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We consider models of classical statistical mechanics satisfying natural stability con-
ditions: a finite spin space, translation-periodic finite potential of finite range, a fi-
nite number of ground states meeting Peierls or Gertzik–Pirogov–Sinai condition. The
Pirogov–Sinai theory describes the phase diagrams of these models at low temperature
regimes. By using the method of doubling and mixing of partition functions we give an
alternative elementary proof of the uniqueness of limiting Gibbs states at low tempera-
tures in ground state uniqueness region.
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1. Introduction

Pirogov–Sinai theory1–3 investigates the phase diagrams of low temperature spin

models of statistical mechanics. Roughly speaking, the theory taking its origins from

fundamental work of Peierls,4 states that the qualitative picture at temperature zero

remains valid at any sufficiently low temperature. The problem of the completeness

of the phase diagram, that is, whether the theory provides all extreme periodic

Gibbs states constructed in this theory has attracted the interest of many authors.

Zahradnik5 proved that the Gibbs states constructed in Pirogov–Sinai theory are

the only extreme and translation-periodic Gibbs states. Alternative proofs of the

uniqueness of the Gibbs states at low temperatures in the special case of uniqueness

of the ground state were independently obtained in Refs. 6–8. In Pirogov–Sinai

theory, in the regions where there is a unique translation-periodic Gibbs state there

are no other (translation-periodic or non translation-periodic) Gibbs states.9 In this

paper we give one more alternative simple proof of the uniqueness.

In this paper we investigate classical models in the classical settings: a finite spin

space, translation-periodic finite potential of finite range, a finite number of ground

states and their stability (so-called Peierls or Gertzik–Pirogov–Sinai condition). We

give a new proof of the uniqueness of Gibbs states at law temperatures in the one-
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ground-state region: there is no any translation-periodic or non translation-periodic

Gibbs state except constructed one in the Pirogov–Sinai theory. The proof is based

on the verification of non-singularity of two arbitrary extreme Gibbs states.10 The

main method of this tricky proof is a “coupling” and “mixing” of corresponding

partition functions. Considering two (here independent) realizations of Gibbs states

means that we are employing a (here product) coupling argument. Such coupling

arguments are also at the origin of the disagreement percolation approach to prove

uniqueness of Gibbs states.11,12 The proof also gives a simple explanation of the

uniqueness.

2. Formulations

Let Zν be the ν-dimensional cubic lattice. The spin variables φ(x) associated with

the lattice sites x take values from the finite set Φ = {1, 2, . . . , r}.

Consider a model on Zν with the formal Hamiltonian

H0(φ) =
∑

A⊂Zν

U0(φA) (1)

where φA is the restriction of the configuration φ ∈ ΦZ
ν

to the set A ⊂ Zν , the

potential U0(φA): ΦA → R is of finite range R: U0(φA) = 0 if the diameter of

A exceeds R and translation periodic: U0(φA) = U0(φA+t) for any t from some

subgroup of Zν of finite index.

We say that a configuration φ is a ground state of the model (1) if H0(φ
′) −

H0(φ) ≥ 0 for any finite perturbation φ′ of φ (the set {x : φx 6= φ′
x} is finite).

We suppose that the model (1) has a finite number of ground states invariant

under the action of some subgroup of Zν of finite index. Later on, without loss

of generality, we will suppose that the potential of the model (1) is translation-

invariant and translation-periodic ground states of (1) are translation-invariant.

Indeed, one can partition the lattice into disjoint cubes Q(z) centered at z ∈ qZν

with an appropriate value of q and replace the spin space from Φ to ΦQ. If we

choose q exceeding the interaction radius R the model (1) becomes a model with

the nearest neighbor and diagonal interaction.

Let V ⊂ Zν be a finite domain and φ̄V c be boundary conditions given on its

complement V c = Zν − V . The conditional Hamiltonian is defined as

H0(φV |φ̄V c) =
∑

A⊂Zν :A∩V 6=∅

U0(φA)

where φA is a concatenation of the configurations φV and φ̄V c on A: φA = φA∩V +

φ̄A∩V c , i.e. the spin at site x is φx if x ∈ A ∩ V and φ̄x if x ∈ A ∩ V c.

Without loss of generality, the translation-invariant ground states of the model

(1) we denote by φ(1), . . . , φ(m) and suppose that φ
(k)
x = k for each x ∈ Zν .

