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1 Introduction

Fluid dynamics is currently understood as an effective theory approximating a given mi-

croscopic theory in the long-wavelength, long-time regime via a systematic derivative ex-

pansion [1–4]. The corresponding equations of motion (Navier-Stokes equations, Burnett

equations, and their generalizations) follow from combining the equations expressing con-

servation laws of the microscopic theory with the constitutive relations at a given order in

the derivative expansion.1

In the simplest case of a relativistic neutral conformal fluid in a d-dimensional curved

spacetime, the derivative expansion of the stress-energy tensor’s expectation value has

the form

T ab = εuaub + P∆ab +Πab + · · · , (1.1)

where ua is the velocity of the fluid, ε is the energy density, P is the pressure fixed by

the conformal invariance to obey the equation of state ε = (d − 1)P , and the tensor Πab

involving first and second derivatives of velocity is given by

Πab =− ησab + ητΠ

[

〈Dσab〉 +
1

d− 1
σab (∇ · u)

]

+ κ
[

R〈ab〉 − (d− 2)ucR
c〈ab〉dud

]

+ λ1σ
〈a
cσ

b〉c + λ2σ
〈a
cΩ

b〉c + λ3Ω
〈a
cΩ

b〉c, (1.2)

where D ≡ ua∇a. We use notations and sign conventions of ref. [2, 3], where the definitions

of tensor structures such as vorticity Ωab appearing in eq. (1.2) can also be found.

The six transport coefficients η, τΠ, κ, λ1, λ2 and λ3 in eq. (1.2) are determined by

the underlying microscopic theory. For conformal theories at finite temperature and zero

chemical potential, they scale with the appropriate power of temperature (fixed by their

1In this paper, we ignore issues related to non-analytic contributions to correlation functions at small

frequency and the breakdown of the derivative expansion [5, 6]. This is justified as long as we work within

classical (i.e. not quantum) gravity approximation. For N = 4 SU(Nc) supersymmetric Yang-Mills theory,

this means staying in the limit of infinite Nc.
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scaling dimension) and may depend on coupling constants and other parameters of the

theory such as the rank of the gauge group. For some theories, transport coefficients have

been computed in the regime of weak coupling using kinetic theory approach and in the

regime of strong coupling using gauge-string duality methods [7–10].

Of particular interest are the properties of transport coefficients universal for all or

at least some class of theories. For example, the dimensionless ratio of shear viscosity to

entropy density exhibits such a universality: assuming validity of gauge-string duality, one

can prove that the ratio is equal to 1/4π for a large class of theories in the limit described

by a dual supergravity (usually, in the limit of infinite coupling and infinite rank of the

gauge group) [11–15]. This result is very robust and holds for any quantum field theory

(conformal or not) with a gravity dual description (see [16] for a recent summary and

discussion). Coupling constant corrections to the viscosity-entropy ratio are not expected

to be universal: in each theory, the ratio is a non-trivial function of the coupling and

other parameters. In particular, in the finite-temperature N = 4 SU(Nc) supersymmetric

Yang-Mills (SYM) theory in d = 3 + 1 dimensions in the limit of infinite Nc and infinite

’t Hooft coupling λ = g2YMNc, the shear viscosity to entropy density ratio appears to be

a monotonic function of the coupling [11], with the correction to the universal infinite

coupling result being positive [17, 18]:

η

s
=

1

4π

(

1 + 15ζ(3)λ−3/2 + . . .
)

. (1.3)

Subsequent calculations revealed that in other (hypothetical) quantum field theories the

corrections coming from higher derivative terms in the dual action can have either sign [19,

20]. In particular, for a (hypothetical) field theory dual to Einstein gravity with Gauss-

Bonnet higher derivative terms2

SGB =
1

2κ25

∫

d5x
√−g

[

R+
12

L2
+

λGB

2
L2

(

R2 − 4RµνR
µν +RµνρσR

µνρσ
)

]

, (1.4)

where L is the AdS radius, one finds [20]

η

s
=

1− 4λGB

4π
(1.5)

non-perturbatively in the Gauss-Bonnet coupling λGB.

Much less is known about bulk viscosity3 [26–28]. A proposal for a universal inequality

involving bulk viscosity at strong coupling has been made by Buchel [29] but it seems there

exist counterexamples to it [30].

