}^{\prime}\right\rangle=\left\langle A *_{C} B_{1}, t\right|$ $\left.t C_{1} t^{-1}=C_{1}^{\prime}\right\rangle=\left\langle A *_{C} B_{1}, t a \mid(t a) \cdot a^{-1} C_{1} a \cdot(t a)^{-1}=C_{1}^{\prime}\right\rangle=A *_{C}\left\langle B_{1}, t a\right|$ $\left.(t a) \cdot a^{-1} C_{1} a \cdot(t a)^{-1}=C_{1}^{\prime}\right\rangle=A *_{C} D$.

In the first case we say that the splitting $A *_{C} D$ is obtained from the splitting $A *_{C} B$ by a move of type 1 , in the second case by a move of type 2 .

[^0]It is easy to see that there are situations where such moves yield non-isomorphic B and D. A simple example for a move of type 1 is the following. Suppose that $A=B S(1,2)=$ $\left\langle a, x \mid a^{-1} x a=x^{2}\right\rangle$, that $C=B_{1}=\langle x \mid-\rangle$, that $B_{2}=\langle y \mid-\rangle$ and that $C_{1}=\langle x\rangle=\left\langle y^{2}\right\rangle$. We then have $B=B_{1} *_{C_{1}} B_{2}=\langle x \mid-\rangle *_{\left\langle x=y^{2}\right\rangle}\langle y \mid-\rangle \cong \mathbb{Z}$ but $D=B_{1} *_{a^{-1} C_{1} a} a^{-1} B_{2} a=$ $\langle x \mid-\rangle *_{\left\langle x^{2}=a^{-1} y^{2} a\right\rangle}\left\langle a^{-1} y a \mid-\right\rangle$ which is the fundamental group of the Klein bottle.

On the other hand there is a situation where we can guarantee that B and D are isomorphic, namely in the case that the conjugation by the element could have been done by an element of B_{1}, i.e. if there exists an element $b \in B_{1}$ such that $b^{-1} c_{1} b=a^{-1} c_{1} a$ for all $c_{1} \in C_{1}$. This is clear since then $D=B_{1} *_{a^{-1} C_{1} a} a^{-1} B_{2} a \cong B_{1} *_{b^{-1} C_{1} b} b^{-1} B_{2} b=B$. It is further clear that in this case there exists an isomorphism $\phi: B \rightarrow D$ such that $\left.\phi\right|_{B_{1}}=\operatorname{Id}_{B_{1}}$, namely the extension of the map $\left.\phi\right|_{B_{1}}=\operatorname{Id}_{B_{1}}$ and the map $\left.\phi\right|_{b^{-1} B_{2} b}$ that maps $b^{-1} b_{2} b$ to $\left(a^{-1} b\right) b^{-1} b_{2} b\left(b^{-1} a\right)=a^{-1} b_{2} a$. These two maps extend to a homomorphism $\phi: B \rightarrow D$ since by assumption $a^{-1} c_{1} a=b^{-1} c_{1} b$ for all $c_{1} \in C_{1}$, i.e. they coincide when restricted to the amalgam. This extension is clearly an isomorphism.

Our main result is the following.
Theorem 1. Suppose that $G=A *_{C} B=A *_{C} D$ where G and C are finitely generated. Then the splitting $A *_{C} D$ can be obtained from the splitting $A *_{C} B$ by a finite number of moves of type 1 or 2.

If any conjugation of subgroups of C in A can already be done in C, then our observation above immediately yields the following corollary.
Corollary. Let $G=A *_{C} B$ where G and C are finitely generated and suppose that for any $C_{1} \leqslant C$ and $a \in A$ with $a C_{1} a^{-1} \leqslant C$ there exists an element $c \in C$ such that $a c_{1} a^{-1}=c c_{1} c^{-1}$ for all $c_{1} \in C_{1}$.

Then $G=A *_{C} D$ implies that there exists an isomorphism $\phi: B \rightarrow D$ such that $\left.\phi\right|_{C}=\operatorname{Id}_{C}$.

The hypothesis of the Corollary is clearly fulfilled if C is a malnormal subgroup of A, i.e. if $a C a^{-1} \cap C=1$ for all $a \in A-C$. In the case of a malnormal subgroup we are able to give the following stronger result.
Theorem 2. Let G be a finitely generated group and $C \neq 1$ be a malnormal subgroup that does not lie in a proper free factor of G. If G is a nontrivial amalgamated product over C, then there exists a unique decomposition of type $G={ }_{i=1}^{*_{C}} G_{i}$ where $C \neq G_{i}$, such that for any splitting $G=A *_{C} B$ we have that $A=\underset{i \in I_{1}}{*_{C}} G_{i}$ and $B=\underset{i \in I_{2}}{*_{C}} G_{i}$ where $I_{1} \cup I_{2}=\{1, \ldots, n\}$ and $I_{1} \cap I_{2}=\emptyset$.

