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ON THE UNIQUENESS OF SOLUTIONS TO MARTINGALE

PROBLEMS FOR DIFFUSION OPERATORS WITH

PROGRESSIVELY MEASURABLE RANDOM COEFFICIENTS

MASAAKI TSUCHIYA*

Dedicated to the memory of Professor Hiroshi Kunita

Abstract. The uniqueness of solutions to martingale problems for diffu-
sion operators with progressively measurable coefficients is studied and a
uniqueness result is obtained: the uniqueness holds under the conditions of
the boundedness and uniform ellipticity for the coefficients of the diffusion

operators and under an additional condition for the diffusion coefficients.
Construction of appropriate approximation consisting of simple functions to
the diffusion coefficients plays a key role; the additional condition is used
to ensure the simpleness and then the uniqueness follows from the result in

the case of diffusion operators with simple type coefficients, which is due to
Stroock and Varadhan.

1. Introduction

In investigations of weak solutions to stochastic differential equations based
on Itô’s stochastic integrals, the approach solving the corresponding martingale
problems provides a powerful one, which is initiated by Stroock and Varadhan [10]
(see also [11]); especially, their result on the uniqueness of solutions is notable.
Although they have considered the existence of solutions to martingale problems
for diffusion operators with progressively measurable coefficients defined on the
space of continuous sample paths with values in a Euclidean space, they mainly
investigate the uniqueness of solutions in the case of ordinary diffusion operators;
that is, their coefficients are Borel measurable functions defined on a time-space.

Let Ω be the space C([0,∞) → Rd) of Rd–valued continuous sample paths
ω, (Mt)t≥0 the filtration generated by the coordinate process {x(t)}t≥0 (i.e.,
x(t, ω) := ω(t)) defined on Ω and Sd+ the space of symmetric nonnegative definite

d×d–matrices. Take an Sd+–valued and Rd–valued progressively measurable func-

tions a(t, ω) ≡ (aij(t, ω))1≤i,j≤d and b(t, ω) ≡ (bi(t, ω))1≤i≤d on [0,∞)×Ω, respec-
tively, where the progressive measurability is defined with respect to the filtration
(Mt)t≥0. For the functions a and b, define the diffusion operator Lt ≡ Lt(a, b) :=
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1
2

∑d
i,j=1 a

ij(t, ω) ∂2

∂xi∂xj
+
∑d

i=1 b
i(t, ω) ∂

∂xi
. This paper concerns the uniqueness of

solutions to the martingale problem for the diffusion operator Lt(a, b) (say briefly,
the Lt(a, b)–martingale problem). It is equivalent to discuss the uniqueness of the
probability laws of weak solutions to the corresponding d–dimensional stochas-
tic differential equation (see [4], Chap. II, §7; [9], p.160, Theorem (20.1); [11],
Theorem 4.5.1, Theorem 4.5.2) .

The uniqueness result, Theorem 3.6, is obtained under the conditions of the
boundedness of the coefficients a, b and of the uniform ellipticity of the diffusion
operator Lt(a, b) (that is, the uniformly positive definiteness of the diffusion matrix
a), which is given as Condition 2.1, and under an additional condition for the
diffusion matrix, which is given as Assumption 3.2.

Our approach to obtain the uniqueness result is to verify that any solution
to the Lt(a, 0)–martingale problem can be approximated by solutions to martin-
gale problems for diffusion operators with progressively measurable simple type
coefficients (the simpleness is defined in the beginning of §3); the verification is
composed of three steps. The first step is based on the argument used in the proof
for Theorem 7.1.4 of [11]: it gives an approximation of a given solution to the
Lt(a, 0)–martingale problem by the laws of the Itô processes with covariances aε,n
(ε > 0, n ∈ N) which are provided by mollifier approximations for a and then by
their discretization. The second step is to make some modification ãε,n of aε,n
in such a way that the laws are solutions to the Lt(ãε,n, 0)–martingale problems.
The third step is to ensure that the modifications ãε,n are simple functions under
the additional condition. Then, by applying the uniqueness result in the case of
diffusion operators with simple type coefficients (see Lemma 6.1.5 of [11]; the nec-
essary part used in this paper is referred as Lemma 4.1 in Appendix), we have the
uniqueness result.

Finally, we note that, in the first and third steps mentioned above, the theory
of stochastic integrals with respect to martingales due to Kunita and Watanabe
[6] and others plays a key role.

