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INTRODUCTION

This problem and related others problems were previously studied in many papers ([1], [2],
3], [4], [6], [7], [9], [10]...). However, most of these papers are related to stationary case where
existence and uniqueness results are available. The evolution problem was studied in [1] and
[9] where, using different formulations, both authors proved existence of solutions. In [9], a
numerical approach of the evolution problem is also given. And, in [5] the authors studied the
corresponding semi-discretized problem to approximate the solution of the stationary problem.

Our goal in this paper is to prove comparison and uniqueness of a solution of the evolution
problem. The proof of this result is based on the inequality stated in theorem 3.1; and the
tools leading to this inequality consists in some techniques already developed by the first author
to prove a relative result in the stationary case [3]. However, the dependence of all variables
x,y and t, for all functions of the problem and the less regularity of the solution, makes the
problem more difficult and the analysis used to deduce comparison and then uniqueness from
the inequality of theorem 3.1 is quite different from the stationary case.

In section 1 we present the mathematical formulation of the problem. It corresponds to
the Elrod-Adams model for cavitation in lubrication ([1], [6], [7], [9]); the set of equations
defines a moving nonlinear free boundary problem. Then we recall the previous results about
existence of solutions.

In section 2, lemma 2.1 and corollary 2.2 are technical statements in order to handle rigorously
test functions involving the solution. The main results of this section are the properties stated
in theorem 2.3 and theorem 2.4.

Section 3 is devoted to prove a comparison principle for the solutions of the problem, when
we can compare their values on the upper boundary. The uniqueness is easily deduced from
this result.

1. THE MODEL PROBLEM

The study of the journal-bearing device gives place to a mathematical formulation in the
domain Q = (0,7) x Q where T"> 0 and Q = (0,27) x (0,1). The unknowns of the problem
are
the pressure p and the relative content 7 of the oil film. In this geometry, the supply of lubricant
is made throught the top boundary ¥, = (0,27) x {1} x (0,7) where we take p = p,. On the
boundary ¥y = (0,27) x {0} x (0,7) we suppose p = 0 (see Figure 1).

When the lubrication takes place by an incompressible fluid the pressure satisfies the moving

Reynolds equation:

oh . 4 dh
5 div(h’Vp) = —

and v satisfies the conservation law
olyh)  0(yh)

ox ot
On the free boundary ¥, we have p = 0 and the conservation condition of the flux
op
on

vy=1 of p>0

=0 0<y<1 if p=0.

h?*—= = (1 — y)hcos(n, 1)
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Figure 1: Domain @

being n the normal vector to the free boundary X, and (n, i) the angle between n

and ¢ (i is the unity vector in the x-direction).

The function h(x,y,t) that represents the gap, belongs to C*(Q), it is periodic in the x variable
and it satisfies:

h(z,y,0) = h(z,y, T) V(z,y) € (0,27) x (0,1)

The Reynolds equation and the Conservation laws lead to the following equation valid both in
the cavitation and the lubricated region:

A (M) 3 d(h)
Jlhy) . _ )y
5 div(h”Vp) Eral (Q)
and the problem can be formulated in the following weak formulation:
Problem P
Find (p,v) € L*(0,T; H'(2)) x L*(Q) such that
iy p>0 and y€H(p) ae in Q
i) = [ hetneog+ [ 1809000V
Q Q
— [ by tn@yng  veev
Q
iii) p=0 on X5 p=p, on X,

Where H is the Heaviside graph, and
V={¢e HI(Q)/f 2m — x — periodic, £€=0 on YyUX,, &(z,y,0)=¢&(x,y,T)=0}

Existence of solutions for this and others related problems is well known ([1],[7],[9]), and we
have:

Theorem 1.1. Problem P has at least one solution.
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Proof. This result is stated by using elliptic regularization techniques introduced in [11]. The
Heaviside graph is approximated by a smooth function F, depending on a parameter € and the
problem is approximated by a family of elliptic regularized problems. A priori estimates of the
solution p, of the regularized problems are obtained by means of a suitable election of F,. Then
the convergences p. — p (weakly) in L?(0,T; H'(R2)) and F.(p.) — 7 (weakly) in L®(Q) are
obtained. O

2. SOME PROPERTIES OF THE SOLUTIONS

In the sequel, we will need to handle some test functions involving the solution p, such as
¢ = min(g,f) being £ a smooth function. This test functions belong to L?(0,7; H*(S2)) and

0
the derivative a—g is not a function. To solve this difficulty, we give the following lemma for

general test functions involving p. A similar result related to the Dam problem is given in [8].

Lemma 2.1. Let (p,7y) be a solution of problem P, ¢ = pay, £ € D(Q x (0,T)) with £ > 0 and
F € W2®(R?), such hat:

loc

(i) F(p,€&) € L*(0,T, H'(2))

(i) Flon2) € H'(Q)

(i) F(0,€) € H'(Q)

(iv)F(z1,29) > 0 a.e z1 € R and z > 0

oF oF
(v) either 77 >0 ae in R?, or 9o <0 a.e in R?