2 Controlled subgroups

We will assume familiarity of the reader with the Bass-Serre theory. Details can be found in [Sr]. Suppose that G acts minimally, simplicially and without inversion on a simplicial tree T. Let U be a subgroup of G. We define T_{U} to be a vertex fixed under the action of U if U acts with a global fixed point and to be the minimal U-invariant subtree of T otherwise. The induced splitting of U is the splitting corresponding to the action of U on T_{U}. For a graph Γ we denote the set of vertices of Γ by $V \Gamma$ and the set of edges by $E \Gamma$.

For $x, y \in V T$ we denote by $[x, y]$ the geodesic segment joining x and y and by (x, y) the segment without its boundary. For $x \in V T \cup E T$ we denote by $\operatorname{Stab}(x)$ the stabilizer of x in G.

We follow [FRW] and describe a situation where the induced splitting can be read off information that comes with U. In the definition below the tree T_{1} corresponds to a lift of a maximal subtree of $U \backslash T_{U}$ to T_{U}, the tree T_{2} corresponds to a subtree in T_{U} whose edge set projects bijectively onto the edge set of $U \backslash T_{U}$ and the elements t_{v} to the stable letters.

We say that the subgroup U of G is controlled by the tuple

$$
\left(T_{1}, T_{2},\left\{G_{v} \mid v \in V T_{2}\right\},\left\{t_{v} \mid v \in V T_{2}-V T_{1}\right\}\right)
$$

if

1. T_{1} and T_{2} are subtrees of $T, T_{1} \subseteq T_{2}$.
2. For any $v \in V T_{2}-V T_{1}$ there exists an edge $e_{v} \in E T_{2}$ with initial vertex v and terminal vertex in $V T_{1}$.
3. $G_{v} \leqslant G$ and $G_{v} v=v$ for all $v \in V T_{2}$.
4. U is generated by the G_{v} and the t_{v}.
5. $G_{v} \cap \operatorname{Stab}(e)=G_{w} \cap \operatorname{Stab}(e)$ for all edges $e \in E T_{2}$ with initial vertex v and terminal vertex w.
6. For every $v \in V T_{2}-V T_{1}$ there exists a $x_{v} \in V T_{1}$ such that $t_{v} v=x_{v}$ and $G_{v}=$ $t_{v}^{-1} G_{x_{v}} t_{v}$.
7. $t_{v} e_{v} \neq t_{w} e_{w}, t_{v} e_{v} \notin T_{2}$ and $t_{w} e_{w} \notin T_{2}$ for all $v, w \in V T_{2}-V T_{1}$ and $v \neq w$.
8. All edges of $T_{3}:=T_{2} \cup\left\{t_{v} e_{v} \mid v \in V T_{2}-V T_{1}\right\}$ emanating at a vertex $x \in V T_{1}$ are G_{x}-inequivalent.
9. There exists no vertex $x \in V T_{1}$ such that a component C of $T_{1}-\{x\}$ is also a component of $T_{3}-\{x\}$ and that $G_{v} \leqslant G_{x}$ for all $v \in V C$.

There is a simple way to read the induced splitting of U off the above tuple. This graph of groups has as the underlying graph the graph obtained from T_{2} by identifying v and x_{v} for every $v \in V T_{2}-V T_{1}$. The vertex and edge groups are simply the groups G_{v} and G_{e} given above. The number of edges of the induced splitting coincides with the number of edges of T_{2} and the groups G_{v} coincide with $\operatorname{Stab}(v) \cap U$ for all v; see [FRW] for details. Conversely for every subgroup U of G their exists such a tuple that makes U controlled.

We say that a subtree T^{U} of T is a generating tree for U if there exists a generating set M of U such that $m T^{U} \cap T^{U} \neq \emptyset$ for all $m \in M$. It is clear that $U T^{U}$ is connected and U-invariant. In particular $U T^{U}$ contains the minimal U-invariant subtree T_{U}, it follows that $U T^{U}$ has at least as many U-equivalence classes of edges as T_{U}. It is further clear that $g T^{U}$ is a generating tree of $g U g^{-1}$ iff T^{U} is a generating tree for U. We have shown the following lemma.
Lemma 1. Let T^{U} be a generating tree for U. Then the induced splitting of U has at most as many edges as T^{U}.

