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The S-functionals of multivariate location and scatter, including the
MVE-functionals, are known to be uniquely defined only at unimodal ellip-
tically symmetric distributions. The goal of this paper is to establish the
uniqueness of these functionals under broader classes of symmetric distri-
butions. We also discuss some implications of the uniqueness of the func-
tionals and give examples of striclty unimodal and symmetric distributions
for which the MVE-functional is not uniquely defined.

The uniqueness results for the S-functionals are obtained by embed-
ding them within a more general class of functionals which we call the
M-functionals with auxiliary scale. The uniqueness results of this paper
are then obtained for this class of multivariate functionals. Besides the
S-functionals, the class of multivariate M-functionals with auxiliary scale
include the constrained M-functionals recently introduced by Kent and
Tyler, as well as a new multivariate generalization of Yohai’s MM-fun-
ctionals.

1. Introduction and summary. Most robust high breakdown point esti-
mates of multivariate location and scatter are not explicitly defined. For exam-
ple, the minimum volume ellipsoid (MVE) estimators and their generalization,
the S-estimators, are defined via a minimization subject to some constraint.
Consequently, little is known about when the S-estimators are uniquely
defined. This question of uniqueness is not a simple one. The bulk of the orig-
inal paper by Davies (1987), where the multivariate S-estimators are intro-
duced, is devoted to showing that under fairly broad conditions, the functional
version of the S-estimators, that is, the S-functionals, are uniquely defined at
unimodal elliptically symmetric distributions. This is apparently still the only
theoretical result on the uniqueness of the S-estimators or the S-functionals,
including the MVE estimators and functionals [see, e.g., Davies (1993)]. As is
shown in Davies (1987), and also in Lopuhaä (1989), the importance of estab-
lishing the uniqueness of the S-functionals at some distribution is that among
other things, once given uniqueness other important properties such as the
weak continuity and the influence function of the S-functionals, as well as the
strong consistency and the asymptotic normality of the S-estimates, follow
fairly readily. Analogous comments hold true for a more flexible variant of the
S-functionals of multivariate location and scatter, recently introduced by Kent
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and Tyler (1996), called the constrained M-functionals or CM-functionals for
short.

The assumption of an elliptically symmetric distribution is often made sim-
ply because of its mathematical tractability, but this is a somewhat restrictive
assumption and is often unrealistic in practice. This motivates us to study in
this paper the uniqueness of the S-functionals, including the MVE-functionals,
as well as the uniqueness of the CM-functionals under symmetric distributions
other than elliptical distributions.

The uniqueness results for the S-functionals and the CM-functionals are
obtained by embedding them within a more general class of functionals which
we refer to as the multivariate M-functionals with auxiliary scale. The unique-
ness results are then obtained for this general class of functionals. The class
of multivariate M-functionals with auxiliary scale represents an adaptation of
the M-functionals of general scale for regression introduced by Martin, Yohai
and Zamar (1989) to the multivariate setting. It also enables us to introduce
a multivariate version of Yohai’s (1987) MM-functionals.

Formal definitions and a brief review of the S-functionals and the CM-
functionals are given in Section 2.1. In Section 2.2, we define the
M-functionals of auxiliary scale and show that the S-functionals, the CM-
functionals and our newly defined MM-functionals lie within this class.

The main uniqueness results of the paper are given in Sections 3 and 4. In
Section 3.1, we show that for symmetric unimodal distributions as defined by
Anderson (1955), the multivariate location M-functionals with auxiliary scale
are uniquely defined by the center of symmetry. This is a result that one might
anticipate. The main tool used in obtaining this result is Anderson’s (1955)
classical inequality on the integral of a symmetric unimodal function over a
convex set.

By Anderson’s definition, the densities of symmetric unimodal distributions
in �p have convex contours and include unimodal elliptically symmetric dis-
tributions. There are other symmetric distributions in �p of interest, however,
which do not have convex contours. For example, if the marginal components
of the distribution are independent Cauchy distributions, then their joint dis-
tribution in �p does not have convex contours. We therefore discuss a more
general definition of symmetric unimodal distributions within Section 3.2, and
note that the MVE location functional does not necessarily correspond to the
center of symmetry. This leads us to restrict our attention to distributions for
which each coordinate slice of the density is symmetric and strictly unimodal.
What we mean by this terminology is defined within Section 3.2. For such
distributions, or for any affine transformations of such distributions, we show
that the location M-functionals with auxiliary scale are again uniquely defined
by the center of symmetry.

The joint uniqueness of the location and scatter functionals is considered
in Section 4. To obtain joint uniqueness results, we place some additional con-
ditions on the class of distributions considered in Section 3.2. Specifically, we
consider the class �p of distributions in �p which are invariant under permu-
tations and sign changes of its components and which have densities f such
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that f ◦ exp is Schur-concave. The assumption that f ◦ exp be Schur-concave
is more general than the assumption that f be Schur-concave. The class �p

includes the unimodal spherically symmetric distributions, as well as a large
class of distributions whose components are independent and identically dis-
tributed according to some univariate unimodal symmetric distribution, such
as the univariate t-distributions. It is well known that the only distributions
within the class of spherically symmetric distributions which have indepen-
dent and identically distributed components are the spherical normal distri-
butions. The class �p can thus be viewed as a much broader generalization of
the spherical normals than unimodal spherically symmetric distributions. In
Section 4, we obtain uniqueness results for both the location and scatter com-
ponents of any M-functional with auxiliary scale for distributions in �p, and
consequently for affine transformations of distributions in �p. The location
functional is again uniquely defined by the center of symmetry. The scatter
functional is a multiple of the identity matrix whenever the distribution is
in �p. For affine transformations of distributions in �p, the scatter matrix is
transformed accordingly. The proofs of these results rely heavily on results on
majorization.

In Section 5, we discuss our results and make some concluding remarks
about the uniqueness problem. We believe that the conditions given in this
paper are close to the best general conditions possible to ensure the unique-
ness of the M-functionals with auxiliary scale. We conclude by giving and
discussing examples of strictly unimodal symmetric distributions for which
the MVE-functionals are not uniquely defined. Technical proofs are given in
the Appendix.

2. Classes of functionals.

2.1. S-functionals and CM-functionals. Perhaps the most widely known
high breakdown point estimator of multivariate location and scatter is the
minimum volume ellipsoid (MVE) estimator introduced by Rousseeuw (1986).
For n points in �p, the MVE is defined to be the minimum volume ellipsoid
covering at least half of the data points, or more generally covering at least
a proportion of �1 − ε� of the data for some fixed constant 0 < ε < 1. The
corresponding MVE estimator of scatter V is taken to be proportional to the
positive definite symmetric matrix A associated with the quadratic equation
�X−µ�′A−1�X−µ� = 1 which characterizes the minimum volume ellipsoid. As
with the least median of squares (LMS) estimator in regression, a drawback
to the MVE estimator is that it is only 3

√
n consistent rather than

√
n con-

sistent, and so its asymptotic efficiency at the normal model is zero [see, e.g.,
Nolan (1991) and Davies (1992)]. To correct this, multivariate S-estimators
were introduced by Davies (1987) and by Rousseeuw and Leroy (1987). These
are a generalization of the MVE estimator in much the same way that the
S-estimators of regression introduced by Rousseeuw and Yohai (1984) are a
generalization of the LMS estimator of regression.
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Let PDF(p) denote the set of all positive definite symmetric matrices of
order p and let x1	 
 
 
 	 xn represent a sample of size n in �p. The S-estimators
of multivariate location and scatter are defined as any pair µ̂ ∈ �p and
V̂ ∈ PDF (p), respectively, which minimizes det�V� subject to the constraint

avei
[
ρ
�xi − µ�′V−1�xi − µ��] ≤ ερ�∞�	(1)

where ε is a fixed value between 0 and 1, avei denotes the arithmetic average
over i = 1	 
 
 
 	 n, and ρ�s� satisfies Condition 2.1 below.