Then, for all £ € D(Q x (0,T)), we have

Q

/Qh?’VpV(F(p,f))—/fW(F(paf))w_/Qh’Y(F(O’O)t

:/Qh?’VpV(F(¢,§))— hy(F(9,6)),

_ /Q Wy (F($,€)), — [ h(F(p,&) — F(0,€))
Particulary, if F(¢,&) € V, then

/h?’VpV(F(p,f))—/hV(F(paf))w_/h’Y(F(()’g))t

Q Q @Q

__ /Q b (F(p, ) — F(0,€)

Proof. Let ¢ be a smooth function such that ( =0 on ¥y U ¥,, 27-x periodic with
supp(¢) C R? x (1, T — 7p) for some 75. Then V7 € (—79,79) the function (x,¢) — ((z, ¢t —T)
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defined in © x (0,7) is a test function of problem P. Then V1 € (-7, 7p) we have:
0 = [ W0 0w 0= 1)~ [ 06wt — 1) [ e 06—
Q Q Q
— [ e Vaa )t = 1) - [ b0l 0Glet = 1)+ [ bla e 06 (ot - 1)
Q Q Q

_ LhB(x,t)vp(x,t)vg(x,t—T)—/Qh(x,t)y(x,t)gx(x,t—ﬂ+%[/Qh(x,t)y(x,t)g(x,t—7)

9, 9,
since a—g(x, t—1)= —8—<(x,t —7) and h(z,t) and y(z,t) does not depend of .
T

Therefore, V7 € (—7p, ) we have

0 = /Qh3(x,t+T)Vp(:U,t+T)V<(:C,t)—/Qh(x,t—FT)’y(l‘,t—FT)CI(ZL‘,t)

+ %[/h(x,t+7)fy(x,t+7')g(37at)]

It is easy to see that this identity holds for any ¢ € L?(0,T;V) such that ¢ =0 a.e in

Qx ((0,70) U (T —71,T)), ¢ =0o0n 3,U%, and 27-x periodic.

Now, if we consider £ € D(Qx (19, T —1)), € > 0, 27—z periodic, and set ( = F(p, &) —F(¢,§),
for all 7 € (—79, 79) we have:

/Q W (x,t +7)Vp(z, t + 1)V [F(p,§) — F(¢,)] — /Q h(x,t +7)y(x,t+7) [F(p, &) — F(¢,6)],

= _% hz,t+7)y(z,t +7)[F(p,§) — F(9,8)]
Q

and then

( /Qh3(x,t+7')Vp(x,t+7')VF(p,§)—/Qh,(x,t—i—T)fy(x,t—i—T) F(p.6)].
—/h(x,t)y(x,t) [F(O,g(x,t—T))]t—/Qh,?’(a:,t—|—T)Vp(x,t+T)VF(¢),§)
+Zh(a:,tw)v(:c,t+T)[F(¢,£)]m+/Q h(z, 8)y(z, ) [F (6, &(x,t - 7))], (2.1)
= [ bt et £ 1) [P €) — F(6,6)]

- /Q B, o) [P0, t = )], + [ o020 [0, €Lt = D),

Q
The two last integrals in the right hand side can be written:

/ h(z,t)y(z,t) [F(O, E(z,t — T))]t = — / h(z,t)y(x,t) [F(O, E(z,t — T))]T
Q Q

- 2 /Q B, )1, 1) F (0, €, t — )]

e

— —%[/Qh(x,t+T)fy(x,t+T)F(0a§)]
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and

| na e aFe.ce=n)], = ~ [ b [Fo.gwe =),
Q Q

_ _g[éh(x D, O F (6, €, t = 7)]

= —%|:/Qh,(l‘,t—FT)’)/(l',t"‘T)F(d)ag)]

Hence the equality (2.1) can be written:

( /h3(x,t+T)Vp(x,t+7')VF(p,§)—/h,(x,t—i—T)’y(x,t—i—T) F(p.6)],
Q Q

— / h(x,t)y(x,t) [F(O, E(x,t — T))]lt — / h*(x,t +7)Vp(x,t +7)VF(0,€)
{ ¢ ¢ (2.2)
# [ bttt £ n[FG,0], [ he 0 [Foe =),

0G(T1)
. or

with
G(T):/Qh(x,t—l—T)v(x t+17)[F(p,€) — F(0,6)]

The integrals on the left-hand side of equality (2.2) are continuous functions of 7, therefore,

the function G belongs to C'(—Ty, 79).

If 8_F > 0, we have:
621

Then, the function H defined by:

H(r) = /Q Wt + 1) (W, +7) — D[F(p, &) — F(0,6)].

satisfies H(1) <0 = H(0),YT € (—79, 7). Therefore it has a maximum in 7 = 0.

