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On the uniqueness of local minima for general abstract 
nonlinear least-squares problems 

Guy Chavent 

CEREMADE.  UiiivcrsitC. Pai-i\-Datiphinc., 75775 Paris Ccclcx 16. France 
and 

I n s  t i t  ti te N atioiia I ilc Recherche c11 I ii I ori i i i i t  iq tic e t  en Au toiii ' it iquc . Doniai i i c  (IC 

Volucc;iu. liocqiiencourl. 13P 105. 7S1.53 1-c C'hc\iic) Ceilcx. Fr'iiicc 

Recciccd I ?  June 1987 

Abstract. The effectivctiess o l  the inversion o l  i i  inapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq) dcl i i icd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoil ; I  set C I?! 
i ioi i l inei ir  Icast-square\ techniques relies o n .  aii iong other things, the uniqtieness o f  Iociil 

171 i n  i in ii o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t h e le >is t - sq  u ii res cri te ri 011 . which e n s u re\ t h ;I t 11 unie r i cii I opt i m isat i o  11 ii Igor i t h m 
wi l l  ( i l  they do) converge towird the global inini inuin of the least-squares lunctional. We 

define ii number ;' depending only on C and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ which. i f  the size 01 p(C) is not too large 

wi th  rcspcct t o  ita eurviiture. wi l l  be strictly positive. thus yielding the uniqueness ol  a11 

Ioc;il i i i i i i i ina having ii value smallcr than ;'. The condition y>O will require neither 

convexity ol C n o r  any monotonic property o f  p.  hut  involves the computation o f  an 

in l imum over iK x ?IC o f  l i t s t  ancl second deri\at ives o f  Q. Numerical application to the 

estimation o f  two  parameters i n  ii parabolic equ2ition wi l l  b e  given. 

1 .  Introduction 

CO n s i  de  r 

E = normed vector space (norm 1 1  11 ,  ) 

F = pre-Hilbert space (scalar product ( , )k) 

C = closed, C'-path-connected subset of E 

p = C'-mapping of C into F 

z E F a  given point 

and the optimisation problem 

find i E C such that J ( i )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs . l ( x ) V x  E C where 

vx E C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ(x) = Il$(-u) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzii;. 

Problem ( 1 . 1 )  is the general least-squares setting of the problem 

find ,f E C such that @(i) = z. (1.3) 

when the right-hand side z does not necessarily belong to  the image set $(C). 

problem (1.1) cannot admit two distinct local minima 
(and hence has at most one solution), provided that the distance 

Our  goal is to find conditions on C and $ such that 

from z to @(C) is taken smaller than a certain number 7 > 0. (1.4) 
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In this paper we will be able to ensure the uniqueness only of the local minima of] 
having a value smaller than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (propositions 3 and 4). We also seek conditions ensuring 
uniqueness of all local minima. 

Let us now explain our motivations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The first quesfiotz: what kind of applications have motivated the author to 

undertake this study'? The answer is: parameter estimation problems. In this appli- 
cation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is the parameter. C is the set of admissible parameters, z is the observed data 
and q5 is the parameter+output mapping resulting from the resolution of the model 
state equations and the observation operator. Our  concern is primarily with overspeci- 
tied inverse problems, where dim F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb dim E. so that we can expect that the derivative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@'(,Y) to be more or  less injective from E into F. In order to be more specific, we can 
give an example. 

E,uanzple 1 .  We consider the ID parabolic equation 

r 1 ( 0 .  t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU( I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 Vf > 0 

u(y. 0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL&) Vy E [O. I ]  (1.5) 

when the parameters u E R'..: and b E R -  have to be estimated from the measurement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z E L'(0, T )  of the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 at point y = against time. Here we have x = (a ,  b )  E W'= 
E, C is a given closed subset of R'+ x R'. which represents the a priori knowledge of 
the experimenter about the parameter x = (a ,  b) .  and @ is the mapping which makes 
the t-+ U(!, t )  function of L'(0, T )  = F correspond to a given x = (U,  b )  E C. In  this 
example the evaluation of @(x)  involves the resolution of the parabolic equation (1.5): 
the problem is obviously overspecified as dim F = + a >dim E = 21 

The second quesfiotz: why d o  we address the problem of uniqueness of local 
minima'? The  only way of  actually solving the parameter estimation problems 
described above is to undertake the minimisation of J over C on a computer. 
However, optimisation algorithms are only able to find local minima over a closed set. 
Hence the least-squares problem ( 1 . 1 )  will be practically solvable by an optiniisation 
algorithm as soon as C is closed and d has a t  most one local minimum over C. 

