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Let G = A ∗C B be an amalgamated product. We study conditions under which the
factor B is determined by A and C, i.e. under which the existence of another splitting of
G as an amalgamated product G = A ∗C D implies B = D or B ∼= D. We also describe
the structure of the family of amalgamated products along a given malnormal subgroup.

There are situations where D 6∼= B. We describe them and show that they are the only
ones after giving a short account of controlled subgroups as introduced in [FRW]. Mary
Jones has independently constructed an example of the type below and Ilya Kapovich has
provided an insightful example to a related question. This work was motivated by the
first author’s work on splittings of surface groups [B].

1 Examples and main results

The two types of examples are similar in that B splits over a subgroup of C and that D
is obtained by conjugating a boundary monomorphism with an element of A such that
this conjugation cannot be done in B. We describe the amalgamated product and the
HNN-extension case.

Case 1. Suppose that B = B1 ∗C1 B2 where C1 6 C 6 B1 and a−1C1a 6 C for some
a ∈ A. Then A ∗C B = A ∗C D where

D = B1 ∗a−1C1a a−1B2a.

This holds since G = A ∗C B = A ∗C (B1 ∗C1 B2) = (A ∗C B1) ∗C1 B2 =
(A ∗C B1) ∗a−1C1a a−1B2a = A ∗C (B1 ∗a−1C1a a−1B2a) = A ∗C D.

Case 2. Suppose that B = 〈B1, t | tC1t
−1 = C ′

1〉 is an HNN-extension with base group
B1 and associated subgroups C1 and C ′

1 where C1 6 C 6 B1 and a−1C1a 6 C for some
a ∈ A. Then A ∗C B = A ∗C D where

D = 〈B1, ta | (ta) · a−1C1a · (ta)−1 = C ′
1〉.

This holds since G = A ∗C B = A ∗C 〈B1, t | tC1t
−1 = C ′

1〉 = 〈A ∗C B1, t |
tC1t

−1 = C ′
1〉 = 〈A ∗C B1, ta | (ta) · a−1C1a · (ta)−1 = C ′

1〉 = A ∗C 〈B1, ta |
(ta) · a−1C1a · (ta)−1 = C ′

1〉 = A ∗C D.

In the first case we say that the splitting A ∗C D is obtained from the splitting A ∗C B
by a move of type 1, in the second case by a move of type 2.
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It is easy to see that there are situations where such moves yield non-isomorphic B and
D. A simple example for a move of type 1 is the following. Suppose that A = BS(1, 2) =
〈a, x|a−1xa = x2〉, that C = B1 = 〈x|−〉, that B2 = 〈y|−〉 and that C1 = 〈x〉 = 〈y2〉.
We then have B = B1 ∗C1 B2 = 〈x|−〉 ∗〈x=y2〉 〈y|−〉 ∼= Z but D = B1 ∗a−1C1a a−1B2a =
〈x|−〉 ∗〈x2=a−1y2a〉 〈a−1ya|−〉 which is the fundamental group of the Klein bottle.

On the other hand there is a situation where we can guarantee that B and D are
isomorphic, namely in the case that the conjugation by the element could have been done
by an element of B1, i.e. if there exists an element b ∈ B1 such that b−1c1b = a−1c1a for
all c1 ∈ C1. This is clear since then D = B1 ∗a−1C1a a−1B2a ∼= B1 ∗b−1C1b b−1B2b = B.
It is further clear that in this case there exists an isomorphism φ : B → D such that
φ|B1 = IdB1 , namely the extension of the map φ|B1 = IdB1 and the map φ|b−1B2b that
maps b−1b2b to (a−1b)b−1b2b(b

−1a) = a−1b2a. These two maps extend to a homomorphism
φ : B → D since by assumption a−1c1a = b−1c1b for all c1 ∈ C1, i.e. they coincide when
restricted to the amalgam. This extension is clearly an isomorphism.