Universal behavior is also known to exist for second order transport coefficients. Fol-

lowing the observation made in [31], Haack and Yarom [32] showed that for relativistic

2As is well known [21–25], such a field theory would be suffering from inconsistencies such as causality

violation unless restrictions are imposed on the Gauss-Bonnet coupling or other degrees of freedom are

added to the Gauss-Bonnet gravity. Our working assumption is that it is possible to cure the problems in

the ultraviolet without affecting the hydrodynamic (infrared) regime.
3For conformal theories, bulk viscosity is zero.

– 2 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
7

conformal fluids with U(1) charges in d > 3 space-time dimensions4 in the limit described

by a dual two-derivative gravity, the following linear combination vanishes:

H ≡ 2ητΠ − 4λ1 − λ2 = 0 . (1.6)

We expectH to be (generically) a non-trivial function of the coupling: perturbative analysis

in QED and other theories [33] suggests that H 6= 0 at weak coupling. In conformal kinetic

theory one finds 2ητΠ+λ2 = 0 [2, 33, 34]. In the same regime, the ratio λ1/ητΠ is expected

to be relatively close to 1 but the prediction λ1 = ητΠ [34] is understood to be an artifact

of a too restrictive ansatz choice for the collision integral [33]. (If the prediction were true,

we would have H = 0 in the kinetic regime.)

For the conformal theory dual to Gauss-Bonnet gravity (1.4), the statement that H is

not identically zero would imply that generically one may expect H = O (λGB).

Intriguingly, Shaverin and Yarom found that H = 0 still holds in this theory to linear

order in λGB [35]. However, the universal relation does not hold to order λ2
GB [36, 37].5

Indeed, as will be shown elsewhere [36, 37], the full non-perturbative expression for H(λGB)

implies that the identity (1.6) holds to linear order in λGB but is violated at O(λ2
GB):

H(λGB) = − η

πT

(1− γGB)
(

1− γ2GB

)

(3 + 2γGB)

γ2GB

= −40λ2
GBη

πT
+O

(

λ3
GB

)

, (1.7)

where γGB =
√
1− 4λGB. Curiously, in that theory H(λGB) ≤ 0 for all values of λGB ∈

(−∞, 1/4].

In this paper, we show that the identity H = 0 holds in N = 4 SYM at next to leading

order in the strong coupling expansion (in the limit Nc → ∞). In this limit, the shear

viscosity and the second order transport coefficients of N = 4 SYM are given by

η =
π

8
N2

c T
3 (1 + 135γ + . . . ) , (1.8)

τΠ =
(2− ln 2)

2πT
+

375γ

4πT
+ . . . , (1.9)

κ =
N2

c T
2

8
(1− 10γ + . . . ) , (1.10)

λ1 =
N2

c T
2

16
(1 + 350γ + . . . ) , (1.11)

λ2 = −N2
c T

2

16
(2 ln 2 + 5 (97 + 54 ln 2) γ + . . . ) , (1.12)

λ3 =
25N2

c T
2

2
γ + . . . , (1.13)

where γ = λ−3/2ζ(3)/8. To leading order in the strong coupling limit (i.e. at γ → 0),

the results (1.8)–(1.13) were obtained in [2, 40, 41] using gauge-gravity and fluid-gravity

dualities. Coupling constant corrections to all the coefficients except λ2 were previously

4In lower dimension, the coefficient λ1 is undefined.
5This has been independently found in [38, 39] via fluid-gravity methods. We thank E. Shaverin and

A. Yarom for sharing these results.
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computed from the higher-derivative terms in the low-energy effective action of type IIB

string theory [17, 18, 27, 42–45]. The O
(

λ−3/2
)

correction in the expression for λ2 is the

new result obtained in section 2 of the present paper.

The corrections in formulae (1.8)–(1.13) can be trusted so long as they remain (in-

finitesimally) small relative to the leading order (λ → ∞) result, as they are obtained by

treating the higher-derivative terms in the equations of motion perturbatively. To leading

order in the strong coupling limit, the coefficients (1.8)–(1.13) are independent of the cou-

pling, in sharp contrast with their weak coupling behavior [46]. The coefficient λ3 vanishes

at λ → ∞, and was argued to vanish also at λ → 0 (this appears to be a generic property of

weakly coupled theories). The full coupling constant dependence of transport coefficients

(even at infinite Nc) appears to be beyond reach.

The results (1.8), (1.9), (1.11) and (1.12) imply that the identity (1.6) holds in N = 4

SYM at the order O
(

λ−3/2
)

in the strong coupling expansion.