Analogously, if 9 < 0, we deduce that H has a minimum in 7 = 0.
z
By other hand, We1 have:
G(r) = H(7) +/ h(z,t+ 1) [F( ,€) — F(0, f)] (2.3)
Q

then H € C'(—7y,+7) and we get:

oG OH oh

E(T) = E(T)JF 007 ~(z,t+7)[F(p, &) — F(0,6)]

_ 38_1;1(7)+/62%(x,t+7)[F(p,§)—F(O,S)}
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OH
Now, since —(0) = 0 we deduce

or
0G oh
0= [ S0l - Fo.e)
Finally, letting 7 — 0 in (2.2) we get the result. O

Corollary 2.2. Let (p,v) be a solution of problem P then

(p— k)" - p—k)" B . p—k
/h3VpV(mzn( ,5)) /th(mm(f,ﬁ))w——/czhtmm(i
Ve >0, V€ € D(R? x (0,T)), 27- z- periodic, £ =0 on X,.

AT
Proof. We apply the above lemma with F(z,£) = min(M,f). Note that F(0,£) =0
€
and F(¢,£) =0 on Xy UX,. O

The following theorem provides an inequality that generalizes a monotonicity result from [2]
that can be used to obtain some qualitative properties of the free boundary.

Theorem 2.3. Let (p,7y) be a solution of the problem and x the characteristic function of the
set [p > 0]. Then

(h7),+ (hy), = (ha + he)x > 0

Proof. Let £ € D(Q), £ >0, ¢ = min(g,g) € L*(0,T,H*(Q)). From the above corollary, by
€

choosing k£ = 0 we have

0 = /Qh?’Vmein(]—z,f)—/wa(min(g,ﬁ))m—i—/th(min(l—z,ﬁ))
_ /h?’Vmein(E,f)—l—/(hw+ht)min(£,§)
Q € Q €

1
— / RVpPVE + —/ h*|Vp|? + / (hy + ht)mm(g, £)
[p>e€] € Jip<eg] Q €

Letting € — 0 and by using Lebesgue theorem we get

/ R*VpVE +/ (he + h)E <0
Q [p>0]

/Q 1VpVE - /Q b, — /Q I, =0
/Q e + /Q It + /Q (hy + ho)xE < 0

for all £ > 0; and then we deduce the result. 0]

From the equality

we get

Now, by using some techniques similar to the developed in [8], we prove the following strong
continuity for +.

Theorem 2.4. Let (p,7y) be a solution of problem P, then we have
hy € C°([0,T], L7()), Vp € [1,00)
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Proof. For simplicity, we shall denote in this proof by z the spacial variable. Let W' be the
topological dual of the set
W={cHQ):£=0 on (0,2r) x {0} U (0,27) x {1}, & 27 — periodic}
we have hy € C°((0,T),W’) ([11]). Therefore
(k) (z,t + k) = (hy)(z,t) strongly in W'
k—0

Being (hy)(z,t) € L*>®(Q), we deduce

(h)(z,t + k) = (hy)(z,t) weakly* in L>®(Q), Vp € (1, +00) (2.4)

k—0

Now, let p € (1,400), d > 0 and e = (1,0). From theorem 2.3 the function

k|—>/ (hv)(x+ke,t+k)§(x)—/ h(z + ke, t + k)é(x)
Q QN[p>0]

defined in [—0, d], is an increasing function, for any positive function £ € LP((Q).
If k,, is a positive decreasing sequence, 0 < k,, < 0 we get:

/Q (h/y) (x + kpe, t + ky)E(z) — / h(x + kpe, t + ky)E(x) >

QN[p>0]

> lim [/Q(hv)(xﬂLkne,tkan){(x)—/ﬂ

n—o0

h(z + kpe, t + kn)f(x)]
N[p>0]

(fw) (x,t + kn)é(x — eky,) — /

(QN[p>0])—ekn

= lim [
n—o00 Q—cky,

- /Q (hv) (x, t)€(x) — / h(z, t)€(x)

QN[p>0]

h(z,t + ky)&(z — ekn)]

and we deduce

(hy)(x + ke, t + ky) — x(z, ) h(x + kne, t + ky) > (hy) (2, 1) — (xh) (z,t). (2.5)
If k,, is an increasing negative sequence, —§ < k, < 0 we obtain

(hy)(x + ke, t + ky) — x(z, ) h(x + kne, t + ky) < (hy) (2, 1) — (xh) (z,1).