3 The proofs

Proof of Theorem 1. We study the action of D on the Bass-Serre tree T associated to the splitting $G=A *_{C} B$. We assume that the number of edges of the induced splitting of D with respect to the action on T is minimal among all groups D^{\prime} such that the splitting $A *_{C} D^{\prime}$ can be obtained from $A *_{C} D$ by a finite numbers of moves of type 1 or 2 . Such D^{\prime} must exist since any splitting of a finitely generated group contains only finitely many edges and D is finitely generated since G and C are finitely generated.

Let x be the vertex fixed under the action of A, y be the vertex fixed under the action of B and $e=[x, y]$ be the edge fixed under the action of C. Let further $T_{D} \subset T$ be as in section 2. We distinguish the cases that T_{D} lies in the component of $T-\{x\}$ containing y, that T_{D} lies in a component of $T-\{x\}$ not containing y and that T_{D} contains x where the last case has the subcases that T_{D} contains y and that it doesn't.
Case 1: T_{D} lies in the component of $T-\{x\}$ containing y. Choose the vertex z of T_{D} that has minimal distance to x, possibly we have $y=z$, but by assumption $z \neq x$. Choose a tuple $\left(T_{1}, T_{2},\left\{G_{v} \mid v \in V T_{2}\right\},\left\{t_{v} \mid v \in V T_{2}-V T_{1}\right\}\right)$ that makes D controlled such that $z \in V T_{1}$. It is clear that $C \leqslant G_{z}$, otherwise $T_{D} \cap c T_{D}=\emptyset$ for any $c \in C-G_{z}$ as c fixes x but not z. This contradicts the D-invariance of T_{D}.

It is easy to check that the subgroup generated by A and D is controlled by the tuple $\left(T_{1}^{\prime}, T_{2}^{\prime},\left\{G_{v} \mid v \in V T_{2}^{\prime}\right\},\left\{t_{v} \mid v \in V T_{2}^{\prime}-V T_{1}^{\prime}\right\}\right)$ where T_{i}^{\prime} is the tree spanned by T_{i} and x, the t_{v} are as before, $G_{x}=A, G_{v}=C$ for all $v \in V T_{2}^{\prime}-V T_{2}$ with $v \neq x$ and all other G_{v} are as before. This subgroup however is G by assumption. It follows that the induced splitting has two vertices and therefore $V T_{1}^{\prime}=V T_{2}^{\prime}=\{x, y\}$ which implies that D fixes y, i.e. $D \leqslant B$, and therefore $D=B$ since otherwise A and D do not generate G.
Case 2: T_{D} lies in a component of $T-\{x\}$ not containing y. Choose z and $\left(T_{1}, T_{2},\left\{G_{v} \mid v \in\right.\right.$ $\left.\left.V T_{2}\right\},\left\{t_{v} \mid v \in V T_{2}-V T_{1}\right\}\right)$ as in the first case.

We argue as in the first case to show that D fixes a vertex z adjacent to x. Clearly $y \neq z$. So, there is an $a \in A$ such that $a e=[x, z]$. We have $D \leqslant \operatorname{Stab}(z)=a B a^{-1}$ and $C \leqslant \operatorname{Stab}(a e)=a C a^{-1}$. Now, $G=A *_{C} D=\left(A *_{C} C\right) *_{C} D=\left(A *_{a C a^{-1}} a C a^{-1}\right) *_{C} D=$ $A *_{a C a^{-1}}\left(a C a^{-1} *_{C} D\right)$. We also cleary have $G=A *_{C} B=A *_{a C a^{-1}} a B a^{-1}$. Note, that the equality $X *_{Z} Y=X *_{Z} Y_{1}$ with $Y \leqslant Y_{1}$ implies $Y=Y_{1}$ for any amalgamated product. Therefore $a C a^{-1} *_{C} D=a B a^{-1}$. Hence $B=C *_{a^{-1} C a} a^{-1} D a$.

This implies that the splitting $A *_{C} D$ is obtained from the splitting $A *_{C} B$ by a move of type 1 .

Case 3: T_{D} contains x and y. Note that in this case D is not elliptic with respect to the action on T because T_{D} is by definition the minimal D-invariant subtree. Since minimal subtrees cannot contain valence 1 vertices it follows that T_{D} must contain an edge $a e=a[x, y]=[a x, a y]=[x, z]$ different from e. It follows that D splits over the subgroup $C_{1}:=\operatorname{Stab}(a e) \cap D=\operatorname{Stab}(a e) \cap(D \cap \operatorname{Stab}(x))=a C a^{-1} \cap C$. Since $D \cap \operatorname{Stab}(x)=D \cap A=C$ we further get that ae is not $(D \cap \operatorname{Stab}(x))$-equivalent to e.