For a fixed configuration φ in Zν we say that a lattice cube Q2(x) of linear size 2

centered at lattice point x is not regular if φQ2(x) 6= φ
(k)
Q2(x) for each k = 1, 2, . . . , m.

Two non-regular cubes are called connected provided their intersection is not empty.
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The connected components of non-regular cubes are called supports of contours and

are denoted by supp(γ). A pair (supp(γ), φ(supp(γ))) is called a contour and will

be denoted by γ.

Consider a configuration φV at fixed boundary conditions φ(k). The expression

H0(φV |φ
(k)
V c ) − H0(φ

(k)
V |φ

(k)
V c )

expressing the energy difference between φV and the ground state φ(k) can be

written as3
∑

γi

∑

A∩supp(γi)6=∅

(U0(φA) − U0(φ
(k)
A )) .

The last expression shows that the energy difference is concentrated on non-

regular cubes. We suppose that the energy excess is proportional to the total volume

of non-regular cubes, namely for each ground state φ(k) the Hamiltonian (1) satisfies

the well-known Peierls condition:
∑

A∩supp(γi)6=∅

(U0(φA) − U0(φ
(k)
A )) ≥ τ |γi| (2)

where τ is a positive absolute constant and |γi| denotes the number of sites in

supp(γi). In this case the ground states φ(k) are called stable ground states.

Suppose that a vector λ = (λ1, . . . , λm−1) belongs to some open neighborhood

of the origin in Rm−1. We define a perturbed formal Hamiltonian

H(φ) = H0(φ) +
m−1∑

n=1

λnHn(φ) (3)

where Hamiltonians Hn(φ) =
∑

Un(φ), n = 1, . . . , m − 1 share all conditions with

H0. We also suppose that this perturbation removes the degeneracy of the ground

state.3

The finite-volume Gibbs distribution corresponding to the boundary conditions

φ̄V c is

µV,φ̄V c
(φV ) =

exp(−βH(φV |φ̄V c))

Ξ(V, φ̄V c)
(4)

where β is the inverse temperature, the conditional Hamiltonian H(φV |φ̄V c)) =∑
A∩V 6=∅

∑m−1
n=0 λnUn(φA) and the partition function Ξ(V, φ̄V c) =

∑
φV

×

exp(−βH(φV |φ̄V c)). µ
V,φ

(k)

V c

(·) will be denoted by µ
(k)
V (·) below.

Theorem 1.1,3 Consider a model with the Hamiltonian (3) at some fixed value of

the vector λ = (λ1, . . . , λm−1) and suppose that φ(k) is an arbitrary stable ground

state of the perturbed Hamiltonian (3). Then there exists a value of the inverse tem-

perature β0(λ) such that for all β > β0(λ) ground state φ(k) generates a translation-

invariant Gibbs state1,3

µ(k)(·) = lim
V →Zν

µ
(k)
V (·) .

These Gibbs states are different for different values of k.
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Theorem 2.5 Consider a model with the Hamiltonian (3) at some fixed value of the

vector λ = (λ1, . . . , λm−1). There exists a value of the inverse temperature β0(λ)

such that for all β > β0(λ) Gibbs states constructed in Theorem 1 are the only

translation-periodic Gibbs states of the model (3).

In the special case when the model (3) has a unique ground state we get the

following:

Corollary.6–8 Let λ be a value such that the model (3) has a unique stable ground

state. There exists a value of the inverse temperature β0(λ) such that for all β >

β0(λ) the model (3) has a unique translation-periodic Gibbs state.

The statement of this Corollary can be slightly improved:

Theorem 3.9 Let λ be a value such that the model (3) has a unique (periodic or

non-periodic) stable ground state. There exists a value of the inverse temperature

β0(λ) such that for all β > β0(λ) the model (3) has a unique Gibbs state.

As it was mentioned in the introduction the proof of the Corollary was given in

Refs. 5–8 by different authors and different methods. Its extension Theorem 3 has

a proof based on the method of polymer expansions.9

In the present paper we give an alternative elementary proof of Theorem 3

based on the following tricky idea: instead of a probability space we consider two

probability spaces and after that we “mix” these spaces in convenient way. The

proof also gives descriptive and clear explanation of uniqueness.