2 Coupling constant correction to the second order transport coefficient

λ2 in N = 4 SYM theory

Coupling constant corrections to transport coefficients in N = 4 SYM can be computed

using the following dual five-dimensional gravitational action with the R4 higher derivative

term6

S =
1

2κ25

∫

d5x
√−g

(

R+
12

L2
+ γW

)

, (2.1)

where γ = α′3ζ(3)/8 which is related to the value of the ’t Hooft coupling λ in N = 4

SYM via α′/L2 = λ−1/2. We set the AdS radius L = 1 in the following. The effective

five-dimensional gravitational constant is connected to the rank of the gauge group by

κ5 = 2π/Nc. The term W is given in terms of the Weyl tensor Cµνρσ by

W = CαβγδCµβγνC
ρσµ

α Cν
ρσδ +

1

2
CαδβγCµνβγC

ρσµ
α Cν

ρσδ. (2.2)

The α′-corrected black brane solution corresponding to the action (2.1) was found in [48]:

ds2 =
r20
u

(

−f(u)Ztdt
2 + dx2 + dy2 + dz2

)

+ Zu
du2

4u2f
, (2.3)

where f(u) = 1− u2, r0 is the parameter of non-extremality of the black brane geometry,

and the functions Zt and Zu are given by

Zt = 1− 15γ
(

5u2 + 5u4 − 3u6
)

, Zu = 1 + 15γ
(

5u2 + 5u4 − 19u6
)

. (2.4)

The Hawking temperature corresponding to the metric (2.3) is T = r0(1 + 15γ)/π. The

standard black three-brane solution is recovered in the limit γ → 0.

6As argued in [47], to compute physical quantities in the hydrodynamic regime of field theories dual to

ten-dimensional type IIB supergravity with five compact dimensions, it is sufficient to consider only the

reduced five-dimensional action.
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To compute the ’t Hooft coupling correction to the second order transport coefficient

λ2, we use the method of three-point functions7 and the associated Kubo formulae devel-

oped by Moore, Sohrabi and Saremi [45, 49] and by Arnold, Vaman, Wu and Xiao [52].

The relevant retarded three-point functions of the stress-energy tensor are defined in the

Schwinger-Keldysh closed time path formalism [53, 54]. We now review the key elements

of the method.

Consider a theory described by a microscopic Lagrangian L [φ, h], where φ collectively

denotes matter fields and h corresponds to a metric perturbation of a fixed background g

(all tensor indices are suppressed). The degrees of freedom of the theory are then doubled,

φ → φ±, g → g±, h → h±, where we use the index ± to denote whether the fields are

defined on a “+”-time contour running from t0 towards the final time tf > t0, or the

“−”-contour with time running from the future tf backwards to t0. For the field theory

considered at a finite temperature T = 1/β, the two separated real time contours can be

joined together by a third, imaginary time part of the contour running between tf and

tf − iβ. We use ϕ to denote fields defined in the Euclidean theory on the imaginary time

contour. The generating functional of the stress-energy tensor correlation functions can

then be written as

W
[

h+, h−
]

= ln

∫

Dφ+Dφ−Dϕ exp

{

i

∫

d4x+
√

−g+L
[

φ+(x+), h+
]

−
∫ β

0
d4yLE [ϕ(y)]− i

∫

d4x−
√

−g−L
[

φ−(x−), h−
]

}

. (2.5)

It is convenient to introduce the Keldysh basis φR = 1
2 (φ

+ + φ−) and φA = φ+ − φ−,

and similarly for the metric perturbation and the stress-energy tensor. After variation, the

classical expectation values always obey φ+ = φ−, hence all fields with an index A will

vanish and one can define T ab ≡ T ab
R . Explicitly,

〈

T ab
R (x)

〉

= − 2i√−g

δW

δhA ab(x)

∣

∣

∣

∣

h=0

. (2.6)

The expectation value of TR at x = 0 can then be expanded as

〈

T ab
R (0)

〉

=Gab
R (0)− 1

2

∫

d4xGab,cd
RA (0, x)hcd(x)

+
1

8

∫

d4xd4yGab,cd,ef
RAA (0, x, y)hcd(x)hef (y) + . . . , (2.7)

where GRAA... denote the fully retarded Green’s functions [55] obtained by taking the

appropriate number of derivatives with respect to hA and hR [49]

Gab,cd,...
RA... (0, x, . . .) =

(−i)n−1(−2i)nδnW

δhA ab(0)δhR cd(x) . . .