Now consider p such that 1 < p < oo

‘/Q (h/y)p(x,t) — (hfy)p(x,t + ky)

< ‘/Q(hfy)p(x,t) - /Qekn ()" (z — ekn,t)‘
—1—‘ /Qek (h/y)p(x — ekp,t) — (h/y)p(x,t + ky)

—i—‘ /Q (h)?(z,t + k) — /Q_ekn (h)?(z,t + k)

It is not difficult to show that, the first and the last terms in the right side converges to 0, when
k, — 0. Using the following inequality:

(@) = (0 ®)"] < p(masg(®)” | (@) - () 0)

, Vp > 1,
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the second integral can be written:

[ )= et = ()

i (h)"(x,t) = ()" (@ + ekp, t + k)

IN

p( mgx(h))p1 /Q ‘ () (@, t) = (hy) (@ + eky, t + kn)

IN

o mgx(h,))p_l [ /Q (1) 1) = () (1) = () o et K)o 0BG+ e 4 )

+[2‘X(x,t)h(x+kne,t+kn) —X(x,t)h(x,t)u

Since the function h(z,t) is Lipschitz continuous, the last integral on the right hand side
converges to 0 when k, — 0. From the relation (2.5) we deduce that the first integral on the
right hand side converges to 0. Hence we get:

/Q(’W)p(ff,Hkn) - /Q ()" (z,t) ¥p, 1<p<oo. (2.6)

From (2.4) and (2.6) we deduce
() (@, t + ky) — (hy)(z,t) strongly inL?(Q),1 < p < oo

and thus
(W) (z,t + kn) = (h) (=, t) strongly inL?(€2),1 < p < oo.

Theorem 2.5. Let p be the solution of the problem; it satisfies

T 2 T 2
/ / W3 (x, y, t)p(x, y, t)dxdt = pay/ / W (x,y, t)dzdt
0 0 0 0

Proof. Let ¢(y) € D(0,1); taking ¢ as a test function in the equation of problem P, being
¢ = 0,and ¢, = 0 we get
/ h*VpVe =0

by integrating by parts, and setting F'(y / / R3p we get

/0 ()¢ =0

=0 in D'(0,1)

Then we obtain

And F(y) = Ay +b.
By considering the conditions over y = 0 and y = 1, we get:

2w T
= / / h*(x,0,t)p(z,0,t)dvdt = 0
o Jo

2T T 2m T
Fl)=A= / / R (2,1, t)p(z, 1, t)dwdt = pa/ / h?(x,1,t)dxdt
o Jo o Jo
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and, consequently:

2 T 2 T
/ / W3 (x, y, t)p(x, y, t)dxdt = pay/ / W (x,y, t)dzdt
0 0 0 0

3. COMPARISON AND UNIQUENESS

We shall prove a comparison principle for functions satisfying the integral equality in Problem
P when we can compare their values on the boundary >, . This result implies the uniqueness
of the solution of the problem.

Let be (p1,v1) and (pa,72) two pairs satisfying:

(pi, i) € L*(0,T, H'(Q)) x L™(Q)  p; is 2ma-periodic (3.1)
pi>0 and v € H(p;) ae in Q

Q Q Q

pils, =P and pils, =0 (3.4)
We shall suppose p.: < p?. (3.5)

Theorem 3.1. Let (p;,v;)(i = 1,2) be two pairs satisfying (3.1)-(3.5). Then
for all £ € D*(0,1) we have:

3¢t
/(p1 — p2)+md$dydt >0
Q Ay

Proof. We consider (X1,t) and (X3, s) two pairs of variables in the following way:

(p1,m) (X, t, Xa,5) — (pi(X1, 1), 1(X4,1))
(P2, 72) + (X0, t, Xa,8) +—— (p2(Xa, 8), 72(Xe, 8))

1
with X; = (21, y1) and Xy = (73, y2). Let £ € D(0,1), £ > 0 and p.(r) = Ep(—),

. 1 _r
pulr) = (5

with supports in (—1,1).

[

)y per(r) = 7/3(%) positive real functions in D(R), where p, p, p are functions
€' e

For (X1,t, X5,5) € Q X Q, let ¢(X1,t, X5, s) be defined as follows:

+ — Yo\ T —Tay ot
B(X01, X, 5) = £(P 02 p (M) (M) e ()

If € is small enough (0 < e < dist ( supp &, 9]0, 1] ); the functions ¢(., ., X5, s) and ¢(Xy,1,.,.)
defined for any fixed (X5, s) and any fixed (X7, ?), vanish on the boundary 3, U X,.

By other hand, the function ¢ is identically zero when (z1, ) does not belong to the set

Be = {(z1,22) € (0,2m) x (0,27) : |x; — x| < 2€¢'} . In order to get a 2m-periodic function
in the independent variables x; and x5, we choose an even function p. and redefine it when
(21, z2) belongs to the set

ToUSe = {(z1,22) € (0,2m) x (0,27) : |z — 39| > 27 — 2€¢'}
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by setting

) (a:l—xz) L (|x1—x2|—27r>
Pe 9 = P 9 .