Condition 2.1. For s ≥ 0	 ρ�s� is nondecreasing, 0 = ρ�0� < ρ�∞� < ∞,
and ρ�s� is continuous from above at zero.

When ρ�s� is zero–one step function, an S-estimator corresponds to anMVE-
estimator.

The simultaneous S-functionals of multivariate location and scatter at a
distribution F in �p are defined analogously as any pair µ�F� ∈ �p and
V�F� ∈ PDF(p), respectively, which minimizes det�V� subject to the constraint

E
[
ρ
�X − µ�′V−1�X − µ��] ≤ ερ�∞�	(2)

where X is a p-dimensional random vector having distribution F. If F is the
empirical distribution Fn, then (2) reduces to (1).

The S-estimators are affine equivariant in the sense that if �µ̂	 V̂� are
S-estimates for the data x1	 
 
 
 	xn then �Bµ̂ + b	BV̂B′� are S-estimates for
the transformed data Bx1 + b	 
 
 
 	Bxn + b, where B is a nonsingular matrix
of order p and b ∈ �p. The S-functionals are affine equivariant in an analogus
fashion; that is, if FY represents the distribution of the p-dimensional vector
Y = BX + b and �µ�FX�	V�FX�� are S-functionals at FX then

�µ�FY�	V�FY�� = �Bµ�FX� + b	BV�FX�B′�(3)

corresponds to an S-functional at FY.
Davies (1987) shows that the multivariate S-estimators have an asymptotic

breakdown point which depends on the choice of ε in (2), namely, min�ε	1 −
ε�. In addition, he also shows that if ρ�s� is sufficiently smooth, then the
S-estimator is

√
n consistent and asymptotically normal. Lopuhaä (1989), how-

ever, notes that the S-estimators tend to become more inefficient at the mul-
tivariate normal model as the value of ε increases from 0 to 1/2 and can be
quite inefficient for the higher breakdown point S-estimators. In addition, the
gross error sensitivities of the higher breakdown point S-estimators at the
multivariate normal model tend to be fairly large.

These shortcomings of the S-estimators motivated Kent and Tyler (1996)
to introduce a more flexible variant of the S-estimators called the constrained
M-estimators or CM-estimators for short. The CM-estimators for multivari-
ate location and scatter are defined as any pair µ̂ ∈ �p and V̂ ∈ PDF�p�,
respectively, which minimizes

ln�µ	V� = avei
[
ρ
{�xi − µ�′V−1�xi − µ�}]+ �1/2� log�det�V��(4)
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subject to the constraint (1), with ε and ρ�s� being defined as in the S-esti-
mators. The CM-functionals of multivariate location and scatter at a distribu-
tion F in �p are defined analogously as any pair µ�F� ∈ �p and
V�F� ∈ PDF�p�, respectively, which minimizes

L�µ	V� = E
[
ρ
�X − µ�′V−1�X − µ��]+ �1/2� log�det�V��	(5)

under the constraint (2), where again X is a p-dimensional random vector
having distribution F. If F is taken to be the empirical distribution function
then (5) reduces to (4).

Like the S-estimators and functionals, the CM-estimators and functionals
are affine equivariant. Kent and Tyler (1996) show that the asymptotic break-
down points of the CM-estimators are analogous to those of the S-estimators,
namely min�ε	1 − ε�. They also show that, as with the S-estimators, if ρ�s�
is sufficiently smooth, then the CM-estimator is

√
n consistent and asymp-

totically normal. In addition, unlike the S-estimators, the higher breakdown
point CM-estimators can be tuned to have good efficiency and a relatively low
gross error sensitivity at the multivariate normal and other models without
affecting the breakdown points of the CM-estimators. For details, see Kent
and Tyler (1996).

As noted in the introduction, except for the results on the breakdown points,
these results concerning consistency, asymptotic normality and gross error
sensitivity as well as results on weak continuity, the influence function and
maximum bias curves depend on the S-functional or CM-functional being
uniquely defined at the distribution of interest; see Davies (1987), Lopuhaä
(1989) and Kent and Tyler (1996). Existence of the S-functionals and the
CM-functionals have been established under the following mild condition on
the underlying distribution [Theorem 3.1 of Kent and Tyler (1996)]. Here PF

refers to the probability measure associated with the distribution function F.

Condition 2.2. For all hyperplanes B ⊂ �p	PF�B� < 1− ε.

Note that if F is absolutely continuous then PF�B� = 0 for any hyperplane
B and so Condition 2.2 holds. However, the uniqueness of the S-functionals and
the CM-functionals has only been established so far for unimodal elliptically
symmetric distributions. We address this problem for much broader classes of
symmetric distributions in Sections 3 and 4.

2.2. M-functionals with auxiliary scale. Before studying the uniqueness
of the multivariate S-functional and the CM-functionals, we note that they
can both be embedded within a larger class of functionals which we call the
multivariate M-functionals with auxiliary scale. M-estimates with auxilary
scale have been previously introduced in the regression setting by Martin,
Yohai and Zamar (1989) as a way of studying S-estimates, M-estimates and
MM-estimates of regression within a unified framework. They also contain
the constrained M-estimates of regression introduced by Mendes and Tyler
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(1996). Martin, Yohai and Zamar (1989) use the terminology “M-estimates
with general scale,” but we feel the term “auxiliary scale” is more descriptive.

For a given “scale” functional σ�F� > 0, we define the multivariate loca-
tion and scatter M-functionals with auxiliary scale σ�F� to be µ�F� and
V�F� = σ2�F���F�, respectively, where �µ�F�	 ��F�� minimize

E
[
ρ
�X − µ�′�−1�X − µ�/σ2�F��](6)

over all �µ�F�	 �� ∈ ��p�, and where

��p� = 
�µ�F�	 ���µ�F� ∈ �p and � ∈ PDF�p� with det��� = 1�(7)

If F = Fn, the above definition defines multivariate location and scatter
M-estimates with auxiliary scale statistic σ�Fn�.

In the sample univariate case, the above definition reduces to anM-estimate
of location with auxiliary scale statistic σ�Fn�. Location is often viewed as the
important statistic in the univariate setting, with scale being viewed as an
auxiliary or nuisance parameter. In the multivariate setting, though, the scat-
ter statistic is also of central importance, with primary interest usually being
focused on the shape components; that is, functions such thatH�V� =H�λV�
for any λ > 0; see Tyler (1983) for more details. These shape components can
be identified through ��Fn� alone and so the scale statistic σ�Fn� can still be
regarded as an auxiliary statistic.

As in the univariate setting or the regression setting, one can use either
a preliminary estimate or a simultaneous estimate of scale. To assure that
�µ�F�	V�F�� is affine equivariate, the scale statistic or functional must be
invariant in the following sense. If FY represents the p-dimensional distribu-
tion of Y = BX+b, whereB is a nonsingular matrix of order p and b ∈ �p, then

σ�FY� = �det�B��1/pσ�FX�
(8)

Both the S-estimates and the CM-estimates satisfy the definition of
M-estimates with auxilary scale and both depend upon a simultaneous esti-
mate of scale. The difference between the S-estimates and the CM-estimates
lie in the definition of the auxiliary scale statistic. To be specific, we state
the following theorem. The proof of the theorem is fairly straightforward for
the CM-functionals. The proof for the S-functionals involves a few additional
arguments and is given in the Appendix.