2. Diffusion Operator With Progressively Measurable Coefficients
and the Associated Martingale Problem

Following Stroock and Varadhan [11], we provide the framework of martingale
problems for diffusion operators.

We begin with introducing basic notations. Let Ω := C([0,∞) → Rd) the space
of Rd–valued continuous sample paths ω defined on R+ = [0,∞); Ω equipped with
the locally uniform convergence topology is a Polish space. The process {x(t)}t≥0

defined by x(t, ω) := ω(t) for ω ∈ Ω is called the coordinate or canonical process.
Hence, a generic element ω of Ω is denoted by x(·) sometimes. For a given ω ∈ Ω
and s ≥ 0, define the stopped path ωs of ω at s by ωs(·) := ω(· ∧ s), that is,
x(·, ωs) = x(· ∧ s, ω). Consider σ-fields generated by the coordinate process: let
M := σ{x(t); 0 ≤ t < ∞} and Ms

t := σ{x(r); s ≤ r ≤ t} (0 ≤ s ≤ t ≤ ∞); M0
t

and Ms
∞ are simply written as Mt and Ms, respectively. Note that M = B(Ω)

(the Borel field of Ω) (see [1]). Finally, P(Ω) stands for the space of probability
measures on (Ω,M) with the Proholov metric. We also use the space of continuous
sample paths on a compact time interval. For T > 0, let ΩT := C([0, T ]) → Rd)
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the space of Rd–valued continuous sample paths defined on [0, T ]. Then, M(T )

the σ–field on ΩT and P(ΩT ) the space of probability measures on (ΩT ,M(T ))
with the Prohorov metric are defined similarly (see [1] for details).

Let a(t, ω) ≡ (aij(t, ω))1≤i,j≤d and b(t, ω) ≡ (bi(t, ω))1≤i≤d be an Sd+–valued
and Rd–valued progressively measurable functions on [0,∞) × Ω with respect to
the filtration (Mt)t≥0, respectively. Then, Lt = Lt(a, b) denotes the diffusion
operator with coefficients a, b, as before:

Lt(a, b) =
1

2

d∑
i,j=1

aij(t, ω)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, ω)
∂

∂xi
.

For the diffusion operator Lt = Lt(a, b), we consider the following condition on
the coefficients:

Condition 2.1. (i) (Boundedness) The coefficients a(t, ω) and b(t, ω) are bounded,
that is,

sup
(t, ω)∈[0,∞)×Ω

∥a(t, ω)∥ < ∞, sup
(t, ω)∈[0,∞)×Ω

|b(t, ω)| < ∞.

(ii) (Uniform ellipticity) There are constants λ and Λ such that 0 < λ ≤ Λ < ∞
and

λ|θ|2 ≤ a(t, ω)θ • θ ≤ Λ|θ|2 for all (t, ω) ∈ [0,∞)× Ω, θ ∈ Rd,

here the symbol “ • ” indicates the inner product in Rd.
Although martingale problems are treated on a general measurable space by

Stroock and Varadhan, we restrict the space to the path space (Ω,M; (Mt)t≥0)
with filtration.

To state the martingale problem for the diffusion operator Lt(a, b), we recall the
following equivalence (a part of Theorem 4.2.1 of [11]): In the following, we assume
that Condition 2.1 (i) holds. Let {ξ(t)}t≥s (s ≥ 0) be an Rd–valued progressively
measurable right continuous process on (Ω,M; (Mt)t≥s) and suppose that, for
a probability measure P on (Ω, M), the process is P–almost surely continuous.
Then for the probability measure P , the following conditions are equivalent:

(i) For any θ ∈ Rd,

{
exp

(
iθ • (ξ(t)− ξ(s))−

∫ t

s

iθ • b(r)dr +

∫ t

s

θ • a(r)θdr

)}
t≥s

is a martingale on (Ω, M, P ; (Mt)t≥s).

(ii) For any f ∈ C2
b (Rd),

{
f(ξ(t))− f(ξ(s))−

∫ t

s

Lrf(ξ(r))dr

}
t≥s

is a martingale

on (Ω, M, P ; (Mt)t≥s).

(iii) For any f ∈ C1,2
b (R+ × Rd),

{
f(t, ξ(t))− f(s, ξ(s))−

∫ t

s

L̂rf(r, ξ(r))dr

}
t≥s

is a martingale on (Ω, M, P ; (Mt)t≥s). Here, L̂r := ∂
∂r + Lr.