Also, we can redefine p.» in the subset

T USer ={(t,s) € (0,T) x (0,T): [t —s| < 2" or |t—s|>T—2€"}
t—T T—s

) = ﬁgﬂ( ) = 0 and ﬁeu(—) = ﬁeu( 5 ) = 0 for any
t € [0,7] and any s € [0,T] by setting for all 0 < v < €”,

).
For a new parameter § > 0, we consider the function

(p1(X1,1) — pa(Xa, 8))
)

Taking into account the above considerations, the functions 7(.,., Xs,s) and n(Xy,t,.,.) for
fixed (Xs,s) and fixed (X7,t) satisfy test functions boundary conditions.

We shall denote by @1, V; the domain and the gradient vector for the variables (X7, ?); and
()2, V2 the domain and the gradient vector for the variables (X, s).

t—20 0—s

in order to have pe (

v r

() = 25l

pP1— p2)+

+
77(X17 A X27 S) = min ) ¢(X17 A X27 S):| = min [(fa gpeﬁe’ﬁe” .

(p1 - p2)+

For any (X5, s) € Q2 we can apply lemma 2.1 choosing F'(py, ¢) = mm( 5

, ¢> and we
get

)-l—

_ + _
/hB(Xl,t)V1p1V1mm(%,¢)dX1dt—/ h(Xl,t)%(Xl,t)mm(ua¢)x1dX1dt

J

1 1

:—/ ht(Xl,t)min(M,Qﬁ)dXﬂt
Q

By integrating the above equality in the remaining variables and since v; = 1 in the support

— o)t
of the function min(%, d)) we get:
— )t R
/ (X )V Vymin (P ) / (%, min(PP g
Q1XQ2 Q1%xQ2
— o)t
= —/ ht(Xl,t)mm(%,qs) (3.6)
Q1XQ2
A . o (p1 —p2))* .
nalogously, for any (z1,t) € @, by taking F(ps, ¢) = mm(f, ¢) in the

lemma 2.1, we get:

_ + _ +
/h3(X2,S)Vzpzvzmm(w,qﬁ)ngds—/ h(Xg,s)fyzmm(%,d))dezds

2 2

= / h(Xg,s)fygmin(%,d))stzds—/ hs(Xa, s) [mm(w,qﬁ) —min(%,qﬁ)]dXst
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By integrating in the variables (X, ) we get:

— )t o
/ hS(Xz,S)V2P2V2mm(M,¢) —/ h(Xg,s)%mm(M,(b)
Q1%XQ2 (5 Q1xQs (5 z

:/QIXQ2 h(X2,8)72min(%,¢))s —/QIXQQ hs(Xs, s) [mzn(w,d))] (3.7)
+/QIXQ2h[min(%,¢))L

Then, substracting (3.7) from (3.6), we get:

— )t — o))t
/ [h3(X1,t)V1p1V1mm(%, ¢) — h*(Xo, S)VngVZmin(M, qﬁ)]
Q1xQ2

4]
_(pr—p2)t
- /621><Q2 h(X5,1) (mln(%, ¢))$1

B /C21XQ2 WXz, 5)(1 =) (mm(%, ¢)>s B /lecz2 [ht(Xla t) — hs(Xo, s)]min(w, ¢)

((pl —5272)

— h(Xs, )72 (mm(w,qﬁ))$2 (3.8)

Moreover, from periodicity of min ,qﬁ) and the boundary conditions, we have

)
((p — P2)+
)

_ +
/ h (Xl, )V1p1V2mZTL(M,¢)) =0
Q1XQ2

X2, V2p2vlmm ¢) =0

S— 3

Q1xQ2

_ +
h(X,. 1) mm(w,@) ~0
Q1XQ2 0 Z2

h(Xs, s) (mm(w,qﬁ)) =0

S—

Q1XQ2

\\

. P1
h(Xs, 8)(1 —v) | min(=,¢) ) =0
Q150> 2 2 ( (5 ))t

By introducing the above relations in (3.8) we get:

/Q o [h3(X1, t)(Vi+ Va)pr — h3(X2, s) (Vi + Vg)pg] (Vi + VZ)min(M, ¢)
- /QlXQz (h(Xl,t) — h(Xs, 5)72) (mm(M, <;5))$1+I2 (3.9)
= /leQz h(Xs,s)(1 — 72)<mm(p§1 ¢))t+s

_/ (he(X1,t) — hs(Xz,s))min(M,qﬁ)
Q1xQ2 0

Now we make the following change of variables:
_X1—|—X2 _XI_XZ t+s t—s
A 2 2
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In the new variables we have p;(X;,t) = pi1(z + 0,7+ 0) and py(Xs, s) = pa(z — 0,7 — 0); the

test function is now

PP ()0 (00)5 6)]

min

and equality (3.9) can be written as:

J

/leQ2 [h3vzp1(z +o,7+6)— h,3VZp2(Z -0, T — 9)] v, (mln(w, ¢))

T e enbecn e

— /leQQ h(Xs,s)(1 — vﬁ(mz‘n(%ﬁ))
(p1 —p2)+

_ /QIXQQ [hT(Z +o,t)—h(z—0o,7— 9)]mm(f,¢)

T

Where we are omitting the constant due to the coordinates transform. For the sake of clearness,

we enumerate the integrals and transform this expression in

J+I =K+ L.