Theorem 2.1. For a given ρ-function, suppose�µ�F�	V�F�� represents
either an S-functional or a CM-functional of multivariate location and scatter.
If we set σ�F� = det�V�F��1/�2p�, then �6� obtains its minimum over ��p� at
�µ	 �� = �µ�F�	 σ−2�F�V�F��. That is, �µ�F�	V�F�� corresponds to a multi-
variate M-functional with auxiliary scale σ�F�.

For the S-functionals, the scale is defined simultaneously as the M-fun-
ctional of scale corresponding to the largest value of σ�F� satisfying the
inequality

E
[
ρ��X − µ�′�−1�X − µ�/σ2�] ≤ ερ�∞�(9)
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for fixed µ and �. This formulation gives an interpretation to the term “S” in
S-functionals which is analogous to its interpretation in the regression setting.
That is, rather than viewing the S-functional as minimizing the “scale” det�V�,
we can view it as choosing µ and � for which the corresponding M-functional
of scale is minimized.

For the CM-functionals, the scale is defined simultaneously as the value
σ�F� which minimizes

E
[
ρ��X − µ�′�−1�X − µ�/σ2�]+ p log�σ�(10)

for fixed µ and �, subject to the constraint σ ≥ σS, where σS is the largest
value satisfying (9).

If we define σ�F� as a preliminary scale functional, then this gives a new
class of multivariate location and scatter functional which we call the
MM-functionals, or in the case F = Fn, the MM-estimates. The class of MM-
estimates were first introduced by Yohai (1987) in the regression setting. The
motivating idea behind their definition is that one can begin with a high break-
down point but inefficient S-estimate as a preliminary regression estimate.
One then uses the scale based upon this preliminary estimate along with a
better tuned ρ-function to obtain a more efficient M-estimate of regression
while maintaining the high breakdown point.

In the multivariate setting, one can obtain a preliminary scale estimate
by taking σ�Fn� = det�Vo�Fn��1/�2p�, where Vo�Fn� is some preliminary
high breakdown point S-estimate of scatter. Once given the scale estimate,
a different ρ-function can be used in defining an M-estimate with auxiliary
scale σ�Fn�. Note that if the same ρ-function were used, then the resulting
MM-estimate would be the same as the preliminary S-estimate. Properties
of the multivariate MM-estimates are similar to those of the multivariate
CM-estimates. It is not the intent of this paper to pursue this topic here.
The reader can refer to Mendes and Tyler (1996) for a comparison of the
CM-estimates and MM-estimates in the regression setting.

A multivariate version of the MM-estimates for location has also been pro-
posed by Lopuhaä (1992). His definition differs in that it treats the entire
scatter matrix as a preliminary auxiliary statistic which then involves mini-
mizing (6) over µ ∈ �p only.

We conclude this section by noting that it is difficult to obtain simple con-
ditions to ensure in general the existence of the M-functionals with auxiliary
scale. The following lemma, however, does assure their existence for any abso-
lutely continuous distribution. Simpler conditions, such as Condition 2.2 for
the S and CM-functionals, would depend on the exact definition of σ�F�.

Theorem 2.2. Let ρ satisfy Condition 2.1.
(a) For a given σ�F�, if for all hyperplanes B ∈ �p,

inf
��p�

E
[
ρ
�X − µ�′�−1�X − µ�/σ2�F��] < 
1−PF�B��ρ�∞�	

then there exists �µo	 �o� ∈ ��p� which minimizes �6�.
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(b) For a given σ�F�, if for some hyperplane B ∈ �p,

inf
��p�

E
[
ρ
�X − µ�′�−1�X − µ�/σ2�F��] > 
1−PF�B��ρ�∞�	

then there exists no �µo	 �o� ∈ ��p� which minimizes �6�.

3. Uniqueness results for location.

3.1. Symmetric unimodal distributions. Some conditions on the distribu-
tion are necessary in order to obtain uniqueness results for the M-functionals
with auxiliary scale in general. For example, consider a distribution which is a
50–50 mixture of uniform distributions inside the p-dimensional unit spheres
centered at plus and minus c, with �c� ≥ 1. For this distribution, it is easy
to see that the minimum volume ellipsoids covering half of the distribution
correspond to either of the two unit spheres. Thus, the MVE-functional is not
unique in this case and neither of the location components corresponds to the
center of symmetry. This example suggests that besides symmetry, some type
of unimodality is needed to assure that the location functional gives the center
of symmetry.

We begin with the following definition from Anderson (1955).

Definition 3.1. A function f on �p is said to be symmetric and unimodal
if:

(a) f�x� = f�−x� for all x ∈ �p.
(b) Hu = 
x� f�x� ≥ u� is convex for all 0 ≤ u <∞.

If a function f is symmetric and unimodal then it is radially decreasing.
That is, for any x ∈ �p if α1 > α2 ≥ 0 then f�α1x� ≤ f�α2x�. If the second
inequality is always strict, then f is said to be strictly radially decreasing. We
will also say that such functions are strictly unimodal. Unimodal elliptically
symmetric distributions satisfy the conditions of Definition 3.1.

Throughout this subsection we assume the random variable X has a sym-
metric unimodal probability density function f on �p, as defined in Anderson
(1955). For such distributions, one would anticipate that any reasonable loca-
tion functional would give the origin. Such is shown here to be the case for
any M-functional of location with auxiliary scale. In addition, if f is strictly
unimodal, then it is shown that the location functionals are uniquely defined
to be the origin.

To help obtain our results, we recall Anderson’s (1955) classic inequality for
probabilities of convex symmetric sets when shifted away from the origin.

Lemma 3.1. Let X have a symmetric and unimodal pdf, and let h be a
symmetric function on �p such that Ev = 
x ∈ �p�h�x� ≤ v� is convex, where
v ∈ �. Then for any µ ∈ �p and 0 ≤ α < 1,

P�h�X + αµ� ≤ v� ≥ P�h�X + µ� ≤ v�
(11)
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In order to obtain our uniqueness results, we will need strict inequality
in (11) for some v. This would allow us to conclude that E�h�X + αµ�� <
E�h�X + µ��. According to Corollary 1 of Anderson (1955), equality in (11)
holds if and only if for every u	 �Ev + µ� ∩Hu = Ev ∩Hu + µ. Note that if
v > ρ�∞� then Ev = �p and so (11) is an equality since both sides are equal
to 1. Hence, if Ev = �p, then the condition of Corollary 1 of Anderson (1955)
reduces to Hu =Hu +µ. This clearly does not hold for typical X. Thus, some
additional conditions are needed in order to assure equality in (11), but we do
not pursue this line of thought here.

Anderson (1955) also gives the following necessary and sufficient condi-
tion for (11) to hold with strict inequality. Let �p�·� denote the volume of the
enclosed subset of �p. Strict inequality holds in (11) if and only if there exists
u such that

�p
[�Ev + αµ� ∩Hu� > �p��Ev + µ� ∩Hu

]

(12)

Inequality (12) may be difficult to check for general f and Ev. We can use
it, however, to obtain a simple sufficient condition for strict inequality to
hold in (11) for the special case of interest in this section, that is, when
h�x� = ρ�x′V−1x� and ρ satisfies Condition 2.1. Here ⊃ denotes a strict
inclusion.