If one of the equivalent conditions holds, {ξ(t)}t≥s is called an Itô process with
covariance a and drift b, and it is denoted by

ξ(·) ∼ Is(a, b) on (Ω, M, P ; (Mt)t≥s).
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Definition 2.2. (Lt(a, b)–martingale problem) A probability measure P on
(Ω, M) is called a solution to the martingale problem for the diffusion opera-
tor Lt(a, b) (say briefly, the Lt(a, b)–martingale problem) starting from (s, x) ∈
[0,∞)× Rd, if P fulfills the following conditions

(i) for given s and x,

P (x(r) = x for all r ∈ [0, s]) = 1;

(ii) x(·) ∼ Is(a, b) on (Ω, M, P ; (Mt)t≥s).

3. Uniqueness Result for the Lt(a, b)–martingale Problem

To obtain the uniqueness result, we need to construct an appropriate ap-
proximation for an arbitrarily given solution to the Lt(a, 0)–martingale prob-
lem. The first step of such approximation is to make an approximation of a
by simple type progressive measurable functions. Here, a progressively measur-
able function ξ : [0,∞) × Ω → RM is said to be simple, if for a subdivision
∆ : 0 = t0 < t1 < · · · ↗ ∞ of [0,∞) and bounded RM–valued Mtj–measurable
functions ξj (j = 0, 1, . . . ) it is given as the form

ξ(t, ω) =
∞∑
j=0

ξj(ω)1[tj ,tj+1)(t) (t ≥ 0, ω ∈ Ω).

In the following, we need to consider a sequence of subdivisions {∆n}∞n=1 such that
∆n+1 is a refinement of ∆n and the modulus of ∆n goes to zero as n → ∞: for the
notational simplicity, we restrict it to the case of ∆n = {k2−n}∞k=0 (n = 1, 2, . . . ).

In what follows, a = a(t, ω) is an arbitrarily fixed Sd+–valued progressively
measurable function defined on [0,∞) × Ω satisfying Condition 2.1 (i), (ii). We
will provide a family {ãε,n}ε>0,n∈N of simple functions such that any solution to the
Lt(a, 0)–martingale problem can be approximated by solutions to the Lt(ãε,n, 0)–
martingale problems as n → ∞ and then ε ↘ 0; which plays a key role for the
uniqueness result. Actually, the simpleness will be verified under Assumption 3.2
below.

We first consider approximation to an arbitrarily given solution to the Lt(a, 0)–
martingale problem; to this purpose, we recall the argument used in the proof
of Theorem 7.1.4 of [11]. Take a function ρ ∈ C∞

c (R1) with supp(ρ) ⊂ [0, 1],
ρ ≥ 0 and

∫
R1 ρ(t)dt = 1. For the function, define a mollifier {ρε}ε>0 by ρε(t) :=

1/ερ(t/ε) (t ∈ R1) for each ε > 0. For each ω ∈ Ω, consider the mollifier approxi-
mation of a(·, ω) extended as a(t, ω) = a(0, ω) for t < 0:

aε(t, ω) :=

∫ ∞

−∞
ρε(t− r)a(r, ω)dr (t ≥ 0, ω ∈ Ω).

Then, aε : [0,∞) × Ω → Sd+ is progressively measurable. In addition, for each
integer n ≥ 1, let aε, n(t, ω) := aε([2

nt]/2n, ω) (t ≥ 0, ω ∈ Ω). Accordingly, for
each ε > 0 and n ≥ 1, aε, n : [0,∞) × Ω → Sd+ is progressively measurable and
simple. Hence aε, n(t) is M[2nt]/2n–measurable for t ≥ 0 and

λ|θ|2 ≤ aε, n(t, ω)θ • θ ≤ Λ|θ|2 for all (t, ω) ∈ [0,∞)× Ω, θ ∈ Rd.
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In the following, we treat an arbitrarily fixed solution P to the Lt(a, 0)–martingale
problem starting from (s, x); then for each T > 0

EP

[∫ T

0

∥aε, n(t)− a(t)∥2dt

]
→ 0 (3.1)

as n → ∞ and then ε ↘ 0. Let

β(t) :=

∫ t

s

a−1/2(r)dx(r) (t ≥ s). (3.2)

Then {β(t)}t≥s is a d–dimensional Brownian motion on (Ω,M, P ; (Mt)t≥s) and
further

x(t) = x(s) +

∫ t∨s

s

a1/2(r)dβ(r) (t ≥ 0), P -a.s. (3.3)