This w i l l  ensure that the optimisation algorithm, once converged, will give the 
sought global minimum of]. One  can also remark that the uniqueness of local minima 
implies (but is not equivalent to) the uniqueness of the solution i of problem (1. I ) ,  or  
in terms of parameter estimation problems, the identifiability o f i  from the knowledge 
of z a n d  C. Of course, one  other extremely important practical problem is that of the 
stability of the solution .i- of (1.1) with respect to perturbations of the data z :  this 
problem will n o t  be addressed a s  such in this paper, but one can remark that,  when C 
is compact. the above uniqueness property will ensure the existence of a unique ,i- 
depending continuously on z as long as the distance of z to @ ( C )  is taken small 
enough. 

The third (Litid lust) qurstioti: what kind of conditions on C and @ are we looking 
for? The first idea is that we want data-independant conditions: for a given set C and 
mapping 4. we want to be able to decide whether property (1.4) holds or not. I f  it 
holds we will get as a by-product the upper limit y>O t o  the distance of z from @(C) 
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for which the uniqueness property of local minima holds. I f  it does not hold the 

experimenter will then have to acquire more data ( i . e .  change the mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) and/or 
augment the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi priori available information (i.e. diminish the size of C) before 
checking again for property (1.4). The second idea is that such conditions will in no 
way be cheap! As in view o f  the applications, no hypothesis will be made o n  the shape 
of C and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ( n o  convexity, no monotonicity), the conditions will necessarily involve 
exploration all over C-which of course will require a lot  of computer time as soon as 
the dimension of C ,  i.e. the number of unknown parameters, increases. 

Nevertheless, we believe that such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa condition will be practically useful f o r  
problems with few unknown parameters, and that it will at least help to understand 
what happens in nonlinear least-squares problems. As a test for the forthcoming suf- 
ficient condition for (1.4) to hold. we will add to example 1 an extremely simple 
example. 

Exumple2. Determine a real number x from the measurement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z , ,  z 2 )  of its cosine and 
sine. Then we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E = R  F=R’ @( x) = (cosx, sinx). (1.6) 

Of course, one has to restrict a priori the search for x to an interval of  length smaller 
than 27r if we want the problem to have a chance of being well posed! So suppose we 
take for example 

c = [O, XI with Xgiven ,  X<27r. (1.7) 

Then obviously problem (1.1) has a unique global minimum as soon as d(z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(C)) 
<y=sin(X/2)  as one  can see in figure l ( a )  for different data z .  

However, one  sees also in figure 1 that there may exist, beside the global 
minimum, a distinct local minimum (with value larger than y ! )  so that the solution of 
(1.1) by an optimisation algorithm may fail because condition (1.4) is not satisfied! 

In  order to satisfy conditions (1.4). it is sufficient to replace condition (1.7) by the 
stronger condition 

C= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[O. XI with O<X<,-r. (1 .X) 

d(z ,  @(C)) <sin X .  (1.9) 

Then, as  seen in figure l (b) ,  condition (1.4) holds when 

Conditions (1.8) plus (1.9) are clearly equivalent to (1.4), and will be used as a 
benchmark to indicate the precision of the condition that we will derive. 

To conclude this introduction. we will recall a previous result of  Spiess (1969)- who 
considered exactly the same problem, namely the uniqueness of local minima o f  

problem ( l . l ) ,  but set on an open and conuex set C. In fact he gave data-dependent 
sufficient conditions, i.e. conditions which, for a given datum z and a given local 
minimum i .  imply that .f is a global minimum. These conditions, when translated into 
data-independent conditions. read as follows: 

Spie.s,\ conditions. I f  C is an open convex subset of E, @ is injective and C’ over C 

(1.10) 

then J has at most one local minimum over the open set C as soon as d(z,  @(C)) < y .  
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Global m i n i m u m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/ 
Local m i n i m u m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Dctcrniin,ition o1.i E [O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA'] Iron1 thc iiiciisurcincnt z of (cos.t-. s i n  x). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a )  X<2; ( :  
( h )  A'<;(. 