∣

∣

∣

∣

h=0

= (−i)n−1
〈

T ab
R (0)T cd

A (x) . . .
〉

. (2.8)

7Explicit holographic calculations of the equilibrium real-time three-point and four-point functions in

strongly coupled N = 4 SYM at finite temperature have been pioneered in [50, 51].
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Denoting the space-time coordinates of the four-dimensional field theory by t, x, y, z and

choosing the momentum along the z axis, one can write the following Kubo formula for

the coefficient λ2 [45, 49]

λ2 = 2ητΠ − 4 lim
p,q→0

∂2

∂p0∂qz
Gxy,ty,xz

RAA (p, q) . (2.9)

The three-point functions are calculated by solving the bulk equations of motion to

second order in metric perturbations of the background g
(0)
µν (2.3),

gµν = g(0)µν + ǫ
r20
u
h(1)µν + ǫ2

r20
u
h(2)µν , (2.10)

where ǫ serves as a book-keeping parameter indicating the order of the perturbation. We

impose the Dirichlet condition h
(2)
µν = 0 at the boundary [45]. The three-point functions are

found by taking functional derivatives of the on-shell action with respect to the boundary

value h
(b)
µν = h

(1)
µν (u → 0). A simplifying feature of this procedure is that since equations

of motion are solved to order ǫ2, only the boundary term contributes to the three-point

function and hence no bulk-to-bulk propagators appear in the calculation. To compute

Gxy,ty,xz
RAA (p, q), we turn on the following set of metric perturbations

hxy = hxy(r)e
−ip0t+iqzz, hxz = hxz(r)e

−ip0t, hty = hty(r)e
iqzz. (2.11)

In the following, we use the notations ω ≡ p0, q ≡ qz and T0 ≡ r0/π.

At first order in ǫ, the metric perturbations can be written as expansions in γ

h(1)xy = h(b)xy e
−iωt+iqz

(

Zxy + γZ(γ)
xy

)

, (2.12)

h(1)xz = h(b)xz e
−iωt

(

Zxz + γZ(γ)
xz

)

, (2.13)

h
(1)
ty = h

(b)
ty e

iqz
(

Zty + γZ
(γ)
ty

)

, (2.14)

where Z
(γ)
xy , Z

(γ)
xz and Z

(γ)
ty are treated as perturbations (in γ) of the main solutions Zxy, Zxz

and Zty . The equations of motion for the metric fluctuations follow from the action (2.1),

where the γ-dependent part is treated as a perturbation. The differential equation for

Zxy is

∂2
uZxy −

1 + u2

u(1− u2)
∂uZxy +

ω2 − q2(1− u2)

4π2T 2
0 u(1− u2)2

Zxy = 0. (2.15)

The functions Zxz and Zty obey the same differential equation (2.15) with q and ω, respec-

tively, set to zero. Note that we cannot impose the incoming wave boundary condition at

the horizon on Zty, as it has no time dependence. Instead, the Dirichlet condition Zty = 0

is used [45].

– 6 –
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The solutions to quadratic order in ω and q are given by

Zxy =
(

1− u2
)− iω

4πT0
(1−15γ)

[

1+

+
6 ln(u+ 1)

[

ω2 ln
(

u+1
4

)

+ 4ω2 − 4q2
]

+ ω2
[

π2 − 6 ln2(2)− 12ω2 Li2
(

1−u
2

)]

96π2T 2
0

]

,

(2.16)

Zxz =
(

1− u2
)− iω

4πT0
(1−15γ)

[

1+

+
6ω2 ln(u+ 1)

[

ln
(

u+1
4

)

+ 4
]

+ ω2
[

π2 − 6 ln2(2)− 12ω2 Li2
(

1−u
2

)]

96π2T 2
0

]

, (2.17)

Zty = 1− u2 − q2u(1− u)

4π2T 2
0

. (2.18)

We now use these solutions in the full equations of motion to find the differential equations

obeyed by Z
(γ)
xy , Z

(γ)
xz and Z

(γ)
ty . All three equations have the form (indices suppressed)

∂2
uZ

(γ) − 1 + u2

u(1− u2)
∂uZ

(γ) +
ω2 − q2(1− u2)

4π2T 2
0 u(1− u2)2

Z(γ) = G(u), (2.19)

where the functions G(u) on the right hand side are, respectively,

Gxy = h(b)xy

(

1− u2
)− iω

4πT0

[

3iωu2
(

129u4 + 94u2 − 25
)

πT0 (u2 − 1)

+
1

4π2T 2
0 (u− 1)(u+ 1)2

[

− 6ω2u2(u+ 1)
(

129u4 + 94u2 − 25
)

ln(u+ 1)

+ 6ω2u2
(

−129u5 + 35u3 − 89u2 + (u+ 1)
(

129u4 + 94u2 − 25
)

ln(2) + 30u+ 30
)