In the case that D splits as an amalgamated product $D=D_{1} *_{C_{1}} D_{2}$ we can choose a tuple $\left(T_{1}, T_{2},\left\{G_{v} \mid v \in V T_{2}\right\},\left\{t_{v} \mid v \in V T_{2}-V T_{1}\right\}\right)$ such that ae $\in E T_{1}$ and $e \in E T_{2}$ and that the two components T^{1} and T^{2} of $T_{2}-(x, z)$ are generating trees for D_{1} and D_{2}, where we choose D_{1} to be the group corresponding to the component containing x and therefore also e. This implies in particular that $C \leqslant D_{1}$. We define $\bar{D}_{2}:=a^{-1} D_{2} a$ and $\bar{D}=\left\langle D_{1}, \bar{D}_{2}\right\rangle$. The subtree $\bar{T}:=T^{1} \cup a^{-1} T^{2}$ is connected since a^{-1} maps $z \in T^{2}$
to $y \in T^{1}$, it follows that \bar{T} is a generating tree for \bar{D}. Since \bar{T} has less edges than T_{1} it follows from Lemma 1 that the induced splitting of \bar{D} has fewer edges than the induced splitting of D. In order to get a contradiction to the minimality assumption we have to show that $G=A *_{C} \bar{D}$ and that the splitting $G=A *_{C} \bar{D}$ can be obtained from the splitting $G=A *_{C} D$ by a move of type 1 .

We have $G=A *_{C} D=A *_{C}\left(D_{1} *_{C_{1}} D_{2}\right)=\left(A *_{C} D_{1}\right) *_{C_{1}} D_{2}=$ $\left(A *_{C} D_{1}\right) *_{a^{-1} C_{1} a} a^{-1} D_{2} a=\left(A *_{C} D_{1}\right) *_{C_{2}} \bar{D}_{2}=A *_{C}\left(D_{1} *_{C_{2}} \bar{D}_{2}\right)=A *_{C} \bar{D}$ where $C_{2}=a^{-1} C_{1} a=a^{-1}\left(C \cap a C a^{-1}\right) a=a^{-1} C a \cap C \leqslant C$. This calculation shows in particular that $\bar{D}=D_{1} *_{C_{2}} \bar{D}_{2}$.

In the case that D splits as a HNN-extension $D=D_{1} *_{C_{1}}$ we can choose a tuple $\left(T_{1}, T_{2},\left\{G_{v} \mid v \in V T_{2}\right\},\left\{t_{v} \mid v \in V T_{2}-V T_{1}\right\}\right)$ such that $a e=[x, z] \in E T_{2}-E T_{1}$ and $e \in E T_{2}$. In particular $T^{1}=T_{2}-(x, z]$ is connected and is a generating tree for D_{1}. We have $D=\left\langle D_{1}, t_{z}\right| t_{z} c_{1} t_{z}^{-1}=\psi\left(c_{1}\right)$ for all $\left.c_{1} \in C_{1}\right\rangle$ where ψ maps C_{1} isomorphically to a subgroup of D_{1}. We define $\bar{D}=\left\langle D_{1}, t_{z} a\right\rangle$. Since t_{z} maps z to a vertex x_{z} of T^{1} it follows $t_{z} a$ maps y to x_{z} which implies that T^{1} is a generating tree for \bar{D} which implies that the induced splitting of \bar{D} has fewer edges than the induced splitting of D. In order to get a contradiction to the minimality we have to check that $G=A *_{C} \bar{D}$ and that the splitting $G=A *_{C} \bar{D}$ can be obtained from the splitting $G=A *_{C} D$ by a move of type 2 . The proof is analogous to the case of an amalgamated product.

We have $G=A *_{C} D=A *_{C}\left\langle D_{1}, t_{z} \mid t_{z} C_{1} t_{z}^{-1}=\psi\left(C_{1}\right)\right\rangle=\left\langle A *_{C} D_{1}, t_{z}\right| t_{z} C_{1} t_{z}^{-1}=$ $\left.\psi\left(C_{1}\right)\right\rangle=\left\langle A *_{C} D_{1}, t_{z} a \mid\left(t_{z} a\right) \cdot a^{-1} C_{1} a \cdot\left(a^{-1} t_{z}^{-1}\right)=\psi\left(C_{1}\right)\right\rangle=A *_{C}\left\langle D_{1}, t_{z} a\right|\left(t_{z} a\right) \cdot a^{-1} C_{1} a$. $\left.\left(a^{-1} t_{z}^{-1}\right)=\psi\left(C_{1}\right)\right\rangle$. We have shown that $G=A *_{C} D=A *_{C} \bar{D}$ where $\bar{D}=\left\langle D_{1}, t_{z} a\right|\left(t_{z} a\right)$. $\left.a^{-1} C_{1} a \cdot\left(a^{-1} t_{z}^{-1}\right)=\psi\left(C_{1}\right)\right\rangle$.
Case 4: T_{D} contains x but not y. In this case we proceed as in case 3. In both cases the new group \bar{D} has a generating tree containing y that has at most as many edges as the induced splitting of D. It follows that either $T_{\bar{D}}$ contains y in which the statement follows from one of the above cases or the induced splitting of \bar{D} has less edges than the induced splitting of D which contradicts our minimality assumption.