Lemma 3.2. Suppose X has a symmetric and unimodal pdf and 0 ≤ α < 1.
If for some u > 0	 �Ev + αµ� ∩Hu is not contained in a hyperplane and

�Ev + αµ� ∩Hu ⊃ δ��Ev + µ� ∩Hu� + �1− δ���Ev − µ� ∩Hu�	(13)

where Ev = 
x ∈ �p� ρ�x′V−1x� ≤ v� and δ = �1+ α�/2, then �11� holds with
strict inequality.

Lemma 3.3. Let X have a symmetric and unimodal pdf f, and suppose ρ
satisfies Condition 2.1. For �µ	V� ∈ �p ×PDS�p� and 0 ≤ α < 1,

E
[
ρ
�X − αµ�′V−1�X − αµ��� ≤ E�ρ
�X − µ�′V−1�X − µ��]
(14)

Further, if f is symmetric and strictly unimodal and µ �= 0, then

E
[
ρ
X′V−1X�� < E�ρ
�X − µ�′V−1�X − µ��]
(15)

Remark. Lemma 3.3 is analogous to Lemma 4 in Davies (1987). His result,
though, only applies to elliptically symmetric distributions.

Lemma 3.3 allows us to conclude that any M-functional of location with
auxiliary scale is uniquely given by the origin, or more generally the center
of symmetry, whenever the distribution has a symmetric strictly unimodal
density.
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Theorem 3.1. Let F denote the distribution of X with X having a symmetric
strictly unimodal pdf, and suppose ρ satisfies Condition 2.1. For a given σ�F�,
there exists �µ�F�	 ��F�� ∈ ��p� which minimizes �6�. For any such solution
µ�F� = 0.

3.2. Coordinatewise symmetric unimodal distributions. Although the class
of symmetric unimodal distributions is broader than the unimodal elliptical
distributions, there are other distributions of interest which are not symmetric
and unimodal as defined by Definition 3.1. In particular, consider a distribu-
tion in �p whose components are independent and identically distributed. If
the marginal distribution is a double exponential centered at zero, then the
joint distribution is symmetric and unimodal. However, if the marginal distri-
bution has longer tails such as a Cauchy distribution centered at zero, then
the joint distribution is not symmetric and unimodal since the contours of
the joint distribution are not convex. A contour plot of the joint density of
two independent univariate standard Cauchy distributions is illustrated in
Figure 1a.

A simpler and more general definition for a symmetric unimodal or strictly
unimodal distribution would be one with a symmetric radially decreasing or a
symmetric strictly radially decreasing density, respectively. It is easy, however,
to construct such distributions for which the MVE location functional is not
unique and does not correspond to the center of symmetry. Consider again the
example of a 50–50 mixture of uniform distributions inside the unit spheres
centered at plus and minus c. If �c� = 1, then the distribution satisfies the
more general definition of symmetric unimodal distribution with its center of
symmetry at the origin. However, the center of symmetry does not correspond
to one of the possible location components of the MVE-functional. This still
holds even if one mixes this density with a small enough percentage of a
standard normal distribution in �p, producing a symmetric strictly radially
decreasing density with support �p. Thus, some additional restrictions on
this class of symmetric unimodal distributions are needed in order to obtain
general uniqueness results for the M-functionals with auxiliary scale.

We proceed by assuming in this subsection that the p-dimensional random
vector X = �X1	 
 
 
 	Xp�′ possesses a density f�x1	 
 
 
 	 xi	 
 
 
 	 xp� which is a
symmetric, strictly unimodal univariate function of xi, for each i = 1	 
 
 
 	 p	
when all other coordinates are held fixed. We say each coordinate slice of f is
symmetric and strictly unimodal. For this class of distributions, we show not
only that any M-functional of location with auxiliary scale is uniquely defined
to be 0, but also that the scatter functional must be a diagonal matrix. Due to
the affine equivariance of the functionals, the uniqueness of the location func-
tional carries over to affine transformations of this class of distributions. Note
that any distribution or any affine transformation of a distribution whose
density is symmetric and strictly unimodal in each coordinate slice is sym-
metric about some point and is strictly radially decreasing from the point
of symmetry.
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For a symmetric positive definite matrix V, express V = TT′, where T is a
lower triangular matrix and let

Up = T−1 =



u′1




u′p


 =



u11 0 0 · · · 0
u21 u22 0 · · · 0





up1 up2 up3 · · · upp


 


The following lemma is the key result needed to obtain the uniqueness results
of this subsection.

Lemma 3.4. If X have density f in �p for which each coordinate slice is
symmetric and unimodal and ρ satisfies Condition 2.1, then

E
[
ρ
�X − µ�′V−1�X − µ��] ≥ E

[
ρ�u2

11X
2
1 + · · · + u2

ppX
2
p�
]

(16)

Further, if each coordinate slice of f is symmetric and stricly unimodal, then
the inequality is strict.

If we let D−1
p = diag�u2

11	 
 
 
 	 u
2
pp�, then det�V� = det�Dp�. Thus, it fol-

lows directly from its definition that any multivariate location and scatter
M-functional with auxiliary scale must be of the form (0	 &) for some diagonal
matrix &. We summarize this in the following theorem.

Theorem 3.2. Suppose X has a density f in �p for which each coordinate
slice is symmetric and strictly unimodal, and ρ satisfies Condition 2.1. Let F
denote the distribution of X. For a given σ�F�, there exists �µ�F�	 ��F�� ∈ ��p�
which minimizes �6�. For any such solution, µ�F� = 0 and V�F� is a diagonal
matrix.

The proof of Lemma 3.4 is essentially based upon the recursive applica-
tion of the following lemma, which can be viewed as a univariate version of
Anderson’s (1955) inequality on the integral of symmetric unimodal functions
over shifted convex sets.

Lemma 3.5. Let v�s�	 s ≥ 0, be nondecreasing in s	 g � �→ � be symmetric
and nonincreasing in �y�. Also if

I�c� =
∫ ∞
−∞

v��c+ y�2�g�y� dy
is integrable for each c ∈ �, then I�c� ≥ I�0�. Further, if either v is strictly
increasing or g is strictly radially decreasing, I�c� > I�0�.

It is possible to unify the results of Sections 3.1 and 3.2 and make a more
general statement about the uniqueness of the location functional. For exam-
ple, it can be shown that if X = �X1	 
 
 
 	Xp�′ and if for r ≤ p, �X1	 
 
 
 	Xr�
has a symmetric unimodal distribution with radially strictly decreasing den-
sity function, then �µ1	 
 
 
 µr�′ = 0. For the sake of clarity and brevity, we do
not give a full treatment here.
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4. Joint uniqueness of location and scatter. In Section 3.2, we con-
sidered a class of symmetric distributions for which not only are the location
M-functionals with auxiliary scale uniquely defined to be the center of symme-
try, but also for which the scatter functional must be a diagonal matrix. Under
some additional conditions on this class of distributions, we show in this sec-
tion that the scatter functional is uniquely defined to be a constant times the
identity matrix. Thus, we obtain a class of distributions for which the location
and scatter M-functionals with auxiliary scale are uniquely defined. Again due
to the affine equivariance of the functionals, the simultaneous uniqueness of
the location and scatter functionals carries over to affine transformations of
this class of distributions.