Here a−1/2 denotes the inverse of a1/2 and we refer to §5.2 of [11] for the mea-
surability of a1/2 and to §4.3 of [11] for the martingale property, the existence of
moment, the quadratic variation and stochastic integrals with respect to {x(t)}t≥0.
Next define

ξε, n(t) := x(s) +

∫ t∨s

s

a1/2ε, n(r)dβ(r) (t ≥ 0); (3.4)

then {ξε, n(t)}t≥0 is a progressively measurable continuous process on (Ω,M, P ;
(Mt)t≥0) and ξε, n(·) ∼ Is(aε, n, 0) on (Ω, M, P ; (Mt)t≥s). Using Doob’s inequal-
ity and (3.1), we have, for every T > 0,

EP

[
sup

0≤t≤T
|ξε, n(t)− x(t)|2

]
→ 0 (n → ∞ and then ε ↘ 0); (3.5)

so that the probability law Pε, n on (Ω,M) induced by the process {ξε, n(t)}t≥0

converges to P in P(Ω) as n → ∞ and then ε ↘ 0. Because, for each T > 0, letting
rT : Ω → ΩT the restriction map (i.e., rTω := ω|[0,T ]), we have Pε, nr

−1
T → Pr−1

T

in P(ΩT ) as n → ∞ then ε ↘ 0 by (3.5). Therefore, it holds Pε, n → P in P(Ω)
as n → ∞ and then ε ↘ 0 (use the continuous sample space version of Theorem
16.7 of [1]).

In general, Pε, n is not a solution to the Lt(aε,n, 0)–martingale problem. Hence
we modify the family {aε,n}ε,n to obtain the required family {ãε,n}ε,n of pro-
gressively measurable functions as follows: For each ε > 0 and n ∈ N, let

M̃t
u ≡ M̃t

u(ξε,n) := σ(ξε,n(r); t ≤ r ≤ u) (0 ≤ t ≤ u) and set M̃t = M̃0
t .

Then, M̃t
u ⊂ Mt

u. Consider the conditional expectation EP [aε,n(r, ·) | M̃r]. De-

fine the map Ψε,n : Ω −→ Ω as Ψε,n(ω) := ξε,n(·, ω) ∈ Ω. Noting M̃r = Ψ−1
ε,n(Mr)

for each r ≥ 0 and applying Theorem 4.2.8 in [3], we see that there is an Mr–

measurable Sd+–valued function ãε,n(r, ·) on (Ω,M) such that EP [aε,n(r, ·) | M̃r] =
ãε,n(r,Ψε,n(·)) ≡ ãε,n(r, ξε,n(·)) P–a.s. Then, by Theorem 97 and Remark 98 (a)
in Chap. IV of [2] (see also [9], p. 122), ãε,n is progressively measurable. Moreover,
we see the following.
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Lemma 3.1. Let a = a(t, ω) be the Sd+–valued progressively measurable function
satisfying Condition 2.1. Then, for each ε > 0 and n ∈ N, the probability measure
Pε, n is a solution to the Lt(ãε,n, 0)–martingale problem starting from (s, x).

Proof. For each f ∈ C2
c (Rd), set

Mε,n;f (t) := f(ξε,n(t))− f(ξε,n(s))−
∫ t

s

Lrf(ξε,n(r))dr,

M̃ε,n;f (t) := f(ξε,n(t))− f(ξε,n(s))−
∫ t

s

L̃ε,n;rf(ξε,n(r))dr;

where Lr = Lr(aε,n, 0) and L̃ε,n;r := 1
2

∑d
i,j=1 ã

ij
ε,n(r, ξε,n(·)) ∂2

∂xi∂xj
. Noting that

ξε, n(·) ∼ Is(aε, n, 0) on (Ω, M, P ; (Mt)t≥s) and M̃t ⊂ Mt, we have for s ≤ t1 <

t2 and a bounded M̃t1–measurable function G

0 = EP [(Mε,n;f (t2)−Mε,n;f (t1))G]