Now we shall study the integrals of equality (3.10) and their behaviour when limits are taken

in the parameters 9, ¢, ¢ and €”. For this, let us consider the sets:
A’ = [(pl - p2)+ > 56/06/56’/56”] and B’ = [0 <p1—p2 < 6€p6ﬁ6,ﬁ6”]‘

By separating the different regions in the integral I we get

I = —/35 |:h,(Z+O',T+9) —h(z—a,T—G)%] (p1 gm)zl
_ /A [h(z +0,7+0) = hiz = 0,7 = 0)7] (£(2)pe(0) e (01)56,,(9))Z1
= I +1

Since the function ¢ = &(23)pc(02)pe (01)per (#) does not depend of variable z;, we have I, = 0.

The integral I; can be decomposed in:

I = _/BS [h(z+a,7+9)—h(z—a,r—ﬁ)](plgm)n—/Béh(z—a,T—H)(l—fyz)(

= L +1I7

Since ¢ is independent of variable z;, we can write the first integral as

Il = _/QlXQz [h(z+a,7+9)—h(z—a,7—9)] (min(@,qﬁ))

21

By integrating by parts, letting 6 — 0, and using the Lebesgue theorem, we get:

5—0 0z 21

i = [ [SrCaor ) - S 0. 03l > i )adon) o))

P1— D2
)

).,
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oh . . . . . .
Now, as — is a Lipschitz continuous function there exists a constant ¢ such that for any (z, 7)

821
and any (o, #) it satisfies:

h oh
- (e _ < —(r— _
(GG Hor+0)—grz=or=0)] < dztor+0) (=070
= 2d[|(o,0)]]
< alloi] +[ozf +16]) (3.11)

Since supp(pe) = [—¢, €], supp(pe) = [—€, €] and supp(per) = [—€", €"], we get

i< Clet ¢ +¢) [ ealplo)pelo)n®
- Q1xQ2

Being the integral bounded, we obtain:
lim [limI]] =0

€,e €’ —00—0

Using the old variables in the second integral:

mo= [ - (B, (5,

_ /35 h(Xa,5) (1= 2) (5),,

since 1 — 5 = 0 when py > 0 and (p; — p2)s = 0 if p, = 0. Being h(Xos, s)(l — fyz) independent
of variable x1, we can write

I = / h(X275)(1_72)mm[%7ﬁpeﬁe'ﬁe”] —/ h(X2,8) (1 = 72) (Epepeper),,
Q1xQ2 z1 AS

= /5 h(XZ,S) (1 — "}/2) (gpgp/\e/ﬁeu)ml
B
Being the function h(Xj, s) (1 - 72) (§p6ﬁ€,ﬁfu)$l bounded for each ¢, ¢ and €', we conclude
lim |I?| < lim C|B°| = 0.
0—0 d—0
Finally for the second integral in the equality (3.10) we get
lim (Lm/l)=0 (3.12)

€,e e’ —0 ~d—0
In the same way as for integral I! being the derivative h, a Lipschitz continuous function,

we deduce easily:
lim (lim|L]) =0 (3.13)

€, e’ =0 *6—0

For the first integral on the right hand side, we can write

K = /QIXQZh(XZ,S)(l_72)(mm(%’¢)>7

M

B /[0<p1<5¢] (X, 5) (1 - 72) (F)t + /[p1>6¢] h(Xa, s) (1 — 72)¢T
b1
- /[U<p1<6¢>] h( Xy, 5) (1= 72) (F)t



43N MYV UVULU LLIULNY LAV DU ULV AAvL L VWb uiJlvl 41 J

since the function ¢ does not depend on the variable 7. But

Lo S — min P — 5, $ — )y
/[0<p1<6¢] WX, s) (1= )5 = /QIXQQh(XQ, )1 =)( (5,¢>))t /[WM] h(Xs, 5)(1 — 1)
= [ =)
[P1>6¢>]
= —/ h(XQ;S)(1—72)¢t+/ h(XQ,S)(l—ny)qSt
Q1XQ2 [0<p1<6¢>

= / h(X2,5)(1 = 72) b
[0<p1<6¢>]

Being the function under the last integral bounded, we get:
lim|K|=0 (3.14)
0—0

Now, let us study the integral:

J = / [h3(z+a, T+0)V .p1 (240, T+9)—h3(z—a,T—H)Vng(z—a,7—9)] V. (min(w, ¢))
Q1%xQ2 )