We begin by introducing some concepts and notations before precisely defin-
ing the class of distributions considered in this section. Let O�p� be the group
of p× p orthogonal matrices, and let Wp be the subgroup of O�p� generated
by permutation matrices and reflection matrices, that is, diagonal matrices
with each diagonal entry being +1 or −1. We say a function f� �p → � is
Wp-invariant if f�y� = f�wy� for all y ∈ �p and w ∈ Wp. Examples of Wp-
invariant functions include the density of a spherically symmetric random
vector, the density of a random vector for which the entries are independent
and identically distributed symmetric random variables, or in general the den-
sity of a symmetric exchangeable random vector.

A major tool in this section is the concept of majorization, which represents
a partial ordering of vectors in �p. We recall the definitions of majorization
and Schur-concavity as given in Marshall and Olkin (1979). Given a vector
x = �x1	 
 
 
 	 xp�′ ∈ �p, let x�1� ≥ · · · ≥ x�p� denote the components of x in
decreasing order.

Definition 4.1. For x	y ∈ �p,

x ≺ y if




k∑
j=1

x�j� ≤
k∑

j=1
y�j�	 for 1 ≤ k ≤ p− 1, and

p∑
j=1

x�j� =
p∑
j=1

y�j�


We say x is majorized by y.

Definition 4.2. A function f��p → � is said to be Schur-concave provided
for every x	y ∈ �p with x ≺ y	 f�x� ≥ f�y�. The function f is said to be
strictly Schur-concave if x ≺ y implies strict inequality holds unless there
exists a permutation w such that wx = y.

Let �
p
+ denote the set of positive p-tuples of real numbers. For a Wp-

invariant function f in �p	 f is Schur-concave on �
p
+ if and only if f is sym-

metric and unimodal; see Marshall and Olkin (1979). As in Section 3.2 we
wish to be able to consider densities that do not necessarily have convex con-
tours and so we need a concept more general than Schur-concavity. For our
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purposes we formally introduce a multiplicative version of majorization which
we call M-majorization. This concept was informally used by Davies (1987). It
formalizes the vague notion that the components of a vector x are “less spread
out” than the components of a vector y.

Definition 4.3. For x	 y ∈ �
p
+,

x ≺M y if




k∏
j=1

x�j� ≤
k∏

j=1
y�j�	 for 1 ≤ k ≤ p− 1, and

p∏
j=1

x�j� =
p∏
j=1

y�j�


We say x is M-majorized by y.

An alternate definition of M-majorization is the following: for x	y ∈ �
p
+,

x ≺M y provided log x ≺ log y	

where log x = �log x1	 
 
 
 	 log xp�′ and ≺ refers to the usual notion of majoriza-
tion. Note there is a correspondence between points x ∈ �

p
+ and ellipses with

lengths of semi-major axes x1	 
 
 
 	 xp. Intuitively, x ≺M y means the ellipse
corresponding to x is “less disperse” than the ellipse (with the same volume)
corresponding to y. The “least disperse” ellipse among all ellipses with the
same volume is the sphere.

Analogously to Schur-concavity, we define M-concavity not only for func-
tions defined on �

p
+ but also for Wp-invariant functions on �p. Note that

Wp-invariant functions are determined by their definition on �
p
+.

Definition 4.4. A function f��p
+ → � or aWp-invariant function f��p →

� is said to be M-concave provided for every x	y ∈ �
p
+ and x ≺M y	 f�x� ≥

f�y�. The function f is said to be strictly M-concave if x ≺M y implies strict
inequality holds unless there exists a permutation w ∈Wp such that wx = y.

To obtain the definition of M-convexity just reverse the inequalities. Note
that f is M-concave if and only if f ◦ exp is Schur-concave, where f ◦ exp�x� =
f�ex1	 
 
 
 	 exp�. We say a function f is M-concave, instead of M-decreasing,
to stay consistent with the classical terminology of Schur. The concept of
M-concavity is broader than Schur-concavity in the following sense.

Lemma 4.1. Let f� �p → � be Schur-concave such that f��p
+ is decreasing

in each argument. Then f��P
+ is M-concave. ForWp-invariant functions, if f is

Schur-concave and f��p
+ is decreasing in each argument then if is M-concave.

Examples of Schur-concave functions include a spherically symmetric, radi-
ally decreasing probability density function, or more generally Wp-invariant
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probability density functions with convex contours. The most extreme exam-
ple of a Schur-concave Wp-invariant probability density is one with contours
of the form 
x ∈ �

p
+�x1+· · ·+xp = c� �p

+. This is obtained by the joint density
of i.i.d. double exponential distributions; that is,

f�x1	 
 
 
 	 xp� ∝ exp�−�x1� − · · · − �xp��
is Schur-concave.

An example of an M-concave function that is not Schur-concave is the joint
density of i.i.d. t-distributions on ν > 0 degrees of freedom; that is,

f�x1	 
 
 
 	 xp� ∝
p∏
i=1

(
1+ x2i

ν

)−�ν+1�/2

(17)

For this case, f is not Schur-concave since 
x ∈ �p � f�x� ≥ c� is not convex.
The proof of the M-concavity of f in (17) is given in the Appendix. The most
extreme example of an M-concaveWp-invariant function is one with contours
on �

p
+ of the form 
x ∈ �

p
+�x1 · · ·xp = c�, which is approached by the joint

density of the i.i.d t-distributions as ν→ 0.
From a graphical perspective, we note that a Wp-invariant density is

M-concave if and only if the contours on �
p
+ are convex when plotted on loga-

rithmic axes. Figure 1 illustrates this for the case of two independent standard
univariate Cauchy distributions.

A fundamental result due to Marshall and Olkin (1979) concerns preser-
vation of Schur-concavity under convolution: if φ and g are Schur-concave
functions defined on �p, then the function 7 defined on �p by

7�θ� =
∫
�p
g�θ− x�φ�x�dx

is Schur-concave. The following analogous result for M-concavity is the key
result for obtaining the uniqueness of the scatter functionals. This result can
be found on page 300 of Marshall and Olkin (1979). Our statement and proof
[based on Marshall and Olkin (1979), page 100] uses the terminology of M-
majorization and M-concavity.

Theorem 4.1. Let f��p → � beWp-invariant andM-concave. Let h��p →
� be Wp-invariant and M-convex. Then

I�9� =
∫
h�λ1y1	 
 
 
 	 λpyp�f�y�dy

is M-convex as a function of 9 = �λ1	 
 
 
 	 λp�′, where each λi > 0
 Further, if
either f is strictly M-concave or h is strictly M-convex, I is strictly M-convex.

In particular, if ρ� � → � satisfies Condition 2.1, then since the mapping
y→ y′y is M-convex, the map y→ ρ�y′y� is M-convex, so Theorem 4.1 applies
when h is taken to be h�y� = ρ�y′y�.
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Fig. 1. (a) The contours for the joint density of two independent standard univariate Cauchy
distributions. (b) The same contours plotted using a log-log scale for the axes.

Recall now the class of distributions �p defined in the introduction. Using
the terminology of the present section, the class �p is the class of distribu-
tions on�p having densities which areWp-invariant andM-concave. Densities
associated with this class have coordinate slices which are symmetric and uni-
modal, and so Lemma 3.4 of Section 3.2 applies. Using the notation of Section
3.2, and noting that κ1/21′p ≺M �u11	 
 
 
 	 upp�′, where κp =

∏p
i=1 u

2
ii = det�V−1�

and where 1p is the p-dimensional vector with each entry 1, we can put
Lemma 3.4 and Theorem 4.1 together to obtain the following key inequality.