+ q2u(u+ 1)
(

774u5 − 1625u4 + 564u3 + 225u2 − 150u+ 75
)

]

]

, (2.20)

Gxz = h(b)xz

(

1− u2
)− iω

4πT0

[

3iωu2
(

129u4 + 94u2 − 25
)

πT0 (u2 − 1)

+
1

4π2T 2
0 (u− 1)(u+ 1)2

[

− 6ω2u2(u+ 1)
(

129u4 + 94u2 − 25
)

ln(u+ 1)

+ 6ω2u2
(

−129u5 + 35u3 − 89u2+(u+1)
(

129u4+94u2−25
)

ln(2)+30u+30
)

]

]

,

(2.21)

Gty = h
(b)
ty

[

720u4
(

4− 3u2
)

+
5q2u

(

432u5 + 551u4 − 576u3 + 15u2 + 15
)

4π2T 2
0

]

. (2.22)

– 7 –
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The solutions (to quadratic order in ω and q) are given by

Z(γ)
xy =

(

1− u2
)− iω

4πT0

{

iωu2
(

43u4 + 135u2 + 195
)

4πT0
+

1

48π2T 2
0

[

180ω2Li2

(

1− u

2

)

− 258ω2u6 + 258ω2u5 − 810ω2u4 − 160ω2u3 − 1170ω2u2

+ 6ω2
(

43u4 + 135u2 + 195
)

u2 ln

(

2

u+ 1

)

+ 3630ω2 ln(u+ 1) + 30ω2 ln(64) ln(u+ 1)− 15π2ω2 + 90ω2 ln2(2)

+ 258q2u6 − 780q2u5 + 810q2u4

− 1000q2u3 + 1170q2u2 − 2100q2u+ 2100q2 ln(u+ 1)

]

}

, (2.23)

Z(γ)
xz =

(

1− u2
)− iω

4πT0

{

iωu2
(

43u4 + 135u2 + 195
)

4πT0
+

1

48π2T 2
0

[

180ω2Li2

(

1− u

2

)

− 258ω2u6 + 258ω2u5 − 810ω2u4 − 160ω2u3 − 1170ω2u2

+ 6ω2
(

43u4 + 135u2 + 195
)

u2 ln

(

2

u+ 1

)

+ 3630ω2 ln(u+ 1) + 30ω2 ln(64) ln(u+ 1)− 15π2ω2 + 90ω2 ln2(2)

]

}

, (2.24)

Z
(γ)
tz = − 15

(

5u2 − 8u6 + 3u8
)

− 5q2u2
(

1 + 24u4 − 16u5 − 9u6
)

4π2T 2
0

. (2.25)

The next step is to use the above solutions to find the second-order perturbation h
(2)
xy of

the metric to linear order in γ and to quadratic order in ω and q. We begin by computing

the action (2.1) with

gxy = g(0)xy +
(πT0)

2

u
ǫh(1)xy +

(πT0)
2

u
ǫ2h(2)xy , (2.26)

gxz = g(0)xz +
(πT0)

2

u
ǫh(1)xz , (2.27)

gty = g
(0)
ty +

(πT0)
2

u
ǫh

(1)
ty (2.28)

to order ǫ4. This gives us the effective action and the equation of motion for the fluctuation

h
(2)
xy that can be solved perturbatively to linear order in γ and quadratic order in ω and q.

We can look for a solution in the form

h(2)xy = h(b)xz h
(b)
ty e

−iωt+iqz
(

Yxy + γY (γ)
xy

)

. (2.29)

At γ = 0, the full fluctuation equation is

∂2
uYxy −

1 + u2

u (1− u2)
∂uYxy +

ω2 − q2(1− u2)

4π2T 2
0 u(1− u2)2

Yxy −
ω q h

(b)
xz h

(b)
ty

4π2T 2
0 u (1− u2)2

ZxzZty = 0, (2.30)

– 8 –
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where only the ω and q-independent parts of Zxz and Zty are relevant for our purposes.

By further writing Y
(γ)
xy =

(

1− u2
)− iω

4πT0 y(u), the differential equation for y(u) at

quadratic order in ω and q is simply

∂2
uy −

1 + u2

u (1− u2)
∂uy +

ωqu
(

774u5 + 175u4 + 564u3 + 225u2 − 150u+ 75
)

4π2T 2
0 (1− u2)

= 0. (2.31)

The full solution of the two differential equations is given by

h(2)xy =h(b)xz h
(b)
ty e

−iωt+iqz ωq

4π2T 2
0

[

−
(

1− u2
)− iω

4πT0
(1−15γ)

ln(u+ 1)

+ γ
(

1−u2
)− iω

4πT0

[

1

6
u
(

129u5+42u4+405u3+220u2+585u+1110
)

−185 ln(u+1)

]]

.