Our main result is the following.

Theorem 1. Suppose that G = A ∗C B = A ∗C D where G and C are finitely generated.
Then the splitting A ∗C D can be obtained from the splitting A ∗C B by a finite number of
moves of type 1 or 2.

If any conjugation of subgroups of C in A can already be done in C, then our obser-
vation above immediately yields the following corollary.

Corollary. Let G = A ∗C B where G and C are finitely generated and suppose that
for any C1 6 C and a ∈ A with aC1a

−1 6 C there exists an element c ∈ C such that
ac1a

−1 = cc1c
−1 for all c1 ∈ C1.

Then G = A ∗C D implies that there exists an isomorphism φ : B → D such that
φ|C = IdC.

The hypothesis of the Corollary is clearly fulfilled if C is a malnormal subgroup of A,
i.e. if aCa−1 ∩C = 1 for all a ∈ A−C. In the case of a malnormal subgroup we are able
to give the following stronger result.

Theorem 2. Let G be a finitely generated group and C 6= 1 be a malnormal subgroup that
does not lie in a proper free factor of G. If G is a nontrivial amalgamated product over C,

then there exists a unique decomposition of type G =
n∗C
i=1

Gi where C 6= Gi, such that for

any splitting G = A∗CB we have that A = ∗C
i∈I1

Gi and B = ∗C
i∈I2

Gi where I1∪I2 = {1, . . . , n}
and I1 ∩ I2 = ∅.

2 Controlled subgroups

We will assume familiarity of the reader with the Bass-Serre theory. Details can be found
in [Sr]. Suppose that G acts minimally, simplicially and without inversion on a simplicial
tree T . Let U be a subgroup of G. We define TU to be a vertex fixed under the action
of U if U acts with a global fixed point and to be the minimal U -invariant subtree of T
otherwise. The induced splitting of U is the splitting corresponding to the action of U on
TU . For a graph Γ we denote the set of vertices of Γ by V Γ and the set of edges by EΓ.
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For x, y ∈ V T we denote by [x, y] the geodesic segment joining x and y and by (x, y) the
segment without its boundary. For x ∈ V T ∪ ET we denote by Stab(x) the stabilizer of
x in G.

We follow [FRW] and describe a situation where the induced splitting can be read off
information that comes with U . In the definition below the tree T1 corresponds to a lift
of a maximal subtree of U\TU to TU , the tree T2 corresponds to a subtree in TU whose
edge set projects bijectively onto the edge set of U\TU and the elements tv to the stable
letters.

We say that the subgroup U of G is controlled by the tuple

(T1, T2, {Gv|v ∈ V T2}, {tv|v ∈ V T2 − V T1})
if

1. T1 and T2 are subtrees of T , T1 ⊆ T2.

2. For any v ∈ V T2 − V T1 there exists an edge ev ∈ ET2 with initial vertex v and
terminal vertex in V T1.

3. Gv 6 G and Gvv = v for all v ∈ V T2.

4. U is generated by the Gv and the tv.

5. Gv∩Stab (e) = Gw∩Stab (e) for all edges e ∈ ET2 with initial vertex v and terminal
vertex w.

6. For every v ∈ V T2 − V T1 there exists a xv ∈ V T1 such that tvv = xv and Gv =
t−1
v Gxvtv.

7. tvev 6= twew, tvev /∈ T2 and twew /∈ T2 for all v, w ∈ V T2 − V T1 and v 6= w.

8. All edges of T3 := T2 ∪ {tvev | v ∈ V T2 − V T1} emanating at a vertex x ∈ V T1 are
Gx-inequivalent.

9. There exists no vertex x ∈ V T1 such that a component C of T1 − {x} is also a
component of T3 − {x} and that Gv 6 Gx for all v ∈ V C.