We conclude with the proof of Theorem 2.
Proof of Theorem 2. Corollary 1 of [W] states that rank $(G)-1$ is an upper bound on the number of factors of a decomposition of G as an amalgamated product of type ${ }_{*}^{n}{ }_{C} G_{i}$ provided that $C \neq 1, C \neq G_{i}$ and that $C \leqslant G$ is malnormal. This guarantees the t
existence of a decomposition $G={ }_{i=1}^{*_{C}} G_{i}$ where $C \neq G_{i}$ with maximal n. This also follows from Z. Sela's acylindrical accessibility result [Sl]. Suppose $G=A *_{C} B$ is an arbitrary nontrivial splitting. In order to prove Theorem 1 it clearly suffices to show that for any $i \in\{1, \ldots, n\}$ either $G_{i} \leqslant A$ or $G_{i} \leqslant B$.

Choose T, x, y and e be as in the proof of Theorem 1. We have to show that G_{i} fixes either x or y. Define $T_{i}:=T_{G_{i}}$. Let z be the vertex of T_{i} that is in minimal distance to e. As in the proof of Theorem 1 we see that $C \leqslant G_{i} \cap \operatorname{Stab}(z)$. Since the action of G on T is 1-acylindrical, i.e. does not fix a segment of length 2 , this implies that $z=x$ or that $z=y$. Without loss of generality we can assume that $z=x$. We have to show that G_{i} fixes x. As $C \leqslant \operatorname{Stab}(x) \cap G_{i}$, it follows that C is a subgroup of a vertex group of the induced splitting of G_{i}. This implies that the induced splitting of G_{i} does not contain a trivial edge group since otherwise C is contained in a free factor of G_{i} and therefore in a
free factor of G which contradicts the assumption.
We show that every edge of T_{i} is G_{i}-equivalent to e. If T_{i} contains an edge this implies that G_{i} splits as an amalgamated product over C which contradicts the maximality of the splitting ${ }_{i=1}^{n} G_{i}$. Note that in this case G_{i} cannot split as a HNN-extension since x and y are not G-equivalent. If T_{i} contains no edge then T_{i} consists of the vertex x and therefore fixes x which finishes the proof.

Let f be an edge of T_{i} and choose $w \in G$ such that $w e=f$. Since all edge stabilizers are non-trivial there exists a nontrivial element $g \in G_{i}$ such that $g f=f$, in particular $g \in w C w^{-1}$, i.e. $g=w c w^{-1}$ for some $c \in C$. The malnormality of C implies the malnormality of G_{i}, i.e. $G_{i} \cap w G_{i} w^{-1}=1$ for all $w \in G-G_{i}$. Since $g \in G_{i}$ and $c \in C \leqslant G_{i}$ it follows that $w \in G_{i}$. Thus e and f are G_{i}-equivalent.

References

[B] O.Bogopolski. Decompositions of the fundamental groups of closed surfaces into free constructions. Preprint 72, Institute of mathematics of Siberian Branch of Russian Academy of Sc., Novosibirsk, 2000.
[FRW] B.Fine, G.Rosenberger and R.Weidmann. Two generated subgroup of free products with commuting subgroups, accepted to J. Pure Appl. Algebra.
[Sl] Z.Sela. Acylindrical accessibility for groups. Invent. Math. 129, 1997, 527-565.
[Sr] J.P.Serre. Trees. New York, 1980.
[W] R.Weidmann. On the rank of amalgamated products and product knot groups. Math. Ann. 312, 1999, 761-771.

Oleg Bogopolski
Institute of Mathematics,
Novosibirsk, 630090
Russia
E-mail: groups@math.nsc.ru
Richard Weidmann
Fakultät für Mathematik
Ruhr-Universität Bochum
D-44780 Bochum
Germany
E-mail: richard.weidmann@ruhr-uni-bochum.de

[^0]: *The first author was supported by the RFBR grant no. 99-01-00576