Lemma 4.2. If ρ satisfies Condition 2.1 and the distribution of X is in �p,
then

E
[
ρ
�X − µ�′V−1�X − µ��] ≥ E�ρ�κX′X��


Further, if either ρ is strictly increasing or the density f of X is strictly M-
concave, then the inequality is strict.

Since det�V� = det�κ−1Ip�, it follows that for any multivariate M-functional
with auxiliary scale the location component must be 0 and the scatter compo-
nent must be proportional to the identity matrix. We summarize this in the
following uniqueness theorem.

Theorem 4.2. Suppose ρ satisfies Condition 2.1 and the distribution F of
X is in �p. Further, suppose either ρ is strictly increasing or the density f of X
is strictly M-concave. Then, for a given σ�F�, there exists �µ�F�	 ��F�� ∈ ��p�
which minimizes �6�. For any such solution, µ�F� = 0 and V�F� = σ2�F�Ip.

The uniqueness of any particular multivariate M-functional with auxiliary
scale also depends upon the uniqueness of the scale functional σ�F�. The
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uniqueness of the S-functionals hold since σ�F� is uniquely defined as the
largest value of σ which satisfies the inequality

E
[
ρ�X′X/σ2�] ≤ ερ�∞�
(18)

This gives a unique value for σ�F� since the left-hand side of (18) is a strictly
decreasing function of σ . The uniqueness of the CM-functional depends upon
the uniqueness of the solution to the problem of minimizing

E
[
ρ�X′X/σ2�]+ p log�σ�(19)

subject to the constraint σ ≥ σS, where σS is the unique largest value sat-
isfying (18). As discussed in Kent and Tyler (1996), for a specific ρ func-
tion and distribution F, this uniqueness problem can in general be checked
numerically since (19) is a univariate function. In specific cases it can be
verified theoretically. This is discussed in more detail in Kent and Tyler
(1997).

We conclude by again noting that by the affine equivariance properties of
the M-functionals with auxiliary scale, if Y = BX+b where B is a nonsingular
matrix of order p and b ∈ �p, then an M-functional with auxiliary scale under
the distribution of Y must be of the form �b	 σ2�F�BB′� when the conditions
on ρ and X in Theorem 4.2 are satisfied.

5. Some comments on uniqueness. It was noted in the introduction
that many properties of the S-estimates and CM-estimates under a given dis-
tribution follow once the uniqueness of the corresponding S-functionals and
CM-functionals is established. The results of this paper show that these prop-
erties hold not only for unimodal elliptical distributions but also for much
broader classes of unimodal symmetric distributions. This does not imply that
the associated estimating equations have a unique solution, but only that the
one which optimizes the S or CM criterion is unique.

The uniqueness results can be extended to the estimates themselves. That
is, for large enough random samples from a distribution for which an
S-functional or a CM-functional is uniquely defined, the corresponding
S-estimate or CM-estimate will be uniquely defined; see Kent and Tyler (1996)
for further discussion. In practice, though, we conjecture that the S-estimates
or CM-estimates themselves are unique with probability 1 when random
sampling from an absolutely continuous distribution, even one for which the
corresponding S- or CM-functional is not uniquely defined. Davies (1992)
shows this to be true for the MVE-estimates. It is the uniqueness of the
functional, though, which is important in establishing results such as
consistency.

The nonuniqueness of a functional under some distributions need not be
viewed as an undesirable property, but rather simply as a descriptive property.
Knowing when a functional is uniquely defined and when it is not uniquely
defined can give some insight into the nature of the functional. Recall the
example from Section 3 consisting of a 50–50 mixture of uniform distributions
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within unit spheres with centers plus and minus c
 One may argue that hav-
ing two solutions is desirable here, one with location minus c and the other
with location plus c since this exposes the structure of the distribution. Any
uniquely defined affine equivariate functional would give the location as the
origin, which may mask the two clusters. Application of this argument to the
special case c = 1/√p, for which �c� = 1, and its variation as discussed in
Section 3.2, supports the seemingly unorthodox statement:

It is not necessarily desirable that a location functional corresponds
to the center of symmetry for a distribution with a symmetric,
exchangeable and strictly radially decreasing density.

Of course, for a random sample from such distributions, the MVE-estimate
will have a unique solution. The MVE-estimate, though, would tend to be
near one of the two MVE-functionals and the cluster structure could then
easily be picked up in a residual analysis.

Davies (1993) gives another example of when the MVE-functional is not
uniquely defined. He considers a 40–15–15–15–15 mixture of uniform, distri-
butions within spheres of radius r in �2 with centers 0	 �1	0�′	 �0	1�′	 �−1	0�′
and �0	−1�′, respectively. He notes that for small enough r, any minimum
volume ellipsoid will concentrate on the component at the origin and two dia-
metrically opposed components of the remaining four. This results in two solu-
tions for the MVE-functional, both with location 0 but with different scatters.
Davies (1993) uses this example to illustrate that S-functionals of scatter are
not necessarily uniquely defined. He views this as a fundamental difficulty
of S-functionals and so argues that it may not be reasonable to apply the
S-functionals to a design matrix for the purpose of downweighting leverage
points in GM-estimates of regressions. One can again make the alternative
argument, though, that uniqueness is not necessarily desirable here since the
nonunique solution would help uncover the curious nature of the design space.
One may then wish to consider separate regressions on the different clusters.

The above examples may appear somewhat pathological, as is probably the
case with any distribution that produces some nonunique M-functional with
auxiliary scale. These examples, though, give some insight into the nature
of the uniqueness problem. One can see that trying to impose uniqueness on
the functionals by defining them to be some affine equivariate average of all
possible solutions is not necessarily desirable and does not make the corre-
sponding estimates consistent. In the first example, any affine equivariate
average of the MVE-functionals would give the location as the origin, but the
MVE-estimates would still be near either plus or minus c.

These examples are also indicative of the nature of redescending high break-
down point estimates. Although in practice one would seldom deal with such
balanced clusters, clusters do arise in data, possibly due to some unmeasured
factor. Redescending high breakdown point estimates tend to concentrate on
the majority cluster or collection of clusters, while ignoring the minority. The
nature of the data can then be detected through a residual analysis. Most
examples which demonstrate the utility of high breakdown point estimates
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involve a cluster or clusters of data. For example, the classic Herzsprung–
Russell star data set considered on page 261 in Rousseeuw and Leroy (1987)
contains a cluster of four outliers corresponding to giant stars, which repre-
sents an unmeasured factor in the analysis.

We conclude by considering a scatter analog of the first example. This inter-
esting example provides some insight into the relationship between
M-concavity and scatter. Consider a 50–50 mixture of two bivariate normal
distributions with means 0 and variance-covariance matrices(

1 0
0 γ2

)
and

(
γ2 0
0 1

)
	(20)

respectively, for some 0 < γ < 1. This distribution has a density which is sym-
metric and strictly unimodal in each variable, and so we know by Theorem 3.2
that any M-functional with auxiliary scale gives a unique location 0, with
the scatter functional being a diagonal matrix. The density is also exchange-
able, but it is neither concave nor M-concave. Figure 2 illustrates this for the
case γ2 = 0
25. One can verify this in general by noting if γ < β < 1, then
f�a	 a� < f�aβ	a/β� for large enough a > 0 even though �a	 a� ≺M �aβ	a/β�.
Consequently, Theorem 4.2 does not apply to this example.