There is a simple way to read the induced splitting of U off the above tuple. This
graph of groups has as the underlying graph the graph obtained from T2 by identifying
v and xv for every v ∈ V T2 − V T1. The vertex and edge groups are simply the groups
Gv and Ge given above. The number of edges of the induced splitting coincides with the
number of edges of T2 and the groups Gv coincide with Stab(v) ∩ U for all v; see [FRW]
for details. Conversely for every subgroup U of G their exists such a tuple that makes U
controlled.

We say that a subtree TU of T is a generating tree for U if there exists a generating set
M of U such that mTU ∩ TU 6= ∅ for all m ∈ M . It is clear that UTU is connected and
U -invariant. In particular UTU contains the minimal U -invariant subtree TU , it follows
that UTU has at least as many U -equivalence classes of edges as TU . It is further clear
that gTU is a generating tree of gUg−1 iff TU is a generating tree for U . We have shown
the following lemma.

Lemma 1. Let TU be a generating tree for U . Then the induced splitting of U has at
most as many edges as TU .
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3 The proofs

Proof of Theorem 1. We study the action of D on the Bass–Serre tree T associated to the
splitting G = A ∗C B. We assume that the number of edges of the induced splitting of D
with respect to the action on T is minimal among all groups D′ such that the splitting
A ∗C D′ can be obtained from A ∗C D by a finite numbers of moves of type 1 or 2. Such
D′ must exist since any splitting of a finitely generated group contains only finitely many
edges and D is finitely generated since G and C are finitely generated.

Let x be the vertex fixed under the action of A, y be the vertex fixed under the action
of B and e = [x, y] be the edge fixed under the action of C. Let further TD ⊂ T be as in
section 2. We distinguish the cases that TD lies in the component of T − {x} containing
y, that TD lies in a component of T −{x} not containing y and that TD contains x where
the last case has the subcases that TD contains y and that it doesn’t.

Case 1: TD lies in the component of T −{x} containing y. Choose the vertex z of TD that
has minimal distance to x, possibly we have y = z, but by assumption z 6= x. Choose
a tuple (T1, T2, {Gv|v ∈ V T2}, {tv|v ∈ V T2 − V T1}) that makes D controlled such that
z ∈ V T1. It is clear that C 6 Gz, otherwise TD ∩ cTD = ∅ for any c ∈ C −Gz as c fixes x
but not z. This contradicts the D-invariance of TD.

It is easy to check that the subgroup generated by A and D is controlled by the tuple
(T ′

1, T
′
2, {Gv|v ∈ V T ′

2}, {tv|v ∈ V T ′
2−V T ′

1}) where T ′
i is the tree spanned by Ti and x, the

tv are as before, Gx = A, Gv = C for all v ∈ V T ′
2 − V T2 with v 6= x and all other Gv

are as before. This subgroup however is G by assumption. It follows that the induced
splitting has two vertices and therefore V T ′

1 = V T ′
2 = {x, y} which implies that D fixes

y, i.e. D 6 B, and therefore D = B since otherwise A and D do not generate G.

Case 2: TD lies in a component of T−{x} not containing y. Choose z and (T1, T2, {Gv|v ∈
V T2}, {tv|v ∈ V T2 − V T1}) as in the first case.

We argue as in the first case to show that D fixes a vertex z adjacent to x. Clearly
y 6= z. So, there is an a ∈ A such that ae = [x, z]. We have D 6 Stab(z) = aBa−1 and
C 6 Stab(ae) = aCa−1. Now, G = A ∗C D = (A ∗C C) ∗C D = (A ∗aCa−1 aCa−1) ∗C D =
A∗aCa−1 (aCa−1 ∗C D). We also cleary have G = A∗C B = A∗aCa−1 aBa−1. Note, that the
equality X ∗Z Y = X ∗Z Y1 with Y 6 Y1 implies Y = Y1 for any amalgamated product.
Therefore aCa−1 ∗C D = aBa−1. Hence B = C ∗a−1Ca a−1Da.