(2.32)

We now compute the holographic stress-energy tensor for the induced metric γµν ,

Tµν = −√−γ
N2

c

4π2

(πT0)
2

u

[

Kµν −Kγµν + 3

(

γµν − 1

6
Gµν

(γ)

)]

, (2.33)

which has the same tensorial form as in the Einstein-Hilbert gravity, with no higher-

derivative terms contributing [45]. Taking the derivatives of T xy with respect to the

boundary values of h
(1)
xz and h

(1)
ty , we find the three-point function,

Gxy,ty,xz
RAA (p, q) =

N2
c

16
p0qzT 2

0 (1 + 380γ) , (2.34)

and, using the Kubo formula (2.9), the coefficient λ2 in eq. (1.12).

3 Curvature squared corrections to second order transport coefficients

In this section we determine corrections to the second order transport coefficients in a

(hypothetical) four-dimensional CFT dual to a bulk gravity with generic curvature squared

terms. The five-dimensional bulk action is

SR2 =
1

2κ25

∫

d5x
√−g

[

R− 2Λ + L2
(

α1R
2 + α2RµνR

µν + α3RµνρσR
µνρσ

)]

, (3.1)

where the cosmological constant Λ = −6/L2 (we set L = 1 in the rest of this section).

For generic values of the coefficients α1, α2, α3, the curvature squared terms are treated

perturbatively. The Gauss-Bonnet action is obtained from the action (3.1) by setting

α1 = α3 = λGB/2 and α2 = −2λGB.

To compute curvature squared corrections to second order transport coefficients in a

dual four-dimensional quantum field theory to linear order in αi, one can use the field

redefinition and the already known results for N = 4 SYM and Gauss-Bonnet gravity.

First, we set α3 = 0 and use the field redefinition discussed in [19, 20] ,

gµν = ḡµν + α2R̄µν −
1

3
(α2 + 2α1) ḡµνR̄, (3.2)
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to rewrite the action (3.1) in the two-derivative form (to linear order in α1 and α2):

S̃ ≡ SR2 [α3 = 0] =
1 +K
2κ25

∫

d5x
√−ḡ

[

R̄− 2Λ̄
]

+O(α2
i ). (3.3)

Here, in the notations of [20], K = 2Λ
3 (5α1 + α2) and Λ̄ = Λ

1+K . The field redefinition (3.2)

implies that the metric satisfies

gµν = A2ḡµν +O(α2
i ), (3.4)

where

A = 1− K
3
+O(α2

i ). (3.5)

We can further transform the metric ḡµν to bring the action S̃ into the standard Einstein-

Hilbert form with the cosmological constant Λ dual to N = 4 supersymmetric SU(Nc)

Yang-Mills theory in the regime of infinite ’t Hooft coupling and infinite Nc. Indeed,

consider a new metric g̃µν defined by ḡµν = B2g̃µν (the metric determinant and the Ricci

scalar transform, correspondingly, as
√−ḡ = B5

√−g̃ and R̄ = B−2R̃). With B given by

B = 1 +
K
2
+O(α2

i ), (3.6)

we can now write the action (3.3) in the standard Einstein-Hilbert form,

S̃ =
1

2κ̃25

∫

d5x
√

−g̃
[

R̃− 2Λ
]

+O(α2
i ), (3.7)

where the redefined Newton’s constant is

κ̃25 = B−5κ25. (3.8)

The original metric gµν , which is related to g̃µν by gµν = A2B2g̃µν +O(α2
i ), can be written

to linear order in α1 and α2 as

gµν = e−2ω g̃µν +O(α2
i ) , (3.9)

where e−2ω = 1/A. From eqs. (3.7), (3.9), it is clear that the stress-energy tensor T̃µν
N=4

of N = 4 SYM computed from (3.7), with κ̃25, is related to the stress-energy tensor of a

theory dual to SR2 [α3 = 0] by a global Weyl transformation

Tµν
R2 [α3 = 0] = e6ω T̃µν

N=4, (3.10)

and the redefinition of κ25 given by eq. (3.8). Then the scaling arguments8 imply

η = e3ωη̃, ητΠ = e2ωη̃τ̃Π, λ1,2,3 = e2ωλ̃1,2,3, κ = e2ωκ̃, (3.11)