3. Proofs

Let µ1 and µ2 be two extreme Gibbs states corresponding to arbitrary fixed bound-

ary conditions φ1 and φ2 (not necessarily ground states, note that φ(k) denotes a

ground state, but φk denotes an arbitrary configuration). It is well known that µ1

and µ2 are singular or coincide.3,10 We prove the uniqueness of the Gibbs states of

the model (3) by showing that µ1 and µ2 are not singular and therefore coincide.

Let VN be a ν-cube with the center at the origin and with the length of edge

2N : VN = {x1, x2, . . . , xν : −N ≤ xi ≤ N, i = 1, 2, . . . , ν}.

Take M < N and let µk
VN

(φ′
VM

) be the probability of the event that the re-

striction of the configuration φVN
to VM coincides with φ′

VM
. Theorem 3 is a direct

consequence of the following.

Theorem 4. Let λ be a value such that the model (3) has a unique ground state

φ(p). There exists a value of the inverse temperature β0(λ) such that for all β >

β0(λ) Gibbs states µ1 and µ2 are not singular.

Proof. In order to show that extreme Gibbs states µ1 and µ2 are not singular,

we prove that there exist two positive constants c1 and c2 such that for any M
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and φ′
VM

c1 ≤ µ1(φ′
VM

)/µ2(φ′
VM

) ≤ c2 . (5)

Since Gibbs states µ1 and µ2 are weak limits of finite volume Gibbs states µ1
V

and µ2
V (corresponding to arbitrary boundary conditions φ1 and φ2) when N → ∞,

for establishing the inequality (5) we prove that there exist two positive constants

c1 and c2 such that for arbitrary boundary conditions φ1 and φ2 and for any M

and φ′
VM

there exists a number N0(M) such that for any N > N0(M)

c1 < µ1
VN

(φ′
VM

)/µ2
VN

(φ′
VM

) < c2 . (6)

Consider the µk
VN

(k = 1, 2) probability of the event that the restriction of the

configuration φVN
to VM coincides with φ′

VM
:

µk
VN

(φ′(VM )) =

∑
φVN

: φVM
=φ′

VM

exp(−βH(φVN
|φk

V c

N

))
∑

φVN

exp(−βH(φVN
|φk

V c

N

))

=
exp(−βH in(φ′

VM
))Ξ(VN − VM |φk , φ′

VM
)∑

φ′′

VM

exp(−βH in(φ′′
VM

))Ξ(VN − VM |φk , φ′′
VM

)

where the summation in
∑

φ′′(VM ) has taken over all possible configurations φ′′(VM ),

H in(φ′
VM

) =
∑

B⊂VM
U(φ′(B)) and H in(φ′′

VM
) =

∑
B⊂VM

U(φ′′(B)) are interior

energies of φ′(VM ) and φ′′(VM ); Ξ(VN − VM |φ(k), φ′
VM

) is a partition function cor-

responding to the boundary conditions φk
Zν−VN

, φ′
VM

and Ξ(VN − VM |φk, φ′′
VM

) is

a partition function corresponding to the boundary conditions φ
(k)
Zν−VN

, φ′′
VM

. The

partition functions Ξ(VN −VM |φk, φ′
VM

) and Ξ(VN −VM |φk, φ′′
VM

) are denoted cor-

respondingly by Ξφk ,φ′

and Ξφk,φ′′

below.

Now we have

µ
(1)
VN

(φ′
VM

)

µ
(2)
VN

(φ′
VM

)
=

exp(−βH in(φ′
VM

))Ξφ1,φ′

∑
φ′′

VM

exp(−βH in(φ′′
VM

))Ξφ1,φ′′

∑
φ′′

VM

exp(−βH in(φ′′
VM

))Ξφ2,φ′′

exp(−βH in(φ′
VM

))Ξφ2 ,φ′

=
Ξφ1,φ′ ∑

φ′′

VM

exp(−βH in(φ′′
VM

))Ξφ2,φ′′

Ξφ2,φ′
∑

φ′′

VM

exp(−βH in(φ′′
VM

))Ξφ1,φ′′
.