This implies that the splitting A ∗C D is obtained from the splitting A ∗C B by a move
of type 1.

Case 3: TD contains x and y. Note that in this case D is not elliptic with respect
to the action on T because TD is by definition the minimal D-invariant subtree. Since
minimal subtrees cannot contain valence 1 vertices it follows that TD must contain an
edge ae = a[x, y] = [ax, ay] = [x, z] different from e. It follows that D splits over the
subgroup C1 := Stab (ae) ∩ D = Stab (ae) ∩ (D ∩ Stab (x)) = aCa−1 ∩ C. Since
D ∩ Stab (x) = D ∩ A = C we further get that ae is not (D ∩ Stab (x))-equivalent to e.

In the case that D splits as an amalgamated product D = D1 ∗C1 D2 we can choose
a tuple (T1, T2, {Gv|v ∈ V T2}, {tv|v ∈ V T2 − V T1}) such that ae ∈ ET1 and e ∈ ET2

and that the two components T 1 and T 2 of T2 − (x, z) are generating trees for D1 and
D2, where we choose D1 to be the group corresponding to the component containing x
and therefore also e. This implies in particular that C 6 D1. We define D̄2 := a−1D2a
and D̄ = 〈D1, D̄2〉. The subtree T̄ := T 1 ∪ a−1T 2 is connected since a−1 maps z ∈ T 2
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to y ∈ T 1, it follows that T̄ is a generating tree for D̄. Since T̄ has less edges than T1 it
follows from Lemma 1 that the induced splitting of D̄ has fewer edges than the induced
splitting of D. In order to get a contradiction to the minimality assumption we have to
show that G = A ∗C D̄ and that the splitting G = A ∗C D̄ can be obtained from the
splitting G = A ∗C D by a move of type 1.

We have G = A ∗C D = A ∗C (D1 ∗C1 D2) = (A ∗C D1) ∗C1 D2 =
(A ∗C D1) ∗a−1C1a a−1D2a = (A ∗C D1) ∗C2 D̄2 = A ∗C (D1 ∗C2 D̄2) = A ∗C D̄ where
C2 = a−1C1a = a−1(C ∩ aCa−1)a = a−1Ca∩C 6 C. This calculation shows in particular
that D̄ = D1 ∗C2 D̄2.

In the case that D splits as a HNN-extension D = D1∗C1 we can choose a tuple
(T1, T2, {Gv|v ∈ V T2}, {tv|v ∈ V T2 − V T1}) such that ae = [x, z] ∈ ET2 − ET1 and
e ∈ ET2. In particular T 1 = T2 − (x, z] is connected and is a generating tree for D1. We
have D = 〈D1, tz | tzc1t

−1
z = ψ(c1) for all c1 ∈ C1〉 where ψ maps C1 isomorphically to a

subgroup of D1. We define D̄ = 〈D1, tza〉. Since tz maps z to a vertex xz of T 1 it follows
tza maps y to xz which implies that T 1 is a generating tree for D̄ which implies that the
induced splitting of D̄ has fewer edges than the induced splitting of D. In order to get a
contradiction to the minimality we have to check that G = A ∗C D̄ and that the splitting
G = A ∗C D̄ can be obtained from the splitting G = A ∗C D by a move of type 2. The
proof is analogous to the case of an amalgamated product.

We have G = A ∗C D = A ∗C 〈D1, tz | tzC1t
−1
z = ψ(C1)〉 = 〈A ∗C D1, tz | tzC1t

−1
z =

ψ(C1)〉 = 〈A ∗C D1, tza | (tza) · a−1C1a · (a−1t−1
z ) = ψ(C1)〉 = A ∗C 〈D1, tza | (tza) · a−1C1a ·

(a−1t−1
z ) = ψ(C1)〉. We have shown that G = A∗C D = A∗C D̄ where D̄ = 〈D1, tza | (tza) ·

a−1C1a · (a−1t−1
z ) = ψ(C1)〉.