= EP [(f(ξε,n(t2))− f(ξε,n(t1)))G]−
∫ t2

t1

EP [Lrf(ξε,n(r))G]dr

= EP [(f(ξε,n(t2))− f(ξε,n(t1)))G]−
∫ t2

t1

EP [EP [Lrf(ξε,n(r))G | M̃r]]dr

= EP [(f(ξε,n(t2))− f(ξε,n(t1)))G]−
∫ t2

t1

EP [L̃ε,n;rf(ξε,n(r))G]dr

= EP [(M̃ε,n;f (t2)− M̃ε,n;f (t1))G];

hence {M̃ε,n;f (t)}t≥s is a martingale on (Ω, M, P ; (M̃t)t≥s).
Thus x(·) ∼ Is(ãε, n, 0) on (Ω, M, Pε,n; (Mt)t≥s). Therefore, combining with the
fact P (ξε,n(r) = x(s), 0 ≤ r ≤ s) = 1, we see that Pε,n is a solution to the
Lt(ãε,n, 0)–martingale problem starting from (s, x). Consequently, the lemma is
proved. �

The function ãε,n is not simple in general; however we need the simpleness
to apply Lemma 4.1 in Appendix; the lemma is used to show the uniqueness of
solutions to the Lt(ãε,n, 0)–martingale problem. Thus, we impose the following
assumption on the diffusion matrix a to ensure the simpleness.

Assumption 3.2. There exists an ε0 > 0 such that for all ε ∈ (0, ε0) there is an
n = n(ε) ∈ N satisfying the condition: if for ω, ω′ ∈ Ω the Lebesgue measure of
the set {t ≥ 0 : a(t, ω) ̸= a(t, ω′)} is positive, it holds aε,n(·, ω) ̸= aε,n(·, ω′), that
is, aε(k2

−n, ω) ̸= aε(k2
−n, ω′) for some k ∈ Z+.

Since ∆n+1 = {k2−(n+1)}∞k=0 is a refinement of ∆n = {k2−n}∞k=0, for each
ε < ε0 and n ≥ n(ε), it holds aε,n(·, ω) ̸= aε,n(·, ω′) for ω, ω′ ∈ Ω in Assumption
3.2.

When the set {t ≥ 0 : a(t, ω) ̸= a(t, ω′)} for ω, ω′ ∈ Ω has a positive Lebesgue
measure, ε0 and n(ε) mentioned above always exist, if they are allowed to depend
on such ω and ω′. In Assumption 3.2, we suppose that ε0 and n(ε) can be taken
to be independent of ω and ω′.
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The following is an example of a satisfying Condition 2.1 and Assumption
3.2, here Sd++ denotes the set of positive definite matrices of Sd+ and ∥ω∥t :=
max0≤r≤t |ω(r)|.

Example 3.3. Given constant matrices A, B ∈ Sd++ with A ̸= B and a constant
K > 0, let

a(t, ω) = A1Ξ(t, ω) +B 1Ξc(t, ω),

where Ξ := {(t, ω) : ∥ω∥t ≤ K}.

Lemma 3.4. Suppose that Condition 2.1 and Assumption 3.2 are fulfilled. Then
there exits a subset Ω0 ∈ M with P (Ω0) = 1 such that for ε < ε0 and n ≥ n(ε), the
restriction of Ψε,n into Ω0 is a one-to-one measurable map. Hence Ψε,n : Ω0 −→
Ψε,n(Ω0) is a Borel isomorphism.

Proof. The measurability of the map Ψε,n is easily seen. In the following, we will
show the one-to-one property. For the sake of simplicity, we consider the case of

s = 0. The process defined by the Riemann sum with coefficients a
1/2
η,m{ ∞∑

k=0

a1/2η,m(k2−m)(β((k + 1)2−m ∧ t)− β(k2−m ∧ t))

}
t≥0

converges to the process defined by the stochastic integral of the right hand side
of (3.3) in probability uniformly on each compact interval as m → ∞ and then
η → 0 Furthermore, the process{ ∞∑