Whether or not the scatter functional is proportional to the identity will
depend upon the specific scale functional σ�F� and the specific ρ-function
being used, as well as on the value of γ in the distribution. If γ = 1, then
Theorem 4.2 applies. The scatter functional will also be uniquely defined and
proportional to the identity for values of γ sufficiently close to 1, provided
the scale functional σ�F� is uniquely defined and continuous in some neigh-
borhood of the standard normal. For small enough γ, however, the minimum
volume ellipsoid covering half of the distribution will not be a circle. This

Fig. 2. (a) The contours of the density of a 50–50 mixture of bivariate normal distributions. The
means of the normal distributions are both zero, and the variance-covariance matrices are given
in (20) with γ2 = 0
25
 (b) The same contours plotted using a log-log scale for the axes.
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implies the MVE scatter functional cannot be proportional to the identity and
so by symmetry there must be at least two distinct diagonal solutions for the
scatter functional.

In this last example, one can verify that the minimum volume ellipsoid is
not a circle for small enough γ by noting that the volume of the circle about
zero covering half the distribution converges to πr2 as γ→ 0, where P��Z� <
r� = 0
5 and with Z having a standard normal distribution. On the other
hand, an ellipsoid centered at zero with axes corresponding to the coordinate
axes and with half-lengths r1 = rκ and r2 = r/κ, respectively, for some κ > 1
also has volume πr2. As γ → 0, though, its limiting probability coverage is
0.5 P��Z� < r1� + 0
5P��Z� < r2�, which can be shown to always be greater
than 0.5. Hence for small enough γ the minimum volume ellipsoid cannot
be a circle. Some numerical calculations suggests that this holds for at least
γ < 0
38. Using a similar argument one can show that that for small enough
γ the minimum volume ellipsoid covering a proportion τ of the distribution
will not be a circle for τ < P��Z� < 1� = 0
68269.

APPENDIX

Proof of Theorem 2.1. Let ��F� = V�F�/σ2�F� and suppose �µ�F�	
��F�� does not minimize (6) over ��p�. This implies there exists �µo	 �o� with
det��o� = 1 such that �µo	Vo = σ2�F��o� satisfies the S-functional constraint
(2) with strict inequality. Furthermore, det�Vo� = σ2p�F� = det�V�F��. We
can then find a σo < σ�F� such that �µo	V

∗
o = σ2

o�o� still satisfies the con-
straint (2). In addition, we have det�V∗

o� = σ
2p
o < σ2p�F� = det�V�F��, a

contradiction. ✷

Proof of Theorem 2.2. Part (a) can be justified by showing that if �µ	 ��
approaches the boundary of ��p� then for any δ > 0, (6) is eventually greater
than infB�1−PF�B��ρ�∞�−δ, where the infimum is taken over all hyperplanes
B ⊂ �p. Let λ1��� ≥ · · · ≥ λp��� denote the eigenvalues of �. We first note
that if �1��� is bounded above, then (6) goes to ρ�∞� as �µ� → ∞.

Consider now the case when λ1��� → ∞. Since det��� = 1, this implies
λp��� → 0. Let r ≥ 2 be the smallest value for which �r��� → 0, and let Qr���
denote the orthogonal projection onto the space spanned by the eigenvectors
of � associated with the roots λr���	 
 
 
 	 λp���. We then have

�6� ≥ E
[
ρ
λ−1r ����X − µ�′Qr����X − µ�/σ2�F��]
(21)

If �Qr���µ� → ∞, then the right-hand side of (21) goes to ρ�∞�.
To complete the proof of part (a) we only need to consider the case for

which �Qr���µ� is bounded above. By compactness, we can assume without
loss of generality that Qr��� → Qr, an orthogonal projection matrix of rank
�p−r+1�, and that Qr���µ→ Qrµo. For this case the right-hand side of (21)
goes to ρ�∞��1−PF�Br��, where Br = 
x ∈ �p�Qr�x − µo� = 0�. Since Br is
contained in some hyperplane of Rp, part (a) follows.
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To prove part (b), let B = 
x ∈ �p�Q�x − µ� = 0� denote the hyperplane
with largest probability mass PF�B�, with Q being an orthogonal projection
matrix of rank p− 1. Consider a sequence � = λ1�I−Q� + λpQ with λ1 →∞
and λp = λ

−1/�p−1�
1 → 0. For such � and µ, (6)→ ρ�∞��1−PF�B��. Hence (6)

cannot have a minimum in the interior of ��p�. ✷

Proof of Corollary 3.2. This proof follows closely the proof of Theorem 1
in Anderson (1955). The proof of Anderson’s theorem rests on two inequalities.
Set δ = �1+ α�/2. Note δµ+ �1− δ��−µ� = αµ. Thus

Ev + αµ = δ�Ev + µ� + �1− δ��Ev − µ��

hence

�Ev + αµ� ∩Hu = 
δ�Ev + µ� + �1− δ��Ev − µ�� ∩Hu

⊇ δ�Ev + µ� ∩Hu + �1− δ��Ev − µ� ∩Hu


Taking the volume of the first and last sets yields the first inequality of
Anderson’s proof. The second inequality (the Brunn–Minkowski theorem)
states that

�p
δ�Ev + µ� ∩Hu + �1− δ��Ev − µ� ∩Hµ�
≥ �p
�Ev + µ� ∩Hu�


Since �Ev + αµ� ∩Hu is not contained in a hyperplane, �Ev + αµ� ∩Hu has
nonzero volume [Bonneson and Fenchel (1987)]. Thus a strict inclusion of
the convex sets in the first inequality is enough to show the volumes differ
[Bonnesen and Fenchel (1987), page 42]. Using (12), that is enough to show
strict inequality in (11). ✷

Proof of Lemma 3.3. We verify the strict inequality (15). It suffices to
find u > 0 and v > 0 such that the conditions of Corollary 3.2 hold. Set
e = tµ ∈ ∂Ev and u = f�e+ αµ�, where v > 0 is chosen so that Hu contains
an open set whose closure contains e + αµ. For large enough v such an Hu

exists since f > 0 and f has convex contours. Then e+ αµ ∈ �Ev + αµ� ∩Hu,
and the latter set has nonzero volume.

We claim e + αµ �∈ δ�Ev + µ� ∩Hu + �1 − δ��Ev − µ� ∩Hu. Otherwise we
can find e1	e2 ∈ Ev such that e1 + µ ∈Hu	e2 − µ ∈Hu and

e+ αµ = δ�e1 + µ� + �1− δ��e2 − µ�
= δe1 + �1− δ�e2 + αµ


However, e ∈ ∂Ev and Ev is an ellipse implies e = e1 = e2. Then e + µ =
�t + 1�µ ∈ Hu	 but this contradicts the assumption that f is strictly radially
decreasing �f��t+ 1�µ� < f��t+ α�µ� = u�. ✷
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Proof of Lemma 3.4. Recall there is a one-to-one correspondence between
lower traingular matrices Up with u11	 
 
 
 	 upp > 0 and positive-definite
p-dimensional matrices. We therefore assume hereafter that each uii > 0.
Write µ = �µ1	 
 