8See e.g. [2] for a discussion of Weyl transformations in hydrodynamics.
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where all the transport coefficients with the overhead tildes depend on κ̃25. The N = 4

SYM theory coefficients are

η̃ =
π3T̃ 3

2κ̃25
, τ̃Π =

2− ln 2

2πT̃
, κ̃ =

η̃

πT̃
, (3.12)

λ̃1 =
η̃

2πT̃
, λ̃2 = − η̃ ln 2

πT̃
, λ̃3 = 0. (3.13)

The temperature of the N = 4 SYM theory is given by T̃ = r+/π, where r+ is the radial

position of the black brane horizon. Using eqs. (3.5) and (3.6), we find that the shear

viscosity in a (hypothetical) field theory dual to the gravitational background described by

the action SR2 [α3 = 0] is given by

η = A3/2B5 r3+
2κ25

=
r3+
2κ25

(

1− 8 (5α1 + α2)

)

+O(α2
1, α

2
2) , (3.14)

which agrees9 with the results obtained in [19, 56]. Here r+ is the location of the event

horizon of a black brane solution to the equations of motion following from the action

SR2 [α3 = 0].

The full result (for arbitrary α3 to linear order) is thus

η =
r3+
2κ25

(

1− 8 (5α1 + α2)

)

+ Cηα3 +O(α2
i ) , (3.15)

where the coefficient Cη remains undetermined. Similarly, the second-order transport co-

efficients to linear order in α1 and α2 are given by the corresponding N = 4 SYM results

multiplied by AB5:

ητΠ =
r2+ (2− ln 2)

4κ25

(

1− 26

3
(5α1 + α2)

)

+ CτΠα3 +O(α2
i ), (3.16)

κ =
r2+
2κ25

(

1− 26

3
(5α1 + α2)

)

+ Cκα3 +O(α2
i ), (3.17)

λ1 =
r2+
4κ25

(

1− 26

3
(5α1 + α2)

)

+ Cλ1
α3 +O(α2

i ), (3.18)

λ2 = −r2+ ln 2

2κ25

(

1− 26

3
(5α1 + α2)

)

+ Cλ2
α3 +O(α2

i ), (3.19)

λ3 = Cλ3
α3 +O(α2

i ). (3.20)

Here we added the undetermined terms linear in α3. To restore the dependence on α3

(to linear order), recall that the Gauss-Bonnet expressions for transport coefficients would

be restored (to linear order in λGB) by substituting α1 = λGB/2, α2 = −2λGB and α3 =

9When comparing with [19], one should note that z0 in [19] denotes the location of the horizon in the

solution unaffected by curvature squared terms, whereas our r+ is the horizon of the corrected solution. The

relation between these parameters brings in the α3 dependence, which may appear to be missing from (3.14)

at first sight.
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λGB/2. For example, according to (3.16), the coefficient κ in the holographic Gauss-Bonnet

liquid to linear order in λGB should be equal to

κ =
r2+
2κ25

(

1− 13

3
λGB

)

+ Cκ
λGB

2
+O(α2

i ) . (3.21)

On the other hand, all transport coefficients of the holographic Gauss-Bonnet liquid are

known explicitly (non-perturbatively [36, 37] and to linear order [35]):

ητΠ =
r2+ (2− ln 2)

4κ25
− r2+ (25− 7 ln 2)

8κ25
λGB +O(λ2

GB), (3.22)

κ =
r2+
2κ25

− 17r2+
4κ25

λGB +O(λ2
GB), (3.23)

λ1 =
r2+
4κ25

− 9r2+
8κ25

λGB +O(λ2
GB), (3.24)

λ2 = −r2+ ln 2

2κ25
− 7r2+ (1− ln 2)

4κ25
λGB +O(λ2

GB), (3.25)

λ3 = −14r2+
κ25

λGB +O(λ2
GB). (3.26)

Comparing eqs. (3.21) and (3.23), and taking into account α3 = λGB/2, we read off the

coefficient Cκ = −25r2+/6κ
2
5. All other coefficients are determined in the same way, and we

find the transport coefficients of a (hypothetical) holographic liquid described by the dual

gravitational action (3.1) to linear order in αi:

η =
r3+
2κ25

(1− 8 (5α1 + α2)) +O(α2
i ), (3.27)

ητΠ =
r2+ (2− ln 2)

4κ25

(

1− 26

3
(5α1 + α2)

)

− r2+ (23 + 5 ln 2)

12κ25
α3 +O(α2

i ), (3.28)