Case 4: TD contains x but not y. In this case we proceed as in case 3. In both cases the
new group D̄ has a generating tree containing y that has at most as many edges as the
induced splitting of D. It follows that either TD̄ contains y in which the statement follows
from one of the above cases or the induced splitting of D̄ has less edges than the induced
splitting of D which contradicts our minimality assumption. 2

We conclude with the proof of Theorem 2.

Proof of Theorem 2. Corollary 1 of [W] states that rank (G) − 1 is an upper bound
on the number of factors of a decomposition of G as an amalgamated product of type
n∗C
i=1

Gi provided that C 6= 1, C 6= Gi and that C 6 G is malnormal. This guarantees the

existence of a decomposition G =
n∗C
i=1

Gi where C 6= Gi with maximal n. This also follows

from Z. Sela’s acylindrical accessibility result [Sl]. Suppose G = A ∗C B is an arbitrary
nontrivial splitting. In order to prove Theorem 1 it clearly suffices to show that for any
i ∈ {1, . . . , n} either Gi 6 A or Gi 6 B.

Choose T , x, y and e be as in the proof of Theorem 1. We have to show that Gi fixes
either x or y. Define Ti := TGi

. Let z be the vertex of Ti that is in minimal distance to
e. As in the proof of Theorem 1 we see that C 6 Gi ∩ Stab (z). Since the action of G on
T is 1-acylindrical, i.e. does not fix a segment of length 2, this implies that z = x or that
z = y. Without loss of generality we can assume that z = x. We have to show that Gi

fixes x. As C 6 Stab (x) ∩ Gi, it follows that C is a subgroup of a vertex group of the
induced splitting of Gi. This implies that the induced splitting of Gi does not contain a
trivial edge group since otherwise C is contained in a free factor of Gi and therefore in a
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free factor of G which contradicts the assumption.
We show that every edge of Ti is Gi-equivalent to e. If Ti contains an edge this implies

that Gi splits as an amalgamated product over C which contradicts the maximality of the

splitting
n∗C
i=1

Gi. Note that in this case Gi cannot split as a HNN-extension since x and y

are not G-equivalent. If Ti contains no edge then Ti consists of the vertex x and therefore
fixes x which finishes the proof.

Let f be an edge of Ti and choose w ∈ G such that we = f . Since all edge stabilizers
are non-trivial there exists a nontrivial element g ∈ Gi such that gf = f , in particular
g ∈ wCw−1, i.e. g = wcw−1 for some c ∈ C. The malnormality of C implies the
malnormality of Gi, i.e. Gi ∩ wGiw

−1 = 1 for all w ∈ G − Gi. Since g ∈ Gi and
c ∈ C 6 Gi it follows that w ∈ Gi. Thus e and f are Gi-equivalent. 2

References

[B] O.Bogopolski. Decompositions of the fundamental groups of closed surfaces into
free constructions. Preprint 72, Institute of mathematics of Siberian Branch
of Russian Academy of Sc., Novosibirsk, 2000.

[FRW] B.Fine, G.Rosenberger and R.Weidmann. Two generated subgroup of free prod-
ucts with commuting subgroups, accepted to J. Pure Appl. Algebra.

[Sl] Z.Sela. Acylindrical accessibility for groups. Invent. Math. 129, 1997, 527-565.

[Sr] J.P.Serre. Trees. New York, 1980.

[W] R.Weidmann. On the rank of amalgamated products and product knot groups.
Math. Ann. 312, 1999, 761-771.

Oleg Bogopolski
Institute of Mathematics,
Novosibirsk, 630090
Russia
E-mail: groups@math.nsc.ru

Richard Weidmann
Fakultät für Mathematik
Ruhr-Universität Bochum
D-44780 Bochum
Germany
E-mail: richard.weidmann@ruhr-uni-bochum.de

6