Note that since the quotient of (
∑n

i=1 ai)/(
∑n

i=1 bi) lies between min(ai/bi)

and max(ai/bi), in order to prove the inequality (6) it is enough to establish the

following inequality:

c1 <
Ξφ1,φ′

Ξφ2,φ′

Ξφ2,φ′′

Ξφ1,φ′′
< c2 (7)

for arbitrary configuration φ′′
VM

.
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Let us define a configuration φmin,k
VN−VM

with the minimal energy at fixed VN and

boundary conditions φk
Zν−VN

, φ′
VM

:

H(φmin,k
VN−VM

|φk
Zν−VN

, φ′
VM

) = min
φVN −VM

H(φVN−VM
|φk

Zν−VN
, φ′

VM
) .

The following simple and natural lemma describes the structure of the configu-

ration φmin,k
VN−VM

.

Lemma 1. Let λ be a value such that the model (3) has a unique ground state φ(p).

There exists a positive constant Lb such that for arbitrary M , N and arbitrary

boundary conditions φk
Zν−VN

, φ′
VM

the restriction of the configuration φmin,k
VN−VM

to

the set VN−Lb
− VM+Lb

coincides with the ground state φ(p).

Proof. For each boundary condition φk
Zν−VN

, φ′
VM

define the value of

Lb(Z
ν − VN , φ′

VM
). If contrary to the statement of the lemma Lb(Z

ν − VN , φ′
VM

)

is not bounded uniformly with respect to all M , N and boundary conditions, then

there exists a sequence of boundary conditions {φki

Zν−VNi

, φ′
VMi

; i = 1, 2, . . .} such

that the corresponding sequence {Lb(Z
ν − VNi

, φ′
VMi

); i = 1, 2, . . .} is unbounded.

This in turn means that in the corresponding sequence of configurations with min-

imal energy φmin,ki

VNi
−VMi

differs from the ground state in unboundedly growing by i

area. We can shift the configuration φmin,ki

VNi
−VMi

such that this non-regular area will

cover the origin and will grow by i in all directions. Let the configuration φmin be

a limit point of the sequence of these shifted configurations. By construction this

configuration is not a ground state φ(p). On the other hand, let us show that the

configuration φmin as a limit point of configurations with minimal energy is a ground

state φ(p). Indeed, suppose that φ̄min is an arbitrary perturbation of φmin on some

finite set. Then when VN is sufficiently large (as it is noted in Sec. 2 the interaction

potential without loss of generality supposed to be translation-invariant)

H(φ̄min) − H(φmin) = H(φ̄min,k
VN−VM

|φk
Zν−VN

, φ′
VM

)

−H(φmin,k
VN−VM

|φk
Zν−VN

, φ′
VM

) ≥ 0 .

Thus, φmin is a ground state that does not coincide with φ(p). This contradiction

shows that Lb(Z
ν − VN , φ′

VM
) is bounded. Lemma 1 is proven.

By combining the partition functions Ξφ1,φ′

and Ξφ2,φ′′

we define a double par-

tition function Ξφ1,φ′,φ2,φ′′

= Ξφ1,φ′

Ξφ2,φ′′

:

Ξφ1,φ′

Ξφ2,φ′′

=
∑

exp(−βH(φ3
VN−VM

|φ1, φ′)) exp(−βH(φ4
VN−VM

|φ2, φ′′))

where the summation is taken over all pairs of configurations φ3
VN−VM

and φ4
VN−VM

.

In the same way by combining of partition functions Ξφ2,φ′

and Ξφ1,φ′′

we define

a double partition function Ξφ2,φ′,φ1,φ′′

.
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The statistical weight of a contour γ will be defined by the formula:

w(γ) = exp(−β(H(φ(supp(γ)|φ
(p)
Zν−supp(γ)))

−H(φ(p)(supp(γ)|φ
(p)
Zν−supp(γ))))) . (8)

The collection of contours {γ1, . . . , γm} is said to be compatible set if there

exists a configuration φ which contains this set of contours. The partition function

Ξφ1,φ′

naturally admits the following expansion

Ξφ1,φ′

= exp(−βH(φ
(p)
VN−VM

|φ1, φ′))
∑

w(γ1) · · ·w(γm)G(γ1, . . . , γm)

where the summation is taken over all non-ordered compatible collections of con-

tours and the interaction factor G(γ1, . . . , γm) appears due to those contours among

γ1, . . . , γm which have non-empty intersection with the boundary VM ∪ Zν − VN .

The following generalization of the definition of compatibility allows us to rep-

resent a double partition function Ξφ1,φ′,φ2,φ′′

as an ordinary partition function.