 
 	 µp�′. We first claim∫

ρ��UP�y − µ��2�f�y�dy ≥
∫
ρ��U�y − µp−1��2�f�y�dy	(22)

where

U =
(
Up−1 0p−1
0′p−1 upp

)

and µp−1 = �µ1	 
 
 
 	 µp−1	0�′.
To see this we first express Up as a partitioned matrix,

Up =
(
Up−1 0p−1
u1p

)
	

where 0p−1 is the p− 1-vector of zeroes. We will make use of the identity

�Up�y − µ��′�Up�y − µ�� = sp−1 + �u′p�y − µ��2	
where sp−1 = �Up−1�y1 − µ1	 
 
 
 	 yp−1 − µp−1�′�2. Then∫
ρ��Up�y − µ��2�f�y�dy =

∫
y1	


	yp−1

∫
yp

ρ�sp−1 + u2
pp�cp−1 + yp − µp�2�

× f�y1	 
 
 
 	 yp−1	 yp�dyp dy1 · · ·dyp−1
≥

∫
y1	


	yp−1

∫
yp

ρ�sp−1 + u2
ppy

2
p�f�y�dy	

where cp−1 = �up1/upp��y1 − µ1� + · · · + �up	p−1/upp��yp−1 − µp−1�. We check
the last inequality. Since f�y1	 
 
 
 	 yp−1	 yp� is symmetric and unimodal in yp
for y1	 
 
 
 	 yp−1 fixed, we can apply Lemma 3.5 to the inner integral to verify
the last inequality and hence (22). Note if strict unimodality of f holds we
have a strict inequality in the two inner integrals for almost all y1	 
 
 
 	 yp−1
in �p−1 (the set of all �y1	 
 
 
 	 yp−1� satisfying cp−1 − µp = 0 is a hyperplane
of �p−1�. It follows that strict inequality holds in (22).

Thus it suffices to show∫
ρ��U�y − µp−1��2�f�y� dy ≥

∫
ρ�u2

11y
2
1 + · · · + u2

ppy
2
p�f�y� dy


Note for p = 2 we can apply (22). Assume p > 2 and the lemma holds for
dimension p− 1. Then∫

ρ��U�y− µp−1��2�f�y� dy =
∫
yp

∫
y1	


	yp−1

ρ�sp−1 + u2
ppy

2
p�f�y� dy


The proof is completed by induction on the inner integral. ✷
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Proof of Lemma 3.5. We take c ≥ 0 as the two cases are similar. Note
�c + y�2 ≤ y2 if and only if y ≤ −c/2 if and only if g�y� ≤ g�y + c�. Thus for
all y ∈ �, and since v is nondecreasing,[

v��c+ y�2� − v�y2�][g�y+ c� − g�y�] ≤ 0


Note for c > 0 the inequality is strict for each y if either v or g is strictly
monotone. Integrating,∫

v��c+ y�2�g�y+ c� dy+
∫
v�y2�g�y� dy

≤
∫
v��c+ y�2�g�y� dy+

∫
v�y2�g�y+ c� dy


The first two integrals equal
∫
v�y2�g�y� dy. On substituting −y′ = c + y in

the fourth integral, and using the symmetry of g about 0,∫
v�y2�g�y� dy ≤

∫
v��y+ c�2�g�y� dy	

verifying the claim. ✷

Proof of Lemma 4.1. Define φ�x� = f�exp�x��. From Marshall and Olkin
(1979) recall φ is Schur-concave iff −φ is Schur-convex. Since −f is Schur-
convex and increasing in each argument, and exp is convex, it follows from
page 63 of Marshall and Olkin that φ is Schur-concave. ✷

Before proceeding to the proof of M-concavity of f in (17), we recall a stan-
dard lemma from majorization theory [Marshall and Olkin (1979), page 58]
which is useful in verifying M-concavity of functions.

Lemma A.1. A function φ� �p
+ −→ � is M-concave provided φ�x� ≥ φ�y�

whenever x	y ∈ �
p
+	 x ≺M y and x	y differ in at most two components.

Recall the kth elementary symmetric functions Sκ�x� are defined as

S0�x� ≡ 1	

S1�x� ≡
p∑
i=1

xi	

S2�x� ≡
∑
i1<i2

xi1xi2	






Sp�x� ≡
∑

i1<···<ip
xi1 · · ·xip


In the next lemma we illustrate how one verifies a given function is M-concave.
The result also follows from Schur-convexity of Sκ [Marshall and Olkin (1979)]
and Lemma A.1.
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Lemma A.2. Sk�x� is M-convex on �
p
+. If k < p	Sk is strictly M-convex.

Proof. By Lemma A.1 it suffices to prove Sk�x� ≤ Sk�y� when x ≺M y and
x	y differ in only two components. Write x = �x1	 
 
 
 	 xp�′	 y = �y1	 
 
 
 	 yp�′.
From the definition of M-majorization we may take y1 > y2	 0 < a < b such
that ab = 1	 x1 = ay1 ≥ by2 = x2 and xi = yi for 3 ≤ i ≤ p. Write

Sk�y� =
∑

2<i3<···<ik
y1y2yi3 · · ·yik

+ ∑
2<i2<···<ik

y1yi2 · · ·yik

+ ∑
2<i2<···<ik

y2yi2 · · ·yik

+ ∑
2<i1<···<ik

yi1 · · ·yik


Note for k = p we have Sk�x� = Sk�y�. For k < p since 0 < y2 ≤ by2
≤

ay1 ≤ y1,

Sk�x�−Sk�y� =
∑

2<i2<···<ik
�ay1+by2−�y1+y2��yi2 · · ·yik < 0
 ✷

Proof of (17). From the definition of M-majorization we have for x	y ∈
�
p
+,

�x1	 
 
 
 	 xp�′ ≺M �y1	 
 
 
 	 yp�′ ⇔ �x21	 
 
 
 x2p�′ ≺M �y2
1	 
 
 
 	 y

2
p�′


Note also that we can write

f�x� ∝ 1/�1+S1�x21/ν	 
 
 
 	 x2p/ν� + · · · +Sp�x21/ν	 
 
 
 	 x2p/ν���ν+1�/2

The result is then immediate from Lemma A.2. ✷

Proof of Theorem 4.1. By Lemma A.1 it suffices to prove the theorem for
dimension 2. Let θ = �θ1	 θ2�′	 ξ = �ξ1	 ξ2�′ and suppose �θ1	 θ2�′ ≺M �ξ1	 ξ2�′.
Then

0 < ξ2 < θ2 < 1 < θ1 < ξ1	

where we may assume θ1θ2 = 1 = ξ1ξ2.
Then the substitutions y1 → θ1y1 and y2 → ξ2y2 yield

I�θ� − I�ξ� =
∫ [
h�θ1y1	 θ2y2� − h�ξ1y1	 ξ2y2�

]
f�y� dy

= 4/�θ1ξ2�
∫
y1	 y2≥0

�h�y1	 �θ2/ξ2�y2� − h��ξ1/θ1�y1	 y2��

× f�y1/θ1	 y2/ξ2� dy
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= 4/�θ1ξ2�
∫
y1≥y2

�h�y1	 �θ2/ξ2�y2� − h��ξ1/θ1�y1	 y2��

× �f�y1/θ1	 y2/ξ2� − f�y1/ξ2	 y2/θ1�� dy	

where the last integral was obtained by the change of variables y1 → y2 and
y2 → y1 on the set 
y ∈ �2� y2 ≥ y1�, and using the facts that f and h are
permutation-invariant and θ2/ξ2 = ξ1/θ1.

Since y1 ≥ y2 it follows that

�y1	 �ξ1/θ1�y2�′ ≺M ��ξ1/θ1�y1	 y2�′

and

�y1/θ1	 y2/ξ2�′ ≺M �y1/ξ2	 y2/θ1�′

Since h is M-convex and f is M-concave, I�θ� − I�ξ� ≤ 0 and so I is
M-convex. ✷
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