κ =
r2+
2κ25

(

1− 26

3
(5α1 + α2)

)

− 25r2+
6κ25

α3 +O(α2
i ), (3.29)

λ1 =
r2+
4κ25

(

1− 26

3
(5α1 + α2)

)

− r2+
12κ25

α3 +O(α2
i ), (3.30)

λ2 = −r2+ ln 2

2κ25

(

1− 26

3
(5α1 + α2)

)

− r2+ (21 + 5 ln 2)

6κ25
α3 +O(α2

i ), (3.31)

λ3 = −28r2+
κ25

α3 +O(α2
i ). (3.32)

In eqs. (3.27)–(3.32), r+ is the location of the event horizon in the full black brane solution

involving all three αi corrections. The results for τΠ and κ were previously derived in [56]

and are in agreement with our eqs. (3.28) and (3.29). The expressions for λ1, λ2 and λ3

are new.

Finally, by using the expressions (3.28), (3.30) and (3.31), we confirm that the Haack-

Yarom relation among the second order coefficients is satisfied to linear order in αi for a

– 12 –



J
H
E
P
0
3
(
2
0
1
5
)
0
0
7

(hypothetical) holographic liquid dual to five-dimensional gravity with generic curvature

squared terms given by the action (3.1):

2ητΠ − 4λ1 − λ2 = O(α2
i ). (3.33)

4 Conclusions

In this paper, we have made an observation that the universal relation (1.6) among the

second order transport coefficients holds not only to leading order in conformal liquids

with dual gravity description, as suggested by Haack-Yarom theorem, but remains valid to

next to leading order in N = 4 SYM and in a (hypothetical) fluid dual to five-dimensional

gravity with generic curvature squared terms (in particular, Gauss-Bonnet gravity). It is

not clear to us whether this result can be generalized to an arbitrary higher-derivative

correction to Einstein-Hilbert action (to linear order in the corresponding couplings). Such

a generalization would follow from knowing (from e.g. inequalities obeyed by correlation

functions or restrictions imposed by the entropy current) that H(λHD) ≤ 0, where λHD is

the higher-derivative coupling, since then λHD = 0 would be a maximum of the function

H(λHD) with H(0) = 0 by the Haack-Yarom theorem, and the linear term in the expansion

of H(λHD) for small λHD would necessarily vanish. This is indeed the case for the Gauss-

Bonnet gravity, see eq. (1.7). Before looking for a general proof, however, it may be useful

to check other examples, including other dimensions and charged backgrounds. Weak

coupling calculations seem to suggest that H is a non-trivial function of the coupling, yet

it would be desirable to know this explicitly for a conformal theory (e.g. N = 4 SYM)

at weak coupling. Also, it may be interesting to generalize the Haack-Yarom theorem to

non-conformal holographic liquids.10

The physical significance of the function H is not entirely clear but it might be re-

lated to one of the parameters regulating dissipation. The normalized rate of the entropy

production in a conformal fluid near equilibrium is given by [58]

∇as
a

s
=

η

2sT
σabσ

ab +
κ− 2λ1

4sT
σabσ

a
cσ

bc +

(

A1

2s
+

κ− ητΠ
2sT

)

σab

[

〈Dσab〉 +
1

3
σab (∇ · u)

]

,

(4.1)

where the coefficient A1 remains unknown at present. Dissipationless conformal fluids have

η = 0, κ = 2λ1 and 2ητΠ − 4λ1 − λ2 = 0 [59], i.e. for such fluids A1 = λ2/2T . Strongly

coupled N = 4 SYM is not a dissipationless fluid,11 but with κ − 2λ1 = O(λ−3/2), low

viscosity-entropy ratio and H = 0 it may be not too far from it, comparing especially

to the weak coupling limit λ → 0, where η/s ∼ 1/λ2 lnλ−1, λ1 ∼ T 2/λ4 ln2 λ−1 and

κ ∼ T 2/λ2 [33]. This raises the possibility that the near-equilibrium hydrodynamic entropy

production is generically suppressed at strong coupling as discussed recently in [60].

10As shown by Bigazzi and Cotrone [57], the relation (1.6) remains valid in holographic theories where

conformality is broken by a marginally relevant deformation, at leading order in the deformation parameter.
11We note that the Gauss-Bonnet fluid dual to (1.4) in the limit λGB → 1/4 is not a dissipationless liquid,

either: it has vanishing shear viscosity but κ 6= 2λ1 and 2ητΠ − 4λ1 − λ2 6= 0 in that limit [36, 37].
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