A set of contours is called two-compatible provided any of its two parts coming

from two Hamiltonians is compatible. In other words, in two-compatibility an in-

tersection of supports of two contours coming from different partition functions is

allowed.

If {γ1, . . . , γm} is a two-compatible set of contours and
⋃m

i=1 supp(γi) ⊂ VN −

VM , then there exist two configurations φ3 and φ4 which contain this set of clusters.

The double partition function is

Ξφ1,φ′,φ2,φ′′

= Ξφ1,φ′

Ξφ2,φ′′

= exp(−βH(φ
(p)
VN−VM

|φ1, φ′)) exp(−βH(φ
(p)
VN−VM

|φ2, φ′′))

×
∑

w(γ1) · · ·w(γm)G(γ1, . . . , γm)

where the summation is taken over all non-ordered two-compatible collections of

contours.

Let w(γ1) · · ·w(γm) be a term of the double partition function Ξφ1,φ′,φ2,φ′′

. The

connected components of the collection {supp(γ1), . . . , supp(γm)} are the supports

of two-contours. A two-contour Γ is a pair (supp(Γ), φ(supp(Γ)).

A two-contour Γ = {γ1, . . . , γm} is said to be long iff the intersection of the

set
⋃m

i=1 supp(γi) with both VM+Lb
and Zν −VN−Lb

is non-empty. In other words,

a long two-contour by supports of its contours connects the Lb neighborhood of

the boundary with the Lb neighborhood of the cube VM . A set of two-contours is

called compatible provided the set of contours belonging to these two-contours is

two-compatible. We define the partition function

Ξφ1,φ′,φ2,φ′′,(n.l.) = exp(−βH(φ
(p)
VN−VM

|φ1, φ′)) exp(−βH(φ
(p)
VN−VM

|φ2, φ′′))

×
∑

w(γ1) · · ·w(γm)G(γ1, . . . , γm)

where the summation is taken over all non-ordered compatible collections of not

long two-contours.
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Lemma 2. Let λ be a value such that the model (3) has a unique ground state φ(p).

There exists a value of the inverse temperature β0(λ) such that for all β > β0(λ)

the following statement holds: for each fixed cube VM , there exists a number N0 =

N0(M), which depends on M only such that if N > N0 then

1

2
Ξφ1,φ′,φ2,φ′′

< Ξφ1,φ′,φ2,φ′′,(n.l.) . (9)

Proof. Define a partition function Ξφ1,φ′,φ2,φ′′,(l.) as

Ξφ1,φ′,φ2,φ′′,(l.) = Ξφ1,φ′,φ2,φ′′

− Ξφ1,φ′,φ2,φ′′,(n.l.) .

Equivalently,

1 =
Ξφ1,φ′,φ2,φ′′,(n.l.)

Ξφ1,φ′,φ2,φ′′
+

Ξφ1,φ′,φ2,φ′′,(l)

Ξφ1,φ′,φ2,φ′′
.

In order to prove the inequality (9) we have to show that

Ξφ1,φ′,φ2,φ′′,(l)

Ξφ1,φ′,φ2,φ′′
<

1

2
.

In other words, we have to prove that the probability of the event that there

exists at least one long two-contour connecting VM with Zν − VN is less than 1/2.

This fact is a straightforward consequence of the Peierls argument. Indeed, since

the spin space is finite, due to the condition (2) and the Peierls argument the

probability of a contour

P (γ) < exp(−βτ0|γ|) (10)

for some positive τ0 < τ where |γ| denotes the number of basic cubes of linear size

2 in the support of contour γ. By definitions, the support of any two-contour is the

union of contour supports or contour supports sitting on other contour supports.

Therefore, the event “a fixed cube of linear size 2 is not regular” is a union of three

events: “this cube is not regular in the first ensemble” ( with partition function

Ξφ1,φ′

), “this cube is not regular in the second ensemble” ( with partition function

Ξφ2,φ′′

) and “this cube is not regular in the first and second ensembles”. Thus, for

sufficiently large β the probability of this event is less than exp(−βτ0)+exp(−βτ0)+

exp(−βτ0) exp(−βτ0) < exp(−βτ1), where τ1 = τ0/2.