k=0

(β((k + 1)2−m ∧ t)− β(k2−m ∧ t))(β((k + 1)2−m ∧ t)− β(k2−m ∧ t))∗

}
t≥0

also converges to the quadratic variation process {⟨β⟩(t)}t≥0 in probability uni-
formly on each compact interval as m → ∞, where the superscript “ ∗ ” indicates
the transposed operation for the matrices (see [11], §4.3; [5], Chap. I, §4; [8],
Chap. IV, §1). That is, they converge to the limits in probability with respect
to the metrics of C([0,∞) → Rd) and C([0,∞) → Sd+), respectively. Therefore,
they converge to the limits almost surely with respect to the metrics, respec-
tively, via some subsequences {ηj}∞j=1 with ηj ↘ 0 and {mj}∞j=1(⊂ {m}∞m=1)
with mj ↗ ∞ as j → ∞; that is, there exists a subset Ω0 ∈ M with full
measure such that for each element of Ω0 they converge to the limits with re-
spect to the metrics via the subsequences, respectively. We note that if ω ∈ Ω0,
then ωt ∈ Ω0 and ξε,n(· , ωt) = ξε,n(· ∧ t, ω) for t ≥ 0. For ω, ω′ ∈ Ω0 with
L1({t ≥ 0 : a(t, ω) ̸= a(t, , ω′)}) = 0, we see that β(· , ω) = β(· , ω′) (that is,
ξε,n(· , ω) = ξε,n(· , ω′)) implies ω = ω′ by (3.3) and (3.4), where L1 indicates the
Lebesgue measure on R1. For ω, ω′ ∈ Ω0 with L1({t ≥ 0 : a(t, ω) ̸= a(t, , ω′)}) > 0
(hence ω ̸= ω′), it follows from Assumption 3.2 that ξε,n(· , ω) ̸= ξε,n(· , ω′). In-
deed, since ⟨ξε,n⟩(dt, ω) = aε,n(t, ω)dt and ⟨ξε,n⟩(dt, ω′) = aε,n(t, ω

′)dt, it holds
⟨ξε,n⟩(dt, ω) ̸= ⟨ξε,n⟩(dt, ω′); hence ξε,n(· , ω) ̸= ξε,n(· , ω′). Consequently, the
restriction of Ψε,n into Ω0 is a one-to-one measurable map. Therefore, noting
M = B(Ω), the last assertion of the lemma follows immediately from the Kura-
towski theorem (see Therem 3.9, Corollary 3.3 in [7]). �
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Remark 3.5. Under Condition 2.1 and Assumption 3.2, for ε < ε0 and n ≥ n(ε),
ãε, n is simple and further the family {ãε, n} consisting of such simple functions
can be taken to be the same one for mutually absolutely continuous solutions to
the Lt(a, 0)–martingale problem. Because, in this case, ãε, n(t, ·) = aε, n(t,Ψ

−1
ε,n(·))

almost surely and further the Brownian motion {β(t)} and the process {ξε,n(t)}
are defined as the same ones for such solutions.

We have the following uniqueness result.

Theorem 3.6. Suppose that Condition 2.1 and Assumption 3.2 are fulfilled.
Then, the uniqueness of solutions to the Lt(a, b)–martingale problem holds; that is,
for any (s, x) ∈ [0,∞)×Rd, there is at most one solution to the Lt(a, b)–martingale
problem starting from (s, x).

Proof. Let C(s, x) be the set of solutions to the Lt(a, b)–martingale problem start-
ing from (s, x). In the following, we suppose C(s, x) ̸= ∅. Since C(s, x) is a convex
set, to show the uniqueness, it is enough to verify the equality P = Q for mutually
equivalent P, Q ∈ C(s, x). By the Cameron-Martin-Girsanov formula (see Lemma
6.4.1 in [11]), it is enough to examine the uniqueness in the case of b = 0, that
is, the Lt(a, 0)–martingale problem. We apply Lemma 3.1 to mutually equivalent
solutions P and Q by noting Remark 3.5. Then for the approximating family
{ãε, n}, take approximating families {Pε, n} of P and {Qε, n} of Q, respectively.
Since, for each ε < ε0 and n ≥ n(ε), Pε, n and Qε, n are solutions to the Lt(ãε, n, 0)–
martingale problem starting from (s, x), Pε, n = Qε, n by Lemma 4.1 in Appendix.
Because of Pε, n → P and Qε, n → Q in P(Ω) as n → ∞ and then ε ↘ 0, we have
P = Q; that is, the theorem is proved. �

4. Appendix

In Appendix, we recall some results of [11] connected with the result of this
paper.

We first recall Lemma 6.1.1 of [11]. The lemma is stated as follows: Let P
be a probability measure on (Ω,Ms) and suppose that P (x(s) = η(s)) = 1 for
some η ∈ Ω. Then there exists a unique probability measure on (Ω,M), which is
denoted by δη ⊗s P , satisfying the following:

δη ⊗s P (A ∩B) = δη(A)P (B) for A ∈ Ms, B ∈ Ms,

that is,

δη ⊗s P = δη on Ms,

δη ⊗s P = P on Ms.