By separating the two regions of integration, we write:

J = / [h?’(z + 0,7+ 0)V.pi(z+0,7+0) = h (2 — 0,7 — ) V.pa(z — 0,7 — 9)] V. (Epeper per)
Al

P1—p2>

+ / |:h/3(Z+O',T+9)Vzp1(Z+O',T—|—9)—ha(Z—U,T—Q)VZpQ(Z—U,T—Q)]VZ( S
B¢

= S+

Going back to the old variables in J5, we have:

p p
J = /B (1800, |V, 4 120, )[ V22

—/ hg(Xlat)VIPIVQ(&) —/ h?’(Xl,t)VngVl(&)
B¢ (5 Bé (5

The first integral in the right hand side is positive, and the two others integrals satisfy:

o _ +
D e L A e )

+ hlg(Xla t)vlplv2 (gpeﬁe’ﬁe”)

8

R
W (X1,1)Vip1 Vs (mm(%, ¢)) + / R (X1, t)Vip1Va (Epepe per)
Q1xQ2

S —— o

1XQ2
h3 (Xl, t)V1p1V2 (gpeﬁe’ﬁe”)

1

h3 (X17 t)V1p1V2 (gpeﬁflﬁell)

1
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_ +
since h*(X1,t)V1p; does not depend on X, and using the boundary conditions of mm(M

Now, by Holder inequality and since (lsir% |B°| = 0 we conclude:
—

2:| 1/2

0—0

|~ [ 100,007 (22)| <ty 1B 2 [ 00X 0|9 V(b
B B
In a similar way, we prove:

lim
6—0

- [ B TR -

Now, by taking into account relations (3.12), (3.13) and (3.14), as well as the equality
I+ Ji,+J=K+1L

we get

lim (lLim.J;) <0

e,/ ,e"—>0 ~ 6—0

By Lebesgue theorem, we have

op1 Ops
lim.J; = /Q o [h3(z +o,7+60)=— 92 h3( o, T — H)al]x[m > po]€&' (29) pe(02) per (1) per (6)

0—0

which, can be decomposed in

[ w0 g s e oo 0
Q1%XQ2 %2

0 , R B
/ [W(z + 0,74+ 0) = 1z — 0,7 — 0)] 22Xy > pal€ (29)pe(0)per (1) e (0)
Q1XQ2 822

= J+J}
The integral J? satisfies

‘le‘ < C/ o ‘gZzH h*(z + 0,7 +0) — h3(z—U,T—9)‘p€ﬁE/ﬁEu
Q1xQ2

The constant C' does not depend on parameters €, ¢ and ¢’. By Holder inequality we get:

Opa

8—’22“ Q1%XQ2
< Cyle+é + M2

since The function h? is Lipschitz continuous. We conclude

lim J?=0

0,€,€’ €' —0

IN

| J7] |l ‘(h3(2+0',7'+9)—hS(Z—O',T—H)‘Q

Moreover, by letting € — 0, €’ — 0 and € — 0 (see[1]) in the integral J;, we get
0
| W) —men) € <0
22

Now, by denoting g = (p; — p2)*, we have:

/th*g—zg’ <0 (3.15)
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Let be €y = d(supp(§), 0]0, 1]), and let us define
A={(z,t) eR* x (0,T)\ Zo UX,}
and
A, = {(z,t) € R? x (0,T)/d((z,t), Lo UL,) > €/2}.
Let us still denote by g the function

R A P (316)

Now, for € < €y/2, let p. € D(R? x (0,T)) be a regularizing sequence with supp(p.) C B(0,¢)
and let g. = g * p.. Then from (3.15) we deduce:
/ 3% <

Acq dy

Integrating by parts, we get

and letting ¢ — 0, we conclude

Which achieves the proof OJ
Theorem 3.2. Let (p;,v;)(i = 1,2) be two pairs satisfying (3.1)-(3.5) then p1 < py a.e in Q.

Proof. From theorem (3.1) we have
o(n’°¢)
(pl(xayat)_pQ(xaya )) a ———dx d dt>0
Q
for any £ € D(0,1). Equivalently
3

/(pl(xayat) —pQ(l‘,y,t))—i_h,gg” + / (pl(xvyvt) _pQ(xayat))—i—aaig, Z 07 \vlg S D+(07 1)
Q Q Yy

By separating the integration variables and denoting

21 2
// p1 p2+h3 and b // p1 p2 —y

/0 ( (y)€" + by )§)dyz 0, VEeD(0,1) (3.17)

Now, let us suppose that there exists an interval [yo, y1] C [0, 1] where a is continuous and it
satisfies a(y) > 0, Yy € (yo,y1). We distinct two cases:
First case: We suppose that a(yy) = a(y;) = 0.
Let be 1) € C™[yg, y1] satisfying " (y) < 0 Vy € [yo, y1] (for example )(y) = sin ( Y% ));