If in the Gibbs distribution (4) we pass to the relative energies with respect to

the configuration with minimal energy φmin,k
VN−VM

then by Lemma 1 the area VN−Lb
−

VM+Lb
is the “pure” area of the unique ground state φ(p) and in this area by the

Peierls argument the inequality (10) holds. Due to the fact that a long contour

“starts” inside the cube VM+Lb
and “ends” outside VN−Lb

, its diameter exceeds

N −M − 2Lb. Therefore, the probability of existence of at least one long contour is

less than
∑

n≥N−M−2Lb
(M + Lb)

ν (2ν)n exp(−βnτ1) < exp(−βτ2(N − M − 2Lb))

for some positive constant τ2 if β is sufficiently large. At any fixed M for sufficiently

large values of N the last expression is less then 1/2. Lemma 2 is proven.
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Partition functions including only not long two-contours satisfy the following key

lemma which has a geometrically-combinatorial explanation. An analogous lemma

in more complicated long-range interaction case was firstly used in Ref. 15.

Lemma 3.

Ξφ1,φ′,φ2,φ′′,(n.l.) = Ξφ2,φ′,φ1,φ′′,(n.l.) .

Proof. The summations in Ξφ1,φ′′,φ2,φ′,(n.l.) = Ξφ1,φ′,φ2,φ′′,(n.l.) are taken over all

non-long, non-ordered compatible collections of two-clusters. Consider an arbitrary

term of Ξφ1,φ′′,φ2,φ′,(n.l.). This collection of two-contours is obtained as a direct

product of two collections of contours: a collection from Ξφ1,φ′′

and a collection

from Ξφ2,φ′

.

We say that a contour (two-contour) is a “root” contour (“root” two-contour),

iff the intersection of its support with VM+Lb
∪ (VN −VN−Lb

) is not empty. For any

not long root contour (two-contour) one the following four cases holds: its support

has a nonempty intersection with

(1) VN − VN−Lb
and φZν−VN

= φ1
Zν−VN

;

(2) VN − VN−Lb
and φZν−VN

= φ2
Zν−VN

;

(3) VM+Lb
and φVM+L

b
= φ′

VM+L
b

;

(4) VM+Lb
and φVM+L

b
= φ′′

VM+L
b

.

In these cases we call the contour (two-contour) correspondingly a root1, root2,

root’ or root” contour (two-contour).

Now we put a one-to-one correspondence between the terms of these two double

partition functions: for each pair of collections from Ξφ1,φ′

and Ξφ2,φ′′

we construct

a pair of collections from Ξφ2,φ′

and Ξφ1,φ′′

. First of all, for each root1 contour

γ ∈ Ξφ1,φ′

we construct the same root1 contour γ ∈ Ξφ1,φ′′

, for each root’ contour

γ ∈ Ξφ1,φ′

we construct the same root’ contour γ ∈ Ξφ2,φ′

, for each root2 contour

γ ∈ Ξφ2,φ′′

we construct the same root2 contour γ ∈ Ξφ2,φ′

and for each root”

contour γ ∈ Ξφ2,φ′′

we construct the same root” contour γ ∈ Ξφ1,φ′′

. After that, for

all non-root contours γ ∈ Ξφ1,φ′

we construct the same non-root contours γ ∈ Ξφ2,φ′

and for all non-root contours γ ∈ Ξφ2,φ′′

we construct the same non-root contours

γ ∈ Ξφ1,φ′′

if their supports do not intersect already constructed root contours.

Finally, we move all newly constructed non-root contours γ ∈ Ξφ2,φ′

to Ξφ1,φ′′

if

they have nonempty intersection with already constructed root contours and all

newly constructed non-root contours γ ∈ Ξφ1,φ′′

to Ξφ2,φ′

if they have nonempty

intersection with already constructed root contours.

Since all contours and two-contours are not long it can be readily shown that

this one-to-one correspondence is well-defined. Lemma 3 is proven.

Now the inequality (6) with c1 = 1/2 and c2 = 2 readily follows from Lemma 3

and Lemma 2 for the partition function Ξφ1,φ′,φ2,φ′′,(n.l.) and Ξφ2,φ′,φ1,φ′′,(n.l.). Fi-

nally, Theorem 4, and therefore Theorem 3 is proven.
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4. Conclusions

The present proof of Theorem 3 gives a simple justification of the uniqueness phe-

nomenon. The probability of the event that two contours connect a fixed cube VM

with the boundary conditions goes to zero when volume VN increases. Therefore,

the dependence on the boundary conditions naturally disappears in the limit.
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