We further need a fine property for conditional probabilities with respect to sub
σ–fields related to the filtration (Mt)t≥0; hence, following [11], we recall the notion
of a regular conditional probability distribution. Let P be a probability measure
on (Ω,M) and τ a stopping time relative to the filtration (Mt)t≥0. Then, a
family {Qω}ω∈Ω of probability measures on (Ω,M) is called a regular conditional
probability distribution (abbreviated as a r.c.p.d.) of P given Mτ , if it fulfills the
following conditions:

(i) the function ω −→ Qω(A) is Mτ–measurable for each A ∈ M;
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(ii) Qω(τ(·) = τ(ω), x(s, ·) = x(s, ω), 0 ≤ s ≤ τ(ω)) = 1, P–a.e. ω ∈ Ω;
(iii) for A ∈ Mτ and B ∈ M,

P (A ∩B) =

∫
A

Qω(B)P (dω).

The family {Qω}ω∈Ω gives a disintegration of the probability measure P . A con-
verse result is obtained by Theorem 6.1.2 of [11] as follows: For a given probability
measure P on (Ω,M), finite stopping time τ relative to the filtration (Mt)t≥0

and family {Qω}ω∈Ω of probability measures on (Ω,M) with the measurability
condition as in (i) above and the condition Qω(x(τ(ω), ·) = x(τ(ω), ω)) = 1,
P–a.e. ω ∈ Ω instead of (ii) above, there exists a unique probability measure R on
(Ω,M) such that R = P on (Ω,Mτ ) and {δω⊗τ(ω)Qω}ω∈Ω is a r.c.p.d. of R given
Mτ . Then the probability measure R is denoted by P⊗τ(·)Q·. Moreover, the theo-
rem provides a characterization in terms of P , τ and {Qω} for which a progressively
measurable right continuous process {θ(t)}t≥s on (Ω,M, P ⊗τ(·) Q·; (Mt)t≥s) is a
martingale. The theorem plays a key role in the proof of Lemma 4.1 below.

Although the next result is a part of Lemma 6.1.5 of [11], we state it in an
adapted form to this paper and recall the proof with adding some supplement on
measurability for using it in the proof of the main theorem.

Lemma 4.1. Assume that the coefficients of the diffusion operator Lt(a, b) are
simple: that is, for a subdivision ∆ : 0 = t0 < t1 < · · · ↗ ∞, it holds that a(t) =
a(tj), b(t) = b(tj) if tj ≤ t < tj+1 (j = 0, 1, . . . ). Then, for each (s, x) ∈ [0,∞)×
Rd, there is at most one solution to the Lt(a, b)–martingale problem starting from
(s, x).

Proof. For the sake of simplicity, we consider the case of s = 0. For an arbi-
trary given solution P to the Lt(a, b)–martingale problem starting from (0, x) and
nonnegative integer k, we will show that for a r.c.p.d. {Pω}ω∈Ω of P given Mtk

Pω = δω ⊗tk W(ak(∗, ω), bk(∗, ω))
tk, x(tk, ω) on Mtk+1

, P–a.e. ω ∈ Ω, (4.1)

where, for an Sd+–valued and Rd–valued bounded measurable functions α and β on

R+, W(α, β)
s,x ≡ W(α(∗), β(∗))

s,x denotes the unique solution to the Lt(α, β)–martingale
problem starting from (s, x) and ak(t, ω) := a(t, ωtk), bk(t, ω) := b(t, ωtk); from
the equality (4.1), the uniqueness of solutions follows easily.

To show the equality (4.1), let us consider

Q := P ⊗tk+1
W(ak(∗, ·), bk(∗, ·))

tk+1, x(tk+1, ·) .

Here, we applied Theorem 6.1.2 of [11] to defining Q; so that we have to verify the

Mtk+1
–measurability of W(ak(∗, ω), bk(∗, ω))

tk+1, x(tk+1, ω) with respect to ω, which is done later.

Letting L
(k)
t := Lt(ak, bk) and

θ(k)(t) := f(x(t))−
∫ t

0

L(k)
r f(x(r))dr for f ∈ C2

b (Rd),

by definition, we see that {θ(k)(t)− θ(k)(t ∧ tk+1)}t≥0 is a martingale on

(Ω,M,W(ak(∗, ω), bk(∗, ω))
tk+1, x(tk+1, ω) ; (Mt)t≥0) for each ω ∈ Ω. On the other hand, since
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Lt ≡ Lt(a, b) = L
(k)
t for 0 ≤ t < tk+1, {θ(k)(t ∧ tk+1)}t≥0 is a martingale on