Y1 — Yo
and let us consider the following two points boundary problem in the interval [yo, y1]:

a(y)€" +b(y)€' = a(y)y”
{ (yo) = &(y1) =0 (3.18)

we obtain:
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It is not difficult to see that there exists a solution &, of the problem with bounded derivatives.
Moreover, by means of the minimum principle & (y) > 0, Yy € [yo, 11]-
Now, let 6 > 0 be a positive parameter. We consider the function ¢ defined in the interval

[yo, y1]3

( —_
2422 v € (oo + )
Y —Yo\2 5
gly) =4 1 y € (yo+6,91 —9) (3.19)
1—2(1— 22y ye i —oy—12)
2AHEy ye -5
and we denote by £(y) = g(y)&(y), Yy € [yo, 11]. We have € € C*(yo, 1), &(yo) = &(y1) = 0

and £'(yo) = €'(y1) = 0. Therefore, we can take & = ¢ in (3.17) and get:

[ (o )ay = o

Yo
By separating the integration intervals, we decompose this integral in the form:

/ ” (a(y)(9&0)" + b(y)(g&0)")dy + / : (a(y)&) +b(y)&) dy
+ / yié (a(y)(g&)" +b(y)(g&0)")dy >0 (3.20)

From (3.18) the second integral is strictly negative, and for the two others integrals we have:

/yo+6 (a(y)(gﬁo)” + b(y)(ggo)f) dy = /

Yo Yo

" o) (678 +20'6) + 983 +b() (9'60 + 965 ) dy

Yyo+0
= / (a(y)g"ﬁo +2a(y)g'& + aly)g&o + b(y)g'éo + b(y)g&’)) dy (3.21)

Yo

1 1
Since |¢'(y)| ~ 5 19" (y)] ~ 5 and being the functions a(y) and &)(y) continuous in the interval
(Yo, yo + 0), the terms under the last integral in (3.21) are bounded and we obtain:

/ " (aly)(9&0)" + b(y)(9&0)")dy ~ 6

Yo
In the same way we obtain:

/yié (a(y)(gfo)” + b(y) (gﬁo)l)dy ~5

Now, letting 6 — 0 in (3.20) we get

/ o)y + b(y)E)dy > 0.

Yo
but

/ " aw)El + by)e)dy = / "ty <0

Yo Yo
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Second case: We suppose that a(yy) # 0 or a(y;) # 0.
Let us define a sequence of functions (g, ),>1 in the interval (yo, y1) by:

(Vo) Yy € (Yo, Yo +0)
gn(y) = 1 1 y € (Yo + 0,y1 — 9) (3.22)
(&54)» y € (y1 —6,y1)
and consider a,(y) = a(y)g,(y) and b,(y) = b(y)gn(y). We have lim g,(y) =1, Yy € (yo, 11);

n—o0
and

for all £ € D(0,1):

/ : an(9)E" (y) + bu(y)E'(y) = / ) a(y)&" (y) + b(y)€ (v)

Yo

[ a) ) - D€+ 8 () - 1€ 323)

+/y1 a(y) (9n(y) = 1)€" +b(y) (9a(y) — 1)€'

1—0

Now we take &(y) = g(y)&(y), where g and &, are the functions introduced in first case. From
(3.20)

y1—6

/ ylan(y)(gﬁo)"(y)+bn(y)(9§o)'(y) = / an ()& () + bu(y)&o(y) + O(0)  (3.24)

o+9

_ / " AW +bw)E () + 00)

o+9

By other hand we have

/ : a(y) (ga(y) — 1) (9€0)" + b(y) (9n(y) — 1) (9&)’

/ " (a(y) (gn(y) — 1) 9" €0 + 2a(y) (gn(y) — 1) g'& + aly) (gn(y) — 1) 9&0

+

0

)

n

[ 00 000) = 1)7% +006) () ~ D)y (3.25)
O

Q

. 1 1 1.
since ¢' ~ 5 g = 52 (gn—1) =~ o in (yo,yo + ) and & (yo) = go(yo) = 0.

Analogously we have

[ ) o) = )€ +50) (o) ~ 1) = O (3.26)

1
n

Taking into account estimations (3.24), (3.25) and (3.26)in (3.23), we get

[ e + ) +00) = [ aw)le)" ) + b 68 ) + O)

0+d Yo
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for all 6 > 0 and n > 2. Letting 6 — 0 and then n — oo we get

0> [ " a)E) + bw)Ey) > 0

0

Finally, we deduce

ay) :/OT/O%(pl—pg)"'h?’ <0 ae in (0,1)

and then p; < py a.e in Q. O

Theorem 3.3. The problem P has a unique solution p

Proof. Is a consequence of theorem 3.2 U
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