I f  u e  apply this condition t o  the simple example 2, where we take now f o r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CO n ve n i e n ce 

c = ] E .  2 3  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP [  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt > 0 given ( 1 . 1 1 )  

one checks very easily that 

and that 

Hence we get 

sin E 
3, = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 sin t' for small E .  ' V/2( 1 + cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc )  - 

(1.12) 
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/ 
/ 

\ 

'\--/ / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.  Application of the Spiess condition to example 2 

So y is strictly positive, and the sufficient condition is satisfied, in this example, for all 
E > 0. 

Of course, as C is taken open. the Spiess condition does not eliminate the local 

minima which may arise on @(K) (as in figure l (a ) ) ,  so that this condition does not 
answer our second question. However. i t  may give a reasonable idea of the kind of 
condition we are going to derive below, as they share the property of containing an 
infimum over a couple of points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ )  of C and over a path (here the [x, y ]  interval) 
connecting them. 

Let us now be more technical and turn to the derivation of our sufficient condition. 
The hypothesis and notation given at the beginning of the introduction will hold 
throughout the rest of the paper and will not be repeated. 

2. How to recognise the existence of two distinct local minima 

Let x. y E C, x # y ,  be two such local minima (see figure 3). Using the hypothesis that C 
is C' path connected, we may choose one C' path going from x to y .  i.e. one C' 
mapping s :  O-.s(O) from some [e,,, e , ]  interval of R in E, satisfying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s(@,,> = x s ( e , )  = y  

4 0 )  E c 

f (Q> = ll@(s(Q)) - Z/l2 V@E I&, e , ]  (2 .2 )  

(2.1) 
ve E [e,,, HI]. 

We consider now the function f :  [e,,, e,]+ R defined by 
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Figure 3. 

which we have depicted in figure 4, in the case where , f (e, , )=1I@(x)-z l j ’3f(e,)= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Il@(Y) - ZII?. 

From the properties of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y ,  it is clear that one can find e’, such that 

e,, < e;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 8 ,  

From here two cases may occur: 

(1) f ( W @  (41) E [e,,, el] 

then of course !“(e) = O+f”(t9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS O .  

interval such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf”(6) < 0. 

(i i)f(O)>f(&) for some subinterval of [e,,, e { ] ,  so that there exists some 6 in this 

So if  we set 

y‘ = (0;) (2.4) 

we obtain the following proposition 

Figure 4. 
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Proposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 E F  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x ,  y = local minima of J over C, x #y(i l@(x) - ~1)’s Il@(y) - 211’) 

s: [e,,, e , ] -  C = path from x t o y .  

Then there exists 

8 ;  E IQ,,, e, ]  such that f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0;) = f ( e J  = l i f  (x) - ~ ( 1 ’  
6~ IO,, ,  e;[  such tha t f” (6)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASO. 

3. Given z E F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. y’ E C such that lj@(x) -z1) = /l@(y’) -211 = 0 and a path s from x to y’, 

what does f”( 8) < 0 imply? 

Let us first introduce some quantities related to the image-path {@(s(O)), 8 E [e,,, e , ] }  
in F: 

i 

U ( @ )  = Q ’ ( S ( 0 ) )  * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs’@) 

.(e) = [@’(S(O)) * S’(0)J’ 

=velocity 

= acceleration. 
(3.1) 

Then the first and second derivatives of f ( 0 )  can be expressed as 

(3.2) 

(3.3) 

From (3.2) we get 

l f ’ ( Q > l ~ 2 f ( ~ ) ” ? I l ~ ( ~ ) l I  (3.4) 

which together with (3.3) and the Cauchy-Schwarz inequality yield 

We now define a function g :  [e,,, 0;J-R by the following 1D elliptic problem: 

-g ” (@)  = lI4Q)Il 

g(Ql!) = g ( a  = 0. 

E [e!,, e ; ]  
(3.6) 

We may remark that this function g is independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (whereas f was not!), and that 
i t  is a po.sitii)e concave function. 