(Ω,M, P ; (Mt)t≥0). Therefore, by Theorem 6.1.2 of [11], {θ(k)(t)}t≥0 is a mar-

tingale on (Ω,M, Q; (Mt)t≥0), that is, x(·) ∼ I0(ak, bk) on (Ω,M, Q; (Mt)t≥0).
Denote by {Qω}ω∈Ω a r.c.p.d. of Q given Mtk . Then, by Theorem 6.1.3 of
[11], there is a Q–null set N ∈ Mtk such that x(·) ∼ Itk(ak(∗, ω), bk(∗, ω))
on (Ω,M, Qω; (Mt)t≥tk) for all ω /∈ N . Hence, from the uniqueness of solutions
to the Lt(ak(∗, ω), bk(∗, ω))–martingale problem, it follows that (if necessary, N
is replaced by another null set)

Qω = δω ⊗tk W(ak(∗, ω), bk(∗, ω))
tk, x(tk, ω) for every ω /∈ N.

Since P = Q on Mtk+1
, we have

Pω = Qω = δω ⊗tk W(ak(∗, ω), bk(∗, ω))
tk, x(tk, ω) on Mtk+1

for every ω /∈ N ;

hence we have the equality (4.1).

Finally, we verify the Mtk+1
–measurability of W(ak(∗, ω), bk(∗, ω))

tk+1, x(tk+1, ω) .

Let Ak(t, ω) :=
∫ t

0
ak(r, ω)dr. Then

Ak(t, ω) =
∞∑
j=0

ak(tj , ω)(t ∧ tj+1 − t ∧ tj).

For ξ = (ξ0, ξ1, . . . ) ∈ (Sd+)Z+ , set

A(t, ξ) :=
∞∑
j=0

ξj (t ∧ tj+1 − t ∧ tj).

Then, A(t, ξ) is a continuous function of (t, ξ) ∈ R+ × (Sd+)Z+ and Ak(t, ω) =
A(t,αk(ω)) with αk(ω) = (ak(t0, ω), ak(t1, ω), . . . ). We also consider Bk(t, ω) :=∫ t

0
bk(r, ω)dr and define B(t,η) for (t,η) ∈ R+× (Rd)Z+ in the same way as above.

Then B(t,η) is a continuous function of (t,η) ∈ R+ × (Rd)Z+ and Bk(t, ω) =
B(t,βk(ω)) with βk(ω) = (bk(t0, ω), bk(t1, ω), . . . ). For each ξ ∈ (Sd+)Z+ and

η ∈ (Rd)Z+ , let

α(t, ξ) :=
∞∑
j=0

ξj 1[tj ,tj+1)(t),

β(t,η) :=
∞∑
j=0

ηj 1[tj ,tj+1)(t).

By the continuity of A(t, ξ) and B(t,η) and by the uniqueness of solutions to

the Lt(α(∗, ξ), β(∗,η))–martingale problem, we see that W(α(∗, ξ), β(∗,η))
s,x is par-

tially continuous in (s, x) and in (ξ,η), respectively, by using the usual arguments
based on the tightness and Skorohod’s representation theorem. Therefore, it is

measurable in (s, x; ξ,η). Since W(ak(∗, ω), bk(∗, ω))
tk+1, x(tk+1, ω) = W(α(∗,αk(ω)), β(∗,βk(ω)))

tk+1, x(tk+1, ω) , the

required measurability is verified. �
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3. Dudley, R. M.: Real Analysis and Probability, Cambridge studies in advanced mathematics

74, Cambridge University Press, 2002.
4. Ikeda, N. and Watanabe, S: Stochastic Differential Equations and Diffusion Processes, 2nd

ed., North-Holland Mathematical Library, North-Holland/ Kodansha, 1989.
5. Jacod, J. and Shiryayev, A. N.; Limit Theorems for Stochastic Processes, 2nd ed.,

Grundlehren der mathematischen Wissenschaften Vol. 288, Springer-Verlag, 1987, 2003.
6. Kunita, H. and Watanabe, S.: On square integrable martingales, Nagoya Math. J. 30 (1967),

209–245.
7. Pathasarathy, K. R.: Probability Measures on Metric Spaces, Probability and Mathematical

Statistics, A Series of Monographs and Textbooks, Academic Press, 1967.
8. Revuz, D. and Yor, M.; Continuous Martingales and Brownian Motion, 3rd ed., Grundlehren

der mathematischen Wissenschaften Vol. 293, Springer-Verlag, 1991, 1994, 1999.
9. Rogers, L. C. G. and Williams, D.: Diffusions, Markov Processes and Martingales, Vol. 2:
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