Plugging (3.6) into (3.5) then yields 

i.e. 

d’ 

d0’ 
- (f’(6)”’ -g(O)) 2 0 (3 .7 )  
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which proves that the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO - f ( O ) ” ’ - g ( O )  is convex, and hence, as f ( O , , ) =  
f ( Q ; )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd (where d is the common value of ii@(x) -211 and li@(y’) - ~ 1 1 ) .  

, f ( O ) ’ / k g ( O )  + d E [e,,, e ; ] .  (3 .8 )  

But on the other hand, from f ” ( G ) < O  we get, using (3.3) and the Cauchy-Schwartz 
inequality, 

OZf”(G) 32~lu(G)il’- 2f ’(8)’ !?~lu(8)~i 

and hence 

From (3.8) and (3.9) we then get 

(3.9) 

(3.10) 

So we have proved the following proposition 

PropoJition 2. 

I f  

Z E F  

X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj‘ E C such that I~@(x) - 211 = ilp(y’) - 211 = d 

s: [e,,. Si]- C a path from x to j’ 

then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. A family of sufficient conditions for the uniqueness of certain local minima of 
problem (1 .1 )  

Suppose we have chosen a strategy S in order to associate to every couple ( x . y )  of 
points of C a C?-path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ from x to y: 

I.(&) = x 
s=S(X. J’): [So. Ol]-CD such that J(e,)=.Y 1 s is C2. 

s: (x. y )  E c x c 

Then from propositions 1 and 2 we get immediately the following sufficient condition. 

Proposition 3. (sufficient condition associated to the strategy S). Suppose that 

y =  Inf Inf (--g(o)) >U. (4.1) 
I i t (  ,=i(i 1 ,  

f J E [ f k  f l i l  
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Then the problem ( I .  1 )  has at the most one  local minimum with value smaller than y 
as soon as d(z.  @(C)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< y .  

This condition does not look very useful. But before simplifying it somewhat and 
indicating which strategy S to choose, let us explain its meaning with a simple 
example. 

Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Suppose that 

C is convex (and hence C'-path-connected!) 

q5 is such that numbers U > 0, ,4 > 0 exist with 

and 

Then from proposition 3 we get the following (weaker) sufficient condition. 

Propositiori 4. Suppose that (4.2) holds and that 

o r  equivalently zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(A2 p 
P 8  

p diam c < 2V2 a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = - - - (diam c)'. 

Then the problem ( 1 . 1 )  has at  most one  local minimum with value smaller than y as 
soon as d(z,  @(C))<y. 

This result was already given in Chavent ( 1983) together with a Lipschitz continuity 
result o f  the z - + i  mapping and ,  in the case where E is a Banach space. an existence 
result for 2 .  

However, the estimation (4.4), which involves upper and lower bounds, over all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s E C and for all directions y is very rough, and may yield conditions on the size of C 
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that are too restrictive for practical use. A condition intermediate between (4.1) and 
(4.4) would be 

(4.5) 

We come back to the less constraining estimation (4.1) of proposition 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Choice of a strategy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 

The problem is now to choose the strategy S ,  which associates to any couple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(x, y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C x C a C’ path s from x to y ,  in such a waj, that the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 defined by (4. I )  is 
the largest possible (and hence the ‘size’ condition on C the least restrictive possible). 

For given x. y E C, the choice of a path going from x to y can be conceptually split 
into two steps: (i) choose the geometry of the path; (ii) choose the time law, i.e. the 
parametrisation of the path. We  will choose these two items separately. 

5.1. For given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y E C and CI given geometry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a path f r o m  x to y ,  how should the 
time law be cho~en.? 

We consider first a yiirticiilar~~arairietrisatiorz $(e) of the path from x to y where 8 is the 
curvilinear abscissa on the image path @os(@). 

Such a parametrisation satisfies, by definition 

iIc(e)ll= Il$’($(6)) * i’(d)lI = 1 (5.1) 

and will exist as soon as @’(x) is injective everywhere over C. At  points where $’(x) is 
not injective. 6(8) may still exist, but $’(e) will have to be infinite. 

By deriving (5.1) we find, as usual, that the velocity O(8) and the acceleration a ( 6 )  
are orthogonal on the image path: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b ( 6 )  = [@’(s*) $’I’ I 6(6) = @ I ( $ )  -2’ (5.2) 

W e  consider then any other parametrisation s(8) of the same geometric path,  which is 
necessarily of the form 

s ( e >  =%de>> 

x:[O,,. Q,]-[6,,, e!]. 

U ( @ )  = x ’ ( 0 ) 0 ( 6 )  

a ( @ )  = x ’ (e )%(6)  + a(e)y‘(e). 

liu(e)il = { ~ ’ ( e ) ~ I ~ a ( 6 ) 1 ~ ~  + x ” ( e ) ~ ~ l 6 ( B ) i ~ ~ > ” ~  

lla(e)ll w’(@)211@)ll. 

where 

One  checks easily that 

But as b ( 6 )  and 6(6)  are  orthogonal we get 

and hence 

( 5 . 3 )  

(5.4) 

(5 .5 )  

( 5 . 6 )  
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In order to compare the numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and y associated by (4.1) to the two parametrisa- 

tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS*(i) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(0) of the same geometrical path, we compare the arguments of the inf 
in (4.1). 

(i) Obviously one  gets from (5.4) and (5.6) 

(ii) In order to compare g ( 0 )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( 6 1 ,  we set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x'(0) = S ( x ( O ) )  (5 .8)  

and will compare g ( 8 )  and g(8 ) .  One  first checks easily that g(8) satisfies the following 
equation : 

Comparing with the equation defining g ( 8 ) ,  

- s"(Q 1 = lla(8 Ill 
g(4J = g ( @ , )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Maxg(8) Max g(8) E [e,!, 011. 

V 6 E [e,,, Q , l  

we get, using (5.6) and the maximum principle. 

I )  / I  

Summarising the results (5.7) and (5.11) we have 

(5.10) 

(5.11) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 1 for y defined by (4.5). (5.12) 

Conclusion. For a given geometric path going from x to y ,  the best parametrisation, 
when y is defined by (4.5). is obtained when 8 is the curvilinear abscissa on the image 
path. In other cases, in particular when y is defined by (4.1). the curvilinear abscissa is 
dt least the most intrinsic parametrisation. 

In the following, we will omit the hat on s ,  8, etc, and 8 will always denote the 
curvilinear abscissa on the irnage path.  

With this parametrisation, the formula (4.1) simplifies somewhat, and moreover 
gains a geometrical interpretation: now the radius of ciiruature p ( 8 )  of the image path 
at point @os(8). since lIv(Q)ll= 1 and u ( 8 )  L a ( @ ) ,  is given by 

4 8 )  = l/lla(@)Il. (5.13) 

Henie,  when the parameter 0 is chohen to  be the curvilinear abscra5a along the image 
path, (4 I )  reduce, to 

y =  Inf Inf ( p ( 8 ) - g ( 8 ) ) > 0  (5  14) 
1 1 E C  % - V I  1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 E I fj, 0 ,  

where g ( 8 )  IS defined by 

-g"(H) = l i p ( @ )  tor 8,, s 8 s 8 ,  

g(H,,) = g ( 8 , )  = 0. 
(5.15) 
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LLLLU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(curvi l inear 

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  abscissa on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 image path1 

Figure 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We have illustrated in figure 5 a geometrical construction of y from the data of the 

H-+g(Q) function: the point D should never get above the horizontal hatched line. 

5.2. Given x, y E C ,  given a path s from x to y ,  and given two points x', y '  helongirzg 
to that path s ,  how do y (associated to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y )  and y' (associated to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ' y ' )  compare" 

If x' and y '  correspond to the parameters 81, arid e', of the interval [e,,. e , ] ,  it is clear 
from figure 6 and from the maximum principle for elliptic equations that 

Conclrisiori. As soon as the strategy S chosen is stable with respect to restriction (i.e. if  

S ( x ' ,  y ' )  = S(x, y)~ , l l , , ,o i , ) ,  it is sufficient, in order to calculate y to consider orzly coirples 
of the houndury aC of C. 

Hence (4.1) or  (4.14) reduces to 

(5.16) 

where 0 is the curvilinear abscissa along the image path and where g(0) is defined by 

(5.15). 
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/// zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX '  

X 

The p a t h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs The image p a t h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ~ O S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e 
8 ,  Curvil inear 

abscissa on t he  
image p a t h  

e,=o 

Figure 6 .  

5.3. How to choose the geometrical path from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx to y 

For a given x, y ~ d C ,  we are  now looking for a path s from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx to y ,  which will be 
parametrised by the curvilinear abscissa 8 along the image path @os, such that the 
quantity 

(5.17) 

appearing in (4.1) or  (5.14) is maximum. 
The  first remark is that the quantity (5.17) depends only on the geometrical 

properties of the image path @Os going from @(x) to @ ( y ) :  8 is the curvilinear abscissa 
along this path,  p(8) is the radius of curvature of this path and g ( 8 )  is defined from O, , ,  
8, and p(8 ) .  

So we can replace (at least conceptually!) the task of choosing a path s from x to y 
in C by that of choosing a path S from @(x) to @ ( y )  in @(C) in such a way that the 
quantity (5.17) is maximised. 

In this new setting the mapping @ is used only, together with the set C, for the 
definition of the set @(C) in which the sought path S has to stay. 

The  second remark is that ,  whenever the segment [@(x), @ ( y ) ]  is fully included in 
@(C) then one can choose S =  [@(x), @ ( y ) ] ,  which yields p(8 )  = + and g ( O ) = O ,  
hence y =  + x so that S is obviously the sought optimal solution! 
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Figure 7. 

The third remark is that ,  if  one  chooses a path S from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(x) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(y) with both large 
radii of curvature and a large length 8 ,  - 8,). like the one depicted in figure 7. for which 
me have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p(8 )  = R > 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv0 E LO,!, e, ]  
8, ,=0,  8,=2;tR. 

Then the function g is of the form 

and is maximum at the point 6' = ;(@,, + 6 , )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxR, 

g(xR)  = ;x2R 

so that 

p( xK) - g ( x R )  = ( 1 - 4lr')R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 0. 

So we see that paths S with both large p and large length are not optimal. 

lerzgtlz path going from @(s) to @(!) in p(C). But this still remains to be proved. 

From the two last remarks, we may CoPzjectiire thnf the oprimal S is rhe minimum- 

We can propose two strategies for the choice of the path s from x to J', 

Stmtegy 1. Determine a path s from x to y in such a way that S = @ O S  is the 
minimum-length path in @(C) going from ~ ( x )  to @()I). This procedure may (if our 
conjecture is true!) yield the optimal number y .  and hence the less constraining 
condition on the size of C. Hokvever. from the practical point of  view. such a strategy 
seems very difficult to implement. as one would have to solve. for each couple 
x, J E :C .  a complicated optimisation problem in a high dimensional space. 

Strutegj, 2. Choose s as the minimum length path in C going from x to y .  This 
procedure is surely non-optimal, but will guarantee that the corresponding image path 
S = @ O S  will not be too long, as soon as upper bounds on iiq'(x)1~ are available. 
Moreover, as the set C is defined by explicit constraints. and is usually of non-void 
interior. the minimum-length path in C from x t o y  can be determined relatively easily 
(in many cases i t  will be the [x. y] interval). 

To conclude this section. let us see, using the very simple example 2 of the 8 1  how 
close our  final condition (5.14)-(5.15) with strategy 1 or  2 comes to the solution of this 
example. 
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We have seen in $1 (see figure 1 and formula (1.7)) that the least-squares 
functional for the search of a real number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx from measurements of its cosine and sine 
had a unique local minimum with value smaller than y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s i d X  (which of course is the 
global minimum) as soon as we search for x in the interval ([0, X ]  with X<2n .  

If we now apply conditions (5.15) and (5.16) to this problem, we have to  compute 
the argument of the infimum in (5.16) only for a path going from 0 to X. Obviously, 
the path 

has all the desired properties: 8 is the curvilinear abscissa on the arc of the circle which 
is the image of the interval [0, X] by the @ function defined in (1.6); s yields the 
minimal length path as well in the image set as in the parameter set so strategies 1 and 
2 are equivalent here. 

$(e) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO S Q S X  (5.18) 

Along this path one  has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P ( 0 )  = 1 (radius of curvature of image circle) 

and hence 

g ( e  ) =ie(x - H )  

which is maximum at H =$X 

Hence we get from (5.16) the condition 

y=l-LX’>O 

x< 22/2 2- 2.828 

or 

which is to be compared with the best possible condition ~ < 2 n  exhibited for this 
example in the introduction. W e  see that the result is not too bad, but as 22/2<2x we 
cannot conclude whether the condition (5.15)-(5.16) with strategy 1 is optimal or  not. 
But one  may remark that 22/2<n,  which proves that, for this example, our condition 
y > 0 yields in fact the uniqueness of all local minima. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. Numerical application 

For historical reasons, the numerical application we are going to present was not made 
using (5.14) with the curvilinear abscissa in the data-space parametrisation, but using 
a weaker version of (4.1) with a time law that has a constant velocity in the parameter 
space. The  geometry of the  path going from x to y was given by strategy S2 of $4.3 
(minimum length in the parameter space) and C was taken to be convex. 

Hence, for any x, y E C the path s ( H )  was 

s ( H ) = x + H ( y - x )  H E  [ O ,  I]. (6.1) 

The sufficient condition for (4.1) was obtained in the following way: using the fact 
that, for any U E H,,(O, 1) ={U E L’(0l)lo’ E L2(01), ~ ( 0 )  = ~ ( 1 )  = 0}, one  has lu(H)I G 

~ ~ ~ u ’ ~ ~ L ~ ~ l , , , ,  and that,  from its defintion (3.6) as the solution of an  elliptic boundary value 
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problem, the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~ g ’ l l ~ , q o , ) 6  ~ I g ~ ~ L : ~ , ) , )  x / l ~ l / , ~ ? ( ~ ) , ) ,  we get the following 
upper bound for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( 0 ) :  

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(@ ) I  6 (1/2~)llu//,~,ol,. (6.2) 

Thus a sufficient condition for (4.1) to hold is: 

We applied the condition (6.3) to example 1 of 81. However, rather than checking, for 
a priori given admissible parameter sets C ,  whether condition (6.3) holds, we used an 
alternative approach: supposing we have been given by an  engineer some nominal 
value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( d ,  b)  E%+:’ x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW’ of the unknown parameters, we tried to answer the question 
‘how large can the parameter set C be chosen around (6, 6 )  while still maintaining the 
uniqueness of the local minima of problem (1.1) over C?’.  This amounts to finding 

‘around’ a given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX the ‘largest’ set ? for which y = 0 so that any set C strictly included 

in will yield a strictly positive y .  This was done by computing the values of the 

argument of the infimum in (6.3) for segments of increasing length centred at X and 
lying on a finite number of straight lines going through X, until one  reaches the zero 
value in each direction. A t  this stage, all couples [x, 2X-x] E aC that are symmetrical 
with respect to 1 were tested. Then the couples (x, y )  with y f x  were tested, 
eventually diminishing the length of the [x, 2X-x] interval if the argument of (6.3) 
happens to be negative for the  [x, y ]  segment. Of course, this procedure will produce 
domains dependent on the order in which the (x, y )  segments are tested in the second 
part of the algorithm. 

The  numerical results, taken from Charles (1985), are shown in figure 8. The 
interesting point t o  be noted is that the size of the ‘maximal’ sets given by condition 
(6.3) is already plausible from a practical point of view. Using condition (5.16) would 
yield still larger sets, with no basic increase in computational time. On the other hand, 

0 3  1 2 a 

Figure 8. ‘Maximal’ sets C obtained for example 1 around different nominal values ,t = ( d ,  
6) of the parameters. 
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the use of the much more restrictive condition (4.4) would lead, in this example, to a 

maximal set of the size of a point in figure 8, and it is thus inadequate for practical use. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7. Conclusion 

We have studied the uniqueness of the local minima of general nonlinear least-squares 
problems, under the main hypothesis that the mapping to be inverted is regular C’ and 
has an injective derivative. For this case we have derived a sufficient condition that 
involves a minimisation, over all ‘geodesic’ curves of the image set, of a quantity that 
involves the radius of curvature of the ‘geodesic’ curve and a function related to the 
radius of curvature through the resolution of an elliptic problem (see (5.16)). This 
condition has been optimised among a class of possible sufficient conditions, but it is 
not known whether it is the best possible condition. However, numerical examples 
have shown that the proposed condition makes it possible to obtain practically 
interesting results for a two-parameter estimation problem. 
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